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Abstract: A cysteine protease domain (CPD) has been recently discovered in a group of
multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These
CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside
host cells. We report identification and computational analysis of CPDadh, a new cysteine
peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like
structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are
present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the
C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive
members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH

factor) and some putative signaling proteins.

Keywords: cysteine protease domain; repeats-in-toxin; multifunctional autoprocessing RTX toxins;
cell adhesion molecules; RHS proteins; nasal embryonic LHRH factor

Introduction

RTX (repeats-in-toxin) toxins refer to a diverse group
of large proteins secreted by Gram-negative bacteria,
including Escherichia coli o-hemolysin, Pasteurella
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haefflolytica leukotoxin, and Bordetella pertussis
adenylate cyclase toxin.' They are characterized by
repeats of a glycine and aspartate-rich, calcium-bind-
ing sequence motif. Recently, a family of multifunc-
tional, autoprocessing RTX toxins (MARTX), typified
by VcRtxA from Vibrio cholerae, are found to contain
a cysteine protease domain (CPD, referred to as
CPDmartx in this work). CPDmartx autocleaves these
toxins to release domains with toxic effects to the cyto-
sol of host cells.” This domain is also used in the auto-
cleavage of toxins A and B from the Gram-negative,
pathogenic Clostridium difficile.> Here, we report
identification and computational analysis of a new
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cysteine peptidase family homologous to CPDmartx in a
diverse group of bacterial proteins and their homologs
in eukaryotes with potentially lost peptidase activity.

Results and Discussions

Identification of a new family of

cysteine protease domains (CPDadh)
homologous to CPDmarix

PSI-BLAST* searches (see Materials and methods) for
CPDmartx domains converge to about 70 bacterial
proteins. Identified sequences display relatively high
similarity to each other. To investigate if remote
homologs of CPDmartx domains exist, we manually
inspected PSI-BLAST hits above the default e-value
cutoff (0.001). The N-terminal region of a large pro-
tein annotated as “Autotransporter adhesion” from
Magnetospirillum gryphiswaldense [NCBI gene iden-
tification (gi) number 144897667, with an e-value of
0.68] was identified to have two sequence motifs of
CPDmartx that harbor the conserved histidine and
cysteine catalytic diad.® A PSI-BLAST search starting
from this domain (gi|144897667, residues 88-256)
revealed that most of its bacterial homologs also have
the conserved histidine and cysteine residues in these
motifs. Comprehensive PSI-BLAST searches starting
from multiple representatives of found homologs of
g1|144897667 identified about 300 proteins containing
this new domain.

Regions corresponding to this new domain do not
contain known domains as revealed by submitting
found proteins to domain databases such as CDD,°
Pfam” and SMART.® CPDmartx domains and the new
family of domains could not find each other as signifi-
cant hits during PSI-BLAST searches, suggesting lim-
ited sequence similarity between them. Similarity
searches against the pdb7o database (protein data-
bank® nonredundant sequences with known structures
at 70% identity) using a more sensitive profile—profile
comparison method HHpred'® did suggest this new
domain is remotely related to the CPDmartx domain
of V. cholerae with a recently solved structure (pdb id:
3eeb; HHpred probability of 0.77).> We also submitted
this new domain to the 3D-Jury Meta server,"* which
assembles the results of various fold recognition meth-
ods and computes consensus scores for the predic-
tions. Several fold recognition methods, such as Meta-
Basic,”> FFAS03™ and mGenThreader,” found
CPDmartx structure 3eeb and/or other structures with
the caspase-like fold as top hits. The best hit of the
3D-Jury consensus results is 3eeb with a significance
score above 60. Other structures with the caspase-like
fold were also among the top consensus hits; and the
conserved cysteine and histidine residues in this new
domain are aligned to the corresponding catalytic resi-
dues in these structures. These results indicate that
this new domain has a caspase-like fold and is homol-
ogous to CPDmartx.
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Few proteins with this new domain have been
experimentally characterized. Annotations for many of
them are simply hypothetical proteins or based on
other domains present in them, such as “hemolysin-
type calcium-binding region” (gi|158520629), “hemag-
glutination  activity = domain-containing  protein”
(gi|158341333) and “putative outer membrane adhe-
sin-like protein” (gi|119946789). As co-occurring
domains are often involved in cell adhesion, we refer
to this new family of putative cysteine protease
domains as CPDadh.

Sequence and structure characterization

of CPDadh domains

In the MEROPS peptidase classification database,'®
CPDmartx domain is denoted as peptidase family C80
in clan CD. This clan also includes several remotely
related peptidase families, such as clostripain (C11),
legumain (C13), caspase (Ci4), gingipain (C15), and
separase (C50). Comprehensive sequence similarity
searches and evolutionary analyses were conducted
several years ago for peptidases in this clan.’® The
structures of caspase'” and gingipain'® have been well
characterized, both having a Rossmann-fold like core
with a mainly parallel beta sheet surrounded by alpha-
helices on both sides. Compared to caspases, the most
noticeable differences in the structure of recently
solved CPDmartx from V. cholerae® lies in the C-ter-
minus, where two helices of caspases are replaced by
several beta strands in CPDmartx. These beta strands
form part of the binding pocket for the small molecule
inositol hexakisphosphate (InsP6).%

Multiple sequence alignment'® and secondary
structure predictions®® reveal that most CPDadh
domains retain the core structure elements character-
istic of caspases or CPDmartx (see Fig. 1). The excep-
tion are for bacterial group 2 CPDadh domains
(sequence grouping is discussed below), where the N-
terminal regions before the beta-strand preceding the
active site histidine are quite diverse (not shown in
Fig. 1). The C-terminal ends for these proteins are also
divergent (not shown in Fig. 1). As the C-terminus of
the V. cholerae MARTX CPD is involved in protease
activation in response to InsP6, it is possible that the
divergent C-termini of CPDadh domains have evolved
responsiveness to other small molecule or protein
ligands to allow for activation in diverse environments.
Indeed, the basic residues involved in InsP6 binding
in the V. cholerae MARTX CPD are not conserved in
CPDadh domains, indicating different mechanism(s)
of activation.

Grouping and domain contents of

CPDadh domain-containing proteins

CPDadh domains are found in proteins from bacteria
and eukaryotes. Most of the bacterial CPDadh-contain-
ing proteins are long, with more than one thousand
residues. They have a much wider species distribution
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Figure 1. Multiple sequence alignments of CPDmartx and CPDadh domains. Nonpolar residues in positions with mainly
hydrophobic residues are shaded in yellow. Catalytic residues are shaded in black with the exception of putative inactive
members where they are shaded in gray. Starting and ending residues numbers, as well as sequence lengths (in brackets),
are shown. Long insertion regions in the alignment are replaced by the numbers of residues. Consensus secondary structure
predictions are shown below alignment of each group (h, helix; e, strand). The proteins are identified by their NCBI gene
identification (gi) numbers, followed by the species name abbreviations: Ah, Aeromonas hydrophila; Am, Acaryochloris marina;
Ap, Acyrthosiphon pisum; Bf, Branchiostoma floridae; Bp, Bordetella pertussis; Bx, Burkholderia xenovorans; Cc, Chlorobium
chlorochromatii; Cd, Clostridium difficile; Cl, Chlorobium limicola; Cp, Chlorobium phaeobacteroides; Cr, Chlamydomonas
reinhardftii; Da, Delftia acidovorans; Do, Desulfococcus oleovorans; Dr, Danio rerio; Ec, Escherichia coli; Fa, Frankia alni; Fs,
Frankia sp.; Gg, Gallus gallus; Hc, Hahella chejuensis; Hs, Homo sapiens; Ls, Lyngbya sp.; Mb, Monosiga brevicollis; Mg,
Magnetospirillum gryphiswaldense; Mm, Magnetospirillum magnetotacticum; Ms, Marinomonas sp.; Nv, Nematostella
vectensis; Oa, Ornithorhynchus anatinus; Pe, Pseudomonas entomophila; Pg, Phaeobacter gallaeciensis; Pl, Photorhabdus
luminescens; Rb, Rhodopirellula baltica; Re, Rhizobium etli; Rs, Ralstonia solanacearum; Sa, Streptomyces avermitilis; Sd,
Sulfurimonas denitrificans; Se, Saccharopolyspora erythraea; Sp, Strongylocentrotus purpuratus; Ta, Trichoplax adhaerens; Te,
Trichodesmium erythraeum; Vb, Vibrionales bacterium; V¢, Vibrio cholerae; Xt, Xenopus tropicalis; Yp, Yersinia pestis.

than CPDmartx-containing proteins, which are only
present in several pathogenic proteobacteria and Clos-
tridium species in current sequence database. The
CLANS program®' was used to cluster CPDadh
domains based on BLAST* scores and display the
results (Supporting Information Fig. 1). The results
suggest there are mainly two bacterial groups and two
eukaryotic groups with distinct sequence annotations
and domain contents (see Fig. 2).

Bacterial CPDadh-containing proteins

Bacterial group 1. This is the largest group with
about 140 proteins. Annotations of these proteins are
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usually based on domain contents or simply hypotheti-
cal proteins. Although few experimental studies have
been carried out on these proteins, most of them prob-
ably function as cell adhesion molecules as the co-
occurring domains are mostly involved in cell surface
protein-protein interactions. The domain contents of
these proteins are diverse (Fig. 2), as revealed by anal-
ysis using the hmmpfam program against the latest
Pfam database’ (see supplementary hmmpfam results
at http://prodata.swmed.edu/CPDadh). Many domains
are themselves repeats or have multiple copies in
one protein. The repeats often adopt beta-roll struc-
tures such as hemolysin-type calcium-binding repeat

A New Peptidase Family Homologous to MARTX CPD
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Figure 2. Domain architecture of selected CPDadh-containing proteins. Regions containing various repeats are marked with
hexagons. Domains with immunoglobulin fold are shown as octagons. Domain name abbreviations are: Cad, cadherin
domain; Calx, Calx-beta domain; Hem-act, haemagglutination activity domain; TM, transmembrane region; EF, EF-hand
calcium binding domain. Putative catalytically inactive CPDadh domains have dashed outlines.

(Pfam family PFo00353)** and pentapeptide repeat
(PF00805)>3; or beta-propeller structures such as WD40
repeat,”* BNR/Asp-box repeat (PF02012),*> FG-GAP
repeat (PF01839)%° and LIVID repeat (PF08309).%
Domains with immunoglobulin fold are abundant, such
as cadherin domain (PF00028),2® PKD domain
(PF00801),%° Calx-beta domain (PF03160),3° and pepti-
dase family C25 C terminal ig-like domain (PF03785).3"
The CPDadh domain is at the N-termini of these
proteins, and is often the first domain. Some proteins
(e.g., £i|89075996 and gi|9o578280) have a signal
peptide present at the N-terminus, suggesting that
they are secreted via the Sec dependent secretion path-
way. In a few cases, two tandem CPDadh domains
occur at the N-terminus (e.g., gi|23012845, Fig. 2),
suggesting domain duplication events. The common
domain localization of CPDadh in these proteins sug-
gests that it perform a function with similar mecha-
nism. One possibility is that this domain could be
involved in autoprocessing of these bacterial proteins.
Besides the conserved catalytic histidine and cysteine
residues, a conserved Asp/Asn residue is present at
the end of the first core beta strand in CPDadh
domains of bacterial group 1 proteins (see Fig. 1). This
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Asp/Asn residue could contribute to catalytic reaction
or substrate binding. A few proteins have one or more
active site residues mutated, possibly resulting in
inactivation.

Using the STRING server3® to mine genomic con-
textual information, we found that some bacterial
group 1 CPDadh-containing proteins have genomic
neighbors that are components of type I secretion sys-
tems (T1SS),3® suggesting that they are secreted by
T1SS. For example, the protein VCSB (Swiss-Prot id
Q3B5W4) from Pelodictyon luteolum is associated
with a transport ATPase and type I secretion mem-
brane fusion protein HlyD. RTX toxins, including
the CPDmartx-containing MARTX proteins, are also
secreted by T1SS.”> Products of other genomic neigh-
bors of bacterial group 1 CPDadh-containing proteins
are sometimes annotated as outer membrane proteins
and often contain domains involved in cell-cell interac-
tions too, suggesting that these proteins function to-
gether to mediate cell adhesion.

The majority of bacterial species with this group
of CPDadh domains are from the phyla of proteobacte-
ria and cyanobacteria. They are mostly free-living,
nonpathogenic bacteria from aquatic environment. A

PROTEIN SCIENCE ‘ VOL 18:806-862 858



few cyanobacteria species, such as Lyngbya sp. and
Acaryochloris marina, have more than 10 proteins
with CPDadh domains.

Bacterial group 2. This group of CPDadh domains
exhibits high sequence divergence (Supporting Infor-
mation Fig. 1). Bacterial species with this group of
CPDadh domains are mainly from the phyla of proteo-
bacteria and actinobacteria. Many members are associ-
ated with the RHS (recombination hot spot) pro-
teins.?* RHS proteins have been identified in various
strains of E. coli, all of which have the characteristic
RHS repeats (PF05593, also called YD repeats due to
the conserved “YD” residues in repeated motif
“xxGxxxRYXYDxxGRL[I/T]xxxx”). Other experimen-
tally characterized RHS proteins include a cell wall
associated protein in Bacillus subtilis,®® insecticidal
toxins TccC from Photorhabdus luminescens®® and
SepC from Serratia entomophila,?” and a class of
eukaryotic transmembrane proteins called teneurins.3®
The C-termini of different RHS proteins are divergent
and can contain various nonhomologous domains. The
CPDadh-containing RHS proteins, including two
(RhsA and RhsG) from E. coli strain O157, all have the
CPDadh domain located at the C-terminal end. One
CPDadh-containing RHS protein from the nematode
symbiont species Xenorhabdus bovienii is annotated
to be toxic to nematodes (unpublished results,
gi|11967898). The CPDadh domains in RHS proteins
could contribute to the processing of these proteins, or
act as a virulence activity domain. This group also
includes proteins without RHS repeats, some of which
(e.g., gi|134101961, Fig. 1) contain multiple copies of
inactivated CPDadh domains.

Eukaryotic CPDadh-containing proteins

Two main groups of eukaryotic CPDadh domains exist
with some divergent members. The active site histidine
residues are mutated in most of eukaryotic proteins,
suggesting loss of peptidase activity.

Eukaryotic group 1. This group contains proteins
named NELF (nasal embryonic LHRH factor) in verte-
brates. Their function is related to migration of LHRH
(luteinizing hormone-releasing hormone) neurons dur-
ing embryonic development.3® NELF is located on the
outside of LHRH cell membrane and could be a cell
adhesion molecule.>® Mutation of human NELF pro-
tein has been linked to Kallmann syndrome (hypogo-
nadotropic hypogonadism with anosmia/hyposmia).*°
NELF orthologs were found from sea urchin Strongy-
locentrotus purpuratus and placozoan Trichoplax
adhaerens,*' suggesting its ancient origin in animals.
CPDadh domains are located at the C-terminal ends of
NELF proteins. N-terminal regions of these proteins
do not have many regular secondary structures. As the
active site histidine residues are mutated, CPDadh
domains in NELF proteins probably do not have pepti-
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dase activity, but could contribute to cell adhesion
though protein or peptide binding. The active site cys-
teine residues in these domains are preserved (see Fig.
1), and probably still play a role in the function of
NELF proteins.

Eukaryotic group 2. This group consists of pro-
teins annotated as hypothetical proteins or F-box con-
taining proteins. The functions of these proteins are
unknown. They contain an F-box domain,** a RhoGEF
(guanine nucleotide exchange factor for Rho/Rac/
Cdcg2-like GTPases) domain*® and a PH (pleckstrin
homology) domain** (see Fig. 2), suggesting possible
roles in signaling pathways. These proteins are present
in vertebrates as well as some lower animals such as
Trichoplax adhaerens and Nematostella vectensis.

Eukaryotic proteins with divergent CPDadh
domains. Several eukaryotic proteins were found to
contain divergent CPDadh domains. They have differ-
ent domain structures from proteins in the two groups
as described earlier (see Fig. 2). A hypothetical protein
from Chlamydomonas reinhardtii (gi|159466140) con-
tains a transmembrane domain and several EF-hand
calcium-binding domains. Divergent CPDadh domains
are also present at the N-termini of several proteins
containing NEK (NEver in mitosis Kinase) domain*®
and RCC1 (regulation for chromosome condensation,
with a B-propeller structure) domain?® in tunicata
Ciona intestinalis (gi|198435791), insect Acyrthosi-
phon pisum (gi|193606321), and lancelet Branchios-
toma floridae (gi|210108252, which also contains sev-
eral tumor necrosis factor receptor (TNFR) domains*”
at the C-terminus). One protein from marine choano-
flagellate Monosiga brevicollis (gi|167516882) retains
both the catalytic histidine and cysteine residues (see
Fig. 1) and might still possess the peptidase activity.
Interestingly, this protein lies in the middle of the bac-
terial group 1 proteins and eukaryotic group 1 proteins
(Supporting Information Fig. 1), suggesting that the
eukaryotic CPDadh domain could be acquired by hori-
zontal gene transfer of a bacterial group 1 protein to
an ancient eukaryotic organism.

Conclusions

We have identified a new cysteine peptidase family
(CPDadh) homologous to the CPD domain of MARTX
toxins. This new domain is present in a diverse collec-
tion of bacterial proteins, many of which are likely
involved in cell adhesion. The substrates of the bacte-
rial domains are unknown. One interesting possibility
is that these proteins are autocleaved by the CPDadh
domain, like the MARTX toxins. Eukaryotic members
of CDPadh domains are found in cell surface protein
NELF as well as some proteins co-occurring with
signaling domains. Mutations in active site residues
suggest that most of eukaryotic CPDadh domains are
catalytically inactive. The functions of CPDadh

A New Peptidase Family Homologous to MARTX CPD



domains in different groups of bacterial and eukaryotic
proteins remain to be understood.

Materials and Methods

The PSI-BLAST program®* was used to search for
homologs of the CPDmartx domain of V. cholerae
(gi|153817921, range 3429—3637) against the NCBI
nonredundant database (October 26, 2008; 7,124,886
sequences; 2,457,960,432 total letters), with an inclu-
sion e-value cutoff of 0.001. Found homologs were
clustered and representative sequences from each
group were used to start new iterations of PSI-BLAST
searches to ensure maximum coverage. Manual inspec-
tions of PSI-BLAST hits above the default e-value
cutoff were conducted to find remote homologs of
CPDmartx domains. The same PSI-BLAST search
strategy was used for CPDadh domains. HHpred,' a
profile—profile based method, was used to find distant
relationships for CPDadh and CPDmartx domains. The
3D-Jury Meta server'’ was used for fold recognition
for CPDadh domains. Domain architecture analysis
was made by submitting sequences to domain data-
base servers such as CDD,® Pfam,” and SMART,” and
by using the hmmpfam program of the HMMER pack-
age.” Multiple sequence alignments were constructed
by using the PROMALS3D program.'® Manual adjust-
ment of the alignments was made with guidance from
available 3D structure and secondary structure predic-
tions made by PSIPRED.?° Sequence grouping and
display of the groups were made by the CLANS
program.>
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