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Structural evolution of proteinlike heteropolymers
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The biological function of a protein often depends on the formation of an ordered structure in order to
support a smaller, chemically active configuration of amino acids against thermal fluctuations. Here we explore
the development of proteins evolving to satisfy this requirement using an off-lattice polymer model in which
monomers interact as low resolution amino acids. To evolve the model, we construct a Markov process in which
sequences are subjected to random replacements, insertions, and deletions and are selected to recover a predefined
minimum number of solid-ordered monomers using the Lindemann melting criterion. We show that polymers
generated by this process consistently fold into soluble, ordered globules of similar length and complexity to
small protein motifs. To compare the evolution of the globules with proteins, we analyze the statistics of amino
acid replacements, the dependence of site mutation rates on solvent exposure, and the dependence of structural
distance on sequence distance for homologous alignments. Despite the simplicity of the model, the results display
a surprisingly close correspondence with protein data.
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I. INTRODUCTION

Evolutionary change in proteins is the result of inher-
ited alterations to genes selected to maintain a network of
biochemical processes [1,2]. Most proteins that participate
in these processes have been adapted to fold into ordered
topologies [3], and their shapes reflect basic modes of genetic
alteration in which conserved motifs are duplicated, combined,
permuted, and edited [4,5], leading to emergent functional
properties. The earliest proteins probably evolved from small
cooperatively folding motifs of ∼30 amino acids [6–9], just
large enough to stabilize chemically useful configurations
of amino acids against thermal fluctuations [10]. Selection
for folding and functional fidelity would tend to evolve
mutationally stable structures that organize amino acids into
energetically favorable patterns of solvent exposure [11–13].
It is obvious that these conditions would have had a strong
influence on the development, or drift, of a motif in structure
space [14–16]; however, it is difficult to obtain a thorough
picture of this interplay from existing structure data. Many
different polymer models have been used to describe protein
evolution on this length scale [17–26]; however, the problems
of structural drift and the dependence of mutation rates on
local environment properties (e.g., on solvent exposure) have
not been explored in a systematic way. Here, we employ a
simple modification to one of these models to evolve soluble
motifs of sufficient length and complexity to address these
problems.

At the most basic level, a protein can be described as
a flexible polymer, each monomer representing a common
length of amino acids (the Kuhn segment length) which
defines the length over which structural correlations persist in
either direction along a typical chain of amino acids [27,28].
The interactions between segments of a protein can, in this
way, be interpreted as lower resolution interactions between
monomers, leading to a primitive model of a protein as an
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off-lattice chain of hydrophobic, hydrophilic, and charged
beads. Recently, Lobkovsky and Koonin used this type of
model to study protein evolutionary rates and have shown,
using a physically based fitness criterion (folding probability),
that such a model is capable of generating the universal form
of the mesoscopic (whole protein) rate distribution [23]. Here,
we consider a similar Langevin dynamics model in which pairs
of monomers instead interact as low resolution amino acids via
Miyazawa-Jernigan potentials (see the Appendix). As a result,
monomers in the model are identified with the amino acids in
a protein, while the structural correlations along amino acid
chains are neglected. The polymers do not, of course, fold the
same topologies as their protein counterparts; however, the
ordered globules they do fold often contain small helical or
strand structures due to the logic of the empirical potentials,
and they are typically soluble (i.e., enclosed in a hydrophilic
shell) for chain lengths N ∼ 30 monomers or greater.

To evolve the model, we develop a Markov process [29]
in which sequences are subjected to random replacements,
insertions, and deletions and are selected to recover a solid-
ordered nucleus of ∼N/2 monomers, sufficient to support a
small binding site. The fidelity of this process is determined
by folding N ∼> 100 replicas of the mutated polymer on a
parallel computer. The folding procedure consists of a series
of temperature jumps which transfer the polymers between
random coil, ordered globule, and melting temperatures
roughly corresponding to the Gō model [30] for a small
protein motif (see below). The structures recovered at the
lower temperature are then collected, along with their N
(energetically equivalent) mirror images, into an ensemble �,
which is analyzed to determine the viability of the sequence.

In general, the energy landscape of a polymer replica can
contain many deep energy basins. As the replicas are cooled
they become trapped in these basins, so that � contains dis-
parate clusters of structures. However, occasionally a sequence
is encountered in which most or all of the replicas recover
a single dominant energy basin (i.e., in each image space)
corresponding to a narrow cluster of structures (Fig. 1). In order
to select for this situation, we search for a structure x� ∈ � to
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FIG. 1. (Color online) Sample of the ensemble, ���, corre-
sponding to the dominant energy basin recovered by a typical viable
sequence. The structures are obtained by folding many replicas of
the sequence in parallel using methods described in the text. To
indicate amino acid type, monomers are colored blue, light blue,
blue-green, green, yellow, orange, and red, in order of increasing
affinity to solvent.

represent the native ensemble of the mutated polymer, and
we require that a significant fraction of the replicas recover
structures close to x�.

The reference structure x� plays a role analogous to
the equilibrium (lattice) positions in a crystal in the usual
formulation of the Lindemann parameter, which is defined
as the root-mean-square displacement of a monomer from its
equilibrium position. Ideally, we would select the reference
structure to minimize these displacements using global struc-
ture alignments and the closest N structures in �. However,
here it is necessary to allow for misfolding, and for weakly
interacting (typically, uncharged hydrophilic) monomers on
the surfaces of the globules. For this reason, we use a reductive
procedure to align the structures [31] in which the most distant
monomer pairings are removed iteratively until a nucleus of
2N/3 optimally aligned pairs of monomers remains. These
nuclear alignments are used to compute a nuclear Lindemann
parameter, λ, for every structure xμ ∈ � using the closest
3N /4 remaining structures. The structure with minimal λ (in
either image space) is selected as the reference structure, x�.
Finally, the multiple alignment with x� is used to compute
Lindemann parameters, λj , for each monomer j individually,
and the number of solid-ordered monomers is determined by
the Lindemann criterion, λj

∼< 0.15 l, where l is the length
of a polymer link. If the number of solid-ordered monomers
exceeds a specified value, the sequence is accepted; otherwise,
it is rejected.

The Markov process is discussed in detail in Sec. II directly
below. In simpler terms, this process selects sequences for
which the root-mean-square distance between monomers in
nuclear alignments with the reference structure, x�, is typically
less than 0.15 l for more than 4N /5 of the replicas [24].
Evolved polymers exhibit sharp folding transitions similar
to the “minimally frustrated” Gō model polymers studied
by Jang and Zhou [30]. However, as in the Gō model, solid
order is acquired very gradually below the transition so that
the typical melting temperature of a nuclear monomer, T ‡,
is about one-third the transition temperature, T ‡ ∼ T †/3. This
situation is somewhat unrealistic from the standpoint of protein

folding [32,33]; however, the model appears sufficient to
describe the phenomena studied in this work.

Following Sec. II, we present and discuss our results. Our
main objective in this paper is to compare the behavior of
the model with the basic phenomenology of protein evolution.
Below, we compute amino acid frequencies and replacement
probabilities, the correlation between site mutation rates and
exposed surface area, and the correlation between structural
distance and sequence distance—all of which can be compared
to protein data [34–39]. The level of agreement we obtain is
somewhat surprising given the simplicity of the model and the
neglect of the nucleotide coding sequence. To conclude, we
briefly investigate the effect of the constraints on the length
and complexity of evolved globules. Interestingly, we find that
weaker constraints on the number of solid-ordered monomers
tend to evolve larger and more thoroughly ordered globules that
decrease in complexity over time [40]. We explore structural
change along one such trajectory (a “propellerlike” motif) in
the Supplemental Material [41].

II. METHODS

In this section we describe the Markov process and the
schedule for mutations. The polymer model is described in the
Appendix.

As noted above, the ensemble � for a mutant sequence is
generated by foldingN ∼> 100 replicas of the mutated polymer
on a parallel computer. The folding procedure equilibrates the
polymers by Langevin dynamics at a series of temperatures

Tn =
(

T1

T0

)n

T0, (1)

where 0 � n � 3. The first temperature, T0 = 1.3 T �, corre-
sponds to the random coil phase, where T � = 302.15 K is a
reference temperature similar to the transition temperature of
a viable sequence. The initial temperature jump transfers the
system to the ordered-globule phase, similar to a folding trial,
while the remaining jumps transfer the system to the solid-
ordered phase. The amount of time allowed for equilibration
at each temperature level is defined by the folding time estimate
of Lin and Zewail [42],

�t = N

(
3

e

)N

�t0, (2)

where �t0 denotes the typical time required for local changes
to occur in the topology of a globule. The “sampling” time
�t0 is set somewhat arbitrarily at 10 ps, which is a factor
of 10 smaller than the time needed to thermally equilibrate a
monomer in the polymer. (This number may seem rather small,
but the entire folding process apparently corresponds to a weak
form of kinetic control [23].) Finally, the structures recovered
at T3 ∼ T �/3 are collected, along with their (energetically
equivalent) mirror images in the ensemble �.

Each structure xμ ∈ � is considered as a possible reference
structure, and the remaining structures, xν �=μ, are aligned to
xμ by rigid rotation and translation [31]. Again, because
the surfaces of the globules are liquid at T3, we compute
alignments using a smaller, nuclear set of monomers. Let A
denote the set of monomer indices included in an alignment,
initially including all indices (i.e., global alignment), and let
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A� denote this nuclear group. The set A� is obtained by a
reductive procedure, in which structures xμ and xν are aligned
to minimize the squared distance,

|xμ − xν |2A =
∑
j∈A

(
xμ

j − xν
j

)2
, (3)

and the index of the most distant monomer pairing is removed
from A iteratively until 2N/3 aligned pairs of monomers
remain. To indicate this procedure, let ‖xμ − xν‖ denote the
nuclear distance between structures and let ‖xμ

j − xν
j‖ denote

nuclear-aligned distances between monomer positions.
The set of structures, xν �=μ, aligned to a structure xμ is

then arranged in order of decreasing alignment quality (i.e.,
in order of increasing ‖xμ − xν‖). Let ��μ denote the first
3N /4 structures in this ordered set, and let Gμ denote the
corresponding set of structure indices. To define the fidelity of
folding to xμ, we compute nuclear Lindemann parameters,

λ(xμ) =
[

2

NN
∑
ν∈Gμ

‖xμ − xν‖2

]1/2

. (4)

The reference structure is then selected to minimize λ(xμ).
At this point, it would be natural to use the parameter

λ(x�) to accept or reject a sequence, for example, using the
Lindemann criterion λ � 0.15 l. However, here we want to
control the number of solid-ordered monomers, and since λ

averages the displacements of monomers at different sites,
it is somewhat inadequate for this purpose. To limit the dis-
placements individually, we compute monomeric Lindemann
parameters,

λj =
[

4

3N
∑
ν∈G�

∥∥x�
j − xν

j

∥∥2

]1/2

. (5)

To determine the number of solid-ordered monomers, it
simply remains to specify a threshold value of λj for solid
order. Normally, this value is considered constant, e.g., so
that a condition like λj

∼< 0.15 l can be used uniformly [30].
However, here the lengths of the polymers are changing, which
affects the inherent accuracy of the alignment procedure [43].
To account for this effect, we define the melting point threshold
by a function λ‡(N ) that scales with the radius of gyration of
a collapsed polymer [44],

λ‡(N )

γ
= −4.54 + 2.36

(
2N

3

)1/3

. (6)

Except for the factor of 2/3, the right-hand side of this
expression is identical to the similarity threshold for protein
alignments suggested by Maiorov and Crippen [44]. The
factor of 2/3 accounts for the number of monomers used
in nuclear alignments, and the parameter γ is selected so
that λ‡(N ) = 0.16 l for polymers of length N = 30. Finally, a
monomer is considered solid ordered when λj � λ‡.

The mutation schedule consists of the following operations:
First, a mutation type is selected, with probability 0.9 for
replacements, 0.05 for insertions, and 0.05 for deletions. Next,
an amino acid type is selected at random, and a random location
along the current sequence is selected to apply the mutation
(here, insertions are allowed at the ends of the sequence). The

mutation is then applied to a copy of the current sequence,
which is used to define the energy function for the polymer
replicas. If the number of solid-ordered monomers exceeds a
specified limit, the mutant sequence is accepted; otherwise it
is rejected. The number of replicas, 3N /4, used to determine
the reference structure in Eq. (4) was adjusted to obtain an
acceptance rate of between 5% and 10%.

Below, we use the symbol τ to denote the number of time
steps (mutation attempts) accumulated along a trajectory.

III. RESULTS

In this section, we examine statistical properties of the
Markov model and compare our results to proteins. The results
in this work are based on 14 trajectories consisting of about
5 × 103 mutation events in total. All trajectories start from
sequences that were originally designed into one of several
randomly selected, crumpled homopolymers using the protein
engineering method [45] and then evolved to satisfy a specific
constraint over a period of about 1 × 102 mutations. Below,
sequences are evolved to maintain either a fixed number
δN � 15 or a fixed fraction δN � N/2 of solid-ordered
monomers, where the number of solid-ordered monomers,
δN , is determined from the condition λj � λ‡. Half of the
trajectories are evolved under each condition. To study longer,
more cooperatively folding polymers, sequences with more
than a single cysteine monomer are rejected. A number of
alternate conditions were studied, and our methods are a
product of these studies. In particular, we found that sequences
evolved under “nuclear” constraints such as λ � 0.15 l or
λ � λ‡ tend to “evaporate” or decay into smaller chain lengths.
By limiting the displacements of monomers individually,
similar to the biological requirement of maintaining a specific
“active site,” we consistently obtain sequences with lengths
typical of a small motif.

We begin by comparing the amino acid statistics of the
model to those of proteins. Because we neglect the nucleotide
coding sequence, and because the globules are much smaller
than typical protein domains, we do not expect close agreement
with protein statistics. For this reason, we simply compare
our results to the early data of Dayhoff et al. [34]. Our data
are obtained from exact alignments of the sequences along
each trajectory. Unless otherwise noted, figures represent the
combined result of all 14 trajectories in our sample. Similar
results are obtained using fewer trajectories.

Figures 2–4 provide a comparison of amino acid frequen-
cies p(ν), mutabilities m(ν), and replacement probabilities,
p(μ,ν) = Aμν/

∑
ν �=μ Aμν , where Aμν is the number of

replacements of amino acid type μ by amino acid type ν as
defined by Dayhoff et al. [34]. In each figure, amino acid labels
are arranged from left to right in order of increasing affinity to
solvent (decreasing hydrophobicity).

The model frequencies reflect the roughly spherical struc-
ture of small soluble globules, in which hydrophilic (surface)
monomers tend to outnumber hydrophobic (core) monomers.
The largest departures from protein frequency data appear to
be linked to the neglect of the coding sequence. For example,
leucine, which is encoded by six codons, is underestimated
by the model, while tryptophan (one codon) is overestimated.
In other cases, departures from protein data seem to relate
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FIG. 2. (Color online) Comparison of model and empirical
amino acid frequencies, p(ν). Model results are indicated by circles.
Differences between model and empirical results are indicated by
one-sided error bars. Amino acid labels on the lower axis are arranged
in order of increasing affinity to solvent (see Appendix).

to the lengths of the polymers, or to the lack of explicit sec-
ondary structure. For example, histidine is frequently recruited
to bridge between hydrophobic and hydrophilic (mutually
repulsive) regions of the flexible globules; in proteins, the
partitioning of such regions is aided by secondary structure
formation. Conversely, in proteins, glycine is often recruited
to maintain flexibility in tight turns between secondary
structures. In the model, glycine simply functions as a weakly
hydrophobic monomer.

Interestingly, we obtain relatively good agreement in
Fig. 4 for amino acid replacement probabilities (correlation
coefficient ∼0.55). In recent work, Hormoz [46] obtained a
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FIG. 3. (Color online) Comparison of model and empirical
amino acid mutabilities, m(ν). Model results are indicated by circles.
Differences between model and empirical results are indicated by
one-sided error bars. Model results are scaled to the empirical
mutability for alanine.
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FIG. 4. (Color online) Comparison of model and empirical
amino acid replacement probabilities, p(μ,ν). The plot describes
the replacement of amino acids of type μ by amino acids of type ν

with probabilities indicated by circle radii. Solid red circles indicate
model values; open black circles indicate empirical values computed
by Dayhoff et al. (correlation coefficient ∼0.55).

similar level of agreement using a theoretical approach based
on the protein engineering method using the empirical amino
acid frequency distribution [34]. Together, these comparisons
suggest that the environments of individual amino acids which
determine the replacement probabilities are linked to generic
folding principles.

To examine these environments, we compute mutability
as a function of the level of solidlike order and exposed
surface area. Figure 5 provides a plot of mutability, m(λ),
as a function of the monomeric Lindemann parameter λj .
Here, m(λ) is proportional to the number of mutations to

0 0.5 1
0

0.5

1

1 2

m
(λ

)

λ/l

FIG. 5. (Color online) Mutability, m(λ), of monomers with Lin-
demann parameter λj = λ. Dotted lines roughly indicate the transi-
tion (1) from solid to liquid and (2) from liquid to disordered phases
within folded globules.
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FIG. 6. (Color online) Mutability, m(δA), of monomers with
exposed surface area δAj = δA. The exposed area of an isolated
monomer is A = 4π�2, where � = 0.65 l. The dashed line is a linear
fit to the data in the region δA/A < 0.7 corresponding to one or more
cross-chain (sphere) contacts.

monomers with Lindemann parameter λj = λ divided by
the number of time steps (attempts) that monomers with
λj = λ are exposed to mutation. The vertical scale in Fig. 5
is arbitrary. Dotted lines roughly indicate the transition (1)
from solid to liquid and (2) from liquid to disordered regions
in the folded globules. The plot is roughly linear below the
melting line, increases more rapidly after the melting line is
crossed, and reaches a plateau approaching the disorder line,
beyond which sampling is inaccurate. As a result, the melting
criterion roughly separates the mutation rates into liquidlike
and solidlike phases analogous to the structural phases of
monomers in polymer globules [30] and amino acid residues
in proteins [47].

Figure 6 provides a plot of the mutability, m(δA), as a
function of monomeric exposed surface area, δAj . Here,
m(δA) is proportional to the number of mutations to monomers
with δAj = δA divided by the number of time steps (attempts)
that monomers with δAj = δA are exposed to mutation. To
compute δAj , the reference structure of the polymer is viewed
as a set of interpenetrating spheres of radius �, and the
exposed area of a monomer is defined as the part of its surface
not enclosed by any other sphere [48]. The exposed area is
computed by coating each sphere with a very large number of
equally spaced points [49], and the fractional area, δA/A, is
estimated as the number of exposed points divided by the total
number of points on the surface of a monomer. To generate
Fig. 6, we select a sphere radius � = 0.65 l to obtain complete
burial for monomers in the interior of the globules. The dotted
line is a fit to the data in the region δA/A < 0.7, roughly
corresponding to monomers with one or more cross-chain
contacts. Within this region, m(δA) is linearly correlated with
δA (correlation coefficient ∼0.95), consistent with mutation
rates in proteins [35,36].

Next, we examine structural change using alignments of
“homologous” sequences along the Markov trajectories to
establish correspondence between monomers in structural

0 50 100
0

0.5

n

D
(n

)
/
l

FIG. 7. (Color online) Aligned distance between structures,
D(n), as a function of mutational distance, n. The dotted line is a
linear fit to the data (points are plotted every fourth mutation for
clarity in the figure).

alignments. In Fig. 7, we plot the typical distance, D(n),
between structures as a function of mutational distance,
n. To compute D(n), we interpret the Markov process as
a sequence of random flights [50–52] connecting pairs of
structures x�(τ ) and x�(τ ′) recorded at times τ and τ ′ � τ

just preceding mutation events. The distance D(n) is the
average over end-to-end distances D(τ,τ ′) for multiple flights
with exactly n(τ,τ ′) = n mutations. In Fig. 7, the average is
restricted to trajectories evolved under the condition δN � 15.
The dotted line is a linear fit to the data (circles) following
the linear correlation observed by Illergard et al. [38] for
“core alignments” of homologous proteins. To approximate the
alignment procedure used in that work, distances are computed
by the reductive method in Eq. (3). The reduction is continued
to a constant 16 aligned monomers, and D(τ,τ ′) is defined
as the resulting root-mean-square distance between structures.
On average, most of the sites participating in the alignment of
a structure x�(τ ) with x�(τ ′) are preserved in later alignments
of x�(τ ) with structures x�(τ ′′ � τ ′) (Fig. 8). As the number
of sites required in alignments is increased, the data can be
described accurately by a power law, D(n) � A + Bnα , with
exponent α < 1 (not shown).

In Fig. 9, we plot D(τ,τ ′) as a function of the percentage
of nonidentical amino acids, q(τ,τ ′). Here, the data points
represent averages over paths with q(τ,τ ′) = q. The solid
line is an exponential fit to the data following the empirical
result of Chothia and Lesk for homologous proteins [37].
The dotted line is a power-law fit, D(q) � A + B qα , with
exponent α > 1. As the number of sites required in alignments
is increased, the quality of the power-law fit is maintained,
while the exponential fit deteriorates. The plots in Figs. 7
and 9 are in close agreement with those in Refs. [38] and [37].
A more complete account of these subjects will be provided
in future work [53].

To conclude, we briefly explore the growth and complexity
of evolved globules. As indicated above, both conditions,
δN � 15 and δN � N/2, evolve soluble globules; however,
the less restrictive constraint, δN � 15, leads to more interest-
ing results, so we again focus on this situation below.
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FIG. 8. (Color online) Fraction of sites,Q(n), in the alignment of
sequential structures, x�(τ ) and x�(τ ′), preserved in later alignments
of x�(τ ) with structures x�(τ ′′). Data points represent averages over
paths with n(τ,τ ′′) = n. The dotted line is a power-law fit to the data.

Figure 10 plots polymer length N (τ ) for several trajectories
evolved under this condition, where τ is the time measured in
mutation attempts. The paths in Fig. 10(a) start from a single
structure, which was first evolved from the most designable
structure in our sample of crumpled homopolymers. The paths
in Fig. 10(b) stem from three different target structures that
were more difficult to design. Most paths evolved under the
condition δN � 15 are able to explore a size range of 35 �
N � 45 monomers. Interestingly, following the rapid increase
in length along path 1 in Fig. 10(a), a significant fraction of
polymers far exceeds this constraint, sometimes containing as
many as 3N/4 ordered monomers, reminiscent of the critical
nucleation of a liquid droplet. (We explore structural evolution
along this path in the Supplemental Material [41].) By contrast,
all paths evolved under the more restrictive condition δN �

0 50 100
0

0.5

q

D
(q

)
/
l

FIG. 9. (Color online) Aligned distance between structures,
D(q), as a function of the percentage of nonidentical amino acids, q.
The data used to compute D(q) are the same as in Fig. 7. The solid
line is an exponential fit to the data; the dotted line is a power-law fit.
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FIG. 10. (Color online) Evolution of polymer length, N (τ ), for
sequences evolved under the condition δN � 15. The lower axis, τ ,
in each panel denotes elapsed time along a trajectory measured in
mutation attempts. (a) The system evolves from a single sequence
which stems from a designable structure. (b) The system evolves
from multiple sequences which stem from less designable structures.
Paths are numbered for later reference in Fig. 11.

N/2 (not shown) are localized in an envelope of about 26 �
N � 32 monomers.

To measure structural complexity, we compute the average
length of loops formed in folded globules, or “contact
order” [54]:

〈
(x)〉 =
∑

i,j�i+2

|i − j |θ (2� − |xi − xj |)
/ ∑

i,j�i+2

θ (2� − |xi − xj |), (7)

where θ (x) is the Heaviside step function and 2� defines
the range for cross-chain contacts between monomers. Low
contact order typically indicates structures that fold more
hierarchically and efficiently. In Fig. 11, we plot 〈
(τ )〉 along
four of the trajectories in Fig. 10. (Two of the paths are omitted
for clarity in the figure.) Each data point denotes the average
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FIG. 11. (Color online) Evolution of complexity (average loop
length), 〈
(τ )〉, for sequences evolved under the condition δN � 15.
Each point represents an average over a small group of structures in
���(τ ) closest to x�(τ ). Path colors and numbers correspond with
Fig. 10.

over a small group of structures closest to x�(τ ). All paths in
exhibit a trend of decreasing contact order, consistent with the
result of Debes et al. for resurrected protein domains [40]. By
contrast, paths generated under the condition δN � N/2 are
usually more erratic, punctuated by jumps in 〈
(τ )〉 in which
disordered loops or end segments are suddenly detached or
incorporated into the ordered part of the globule.

IV. SUMMARY

To summarize, polymers evolved under the weaker con-
straint δN � 15 tend to evolve larger and more thoroughly
ordered structures, apparently due to the greater availability

0.1 1
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10

3 1 0

T /T

C
(T

)
Γ

FIG. 12. (Color online) Replica average specific heat function,
〈C(T )〉� , for an evolved sequence of length N = 35 monomers.
Numbers along the top edge of the figure indicate equilibration
temperatures in Eq. (1).

of fortuitous mutations (i.e., greater connectivity in the space
of viable sequences). It is difficult to tell how strongly this
result depends on the designability of the initial structure
from the small sample studied above. However, our results
are consistent with the idea that “forced” or directed polymer
evolution leads to slower relaxation [20,55].

Although the phenomenology of the model bears a strik-
ing resemblance to proteins, the lack of explicit secondary
structure presents certain difficulties in comparing the model
to protein data. Typically, the procedures used to relate
protein structures in phylogenetic studies first depend on the
identification of common regions of secondary structure. As
a result, the alignment procedures used by Chothia and Lesk
and Illergard et al. cannot be applied literally to the model.
However, the fact that we can reproduce the same behavior
using a similar method suggests that this behavior may be
a generic feature of proteinlike polymers [in particular, once
structures are compared by a reductive alignment method like
that in Eq. (3)]. Protein mutational data are, of course, a product
of evolving populations of genes, not a Markovian chain. How-
ever, the fact that mutabilities in the model exhibit the same
dependence on exposure as mutation rates in proteins suggests
this behavior is linked to the fidelity of folding proteinlike
polymers. Finally, we remark that although it may have been
simpler to constrain the formation of a binding site explicitly,
the methods developed above make it possible to explore the
interplay between folding and functional requirements in more
realistic models that include the genetic code.
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APPENDIX

The model is a low resolution map of an amino acid chain
onto an idealized polymer via Miyazawa-Jernigan potentials.
Adjacent monomers along the polymers are linked by a
potential of the form

U link(r) = κ

2
(r − l)2, (A1)

where r is the distance between monomers, l is the equilibrium
length of a link, and κ is a constant (see below). The sequence
dependent potentials are based on the Morse function [44],

μ(r) = exp[−2α(r − l)] − 2 exp[−α(r − l)]. (A2)

To construct the potentials, we separate the Morse function
into components,

μr<l(r) = μ(r)θ (l − r) (A3)

and

μr�l(r) = μ(r)[1 − θ (l − r)], (A4)

where θ (l − r) is the Heaviside step function. The potentials
for attractive and repulsive monomer pairings are then defined
as

Uε′<0(r) = εμr<l(r) + (ε + ε′)θ (l − r) − ε′μr�l(r)

(A5)
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and

Uε′�0(r) = εμr<l(r) + εθ (l − r) + ε′ exp[−α(r − l)],

(A6)

respectively. Each potential consists of an excluded volume
part, modulated by the constant ε, and a sequence depen-
dent part, modulated by the parameter ε′. The parameter
ε′ takes on different values ε Mμν/M depending on the
type of interaction, where M = ∑

μ,ν�μ |Mμν |/210 is the
average strength of an interaction and Mμν denotes the
scaled Miyazawa-Jernigan matrix developed by Betancourt
and Thirumalai [56]. The diagonal elements of Mμν define the
hydrophobicity scale used to arrange amino acid labels in the
figures.

To simulate folding, we integrate the Langevin equation
using the method of van Gunsteren and Berendsen [57] with
monomer mass m = 1 × 10−22 g, friction coefficient γ =
50 ps−1, and integration time step �t = 0.005 ps, leading to
diffusive kinetics. The potentials are defined by the parameters
l = 1, κ = 120, α = 8, and ε = 3/2 with length in angstroms,
and energy in units of kBT �, where kB is Boltzmann’s constant
and T � = 302.15 K. The constant ε is selected to locate the
specific heat peaks of viable sequences near T �. Figure 12
plots the replica average specific heat, 〈C(T )〉� , for an evolved
sequence, where [30]

C(T ) = 〈E2〉 − 〈E〉2

(kBT )2
, (A7)

E is the energy of a replica, and braces, 〈〉, denote time
averages. Numbers along the top edge of the plot indicate
equilibration temperatures in Eq. (1).
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