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We study a nucleation-growth model of protein folding and extend it to describe larger proteins with
multiple folding units. The model is of one of an extremely simple type in which amino acids are allowed just
two states—either folded (frozen) or unfolded. Its energetics are heterogeneous and Go-like, the energy being
defined in terms of the number of atom-to-atom contacts that would occur between frozen amino acids in the
native crystal structure of the protein. Each collective state of the amino acids is intended to represent a small
free energy microensemble consisting of the possible configurations of unfolded loops, open segments, and
free ends constrained by the cross-links that form between folded parts of the molecule. We approximate
protein free energy landscapes by an infinite subset of these microensemble topologies in which loops and open
unfolded segments can be viewed roughly as independent objects for the purpose of calculating their entropy,
and we develop a means to implement this approximation in Monte Carlo simulations. We show that this
approach describes transition state structures (¢ values) more accurately and identifies folding intermediates

that were unavailable to previous versions of the model that restricted the number of loops and nuclei.
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I. INTRODUCTION

In a recent paper [1], we described a simple experiment to
unfold proteins by a kind of topological implication [2].
There, proteins were expanded mechanically along a path of
steepest increase in available free space (in order to represent
maximum entropy or minimal entropy loss [3,4]) so that the
path of unfolding just reflected the shape of the initial (na-
tive) state. For large proteins, it was clear from inspection
that certain buried or frustrated fold segments would remain
folded until other parts of the molecule could unfold to cre-
ate space for them to move. We were interested to know
whether this “topological order” characteristic of unfolding a
topological defect needs to occur in reverse for a protein to
fold its native shape. We found that for many proteins, even
those with very simple topologies, the mechanic unfolding
paths compared well with the key events described in protein
folding kinetics experiments, and the results suggested a po-
tentially useful division of protein structures into fragments
with different dynamic characteristics: namely, (i) coopera-
tive parts in which the unfolding of each group of cross-links
simultaneously supports the unfolding of all others, and (ii)
frustrated parts in which unfolding two or more groups of
cross-links dynamically conflict. Frustration leads to disper-
sion against the entropic order of contact formation or disso-
ciation [3], and consequently, models that use contact order
to describe folding may improve if the kinetics of cross-
linking is somehow renormalized [5,6] in terms of these co-
operative units [7].

Here we begin to investigate these ideas using a simple
nucleation growth model of protein folding developed by
Finkelstein and co-workers [8—12], one of our aims being to
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schematize this model in a way that allows more accurate
treatment of larger proteins with multiple folding units
[13,14]. While our previous work focused purely on
topological constraints (dihedral angle, residue geometry,
and topology), the model we investigate here [10] is thermo-
dynamic and contains very limited constraints corresponding
to the surface burial of residues and the entropy cost of loop
closure. In this model, each amino acid occupies one of only
two states—either folded (frozen) or unfolded. Each collec-
tive state of the amino acids is intended to represent a small
microensemble, consisting of the configuration states of un-
folded segments constrained by the frozen amino acids and
the cross-links that form between them. The free energy of a
microensemble, or “microstate,” vy is defined as

F(y)= €2 78i.j) - T[@-q(y»mz ys(,,)], (1)
4

i<j

where in the first (energetic) part of this expression, 8(i, ) is
the number of heavy atom contacts (including main-chain
atoms) between residues i and j in the native crystal structure
[15], and the sum 2, ;7 includes all pairs of amino acids that
are frozen in 7. In the entropic part of the expression, L is the
chain length, ¢ is the number of folded residues, 0=2.3R is
the entropy cost to freeze an amino acid, and s(p) is the
entropy cost to link the ends of an unfolded segment into a
loop p as described in Egs. (2) and (3) below. The entropy is
approximated as if the loops are independent objects [16]
(only two loops were allowed in this formula) and their in-
teraction with folded parts of the molecule is excluded
volume only.

Each microstate consists of one or more folded nuclei, or
native droplets [17] decorated by whatever unfolded loops,
open segments, and ends are formed by the cross-links, and
can be represented diagramatically as shown in Figs. 1-3.
Authors of this type of model limited the space of their sys-
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FIG. 1. Topology diagram formed by two cross-linked fold
blocks o'V and a!?.

tems to at most a couple of unfolded loops in order to speed
computations, however, the largest proteins studied in kinet-
ics experiments (length L~400 amino acids) can require
terms with up to =10 unfolded loops [8] and even moder-
ately large proteins can contain multiple folding domains that
nucleate independently. The complexity of the diagram to-
pologies increases rapidly with the number of unfolded seg-
ments, and estimating the entropy for all these terms is an
extremely complex if not forbidding task. However, if one
follows the diagram topologies out to a sufficiently large
order, patterns emerge that suggest how an approximation
based on diagram connectivity could be established.

To start with, the zeroth order approximation (o) is just a
single folded droplet with two unfolded ends [9]. Continuing
the independent loop approximation above leads to a first
order approximation—(i) that of a droplet decorated by a
halo [18] of unfolded loops (Fig. 1). The next anzatz could
be (ii) to allow multiple droplets of the form (o) and (i)
connected by open unfolded segments, then (iii) insertion of
forms (0) and (i) within loops [Fig. 2(a)], and finally (iv)
cross links between loops and insertions (i.e., all possible

(a I, 1

(b)

L+ 1 L,

FIG. 2. (a) Simplest reducible diagram formed by two pairs of
cross-linked fold blocks, &'V, o™ and o®,a® (block labels not
shown) and (b) reduction to independent loops. The parameters I,
label the lengths of adjacent unfolded segments. This step favors
local nucleation or zipping [3] so that either [;+I3<l, or [,<l[,
+13 is favored entropically.
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FIG. 3. Simplest irreducible diagram formed by permuting the
cross connections between fold blocks in the previous Fig. 2.

diagrams). Each of these approximations corresponds to a
landscape of microstates and intuitively one expects that
entropy loss considerations might allow us to terminate
resolution of the landscapes at a tractable level. For example,
diagrams with cross links among the loops (the simplest
of which is shown in Fig. 3) scale in a way that tends to
conflict with the entropic order of cross linking, while in the
rest of the diagrams, loops and open unfolded segments tend
to scale as independent objects as in the initial approach
above (we will refer to these terms as “reducible” diagrams
in Sec. II).

Given that we could estimate the loop entropy for these
diagrams, the first problem is computational—is there an ef-
ficient way to select them during the simulations? Here we
develop a Monte Carlo algorithm to solve this problem and
we use it to study about ten small to moderately large pro-
teins including those investigated in Refs. [10,11].

Bearing in mind that Eq. (1) describes the unfolded seg-
ments of proteins as random coils, there are entropic reasons
why increasingly complex diagrams starting with those in
Figs. 2 and 3 should have a low frequency of occurrence in
the simulations, and accordingly, we find that type (ii) dia-
grams dominate the examples we study. It is difficult to say
to what degree this result extends to proteins since protein
unfolded states are thought to be partially structured [19]. In
collapsing to a partially structured ensemble (globule), part
of the entropy difference between random coil and folded
states is balanced by the attractive energy that causes the
chain to collapse. In its present form, the model would allow
this situation to be expressed only as a superposition of
folded and unfolded amino acid states. And, if we were to
construct an entropy approximation to fit the globule state
[20] (assuming this state had nativelike structure), the energy
would be scaled down in Eq. (1) to meet the entropy ap-
proximation because the model adjusts the free energy land-
scape F(y) to the condition of equilibrium between folded
and unfolded states (see below). Therefore, the results of this
step may be very similar to those for the random coil except
that the unfolded state of a residue now corresponds to a
partially structured state in the protein. In particular, al-
though the entropy model changes, it may still stratify ac-
cording to whether the boundary conditions on unfolded seg-
ments are fixed (loops) or free to move (open segments
and ends) so that the two models (random coil and globule)
roughly correspond. It should be noted, however, that
the model has many small problems and has only been
applied to proteins of about L~ 100 amino acids, so it is
difficult to take the coarse agreement between it and protein
transition state structures as confirmation of this sort of
correspondence.
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In any case, recent work suggests that some of the param-
eters in this model, such as the persistence length [19], the
form of the interaction energy [21], and also the response of
the model to situations where non-native interactions
[21-24] control the folding process need to be investigated
before attempting to reapproximate the entropy this way.
These types of investigations would have little value if the
model were restricted to its original form, and indeed the
present approach leads to significant improvements in the
transition state structures (¢ values [25]) over the results for
protein crystal structures calculated in Refs. [10,11] precisely
because of the added multiple loop and droplet terms de-
scribed above. As expected, by including these more com-
plex terms the model picks up more of the “residual” features
of a protein’s native structure that define its intermediates
and is now able to identify intermediates [26,13] that were
unavailable to restricted versions of these models [10-12].

In Secs. I-IV we now describe this approach and our
results. Later we discuss some of the basic problems encoun-
tered with two-state nucleation-growth models and how
these and other Go-like models [14,26,27] may interpret the
landscapes of proteins with non-native intermediates.

II. REDUCIBLE DIAGRAMS

Each collective state of the amino acids can be repre-
sented by a list of folded and unfolded blocks,

—a"(i,j) = " V(k, D) — " (m,n) — (2)

where arrows stand for the unfolded parts and the index pairs
(i,j), etc., number the end points. The fold blocks, a'(i, ),
are cross linked according to Eq. (1) and the spatial connec-
tivity of nuclei, loops, open segments and so on can be rep-
resented by diagram as shown in Fig. 1.

It is simple to enumerate all the diagrams allowed for a
given number of folded blocks, and in doing so, one finds the
set of approximations listed above. Again, type (ii) diagram
topologies can be constructed by bonding the protruding
ends of simpler type (o) and (i) diagrams like Fig. 1 together
in sequence. For this class of diagrams it seems reasonable to
continue the scheme defined in Eq. (1), in which loops are
independent, and the segments joining the nuclei (open un-
folded segments) are treated the same way as ends. In other
words, in this approximation type (o) diagrams are reducible
to open unfolded segments of length equal to the sum of
unfolded amino acids on their ends.

All that occurs in this step is that unfolded segments are
divided into looplike and endlike types for the purpose of
calculating their entropy, but clearly this division becomes
less convincing with increasing diagram complexity. For ex-
ample, type (iii) diagrams include nested loops, the simplest
case of which is shown in Fig. 2(a). The diagram in this
figure is, topologically, almost identical to that for a nucleus
decorated by two loops [one loop containing a type (o) dia-
gram] so it would be within the approximation used in the
original model [10] to approximate the loops in Fig. 2 as
independent objects. However, type (iv) diagrams include
terms that cannot be reduced to either loops or ends (the first
nontrivial diagram of this type is shown in Fig. 3), and al-
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though it would appear as if we could interpet this diagram
as, say, three ends or some fractional number of loops, this
step would most likely lead to confusing results since the
boundary conditions (ends of the segments) are perfectly
correlated.

While we know that these more complex terms are small,
it is still of interest to sample them to gain perspective on the
situation of folding from a partially ordered globule, and the
simplest, most consistent approximation we can take is to
restrict the system to type (iii) diagrams where it still makes
some sense to approximate loops and open segments as in-
dependent objects [16]. In this case, both type (0) segments
and loops are considered reducible [see Fig. 2(b)] so that the
whole unfolded part of the molecule is viewed as a noninter-
acting soup of open segments (or just one long open seg-
ment) and loops. Irreducible terms like those in Fig. 3 are not
included but we still keep track of how often they are at-
tempted during the simulations. The basic kinetic algorithm
and the screening method are described in the Appendix.

III. MONTE CARLO

In each Monte Carlo attempt, an amino acid is selected at
random and flipped. If the resulting diagram is reducible, a
list of loops is created and used to compute the free energy
difference between the initial and target microstates (steps
that result in irreducible diagrams are not counted in thermal
averages). The free energy is calculated exactly as in Eq. (1)
except that now the entropy sum includes reduced loops.

Each loop (or reduced loop) p is closed off between two
folded blocks af(i,j) and a’'(k,l) by the frozen amino acids j
and k and contains one or more unfolded blocs n of length
1,(p) due to the possibility of insertions along its length. Let

lp)=1+ 2 L,(p) (3)

be the effective length of the loop and let r(p) be the space
distance between its bracketing alpha carbons. The entropy
cost to close a loop is defined as

377 -d?

22aAl(p)’

(=3 i) - @
where A=20 is the persistence length and a=3.8 is the chain
spacing between alpha carbons. This expression describes a
random coil with ends fixed to an impenetrable plane [9] that
enforces the excluded volume of the droplet. Although it
may improve things to consider the excluded volume of
droplets joined to the ends of open segments, our intent is
just to isolate the effects of relaxing the diagram restrictions.

To collect statistics, we sample by small ensembles [28]
that restrict the protein to sliding windows ¢ € [i—w,i] of
width w. The windows are about the size of a typical nuclear
region in the largest proteins studied below. For each protein,
we sample all windows in the index range ie€[w,L] for
~10° Monte Carlo steps (MCS) per amino acid, per interval.
The window ensembles have a precise relationship to the
global ensemble as long as there are no ergodicity problems
(damping) within windows (which may be the case if the
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landscape is sufficiently grooved or textured). For our
system, it was necessary to discard data recorded near the
edges of the windows to recover the equilibrium condition,
F(0)=F(L). Again, as in Ref. [10], all the simulations are
conducted at the condition of equilibrium between native and
folded states so that € in Eq. (1) is expressed in terms of
temperature and F appears in units of RT.

IV. RESULTS

We report results for about ten «, B, and a-8 protein
topologies having both two-state and multistate kinetics
ranging in size from about 50-200 amino acids [29]. In this
section, we discuss the general features of these results and
we compare effective ¢ values (cross-link probabilities) cal-
culated using restricted and scaling versions of Eq. (1) for
the set of five proteins studied in Ref. [10].

The cross-link probability is

()= 3 Py 2L, 5)
t C(j)
veq

where P(1y) is the probability of occupying 7y, C(y,j) is the
number of active contacts [C(j) the total number of contacts
in the native state] with amino acid j [C(y,j)=0 if j is un-
folded]. The sum includes conformational states within the
transition ensemble [4] which we select to coincide with the
maximum in the free energy profile, F(¢*)=max F(g). Since
conditions can vary strongly in ¢-value measurements, it is
of interest to know how well the results agree with experi-
ments in the immediate vicinity of the transition state. There-
fore, to indicate this we also report the maximum correlation
values obtained in the small window g*+2.

The results for the three nucleation-condensation-type
proteins (CheY, Barnase, and CI2 [26,30,31]) are shown in
Fig. 4. The correlation coefficients for all five proteins at
maximum correlation (including src and a-spectrin sh3,
respectively) are 0.73, 0.73, 0.61, 0.16, and 0.77. At the tran-
tition state qi, the correlation values are, 0.62, 0.67, 0.61,
0.16, and 0.77—a typical improvement of about 30-40%
over the restricted model [32]. If we exclude Isrl, a NMR
structure that is poorly described both here and in Ref. [10],
the correlation coefficients we calculate at ¥ against the data
set in Ref. [11] are just as accurate as the more recent (but
still restricted) version of the model revised to include hy-
drogen atoms in the contact energy [11].

Inspection of the diagram statistics reveals that the im-
provements cited above are directly linked to releasing the
diagram constraints. For example, while the occupation
probability of diagrams with three or more loops is less than
1% at the transition states of CheY and CI2, the occupation
of multiple droplet diagrams is of the same order of magni-
tude (10-20%) as improvements in the correlation coeffi-
cients. At the transition state of Barnase, the frequency of
states with 0—4 unfolded loops is 0.030, 0.158, 0.559, 0.245,
and 0.009 (and with 1-3 droplets is 0.876, 0.118, and
0.006)—again, the higher order terms are of the same order
as improvements in the correlation coefficients.

Releasing the constraints allows the model to pick up
transition state features that cannot be resolved by the origi-

PHYSICAL REVIEW E 73, 011904 (2006)

CheY
08 -

0.6

0.4 -

02 r

e

Barnase
0.8 X
0.6 -  x
04

1
1
1
1
'
1
1
i
'
]
\
'
1
'
1
1
|
t
|
1

02 |

CI2
0.8 -

e

0.4 -

02 r

FIG. 4. Correlation of measured ¢ values and contact probabili-
ties, ®(j) (crosses and solid lines, respectively) for CheY, Barnase,
and CI2. The solid lines correspond to the point of maximum corel-
lation in the immediate neighborhood g*+2 of the transition state.
The data is identical to that reported in Ref. [10] and the simula-
tions are likewise conducted with segments of two amino acids. The
indices in the figures (x axis) label the amino acids and the data
from 1 to L.

nal model. For example, the alternating a-f8 protein CheY
has an off-pathway intermediate with helical local order
[26,13]. The intermediate is thought to result from competi-
tion between the B-interior and a-helical exterior of the pro-
tein and may involve non-native interactions. We observe an
intermediate in which helices are formed but not 8 strands
(except within the nucleus) at around g=24. In crossing this
region, the number of droplets jumps (the probability of four
droplets reaching about 10%) and the spectrum of droplet
sizes changes abruptly from bimodal (centered around 2 and
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FIG. 5. Attempt frequencies for reducible conformations con-
taining nested loops (circles) and irreducible parts (crosses) for T4
lysozyme. The relative size and magnitude of the attempt frequen-
cies in this figure are somewhat typical of the proteins studied in
this work except near the folded edge of the plot. The occupation
probabilities of reducible nested diagrams is typically about a de-
cade smaller than the attempt frequencies in this figure.

q) to unimodal (centered around 2) to bimodal before reach-
ing the transition state. The location of this intermediate and
the major features of the folding profile, while more pro-
nounced, correspond with the simulation results of Clemente
and co-workers [26].

The number of unfolded loops near the transition states of
the proteins in our sample agreeswith the simple ¢L>° esti-
mate given in Ref. [8], but not as a strict rule. For example,
across the transition state of a-spectrin sh3, the occupation
of diagrams with more than two loops can be as large as
0.29. Diagrams that require reduction of loops are very in-
frequent during these simulations (typically <10’ percent),
and the attempt frequency for irreducible diagrams is com-
parable to, but typically smaller than that for nested dia-
grams, suggestive of the results we may obtain if we include
these terms in the simulations. A more unusual example of
our results for attempt frequencies is shown in Fig. 5. Again,
it is difficult to predict the contribution of these terms for the
case of a structured globule unfolded state, and one cannot
rule out rare instances where a specific diagram like that in
Fig. 2 may play an important part in nucleating a certain
large protein fold. Nevertheless, there may be some hope of
describing this situation more convincingly in terms of an
approach like that in Ref. [20].

In closing, it may be worthwhile to list some of the prob-
lems we have so far neglected to discuss for the two-state
models [12]. First, the dynamical scheme of this approach
still inhibits some parallel [33] kinetic processes (specifi-
cally, independent folding of subdomains that interpenetrate,
or are otherwise strongly connected in the native fold) be-
cause any pair of amino acids that are in contact in the crys-
tal structure are also in contact if they both freeze into a
folded state. This type of situation occurs maybe once (sta-
phylococcal nuclease) out of the 20 or so proteins we have
simulated so far, so it does not yet seem to present a signifi-
cant limit to the usefulness of this model. Also, the entropy
cost to freeze an unfolded segment or close an unfolded loop
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FIG. 6. Free energy profile, F(g), for CheY. The off-pathway
“helical” intermediate is detected near g=24. At the transition state,
g¥=38, the occupation probabilities for states with 0—2 unfolded
loops (1-3 droplets) are 0.767, 0.215, and 0.016 (0.726, 0.218, and
0.054). After the transition state, a- layers progressively accrete
onto the nucleus, and the formation of helices registers with (begins
just before) maxima in the profile.

depends on amino acid composition [34,35]. Since our
model does not include this dependence, it is likely that the
fine scale features of our results (lengths of order several
amino acids) on which differences among amino acid entro-
pies do not average could be improved. Finally, non-native
interactions can play a significant part in [21,22] and even
control the folding dynamics of certain proteins [23], and
Go-like models are not, of course, able to describe these
situations very accurately. Nevertheless, by simulating these
types of proteins [24], we find that non-natively stabilized
intermediates can leave a specific signature that is simple to
explain [36] and serves as an indication of where this model
is working as intended.

To summarize, although we have allowed for very com-
plex terms within the simulations, it turns out that just releas-
ing some of the restrictions [including type (ii) diagrams
perhaps with type (o) insertions in loops] can improve
¢-value calculations quite a bit. This is also what allows the
model to identify more coarse grained features such as the
helical intermediate in Che Y (see Fig. 6). But it is interest-
ing that proteins for which ¢-value estimates improve dras-
tically after adding hydrogen atoms (U1A [11], for example),
also improve substantially by releasing these restrictions (E.
Nelson, unpublished data [37]), which shows that the model
is more responsive to the fine scale features of the native
structure as well. Indeed, although the constraints on loops
and nuclei seem applicable to small proteins of about =100
amino acids, we have seen that they do not apply to some
of the smallest proteins studied by this type of model.
More complex diagrams may become significant if the un-
folded state is considered as a partially structured globule,
but it seems unlikely that this step leads to any drastic
differences in the problem for the reasons given above. In
this vein, it should be noted that even high temperature un-
folding simulations give accurate ¢-value estimates, so it
may be better to investigate some of the more basic problems
with this model noted above. But, even in its present form,
the approach here appears accurate enough to decode the
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intermediates [24] of some of the larger proteins [13,14]
studied in kinetics experiments.

ACKNOWLEDGMENT

We are grateful to Ken Dill for helpful comments during
the completion of this work.

APPENDIX

The scaling approximation is relatively straighforward but
the computational steps needed enact it are complex and may
be worth explaining.

The main problem encountered in setting up the back-
ground kinetic part of the code is that diagram topologies are
defined in terms of folded blocks, which are impermanent
objects. As a result, it is necessary to assign each of the
blocks a™(i,j) a temporary (integer) identity p while it ex-
ists during the simulation. The number of possible identities
is conserved, each p being drawn from a stack p € [0,L/2]
when a fold block is created and returned to the stack when
the block dissolves. This constraint makes it possible to de-
fine a matrix, m(p,q), whose rows and columns are indexed
by the identities [0,L/2] to record the current number of
cross-links between each pair of fold blocks, so that the
topology of the diagram corresponding to a given state of
folded blocks can ultimately be accessed.
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To screen for irreducible diagrams, it is necessary to cre-
ate an ordered list of droplets (nuclei) for every input state.
The list is constructed recursively: to start, the first fold
block a?) in the block list in Eq. (2) is placed into an empty
container ' (for brevity we use C++ language terms here)
that will ultimately hold a completed droplet (note that
within a droplet every pair of blocks is joined by a path of
cross-links). If the next fold block o' is cross-linked to a'?
it is added to u(?, otherwise a new container u'! is created
and a!" is added to it. This process is continued until all of
the blocks in Eq. (2) are inserted into droplet containers,
merging droplets [but preserving the order in Eq. (2)] if a
block o pulled from the list links two droplets together.
The result is an ordered list of droplets,

o _, ,m_, ,0_,

e A R (A1)

where in each droplet, the blocks are ordered as they appear
in sequence and front (u?<9) < front (u'?).

For reducible diagrams, each droplet is either completely
independent of (joined by a single unfolded segment), or
completely contained by, another droplet. A droplet u” con-
tains u'@ if the front and back of the list x'?) are bracketed in
sequence by two adjacent blocks in the list x” [as in Fig.
2(a)]. Thus, ordering the list speeds computations and, once
given, it is simple to test whether a droplet u'”) brackets only
a subset of blocks in u'@ (as in Fig. 3) signifying an irreduc-
ible part in the microstate.
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