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ABSTRACT We have developed an effective
scoring function for protein design. The atomic
solvation parameters, together with the weights of
energy terms, were optimized so that residues corre-
sponding to the native sequence were predicted
with low energy in the training set of 28 protein
structures. The solvation energy of non-hydrogen-
bonded hydrophilic atoms was considered sepa-
rately and expressed in a nonlinear way. As a result,
our scoring function predicted native residues as
the most favorable in 59% of the total positions in 28
proteins. We then tested the scoring function by
comparing the predicted stability changes for 103
T4 lysozyme mutants with the experimental values.
The correlation coefficients were 0.77 for surface
mutations and 0.71 for all mutations. Finally, the
scoring function combined with Monte Carlo simula-
tion was used to predict favorable sequences on a
fixed backbone. The designed sequences were simi-
lar to the natural sequences of the family to which
the template structure belonged. The profile of the
designed sequences was helpful for identification of
remote homologues of the native sequence. Proteins
2004;54:271–281. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

De novo protein design involves the construction of a
sequence not directly related to that of any natural protein
and intended to fold into a precisely defined three-
dimensional (3D) structure.1 Recently, protein design has
emerged as a powerful method for understanding the
underlying principles that dictate protein folding.2 Most
design studies are aimed at the generation of novel hydro-
phobic cores for proteins.3–7 In such cases, using hydropho-
bic residues and considering only packing specificity are
sufficient to design well-folded proteins.8 The first fully
automated design and experimental validation of a novel
sequence for an entire protein was described by Dahiyat
and Mayo.9 However, the algorithm restricted core posi-
tions to hydrophobic residues and surface positions to
hydrophilic residues, whereas both hydrophobic and hydro-
philic residues were considered at boundary positions.
More recent computer programs tend to use no restric-
tions.10,11 Solvation energy and amino acid correction
baseline factors were used in these programs to avoid
considering the protein’s unfolded state.

Because solvent affects protein structure, calculating
solvation energy is important for protein design. Explicit
modeling of protein-solvent interaction is impossible be-
cause of prohibitively intensive computation. Two types of
approximate methods are frequently used: the atomic
solvation parameter (ASP) models12,13 and structure-
based solvation parameters.14,15 In ASP models, the solva-
tion energy is estimated as the product of the accessibility
of the atom and its atomic solvation parameter, which is
derived by using the octanol-water or gas-water transfer
free energy for each amino acid. The structure-based
potential derived from an ensemble of experimentally
determined protein structures consists of computing fre-
quencies of structural features and converting these fre-
quencies into free energy.16 The structure-based potential
or the solvation energy calculated by ASPs derived from
octanol-water transfer free energy overlap with the terms
of common force fields and are, therefore, difficult to use in
molecular modeling. Nevertheless, some workers added
the solvation energy calculated by the ASPs derived from
gas-water transfer free energy directly to the force field of
molecular mechanics.17,18 Others tried to find an appropri-
ate weight between the calculated solvation energy and
the force-field terms.10,19 However, the ASPs may not be
optimized when combined with force-field terms because
molecular mechanics is a linear combination of simple
empirical terms and does not always capture physical
reality. For example, when a low electrostatic dielectric
constant is chosen, a larger penalty should be used against
buried hydrophilic surfaces. Dahiyat and Mayo5 obtained
the optimal ratios for the force-field energy, buried polar,
and nonpolar surfaces by fitting them to the experimen-
tally determined stability of designed peptides. Raha et
al.20 determined the strength of ASPs relative to force-field
terms from a coarse grid search over combinations of the
parameters. The values that gave the best overall results
in terms of the resemblance between the designed se-
quences and natural members of the protein family were
accepted. More recently, Das and Meirovitch21 optimized
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the ASPs in such a way that the modeled loop structure
with the global minimum resembled the X-ray structure.

We previously developed a side-chain modeling program
by optimizing the weights of the energy terms.22 In the
course of optimization, for every residue, its side-chain was
replaced by varying rotamers, the representative conforma-
tions of the amino acid, whereas conformations for all
other residues were kept as they appeared in the crystal
structure. The weights were optimized to achieve the
minimal average root-mean-square deviation (RMSD) be-
tween the lowest energy rotamer and the real side-chain
conformation on a training set of high-resolution protein
structures. Kuhlman and Baker10 developed a scoring
function for protein design by using a similar procedure. In
their study, the solvation energy calculated by using the
Lazaridis–Karplus solvation model and other energy terms
were balanced by a conjugate-gradient-based optimization
method.23 Here, we derived the ASPs together with the
weights of empirical energy terms. As a result, the pre-
dicted unfolding ��G of T4 lysozyme mutants correlated
with their experimental values.

THEORY AND METHODS
The Rotamer Intrinsic Energy and Rotamer
Library

The modified backbone-dependent rotamer library of
Dunbrack is used in this study.22,24 Polar hydrogen atoms
are added. �2 of Ser, Thr, and �3 of Tyr are assigned values
of �60°, 60°, and 180°. Three protonation states of His
with the same expected frequencies are considered: N�1

protonated, N�2 protonated, and both. �2 of Asn, His, and
�3 of Gln are flipped 180° to make new rotamers to correct
for the lack of defined rotameric states in the Dunbrack
library. As a result, the total number of rotamers increases
to 412 from 320 in the original library. Given backbone
conformation, the intrinsic energies of rotamers are repre-
sented by �ln(f1 � f2). f1 is the expected rotamer frequency
of a particular amino acid.24 f2 is the frequency of the
amino acid given backbone �,� angles, which is derived by
statistical analysis of 1344 peptide chains with 	20%
sequence identity and 
 2.2 Å resolution. The number of
each amino acid is counted in 10° by 10° �,� bins centered
(�180°, �170°, …, 0°, 160°, 170°). The frequency is calcu-
lated as the number of a particular amino acid divided by
the number of total amino acids falling in the bin. f2
represents not only the tendency of an amino acid to adopt
the given backbone conformation but also the abundance
of the amino acid in native proteins. In regions where
amino acids are rarely distributed, the boundaries of the
bin are extended by 10° in both directions until the number
of total amino acids is 
100.

The Scoring Function

The scoring function is a linear combination of the
following terms: 1) the contact surface and overlapped
volume between the rotamer and surrounding protein
atoms22; 2) hydrogen bond energy; 3) electrostatic interac-
tions using a distance-dependent dielectric constant; 4)
desolvation energy; 5) the rotamer intrinsic energy; 6)

disulfide bond energy; and 7) reference value for each
amino acid. The parameters of CHARMM polar hydrogen
model are used in the energy calculation unless specifically
indicated.25 The definition of hydrogen bond is more
stringent than in our previous work22 to avoid unfavorable
hydrogen bonding geometry in the designed strucure:

2.3 Å 	 R 	3.5 Å

� � 100°

���109.5°� 	 71.5°, ���109.5°�	71.5° for sp3 acceptor

�
80°, �
80° for sp2 acceptor

(1)

where R is the distance between donor and acceptor of a
hydrogen bond, � is the donor-hydrogen-acceptor angle, �
is the hydrogen-acceptor-base angle (the base is the atom
attached to the acceptor), and � is the donor-acceptor-base
angle. The hydrogen bond energy is calculated as: cos� �
cos100°.

Because the bond length is very sensitive to the discrete
errors of rotamer analogy, we neglect it in the hydrogen-
bond potential. Similarly, the bonding geometry is not
considered in the disulfide bridge potential; we only con-
sider it if the modeled cysteine rotamer forms a disulfide
bridge with another cysteine residue.22 The electrostatic
interactions between the modeled rotamer and the protein
environment are calculated as follows:

¥¥�qi � qj
/r2

r � Rij if 0.8 � �ri � rj
 � Rij � 12

r � 0.8 � �ri � rj
 if Rij � 0.8 � �ri � rj
 (2)

where indices i and j refer to the atoms of the rotamer and the
environment, respectively, qi and qj are partial charges and ri

and rj are atom radii from CHARMM. Rij is the distance
between the two atoms. The summation is over all atoms i
and j for which Rij � 12. Four terms are used for solvation
energy: buried hydrophobic surface, buried hydrophilic sur-
face, fraction of buried surface of non-hydrogen-bonded hydro-
philic atoms, and solvent-exclusion volume of charged atoms.
Solvent-accessible surface area is calculated as described by
Zou et al.26 The probe radius is set to 1.2 Å. The radii of polar
hydrogen atoms are set to 1.0 Å. The radii of other atoms are
taken from CHARMM and scaled by 0.8. The solvation
energy of non-hydrogen-bonded hydrophilic atoms are ex-
pressed in a nonlinear way:

�Sburied/Stotal

30 (3)

Stotal is calculated as 4�(r � 1.2)2. Here, r is the atom
radius. Sburied is calculated as Stotal � Saccessible. Saccessible is
the solvent-accessible surface. Especially when a buried
non-hydrogen-bonded surrounding hydrophilic atom forms a
hydrogen bond with the modeled rotamer, the desolvation
energy is calculated as �(Sburied/Stotal)

30, where Sburied is the
buried surface calculated absent of the modeled rotamer. The
solvent-exclusion volume around charged atoms (H/O atoms
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of Asp, Glu, Lys, Arg, and charged His) is calculated similar
to the Lazaridis–Karplus model23:

�
i

�
j

2CiVj exp� � �rij/�
2


4����rij
2 (4)

Here, Ci is charge index of H/O atoms of the charged
residues. The charge is equally distributed (e.g., the Ci�1,2,3

of lysine H atoms is 1/3, whereas Ci�1,2 of O atoms of
aspartic acid is 1/2. Vj is the volume of a surrounding
non-hydrogen atom). rij is the distance between the sur-
rounding atom and the charged atom. The correlation
length � is set to 5. The additional solvent-exclusion
volume for the surrounding charged residues due to the
modeled rotamer is also calculated. Multiple desolvation
energy terms may be summed up for a hydrophilic atom.
For example, the desolvation energy of buried hydrophilic
surface, solvent-exclusion volume of charged atom, and
fraction of buried surface of non-hydrogen-bonded hydro-
philic atom can be considered for the O atom of aspartic
acid side-chain simultaneously.

The training proteins are chosen according to the follow-
ing criteria. Sequence identity cutoff is set to 20%, the
resolution cutoff is set to1.8 Å, and the R-factor cutoff is set
to 0.2. A total of 641 chains that met the criteria were
downloaded from ftp://fccc.edu/dunbrack/pub/culledpdb on
December 26, 2001. Only single-chain proteins with 100–
500 residues and containing no incomplete side-chains or
ligands were kept. Twenty-eight proteins meeting all the
requirements were selected: 153l, 1a12, 1agj, 1ako, 1amm,
1arb, 1bd8, 2sga, 1cem, 1cex, 1chd, 1dhn, 1edg, 1ifc, 1iib,
1koe, 1kpt, 1mla, 1mml, 1npk, 1thv, 1whi, 2baa, 2cpl,
2end, 2pth, 2rn2, and 4eug. The program REDUCE27 was
used to add hydrogen atoms to all proteins. Nonpolar
hydrogen atoms were deleted.

The weights of the different energy terms are optimized
by 25 cycles of Monte Carlo annealing simulation. The
initial temperature is set to 10 and is scaled by 0.8 after
each cycle. At maximum, 30,000 substitutions are tried at
each cycle. The cycle is terminated sooner, and the simula-
tion goes to the next cycle if 3000 substitutions are
accepted.

Evaluation Methods

The free energy of a particular amino acid on the
modeled position is calculated as:

�ln(¥ exp(�E�ri
)) (5)

where ri is a rotamer of the amino acid and i is the index of
the rotamers. The conformation of the rotamer with the
lowest energy is compared to the crystal structure of the
native residue if they belong to the same residue type. C� is
included in RMSD calculation and hydrogen atoms are
excluded. If the �1 angle of a predicted residue is within
40° of the experimental value, the residue is considered
correctly predicted until �1. �1�2 is considered correctly
predicted when both �1 and �2 are within 40° of their
experimental values. Residues with 	20% solvent accessi-
bility are considered as core residues.

Predicting Sequences on the Fixed Backbone

All 20 amino acids are considered at each sequence
position. Again, we use Monte Carlo annealing simulation
to search sequence space. The residues and their conforma-
tions are initialized randomly. Then, a residue substitu-
tion is made at a selected position. The energies of the old
and new residue are calculated by Eq. 5. The new residue
is accepted with the probability exp[�(Enew � Eold)/T]. The
initial temperature T is set to 10 and is scaled by 0.8 after
each cycle. A total of 18 cycles are repeated. For each cycle,
50N substitutions or 5N successful substitutions are car-
ried out. Here, N is the residue number of the modeled
protein. The side-chain conformation of the accepted new
residue or the old residue is then determined by a random
procedure. The probability to accept a rotamer is
exp[�(E(rrandom) � E(rlow))/T], where rlow is the rotamer
with the lowest energy and rrandom is the rotamer selected
at random. The procedure continues until one rotamer is
chosen.

RESULTS AND DISCUSSION
The Derived Scoring Function

Starting from random numbers, the weights of energy
terms and reference values of each amino acid were
determined by minimizing the sum of the following for-
mula over 5792 positions of the training set of 28 proteins
by Metropolis Monte Carlo simulation28:

�ln

�
i

exp(�E�ri
)

�
n

exp(�E�rn
)
(6)

where i was the index of rotamers of the native residue
type at a position and E(ri) was energy of the rotamer ri;
the partition function in the denominator was over all
rotamers of 20 amino acids. The formula was similar to
that used by Kuhlman and Baker.10 In the optimization
procedure, only one residue is changed at a time, whereas
conformations for all other residues were kept in their
native conformation. We repeated the optimization proce-
dure four times, and the values of the objective function to
be minimized fell in a narrow range (7560.3–7562.2). For
the four independent calculations, the variances of weights
for several energy terms were very small [e.g., the weight
of backbone dependency (lnf) fell in from �0.915 to �0.92].
The weights of several other energy terms were correlated.
For example, when the weight of electrostatic interaction
increased, the weight of hydrogen bond decreased, which
had small overall effect on the objective function. The
weights of these correlated energy terms could vary signifi-
cantly. Similar variation was observed for contact surface,
buried hydrophobic solvent-accessible surface, and buried
hydrophilic solvent accessible surface. We accepted the
parameters when the objective function value was the
lowest and the derived scoring function was found to be

E � � 0.143 � Scontact � 0.724 � Voverlap � 1.72 � Ehbond

� 28.6 � Eelec � 0.0467 � �Spho � 0.0042 � �Sphi
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� 1.14 � ��Fphi

30 � 7.95 � Vexclusion � 0.919

� ln�f1 � f2
 � 4.3 � Nssbond � �Gref (7)

where Scontact, Voverlap, Ehbond, Eelec, �Spho, and �Sphi were
contact surface, overlapped volume, hydrogen-bonding
energy, electrostatic interaction energy, buried hydropho-
bic solvent-accessible surface, and buried hydrophilic sol-
vent-accessible surface between the rotamer and other
parts of the protein, respectively; Fphi was the fraction of
buried surface of non-hydrogen-bonded hydrophilic atoms;

�(Fphi)
30 meant the difference between the rotamer posi-

tioned in the protein environment and the isolated form.
Vexclusion was the normalized solvent-exclusion volume
around charged atoms; f1 was the observed frequency of
the rotamer, and f2 was the observed frequency of the
amino acid given a backbone conformation; Nssbond was the
flag of disulfide bridge(1 or 0); �Gref was assumed as the
difference between the free energy of the rotamer in
solvent and denatured protein (Table I).

It is of interest that Fphi played a much more important
role than Sphi. We thought the buried surfaces of hydrogen-
bonded hydrophilic atoms or partially buried hydrophilic
atoms had little adverse effect. But the totally buried

Fig. 1. Correlations between experimental and calculated unfolding
free energy changes for T4 lysozyme point mutants. A: 103 complete
mutations (r � 0.71). B: 75 surface mutations (r � 0.77). C: 28 core
mutations (r � 0.46).

TABLE I. Reference Values of the 20 Amino Acids

Residue �Gref Residue �Gref

Ala �1.35 Lys �3.06
Arg �3.37 Met �3.88
Asn �1.73 Phe �4.78
Asp �1.32 Pro �3.01
Cys �1.78 Trp �5.12
Gln �2.12 Val �3.52
Glu �2.03 Ser �0.72
Gly 0 Thr �1.59
Ile �4.48 Tyr �3.93
Leu �4.27 His �3.00

TABLE II. Prediction Results for the 28 Training Proteins

% Residue
Correcta % �1 Correctb % �1�2 Correctb

All Core All Core All Core

58.9 78.9 95.3 98.3 88.3 93.2
aThe percentage of positions in which the observed residues were
predicted as the most favorable.
bSide-chain conformations were evaluated only when the residues
were correctly predicted.
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non-hydrogen-bonded hydrophilic atoms were quite unfa-
vorable. Some amino acids were predicted more or less
frequently than was expected from the composition of the
training proteins even when we included the reference
value of each amino acid in Eq. 7. For example, glutamine
was predicted as the most favorable in 135 searched
positions, whereas the 28 training proteins consisted of
230 glutamines totally. We refined the reference values of
the 20 amino acids slightly by using Monte Carlo methods
so that the sum of the following formula over 20 amino
acids was minimized:

�Npredicted � Nnative� (8)

in which Nnative was the count of a particular amino acid in
28 training proteins and Npredicted was the number of
positions where this amino acid was predicted as the most
favorable. The weight of each energy term was fixed as
obtained from the previous procedure by minimization of
Eq. 6. The reference value of each amino acid was initial-
ized with the previous optimized value. The value for Gly
remained constant. The sum of Eq. 8 over 20 amino acids
was minimized from 786 to 8. The reference values of Cys,
Met, His, and Gln were changed most significantly from
�3.31 to �1.78, from �4.81 to �3.88, from �3.74 to �3.00,
and from �2.78 to �2.12, respectively. Because Eq. 6 could

Fig. 2. Correlations between experimental and calculated unfolding
free energy changes for human lysozyme point mutants. A: 77 complete
mutations (r � 0.60). B: 36 surface mutations (r � 0.49). C: 41 core
mutations (r � 0.46).

TABLE III. Effect of Different Solvation Models

Evaluation methods (Fphi)
30 (Fphi)

1 Wesson–Eisenberg Lazaridis–Karplus No solvation terms

Object function value 7560.3 7739.5 8036.4 8293.6 8530.4
% Residue correct 58.9 58.1 55.9 55.2 54.0
Correlation coefficient (r) 0.71 0.69 0.63 0.62 0.60

Fphi, the fraction of buried surface of non-hydrogen-bonded hydrophilic atoms. The expression (Fphi)
30 was used for the standard

algorithm, whereas linear expression was used in comparison. For both cases, atomic solvation parameters were derived together with
the weights of other energy terms. In contrast, the solvation energy calculated by the Wesson–Eisenberg or Lazaridis–Karplus
models18,23 was balanced with other energies as one term. Three criteria were used to evaluate the scoring function: 1) the minimized
object function value as calculated by Equation 6; 2) the percentage of positions where the observed amino acids were predicted as the
most favorable; and 3) the correlation coefficient between the calculated and experimental unfolding ��G of 103 T4 lysozyme mutations.
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TABLE IV. Contribution of Each Energy Term to the Calculated Unfolding ��G for 103 T4 Lysozyme Mutations

RAa Scontact Voverlap Ehbond Eelec �Spho �Sphi �(Fphi)
30 Vexclusion ln(f1 � f2) �Gref ��Gcal ��Gexp

I3P c �2.92 0.32 �0.00 �0.01 �1.18 0.00 0.05 0.00 1.73 0.61 �1.29 �2.80
I3V c �1.32 0.39 �0.00 �0.00 �0.63 0.01 0.02 0.00 1.32 0.40 0.21 �0.40
13Y c 3.24 �9.02 �0.00 0.02 0.08 �0.07 �0.92 �0.01 0.60 0.23 �5.36 �2.30
M6I c �0.39 �2.08 �0.00 �0.02 �0.55 0.00 0.09 0.00 �0.15 �0.25 �3.11 �1.40
K16E s �0.08 �0.00 �0.00 0.16 �0.13 �0.00 �0.00 �0.07 �0.19 0.43 0.28 0.50
S38D s 0.86 �1.56 �0.33 0.95 0.12 �0.03 �0.01 �0.50 0.84 �0.25 �0.07 0.60
N55G s �0.18 �0.00 �0.00 0.10 �0.23 0.05 0.04 0.04 0.22 0.72 0.25 �0.60
K60P s �0.26 �0.45 �0.30 �1.64 0.01 0.08 0.01 0.53 0.08 0.02 �2.12 0.00
G77A c 1.93 �0.91 �0.00 �0.00 0.62 �0.01 �0.00 �0.12 0.53 �0.56 1.48 0.40
A82P s 0.74 �0.13 �0.00 �0.04 0.50 �0.01 0.00 �0.02 �0.29 �0.69 0.21 0.80
R96H s 1.39 �3.96 �0.79 �0.26 �0.14 0.02 �0.02 0.39 �1.16 0.15 �4.19 �3.20
A98V c 4.08 �8.50 �0.00 �0.00 0.88 0.01 0.00 �0.01 �0.21 �0.90 �4.56 �4.90
Q105A s �2.31 0.58 �0.54 �0.25 �0.74 0.11 0.64 0.13 1.36 0.32 �0.74 �0.60
Q105E s �0.10 �0.26 �0.00 �0.11 �0.34 �0.01 0.49 �0.68 0.67 0.04 �0.30 �1.10
Q105G s �3.56 0.71 �0.54 �0.25 �1.47 0.11 0.65 0.20 0.79 0.88 �2.49 �1.50
G113A s 0.77 �0.32 �0.00 �0.00 0.24 �0.00 0.00 �0.00 0.38 �0.56 0.51 0.30
T115E s 0.24 �0.00 �0.00 0.55 0.16 0.02 0.04 �0.09 �0.15 �0.18 0.77 0.30
N116D s 0.05 0.32 �0.36 0.62 �0.03 �0.00 �0.17 �0.20 0.82 0.17 1.17 0.60
R119E s �0.48 0.13 �0.00 �0.01 �0.62 �0.02 0.01 �0.12 0.45 0.56 0.03 �0.04
Q123E s �0.31 �0.00 �0.35 0.69 �0.20 0.00 0.06 �0.38 0.21 0.04 �0.12 0.40
K124G s �1.19 0.39 �0.00 �0.18 �0.69 0.04 0.00 0.09 1.43 1.27 0.61 �0.10
V131A s �0.59 0.06 �0.00 �0.00 �0.40 0.01 0.03 0.08 0.41 0.90 0.49 0.26
V131D s �0.24 0.06 0.32 0.68 �0.40 �0.03 0.03 �0.18 �0.76 0.91 0.52 0.08
V131E s �0.27 0.06 �0.00 0.37 �0.17 �0.02 0.00 �0.13 �0.46 0.62 0.55 0.20
V131G s �1.04 0.06 �0.00 �0.00 �0.65 0.02 0.03 0.11 �0.14 1.46 �0.17 �0.68
V131I s 0.17 �0.00 �0.00 �0.00 0.19 0.00 0.00 �0.01 �0.12 �0.40 �0.11 0.16
V131L s �0.24 �0.00 �0.00 �0.00 �0.17 0.01 0.03 0.04 0.08 �0.31 �0.31 0.09
V131M s 0.66 �0.71 �0.00 0.03 0.39 0.01 0.04 0.04 �1.05 �0.15 �0.36 0.12
V131S s �0.50 0.06 0.46 �0.09 �0.44 �0.01 0.04 0.08 �0.78 1.16 0.42 �0.05
L133A c �3.80 2.21 �0.00 �0.00 �2.66 �0.00 �0.00 0.00 0.28 1.21 �2.77 �3.60
K135E s �0.33 �0.00 �0.00 0.12 �0.40 �0.02 �0.00 �0.06 �0.28 0.43 �0.54 �1.00
N144D s 0.08 �0.00 �0.00 0.60 0.01 0.00 0.01 �0.14 0.52 0.17 1.05 0.50
K147E s �0.69 0.71 �0.00 �0.22 �0.55 �0.02 0.01 �0.15 0.14 0.43 �0.22 �0.70
V149C c �2.04 0.45 �0.00 �0.04 �0.50 �0.01 �0.00 0.02 �0.71 0.72 �1.89 �2.20
T152S c �1.35 0.78 �0.02 �0.05 �0.80 �0.00 0.05 0.01 �0.19 0.36 �1.17 �2.60
R154E s �0.64 �0.00 �0.72 �1.62 �0.32 0.02 0.11 �0.06 0.61 0.56 �1.93 �1.10
G156D c 2.67 �3.05 0.81 0.53 0.27 �0.07 �0.14 �0.62 �1.99 �0.55 �2.13 �2.30
T157A s �0.89 0.19 �0.48 0.02 0.20 0.06 0.36 0.06 �0.17 0.10 �0.79 �1.40
T157C s �0.55 0.19 �0.48 0.01 0.33 0.05 0.36 0.06 �0.55 �0.08 �0.71 �1.30
T157D s �0.53 0.19 �0.48 �0.15 0.17 0.03 0.36 �0.16 �1.00 0.11 �1.50 �1.10
T157E s �0.50 0.19 �0.48 0.26 0.31 0.03 0.30 �0.10 �1.13 �0.18 �1.13 �1.50
T157F s 0.09 �0.45 �0.48 0.02 0.50 0.03 0.33 0.01 �0.45 �1.32 �1.87 �2.40
T157G s �1.70 0.19 �0.48 0.02 �0.20 0.08 0.43 0.13 �0.17 0.66 �1.28 �1.10
T157H s �0.22 0.06 �0.39 0.29 0.27 0.01 0.36 0.04 �1.23 �0.58 �1.02 �2.10
T157I s 0.28 �0.39 �0.48 0.02 0.66 0.02 0.00 �0.11 �1.73 �1.20 �2.80 �3.10
T157L s �0.23 0.19 �0.48 0.02 0.45 0.03 0.35 �0.03 �0.32 �1.11 �1.37 �1.30
T157N s 1.28 �1.75 0.04 0.44 0.40 �0.02 0.62 �0.07 �1.18 �0.06 �0.37 �0.45
S44G s �0.91 0.06 �0.45 �0.08 �0.19 0.02 �0.01 0.02 0.60 0.30 �0.97 �0.53
S44I s 0.53 �0.52 �0.45 �0.08 0.69 0.01 �0.00 �0.04 0.85 �1.56 �0.85 0.31
S44K s 0.51 �0.19 �0.45 0.06 0.59 0.02 �0.00 �0.09 0.14 �0.97 �0.20 0.20
S44L s 0.42 �0.26 �0.45 �0.08 0.46 0.01 �0.00 �0.03 0.76 �1.47 �0.60 0.39
S44N s 0.13 �0.00 �0.45 �0.10 0.20 0.00 �0.01 �0.01 �0.08 �0.42 �0.57 �0.14
S44P s 2.38 �5.19 �1.00 �0.27 0.77 0.03 �0.49 �0.01 �0.04 �0.95 �5.09 �3.03
S44R s 0.90 �0.13 �0.32 0.14 0.82 �0.06 �0.04 �0.37 �0.24 �1.10 �0.24 0.24
S44T s 0.05 �0.06 0.04 0.03 0.14 �0.00 0.00 �0.03 0.37 �0.36 �0.02 0.01
S44V s 0.28 �0.19 �0.45 �0.08 0.41 0.01 �0.00 �0.04 0.99 �1.16 �0.57 0.10
S44W s 0.26 �0.00 �0.45 �0.07 0.62 0.00 �0.01 �0.06 0.01 �1.83 �1.45 0.05
L46A c �4.97 3.37 �0.00 �0.00 �2.20 �0.01 �0.00 0.05 0.24 1.21 �2.30 �2.62
D47A s �1.79 0.91 �1.14 �0.86 0.28 0.11 �0.37 0.84 0.57 �0.01 �1.45 �0.28
A49S s 0.28 �0.00 0.51 0.05 �0.08 �0.04 �0.02 �0.01 �1.11 0.26 0.03 �0.50
T59A s �0.57 �0.00 �0.55 0.02 �0.06 0.04 0.01 0.09 �0.07 0.10 �1.11 �1.50
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bias toward statistically common amino acids, the refer-
ence value of uncommon residues such as Cys, Met, and
His was overestimated in the previous optimization proce-
dure. Refinement of the reference values was helpful to
correct amino acid composition bias. The percentage of
positions, in which the native residues were predicted as
the most favorable, slightly dropped from 59.1 to 58.9%
when the refined references were used. The adjustment of
reference values seemed to affect mainly those positions,
in which the native residues did not have an exceptionally
low energy. With the refined reference values, we expected
the designed protein sequences to be more native-like. The
�Gref of glycine was set to zero, and the values of other
amino acids were all negative (Table I). Because hydropho-
bic interactions were always favorable, residues with large
hydrophobic group tended to have low reference values.
Table II listed the prediction results for the 28 training
proteins using the refined reference values. For positions
where the native residues were predicted as the most

favorable, the side-chain conformations were also pre-
dicted with very high accuracy (�1 was correctly predicted
at 95.3% positions and �1�2 was correctly predicted at
88.3% positions) even though we did not consider side-
chain conformation in the optimization procedure.

Estimation of Mutational Energy Changes

We tested the scoring function by estimating the relative
stability of a mutant protein to the wild type. The differ-
ence between the energy of the mutated and native
residues was calculated (�(Emutated � Enative)) and com-
pared to the difference between experimentally deter-
mined unfolding �G of the two proteins (��G � �Gmutant �
�Gnative). We assumed the backbone conformation and side-
chain conformations of the surrounding residues were not
changed because of mutation. The energy of the mutated
residue was calculated by using the crystal structure of wild
type with the side-chain of a native residue deleted at the
modeled position. Fifty point mutations of T4 lysozyme wild

TABLE IV. (Continued)

RAa Scontact Voverlap Ehbond Eelec �Spho �Sphi �(Fphi)
30 Vexclusion ln(f1 � f2) �Gref ��Gcal ��Gexp

T59D s �0.37 �0.00 �0.55 �0.23 0.00 0.01 �0.00 �0.15 �0.63 0.11 �1.44 �1.20
T59G s �1.04 �0.00 �0.55 0.02 �0.35 0.04 0.09 0.16 0.10 0.66 �0.99 �1.60
T59N s 1.35 �1.95 �0.04 0.18 0.19 �0.00 0.01 �0.03 �0.74 �0.06 �0.76 �1.10
T59S s �0.12 �0.00 0.00 0.05 �0.18 0.00 �0.00 0.07 �0.17 0.36 0.07 �0.20
T59V s 1.18 �1.82 �0.55 0.02 0.60 0.04 0.02 �0.07 �0.39 �0.80 �1.86 �1.50
D72P s 1.45 �4.54 �1.48 �1.60 0.84 0.08 �0.01 0.47 �0.13 �0.70 �5.64 �2.70
A73S s 0.13 �0.13 0.47 0.06 �0.15 �0.04 0.01 �0.01 �1.19 0.26 �0.20 �0.40
V75T s �0.92 0.45 0.52 �0.15 �0.62 �0.04 �0.01 0.01 �0.48 0.80 �0.34 �1.30
A82S s 0.27 �0.00 �0.00 �0.05 �0.00 �0.02 �0.08 �0.00 �0.88 0.26 0.13 �0.30
V87T c �1.10 0.32 �0.00 �0.16 �0.72 �0.04 �0.29 0.00 �0.61 0.80 �1.43 �1.60
D92N s �0.00 �0.00 �0.31 �1.38 0.23 0.01 �0.76 0.65 �0.51 �0.17 �2.38 �1.40
A93S s �0.00 �0.00 �0.00 �0.13 0.01 �0.00 �0.00 �0.00 �1.19 0.26 �0.23 �0.20
A93T s �0.00 �0.00 �0.00 �0.10 0.04 �0.00 �0.00 �0.01 �1.01 �0.10 �0.68 0.06
A98S c 0.74 �1.04 0.08 0.04 �0.39 �0.06 �0.47 �0.00 �1.42 0.26 �1.82 �2.50
L99A c �3.61 0.71 �0.00 �0.00 �2.89 �0.01 �0.00 0.00 0.42 1.21 �4.16 �5.00
L99F c 2.05 �5.97 �0.00 �0.00 0.21 0.00 �0.00 �0.00 �0.39 �0.21 �4.05 �0.40
L99I c 0.06 �1.10 �0.00 �0.00 �0.31 0.00 0.00 �0.00 �1.07 �0.08 �2.29 �1.40
L99M c 0.46 �1.30 �0.00 0.01 0.04 0.00 �0.00 0.00 �1.19 0.16 �1.70 �0.70
L99V c �1.08 �1.23 �0.00 �0.00 �1.19 0.00 0.00 0.00 0.21 0.31 �2.95 �2.30
M102K c 0.36 �0.39 �0.00 0.03 �0.24 �0.10 �1.13 �1.08 �0.27 0.34 �2.43 �6.90
M102L c 0.09 �2.53 �0.00 0.00 �0.57 �0.00 �0.00 �0.01 1.02 �0.16 �2.14 �0.74
T109D s 0.09 �0.00 �0.00 0.20 0.01 �0.01 �0.01 �0.12 0.15 0.11 0.31 0.60
T109N s 0.03 �0.00 �0.00 0.13 0.00 �0.01 �0.01 �0.01 �0.45 �0.06 �0.19 0.10
V111I c 1.73 �3.57 �0.00 �0.00 0.48 �0.00 �0.00 �0.00 �1.19 �0.40 �2.54 �0.69
A130S c 0.53 �0.45 0.70 �0.20 �0.11 �0.04 �0.03 �0.01 �1.36 0.26 �0.44 �1.00
A134S s 0.36 �0.19 0.50 �0.12 �0.07 �0.03 0.01 �0.00 �0.51 0.26 0.43 �0.10
V149T c �0.96 0.19 0.51 �0.08 �0.79 �0.05 �0.23 0.03 �0.66 0.80 �1.15 �2.80
T151S s �0.91 0.32 �0.04 �0.05 �0.58 �0.00 0.04 0.06 0.06 0.36 �0.63 0.39
F153A c �5.54 4.80 �0.00 �0.00 �3.30 �0.00 �0.02 0.01 0.89 1.42 �1.74 �3.50
F153I c �1.44 0.84 �0.00 �0.00 �0.97 0.01 �0.01 �0.01 0.54 0.13 �0.81 �0.50
F153L c �1.58 1.82 �0.00 �0.00 �0.86 �0.00 �0.01 �0.00 0.71 0.21 0.27 0.20
F153M c �1.01 2.08 �0.00 �0.02 �0.59 0.00 �0.01 0.01 �0.51 0.38 0.31 �0.80
F153V c �2.97 2.27 �0.00 �0.00 �1.78 0.00 �0.01 �0.01 0.68 0.52 �1.27 �1.80
aRA, relative accessibility. Residues with 	20% solvent accessibility are considered as core residues (c). Other residues are attributed to surface
residues (s). ��Gcal, the calculated unfolding ��G; ��Gexp, the experimental unfolding ��G. The definition of each energy term is the same as in
Eq. 7. Disulfide bond energy is excluded because all the 103 mutations do not involve in disulfide bond. The difference between the lowest energy
rotamers of native and mutated residues is calculated by using a single component of Eq. 7 and considered as the contribution of the
corresponding energy term to ��Gcal. Because the free energy of a particular amino acid on the modeled position is calculated from all its rotamers
in a nonlinear way as expressed in Eq. 5, the sum of the contributions of all energy terms is not equal to the ��Gcal. All the calculated values are
adjusted by dividing 2.41, the slope of the regression line between ��Gcal and ��Gexp [Fig. 1(B)].
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type (PDB code 3lzm) and 53 point mutations of its C54T and
C97A mutant (PDB code 1l63), which had been used by Ota
et al.29 to test their scoring function, were used in this study.
Although different crystal structures were used for the two
sets of mutation data, the 103 mutations were combined for
the regression analysis; 28 of them were identified as core
mutations. The correlation coefficients were 0.77, 0.46, and
0.71 for surface, core, and total mutations, respectively. The
contribution of each energy term to the calculated unfolding
��G for the 103 mutations was shown in Table IV. The low
correlation coefficient for core mutations was mainly due to
the assumption of a fixed backbone. In real proteins, when
small residues were mutated to large residues, such as I7Y,
L99F, and V111I, backbone shifts occurred and the calcu-
lated ��G values were much lower than the experimental
data. In other studies, significant backbone relaxation has
been clearly demonstrated in a number of core variants, and
sequences found to be experimentally stable were sometimes
predicted as unallowable by using a fixed backbone model.30

We adopted the assumption of fixed backbone despite this
deficiency because it reduced complexity and computation
time dramatically. For the mutated large residues on the
surface, the situation was different because they could pro-
trude out into solvent and avoid changing backbone conforma-
tion. Therefore, the calculated unfolding ��G for surface
residues correlated strongly with the experimental values,
and the regression line passed exactly through the origin
with a slope of 2.41 [Fig. 1(B)]. According to our visual
analysis of the mutant crystal structures, neighboring resi-
dues usually did not change their rotamer states even for
core mutations. Thus, it was not necessary to repack the
neighboring side-chains in this study. In addition, the dis-
crete errors of rotamers could reduce the correlation coeffi-
cients if none of the rotamers in the library closely resembled
the real side-chain conformation for the native or mutated
residue. Ota et al.29 used the crystal structure of the mutant
protein to calculate unfolding �Gmutant. They got higher
correlation coefficients for the core mutations than for total
mutations (0.76 and 0.69, respectively). Nonetheless, our
scoring function predicted more accurately the behavior of
the total mutations without knowing the crystal structures of
mutant proteins. Ota et al. obtained the correlation coeffi-
cient of 0.58 for another testing protein, human lysozyme
(PDB code 1rex). We also obtained a similar coefficient of 0.60
for that protein (Fig. 2). The lower correlation was partially
due to A96M mutation in the hydrophobic core. Backbone
atoms at the mutated position were shifted by 0.8 Å to
accommodate larger methionine in crystal structure of the
mutant protein. Excluding this mutation, we got a correla-
tion coefficient of 0.67. In addition, the stability change of
surface mutations was very small, which also resulted in a
lower correlation coefficient [Fig. 2(B)].

The electrostatic interactions for core and surface resi-
dues were treated equally in our scoring function. There-
fore, the interaction energy of a buried salt bridge could be
underestimated. As a result, the scoring function underval-
ued the desolvation energy of charged atoms in a compen-
sative way. For example, the experimental unfolding ��G
of T4 lysozyme mutant M102K was much lower than the

calculated one [Fig. 1(c)]. Excluding the M102K mutation,
the correlation coefficients for core and total mutations
increased to 0.58 and 0.74, respectively. The desolvation
energy of the mutated lysine, which was located in the
hydrophobic core and did not form any salt bridge or
hydrogen bond, was obviously underestimated. Fortu-
nately, this seemed not to affect the prediction of favorable
sequences on a fixed backbone. We found no buried charged
residues not involved in a salt bridge in our sequence
design experiments.

The prediction results significantly depended on which
solvation energy model was adopted (Table III). The
scoring function performed much better when atomic
solvation parameters were derived in the optimization
procedure together with the weights of other energy terms.
If solvation energy was calculated by the Wesson–
Eisenberg or Lazaridis–Karplus models18,23 as one term
and balanced with other energy terms, we only obtained a
small improvement over using no solvation terms. Nonlin-
ear expression of the fraction of buried surface of non-
hydrogen-bonded hydrophilic atoms was superior to linear
expression even though the formula (Fphi)

30 was a bit
arbitrary. It is of interest that when the objective function
(Eq. 6) was minimized to a low value on different solvation
models, the scoring function also frequently predicted the
observed residue as the most favorable and the calculated
unfolding ��G strongly correlated with experimental val-
ues (Table III). The cooperative behavior of the three
criteria indicated that our evaluation methods were reason-
able. To our surprise, addition of solvation terms showed
significant improvement only for core residues in estimat-
ing mutational energy changes. We obtained a correlation
coefficient of 0.81 for T4 lysozyme surface residues when
no solvation terms were used. Chakravarty and Varadara-
jan31 argued that atoms just below the protein surface
could undergo large fluctuations and transiently come into
contact with solvent. In previous studies, we demonstrated
that addition of solvation terms showed little improve-
ment for side-chain modeling.22 The solvation energy of
core residues was not sensitive to conformation changes,
whereas the solvation energy of surface residues might be
difficult to evaluate.

More recently, Guerois et al.32 developed a computer
algorithm to estimate the importance of the interactions
contributing to the stability of proteins. The weights of
different energy terms were fitted by using the experimen-
tal ��G values of a training set comprising 339 single-
point mutants in 9 different proteins. The crystal structure
of native protein was used to calculate energy. The prob-
lems related to the modeling of the mutated side-chain
were avoided by considering only mutations involving the
deletion of groups in the side-chain and the substitution of
groups such as E3Q, D3N, T3V, or the reverse of these.
The correlation coefficient between the predicted and
experimental data was 0.7 for the training set. The predic-
tive power of the methods was then tested by using a blind
test database of 625 mutants in 27 proteins, and a similar
coefficient 0.73 was obtained. For the same training and
testing sets, we obtained correlation of 0.67 and 0.7,
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respectively. For core residues, the correlation coefficients
were 0.67 and 0.64, respectively. The training and testing
sets did not contain mutations of type X3Y (where Y was
an amino acid larger than X). Thus, backbone and sur-
rounding side-chain relaxations could be reduced, and the
prediction ability was improved for core residues. Because
our scoring function was neither designed nor trained to
achieve a high correlation coefficient on a mutation data-
base, it was not surprising that we obtained a slightly
lower correlation. Furthermore, we used rotamers to calcu-
late the energy of native and mutated residues, which
made it more practicable to use our algorithm for all kinds
of mutations. The use of rotamers also made it easy to use
our scoring function for protein design.

Sequence Design on a Fixed Protein Backbone

The derived scoring function, combined with Monte Carlo
simulation methods, was used to predict energetically favor-
able protein sequences given a fixed backbone. Only the
backbone structure was used as input, and the program was
allowed to choose any natural amino acid for each modeled
position. The quality of the designed proteins was difficult to
evaluate without experimental characterization. Identity
percentage between a predicted and native sequence could be
used as a simple assessment for the predictive ability of the
design algorithm.20 The design experiments were conducted
on the representative structures of four distinct folds, en-
grailed (PDB code 1enh), spectrin (1shg), U1A (1urn), and
tenascin (1ten), which have been used by Raha et al. We
repeated 20 calculations for each protein backbone. On
average, the identity between designed and native sequences
was 26%, 27%, 33%, and 37%, respectively. Figure 3 listed
the native sequence and the most similar designed one. The
extent of similarity was remarkable. In contrast, Raha et al.
obtained sequence identities ranging from 24% to 28%.
Kuhlman and Baker10 tested their program on 108 proteins;
27% of all of the designed residues were identical to the
native amino acid, and 51% of the core residues in the design

sequences were identical to the naturally occurring residues.
We obtained the mean identity of 59% for the core residues of
the four tested proteins.

In addition, Raha et al.20 evaluated their designed
sequences by using a profile derived from a multiple-
sequence alignment of the family to which the template
structure belonged. They also determined the solvation
parameters in their scoring function by a coarse search for
the combination of parameters that gave the best overall
profile score for the four motifs. Here, we calculated the
profile score with a position-specific score matrix produced
by PSI-BLAST search of Jul 2002 nr database.33 The
native sequence of the template structure was used as
query, and the search was repeated until convergence. For
the template structures of engrailed, spectrin, and U1A,
most of our designed sequences had a similar or slightly
higher profile score than those designed by Raha et al.
(Fig. 4). For the tenascin motif, the profile scores of our
designed sequences were significantly higher. In all cases,
the profile scores of the designed sequences were lower
than their native sequences. The profile scores of the
designed sequences were then compared with those of
natural sequences that belonged to the same family as the
template structure. The members of each family and the
sequence alignment were downloaded from the Pfam web
site http://pfam.wustl.edu/index.html.34 Redundant se-
quences and sequences with long gaps were excluded. For
each motif, 
300 sequences remained. Only positions that
aligned to the native sequence of the design template were
counted in the profile score, and the scores of each family
fell in a wide range, which overlapped the scope of the
profile scores of designed sequences. For tenascin, the
profile scores of the designed sequences were higher than
most of the natural sequences. This might be due to the
large size of tenascin and more core residues that tended to
be predicted identical to native residues. Furthermore, the
interaction sites of the tenascin family were variable,
whereas other families had specific ligand-binding sites

Fig. 3. Comparison of designed and native sequences. For each motif, we repeated 20 calculations. The sequence with the highest identity to its
corresponding native sequence was listed. The residues of the native sequence were divided into two groups: surface residues (s) and core residues (c).
Residues exposing 	20% of their surface area to solvent were considered core residues.

PROTEIN DESIGN 279



and conserved functional residues, which could possibly
lower the profile score of the sequences designed by using
structural considerations only.

We then investigated if the profile of the designed
sequences was helpful for homology detection; 100 se-
quences were designed on the backbone of tenascin. To
make the designed sequences more diverse and improve
the quality of the profile, we perturbed the backbone
conformation before the sequence prediction. The � or �
angle was rotated 	1° at a randomly chosen position. If
the position of any backbone atom was shifted for 
0.3 Å,
the rotation was rejected. The small perturbation of the
backbone allowed us not to consider the backbone poten-
tial. This procedure was repeated 30,000 times. Again, we
used the PSI-BLAST program to identify homologous
sequences. The native sequence of tenascin was used as
the query, and the designed sequences were used to
generate position-specific score matrix. The expectation
value was set to 0.1. The search retrieved 392 sequences in
nr database. In comparison, we ran PSI-BLAST in the
standard way. The close homologue sequences found in
each search round were used to generate a score matrix for
the next round. The procedure was repeated until con-
verged and 734 sequences were retrieved; 326 sequences
found by the two searches were the same. Some sequences
found exclusively by the profile of designed sequences were
confirmed to be the remote homologues of tenascin, such as
chitinase B. Both tenascin and chitinase A N-terminal
domain belonged to the immunoglobulin-like �-sandwich
fold in SCOP database.35 If we ran PSI-BLAST for one
round and the standard scores were used for each position,
only 118 sequences were found. This definitely demon-
strated that the profile of the designed sequences was
useful for homology detection, especially for protein fami-
lies that did not contain many sequences and had the
crystal structures available for some members.

CONCLUSIONS

We have developed a scoring function for protein design.
The formula of each energy term was carefully designed,
and the weight was optimized so that the native residue
was predicted energetically favorable at each position of
the training proteins. The success of our scoring function
was demonstrated by predicting mutant changes in the
stability for testing proteins. The correlation coefficient
between the calculated and experimentally determined
unfolding ��G for 103 T4 lysozyme mutants was 0.71.
When the scoring function was used for sequence design on
a fixed backbone, the designed sequences were similar to
the natural sequences of the family to which the template
structure belonged. We also found that calculating solva-
tion energy was important for protein design. Atomic
solvation parameters should be derived together with the
weights of other energy terms. Solvation energy calculated
by solvent-accessible surface model may not be suitable for
atoms just below the protein surface. New models to
calculate solvation energy quickly and accurately were
necessary for protein design.
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