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ABSTRACT
Motivation: Biological objects tend to cluster into discrete
groups. Objects within a group typically possess similar
properties. It is important to have fast and efficient tools
for grouping objects that result in biologically meaningful
clusters. Protein sequences reflect biological diversity and
offer an extraordinary variety of objects for polishing clus-
tering strategies. Grouping of sequences should reflect
their evolutionary history and their functional properties.
Visualization of relationships between sequences is of no
less importance. Tree-building methods are typically used
for such visualization. An alternative concept to visualiza-
tion is a multidimensional sequence space. In this space,
proteins are defined as points and distances between the
points reflect the relationships between the proteins. Such
a space can also be a basis for model-based clustering
strategies that typically produce results correlating better
with biological properties of proteins.
Results: We developed an approach to classification of
biological objects that combines evolutionary measures of
their similarity with a model-based clustering procedure.
We apply the methodology to amino acid sequences.
On the first step, given a multiple sequence alignment,
we estimate evolutionary distances between proteins
measured in expected numbers of amino acid substitutions
per site. These distances are additive and are suitable for
evolutionary tree reconstruction. On the second step, we
find the best fit approximation of the evolutionary distances
by Euclidian distances and thus represent each protein by
a point in a multidimensional space. The Euclidian space
may be projected in two or three dimensions and the
projections can be used to visualize relationships between
proteins. On the third step, we find a non-parametric
estimate of the probability density of the points and cluster
the points that belong to the same local maximum of this
density in a group. The number of groups is controlled by
a σ -parameter that determines the shape of the density
estimate and the number of maxima in it. The grouping
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procedure outperforms commonly used methods such as
UPGMA and single linkage clustering.
Availability: The code of EESG program for Mathemat-
ica4 (Wolfram Research) as well as the details of the
analysis are freely available at ftp://iole.swmed.edu/pub/
EESG/.
Contact: grishin@chop.swmed.edu

INTRODUCTION
Most of similar objects in nature fall into discrete groups.
In many cases it is difficult to understand the reasons that
cause discreteness in an apparently continuous space. Re-
gardless, it is useful to group objects and thus to reduce the
complexity of the system from a large number of objects
to a small number of clusters. Many generic methods ad-
dress the problem of data clustering and grouping (Podani,
2000; Everitt et al., 2001). However, only few of these ap-
proaches take into account specifics of biological objects,
most importantly, the concept that they are evolutionar-
ily related. Only tree-reconstruction methods fully use the
evolutionary information and generate a tree-like structure
in which the order of branching is expected to reflect evo-
lutionary events (Felsenstein, 1996). This representation,
if possible, would undoubtedly be the best way to view re-
lationships between biological objects and the task of their
grouping.

Evolutionary trees are difficult to reconstruct reliably.
The reliability drops fast with the degree of divergence
between objects and depends drastically on the amount of
information used for the tree building (Felsenstein, 1996;
Saitou, 1996). For example, tree reconstruction is hardly
possible for short (100 amino acids or less) protein se-
quences sharing 5–15% identity. This has not posed a seri-
ous problem in the past, since it was challenging to detect
homology and to align sequences with similar to random
identity. Recently, with the rapid expansion of protein se-
quence data and the development of sensitive profile sim-
ilarity search tools such as PSI-BLAST (Altschul et al.,
1997) and HMMer (Eddy, 1996), researchers have been
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able to extend the limits of sequence-based homology de-
tection (Aravind and Koonin, 1999). Thus the task of un-
derstanding relationships in divergent protein families is
of particular importance. To complicate the problem even
further, alignments of these divergent sequences are often
restricted to a few moderately conserved but confidently
aligned motifs (Henikoff et al., 2000). This reduces the
number of positions for tree reconstruction and thus de-
creases tree reliability statistics.

The notion of ‘sequence space’ has been widely used
in the literature (Higgins, 1992; Agrafiotis, 1997; Holm
and Sander, 1997; Holm, 1998; Forster et al., 1999;
Yona and Levitt, 2000). Generally, it is an abstract metric
space in which each sequence is represented as a point
and distances between points reflect divergence between
corresponding sequences. If known, such space can be
used to study the relationships between proteins and, in
particular, to group them. However, provided a set of
biological sequences, it is not straightforward to define
the metric and thus to map sequences onto the ‘sequence
space’ (Forster et al., 1999; Yona and Levitt, 2000). To
obtain results with evolutionary meaning, it would also be
desirable to combine tree-reconstruction procedures with
the space mapping.

Here we developed a classification approach that com-
bines evolutionary distance calculation with the Euclidian
space mapping. This approach is outlined as follows.
(I) Evolutionary distances are estimated from protein
sequences (Zuckerkandl and Pauling, 1965; Dayhoff et
al., 1978; Grishin, 1995; Felsenstein, 1996; Zhang and
Gu, 1998; Grishin et al., 2000) or 3D structures (Grishin,
1997). The distances are defined as expected numbers of
amino acid substitutions per site and are calculated from
the sequence similarity scores or structure RMSD values
using standard correction formulas (Tajima and Takezaki,
1994; Grishin, 1995, 1997; Zhang and Gu, 1998). If the
user is studying objects other than proteins, a distance
matrix should be provided. (II) Each object (protein) is
represented as a point in a multidimensional Euclidian
space in such a way that Euclidian distances di j between
the points optimally approximate the estimated distances
Di j between the objects:

∑
i j (d2

i j − D2
i j )

2/D4
i j = min.

Notably, such a solution always exists, even if the distance
matrix is not metric due to statistical errors in distance
estimates or for other reasons. Our approach will find
the best approximation of the given distance matrix
with Euclidian distances. The user can visualize the
results in 2D or 3D by plotting the projections of the
multidimensional space. (III) The points corresponding
to biological objects are grouped according to the newly
designed model-based clustering procedure. This devel-
oped methodology is generic and can be applied to any
set of objects with a defined distance measure. However,
the grouping procedure is statistically meaningful for

biological objects with evolutionary connections between
them.

ALGORITHM
Similarity measures: from multiple sequence
alignment to similarity scores
Standard amino acid similarity matrices of PAM (Dayhoff
et al., 1978) or BLOSUM (Henikoff and Henikoff, 1992)
series can be used to calculate pairwise scores between
the aligned sequences. Let s be an amino acid similarity
matrix with elements s(a, b)—scores for a match between
amino acids a and b, let A be an alignment of n sequences,
Aik is a symbol (amino acid or gap: ‘-’) in the site k of the
sequence i . For each pair of sequences i and j from A we
calculate the following quantities:

(I) Si j =
∑

k∈Ki j

s(Aik, A jk)/ l(Ki j ),

Ti j = 0.5
∑

k∈Ki j

(s(Aik, Aik) + s(A jk, A jk))/ l(Ki j ),

where Ki j is the set of sites k such that Aik �=‘-’ and
A jk �=‘-’ (sites in which neither i nor j has a gap) and
l(Ki j ) is number of elements in Ki j . Si j is called score
per site. Ti j is the average upper limit of the score per site
achieved with identical sequences.

(II) Srand
i j =

20∑
a=1

20∑
b=1

f i
j (a) f j

i (b)s(a, b),

where f i
j (a) is a frequency of amino acid ‘a’ in i th protein

sequence of A over all sites in Ki j . Srand
i j has a meaning of

a score per site expected from random sequences of amino
acid composition characteristic of sequences i and j .

The normalized score (Feng and Doolittle, 1997) per
site Vi j between sequences i and j is then calculated as
follows:

Vi j = Si j − Srand
i j

Ti j − Srand
i j

(1)

This normalized score range is expected to be from 0
(for random sequences) to 1 (for identical sequences).
However, for very divergent sequences, Vi j could become
negative (score for the two aligned sequences is smaller
that the score for the two random sequences) due to
statistical errors.

Distance measures: from similarity scores to
evolutionary distances
Evolutionary distance between two homologous proteins
is defined as an expected number of amino acid substi-
tutions per site on the evolutionary path between them
(Felsenstein, 1996). Distance defined this way is a metric,
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however, what we are able to compute from the aligned
sequences is an estimate of this distance. Such estimates
contain statistical errors, which may cause violation of tri-
angle inequality.

A considerable amount of work has been done to
develop estimates of evolutionary distances from identity
fraction or, more precisely, from normalized identity
fraction Ui j calculated by equations similar to Equa-
tion (1), where identity matrix is used as a score matrix
s (Zuckerkandl and Pauling, 1965; Dayhoff et al., 1978;
Holmquist et al., 1983; Ota and Nei, 1994; Tajima and
Takezaki, 1994; Grishin, 1995; Li and Gu, 1996; Grishin,
1997; Zhang and Gu, 1998; Grishin et al., 2000). Since
there is no developed theory on how to convert general
similarity scores to distances (Feng and Doolittle, 1997),
we first convert normalized similarity scores Vi j to nor-
malized identity fractions Ui j and then estimate distances
from Ui j . Ui j is calculated from Vi j the following way.
(I) We find Vi j using the matrix s, and Ui j using identity
matrix for all pairs i and j . (II) We find least-squares
best-fit coefficient β in the function u = (1−β)v+βv2 to
approximate the set of pairs (Vi j , Ui j ). (III) We calculate
Ui j = (1 − β)Vi j + βV 2

i j . It is not clear why a second
order polynomial gives an excellent fit to the data, but
Ui j obtained with the outlined procedure are expected
to be more accurate than Ui j . Sites with non-identical
amino acids are ignored (scored 0) when Ui j is calculated.
However, fine differences between mismatches are taken
into account in calculation of Vi j , thus affecting Ui j

and increasing its accuracy. In the event of Ui j being
non-positive, Ui j is set to the minimal Uik or U jk over
all k, or 0.05, whichever is greater. The set of Ui j is
used to estimate evolutionary distances Di j with one
of the following standard formulas: (I) Di j = − ln Ui j ;
(II) Di j = 1/Ui j −1; (III) Di j = ϑ(Ui j ), where y = ϑ(x)

is the function inverse to x = ln(1 + 2y)/(2y). These
formulas are derived through consideration of amino acid
substitions as a Markov process and differ by underlying
assumptions about the variability of substitution rates
among sites and amino acids. The formula (I) defines
a Poisson distance and is derived under the assumption
of equal substitution rates between different sites and
different amino acids (Zuckerkandl and Pauling, 1965).
This estimate is close to the lower limit for the distance,
since any difference in substition rates among sites will
result in larger distances (Grishin, 1995, 1997). Poisson
distance possesses rather small statistical error. Geometric
distance is computed by the formula (II). Geometric
distance calculation assumes that substitution rates are
distributed exponentially across sites (Uzzell and Corbin,
1971; Holmquist et al., 1983; Grishin, 1995). Since
proteins are known to have variation of substitution rates

over sites (Uzzell and Corbin, 1971; Feng and Doolittle,
1997), geometric distances are more realistic than Poisson
distances, however, their estimates possess larger errors.
And, finally, logarithmic distance (III) is derived under
the assumption that average rates are distributed exponen-
tially across sites and the rates of different amino acid
replacements are approximated by a uniform distribution
over some interval (Grishin, 1995; Feng and Doolittle,
1997). This appears to be the most realistic of the distance
estimates, but its statistical error is relatively large.

Euclidian space: representation of evolutionary
distances
Evolutionary distances Di j between each pair of n pro-
teins were estimated on the previous step. The goal here is
to find points pi , . . . , pn in a Euclidian space of some di-
mensions such that Euclidian distances between the points
di j = distance{pi , p j } closely approximate correspond-
ing evolutionary distances Di j . Our approach to this prob-
lem differs from a standard multidimensional scaling tech-
nique (MDS, see monograph by Borg and Groenen, 1997).
We select the following function for minimization:

g(p) =
n∑

i< j

wi j

(
d2

i j (p) − D2
i j

)2
(2)

where weight coefficients wi j are equal to 1/D4
i j ,

instead of the so-called ‘stress function’ st (p) =∑n
i< j wi j (di j (p) − Di j )

2 used in MDS. Each term in

our sum g is
(
di j − Di j

)2 (
di j + Di j

)2
/D4

i j thus dif-
fering from the corresponding term of stress function
st with weight coefficients wi j = 1/D2

i j by a factor(
1 + di j/Di j

)2 . If di j ≈ Di j for all i and j , then our
function g differs from the stress function st only by a
coefficient ≈4. If di j > Di j for some i, j , then the term
in g is larger than the corresponding term in st making g
more sensitive to large deviations between di j and Di j .
Thus minimization of g is aimed at eliminating large
differences first.

The function g has smooth derivatives and therefore
we can avoid a technique of iterative majorization used
for stress minimization (Borg and Groenen, 1997), which
involves solution of a large linear system with n2m2

unknown variables, where m is the dimensionality of
Euclidian space (e.g. if n ≈ 100 m > 10 then we have
>1 000 000 unknowns). The function g is a polynomial
of degree 4 with nm variables and its local minimum is
easily computable. Therefore we use the classical gradient
method. Theoretically, a local minimum of g can be
iteratively found starting from random points pi , . . . , pn .
This procedure converges slowly and is not practical. To
obtain results within acceptable time, the starting points
may be chosen not at random, but closer to the ultimate
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solution. Potentially we could take a point given by
classical Torgerson–Gower scaling (Borg and Groenen,
1997) as a starting point. However, truncation of negative
eigenvalues, the number of which is large in our case, may
produce a distance matrix d very different from D and a
lengthy minimization procedure cannot be avoided. Thus
we find starting points, i.e. the first approximation to the
solution, using the following embedding procedure.

We place points pi in a Euclidian space one by one.
After adding each point, we minimize g allowing only
this point to move, but do not change the coordinates
of others. It is possible to proceed through an arbitrary
order of proteins. Our trials show that RMS error per
point of Euclidian representation of a distance matrix
e = √

2g/(n(n − 1)) varies little with embedding order
(several percent). However, the following ordering gives
slightly better results. The first protein in the ordering is
the protein for which the sum of evolutionary distances
from it to other proteins is minimal. It is the most
‘central’ protein in our set. Each successive protein is the
one with the minimal sum of evolutionary distances up
to the already chosen proteins. The technical details of
the embedding procedure are given in Appendix 1 (see
supplementary data or ftp://iole.swmed.edu/pub/EESG/
Appendix1.doc). Using this procedure we find coordinates
for all points pi , . . . , pn . If the number of dimensions of
Euclidian space increases for each application of the above
procedure, then we get (n − 1)-dimensional space for the
points and point coordinates form a triangle matrix with
zeros on the diagonal and above. In general, the coordinate
matrix satisfies equalities pi j = 0, for i � j � N ,
where N is the number of dimensions in Euclidian space.
Our embedding program provides an option to set up the
maximal number of dimensions of Euclidian space for
embedding. For example, it is possible to search for n
points on a line or on a plane.

The coordinate matrix p of points obtained on the em-
bedding step is the first approximation to start minimiza-
tion of Equation (2) by an iterative gradient method. We
monitor the results of this procedure, called optimization,
by recording a relative error e = √

2g/(n(n − 1)). Be-
cause the optimization is slow, the user specifies the num-
ber of iterations. After this number is reached, the program
displays relative error e in percent. The user then decides
whether to continue optimization. In our tests with protein
alignments of 30–60 sequences, the relative error e after
the embedding step was 6–16%, which reduces by 1.5–3%
after 1000–2000 iterations of the optimization program.
The embedding program runs very fast (several seconds
for Pentium III 500 MHz). However, the optimization pro-
gram is slow (several minutes for 2000 steps).

Grouping: from Euclidian coordinates to groups
Let p be an n × m-matrix of coordinates for the n points
p1, . . . , pn in an m-dimensional space that was found on
the previous step, and σ is a given positive constant. For
each point pi , we define a multinormal probability density
function:

ϕ
(σ)
i (x1, . . . , xm) = 1(

σ
√

2π
)m

× exp

(
− 1

2σ 2

(
(x1 − pi,1)

2 + (xm − pi,m)2
))

We consider the following function:

�σ (x1, . . . , xm) = 1

n

n∑
i=1

ϕ
(σ)
i (x1, . . . , xm)

It is clear that for large σ (σ > max |pi − p j |) �σ

has a single maximum. If σ is small (σ � min
i, j

|pi −
p j |), then �σ has n maxima. There exist the limits σmax
and σmin such that for σ within these limits (σmin <

σ < σmax), the number of maxima of �σ is between 1
and n. The grouping program finds approximate values
for these limits and divides the interval [σmin, σmax] into
a default of 200 segments: σ1 = σmax, σk+1 = q ·
σk , where q = (σmin/σmax)

1/200. Let σ = σk . For
each point pi , (i = 1, 2, . . . , n), the program finds the
local maximum of �σ by gradient method starting from
this point (See Appendix 2 as supplementary data or at
ftp://iole.swmed.edu/pub/EESG/Appendix2.doc) for the
procedure description). As a result of this procedure, all
points are collected into groups by the property of having
the same local maximum. More precisely, two points pi
and p j belong to one group iff the local maxima for these
points are equal. Each σk defines a set Sk of groups. The
number of groups in the set Sk is equal to the number of
maxima of the function �σ for σ = σk . The grouping
program forms sets Sk for k = 1, 2, . . . , N and stops
when the number of groups in a set Sk reaches a number
N specified by the user. Consider the case where a set S
arises at σk1 , does not change while k < k2, and changes
at σk2 . Then we say that lifetime of the set S is k2−k1. The
grouping program finds the most stable set—the set with
the longest lifetime. We treat this set as the most probable
grouping. The program also generates a table with groups
highlighted in different color for all σk (see Figure 4). This
table shows relationships between groups and sequences
and may be used to generate a grouping tree. The grouping
program runs fast. For example, a grouping process for
54 values of σ and 36 points in 14-dimensional space
takes about 20 s on Pentium III–500 MHz, i.e. about 100
maxima/s.
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RATIONALE
The proposed classification methodology can be applied
to any set of objects with distances defined between them.
However, we expect that most frequently it will be used
to deduce the relationships in homologous families of
proteins. Homologs are defined as biological objects with
common ancestry. According to the classic definition of
Fitch (1970), a relationship in a pair of homologs is
described by orthology or paralogy. Orthologs are proteins
in different organisms that evolved from the same protein
in the last common ancestor of these organisms. Orthologs
become different proteins simply because species split in
evolution. Thus orthologs represent the same ‘species’
(‘type’) of a protein. Paralogs are different proteins that
originated through a gene duplication that happened in an
organism. Thus paralogs correspond to different ‘species’
(‘types’) of proteins. As a rule, orthologs retain the same
function and evolve under the constraints imposed by this
function. Therefore orthologs tend to be closer to each
other in sequence and structure than to any of the paralogs
(Tatusov et al., 1997). Paralogs frequently have a different
function and may be quite distant from each other in their
sequences and structures.

Typically, a protein family of homologs consists of sev-
eral groups of orthologs (Tatusov et al., 1997). Consider
one group that corresponds to the set of orthologs from
different organisms. We represent each organism (i.e. each
orthologous protein) by a point in Euclidian space. The
distances between the points correspond to evolutionary
divergence between sequences. If the sampling of organ-
isms is random and independent, then the distribution of
points in space is likely to be well approximated by a
Gaussian. The maximum of that distribution corresponds
to the most typical sequence of the group. Since the sam-
pling of organisms differs from random, the resulting dis-
tribution may deviate from Gaussian. Thus we have cho-
sen a non-parametric approach to estimate the probabil-
ity density from the points (Simonoff, 1996). Each point
generates a Gaussian density in the Euclidian space with
the mean being the coordinates of this point and the given
variance σ 2, which is set to the same value for all points.
The normalized sum of these Gaussians is an estimate of
the density of points in a Euclidian space.

Consider several groups of orthologs, which is the
typical picture for a protein family. These sequences are
expected to fall into several clusters (groups) in Euclidian
space. Within each group, the density of sequences may
be approximated by a Gaussian. Relationship between
groups is not expected to follow any laws, except that the
groups are likely to be separated. Thus a non-parametric
estimate of the density of points should have several
maxima corresponding to the most populated regions.
These maxima can be viewed as the centers of groups and

objects around the centers should be assigned to the same
group. Our grouping procedure attributes each object to its
local maximum, which represents one of the groups.

Real cases are likely to deviate from the ideal scenario
described above. Samples of orthologs may not be rep-
resentative or evolutionary rates in some clades may de-
viate substantially from average. These effects will result
in splitting of orthologs into several groups. Alternatively,
some paralogs may be very close in their sequences and
will be grouped together. Thus caution is advised in inter-
preting the results. However, despite potential problems
with interpretation, our procedure will outline groups of
proteins that are closer to each other in terms of evolution-
ary distances than to other proteins.

The results of grouping depend dramatically on the
value of σ used to generate probability density estimates.
Indeed, if this value is large, the resulting density will
have a single maximum and all points will be grouped
together. Alternatively, if σ is very small, each point
will be in a separate group. Some of the intermediate σ

values should result in a biologically reasonable grouping.
In our experiments with artificially generated points or
sequences that fall into discrete groups, we found out that
expected grouping is stable over longer intervals of σ

values. Therefore we hypothesize that if some grouping
is preserved for longer σ intervals, it is more likely to
be biologically meaningful. Thus we probe a range of σ

values. We start from a large σ that leads to grouping of
all points together in a single group and perform grouping
at smaller σ values calculated in multiplicative increments
until the number of groups reaches the specified number.
Then the results are analyzed and the grouping that is
maintained for the longest interval of σ value is selected.
Additionally, we find individual groups that are preserved
for longer σ intervals. It is expected that these groups
correspond to better-defined and tight clusters.

Generally, we believe that the ultimate decision about
the preferred σ value of grouping should be left to
the users, since they are expected to know the details
about the objects that may go beyond the simple distance
measures used in our approach. The combination of
computation (objective function) with manual inspection
(expert knowledge) typically leads to better results and we
offer a versatile tool for it.

RESULTS AND DISCUSSION
Here we illustrate and discuss the performance of the
method and compare the results to those produced by
the two most popular biological applications: single
linkage clustering and UPGMA. Two types of tests
are performed. First, we test our grouping strategy on
artificially generated points in Euclidian space. Second,
we apply the method to several protein families, for
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Table 1. Grouping of points from Figure 1 by different methods

d = 0.9 d = 1.0 d = 1.1 d = 1.2
δ SG SLC UPG SG SLC UPG SG SLC UPG SG SLC UPG

0.05 100 0 1 100 4 25 100 95 49 100 100 64
0.10 98 0 5 100 2 17 100 35 41 100 83 58
0.15 69 1 4 94 5 23 100 20 35 100 60 54
0.20 68 2 13 85 2 19 96 10 31 100 36 49

The numbers of correct groupings in 100 tests are shown for different distances d between hexagons and random deviations −δ < xi < δ, −δ < yi < δ from
the points on Figure 1. Correct grouping corresponds to the segregation of points that belong to two hexagons of Figure 1. SG is our sigma grouping method,
SLC is single linkage clustering and UPG is UPGMA method.

which we estimate evolutionary distances from protein
sequences.

Grouping of artificially generated points
Cohesion and separation. The first example describes
the groups with high cohesion without clear separation
(Everitt et al., 2001, Figure 1a). The two groups of
19 points each fill two hexagonal areas. The distances
between neighboring points is equal to 1. The separation
between the groups is d. We show that our sigma grouping
method (SG) outperforms single-linkage clustering (SLC)
and UPGMA. Sigma grouping separates the clusters for
d � 0.75. Thus even if the distance between the groups
is slightly smaller than the distance between the points
within the groups, sigma grouping is able to separate
these cohesive groups. SLC and UPGMA require d >

1 and d > 1.1 respectively†. Additionally, grouping
solutions found by SLC and UPGMA depend strongly
upon small deviations in positions of points from the
regular lattice shown on Figure 1a. The SG method has
proven to be very robust in this case. We generated small
uniformly distributed random deviations (xi , yi ) where
i = 1, 2, . . . , 38 and −δ < xi < δ, −δ < yi < δ, and
added vectors (xi , yi ) to the points from Figure 1a. The
procedure was repeated 100 times for different δ and the
results are shown in Table 1. It is clear that SG outperforms
SLC and UPGMA in all cases.

The second example deals with well-separated groups
one of which has low cohesion (Everitt et al., 2001,
Figure 1b). Points in the first groups are arranged to
fill a circle. The second group has low cohesion and
the points are arranged in a crescent semi-enclosing the
first group. The groups are well separated and thus SLC
recovers the groups. The SG method also outlines the
two groups correctly, however, UPGMA clusters the small
group together with the part of the large group (Figure 1b).

Three groups, equal spread of points. To test our
grouping method on a more realistic example, we

† For SLC and UPGMA we selected a configuration that contains 2 groups.

-4 -2 0 2 4

-2

-1

0

1

2

d

(a)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

(b)

Fig. 1. Cohesion and separation. Configurations of points used to
illustrate two groups of high cohesion poor separation (a) and low
cohesion (crescent group) clear separation (b). Points in one group
are shown as filled circles, points in the other group are shown as
triangles. Dashed lines in (b) encircle the two groups as found by
the UPGMA method.

generated three groups of points g1, g2, and g3 using
two-dimensional Gaussian distributions. The means of the
three distributions form an equilateral triangle with sides
equal to 4.5 and have coordinates (0, 0), (4.5, 0), (2.25,
3.8971). Covariance matrix of each distribution is equal to
identity matrix. We randomly generate 30 points in each
group using these Gaussians (Figure 2) and applied three

1528



Euclidian space and grouping

Table 2. Grouping of 90 points generated by three gaussians

SG SLC UPG

Average 2.56 11.83 6.61
Standard deviation 1.9 7.39 6.67

The numbers indicate the number of incorrectly placed points by each
grouping method. SG is our sigma grouping method, SLC is single linkage
clustering and UPG is UPGMA method.

grouping methods (SG, UPGMA and SL) to the resulting
arrangement of points.

The SG method attributes 3 points incorrectly, i.e.
not to the group that contains the majority of points
generated by a given Gaussian (Figure 2a, black circles
grouped with triangles and crosses). Such an error is
easily understandable since these points fell closer to
other groups. UPGMA splits the group of triangles,
erroneously placing 14 of them in the group of black
circles (Figure 2b). This example shows that pairing of the
closest points in UPGMA method may lead to splitting of
a group. Since the three groups are not very well separated,
the results of SLC are much worse. The SLC configuration
of 3 groups links all but two points into one group.
We also found the SLC configuration that contains the
smallest number of erroneously placed points (Figure 2c).
Such configuration divides the set into 9 groups with 15
incorrectly placed points.

We generated random points by three Gaussians
100 times and repeated the grouping experiment on each
configuration. The statistics of the number of incorrectly
grouped points are shown in Table 2. For the SLC method
we took the configuration with minimal number of
incorrectly placed points. Theoretically, it is not possible
to get the mean number of incorrectly placed points less
than 2.0466 since some points will penetrate into some
other group, like the two black circles inside the triangles
in Figure 2. This example also illustrates our choice to
select the grouping as a non-trivial grouping that stays
the same over the largest interval of σ values. We get the
three groups (Figure 2a) for a large range of σ values:
0.55224 < σ < 1.40381 (the points were generated
with the variance equal to 1). The centers of the groups
identified by our program for σ = 1 are (0.251, 0.322),
(4.805, 0.02), (2.33, 3.82), which is close to the means of
gaussians used to generate the point.

Two tight groups and a spreadout group, robustness to
noise. Groups with a different spread of points are poten-
tially difficult for many clustering methods. To test the SG
method in this case we generated three groups of 30 points
each by three two-dimensional Gaussians with the means
(0, 0), (5, 0), (5, 2.2) and variances 1, 0.09, 0.09, respec-
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Fig. 2. Three groups, equal spread of points. One of the random con-
figurations for the three groups generated by the three independent
Gaussian distributions with the means (4.5, 0), (2.25, 3.8971) and
unity variances. 30 points were generated in each group. The points
in different groups are shown by different symbols: black circles,
triangles and crosses. The groupings produced by SG (a), UPGMA
(b) and SLC (c) are outlined by lines.
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Fig. 3. Two tight groups and a spreadout group, robustness to noise. One of the random configurations generated by the three independent
Gaussian distributions with the means (0, 0), (5, 0), (5, 2.2) and variances 1, 0.09, 0.09, respectively. 30 points were generated in each group.
The points in different groups are shown by different symbols: black circles, triangles and crosses. SG method identifies the groups correctly
(a). The groupings produced by UPGMA (b) and SLC (c) are outlined by lines. 30 random points shown as black squares are added to the
configuration of three groups (d).

tively. Correlation coefficients for all distributions were 0
(Figure 3a). SG identifies the grouping correctly as a most
stable configuration over large range of σ values. UP-
GMA cannot handle the differences in spread: the method
splits the spreadout group and unifies two tight groups
(Figure 3b). The SLC result with three groups makes a
group that contains a single point. The SLC configuration
that contains the least number of incorrectly placed points
is shown in Figure 3c (7 groups, 11 incorrect points).

Using the arrangement of points from Figure 3a we
test the robustness of SG to noise introduced by points
added randomly. We generated 30 points randomly and
uniformly distributed in the range {(−2, 3), (6, −2)} and
added them to the 90 points that were generated with three
Gaussians (Figure 3d). The most stable configuration
given by SG method splits the set into three groups and
attributes all the points generated by the Gaussians to the
correct grouping in 82 out of 100 repetitions of the ex-
periment on adding random points. UPGMA and SLC did
not give a single correct grouping in these 100 repetitions.

Euclidian space mapping and grouping of protein
families
We apply our method to sequence alignments of proteins
and illustrate its performance on two examples discussed
in the literature.

Sm proteins. Sm proteins participate in pre-mRNA
splicing by promoting small nuclear RNA cap modifi-
cation and targeting small nuclear ribonucleoproteins
to specific locations (Seraphin, 1995). Recent analysis
of Sm sequences revealed that they can be grouped
in at least seven subfamilies (Salgado-Garrido et al.,
1999; Wicker et al., 2001). We applied SG method to
the alignment from Wicker et al. (2001)‡ and compared
the results to those obtained by Wicker et al. (2001).
The Sm proteins were numbered consecutively and the
key to the numbers appears in the legend to Figure 4.
The most stable configuration (sets from 33 to 38 on
Figure 4, σ values from 0.859 to 0.773) contains 14
groups: {1–6} {7–11} {12–19} {20–25} {26–31} {32–43}
{44–53, 93} {54–59} {60–71} {72–77} {78–80} {81–91}
{92} {94}. The grouping suggested by Wicker et al.
(2001) using our sequence numbers is: {1–11} {12–19}
{20–31} {32–43} {44–59} {60–71} {72–80} {81–94}. The
group {1–11} of Wicker et al. is a sum of the first two
groups in our grouping. The group {1–11} is found by our
approach as well, but at a larger σ value (set 31, Figure 4).
Wicker et al. group {20–31} is the sum of our groups

‡ Alignment from Wicker et al. (2001) contains several proteins with
identical amino acid sequences. We removed these identical sequences prior
to application of the SG method reducing the number of sequences from 101
to 94.
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Fig. 4. Euclidian space mapping and grouping of protein families exemplified by Sm proteins. The multiple sequence alignment was taken
from Wicker et al. (2001). The sequences are numbered as follows: 1. ySmE; 2. riSmEa; 3. riSmEb; 4. arSmE; 5. huSmE; 6. caSmE; 7.
huLsm5; 8. q9vrt7; 9. yLsm5; 10. o42978; 11. globu2; 12. huSmN; 13. oSmB; 14. chSmB; 15. dSmB; 16. caSmB; 17. arSmB; 18. ySmB;
19. sSmB; 20. riLsm1; 21. huLsm1; 22. yLsm1; 23. q20229; 24. yb18-schpo; 25. aaf46688; 26. aad56232; 27. aaf47567; 28. riSmx9; 29.
aaf23841; 30. o74483; 31. ySmx13; 32. riSmGa; 33. riSmGb; 34. arSmG; 35. alSmG; 36. huSmG; 37. caSmG; 38. ySmG; 39. sSmG; 40.
bLsm7; 41. riLsm7; 42. huLsm7; 43. yLsm7; 44. sulfo; 45. globu1; 46. pyroc1; 47. p-abys; 48. metha1; 49. aero-pern1; 50. riLsm3; 51.
huLsm3; 52. q9y7m4; 53. yLsm3; 54. huSmD2; 55. caSmD2; 56. arSmD2; 57. sSmD2; 58. ySmD2; 59. pfalSmD; 60. huSmF; 61. dSmF;
62. riSmF; 63. bSmF; 64. caSmF; 65. ySmF; 66. arSmF; 67. sSmF; 68. nLsm6; 69. huLsm6; 70. yLsm6; 71. cab54975; 72. ySmD1; 73.
sSmD1; 74. huSmD1; 75. riSmD1a; 76. arSmD1; 77. caSmD1; 78. yLsm2; 79. mLsm2; 80. amphSm; 81. yLsm4; 82. caLsm4; 83. huLsm4;
84. arLsm4; 85. ySmD3; 86. sSmD3; 87. arSmD3; 88. riSmD3; 89. huSmD3; 90. dSmD3; 91. caSmD3; 92. yLsm9; 93. aero-pern2; 94. m-
therm2. The three dimensional projection of the multidimensional Euclidian space is shown on top. Proteins are shown as circles. Groupings
at different steps defined by different σ -values are shown at the bottom. The grouping on the projections corresponds to the most stable
configuration: sets 33–38. Colors of groups are the same in the projection and in the table.

{20–25} and {26–31}, which appeared after the group
{20–31} split at σ = 0.995 (set 27, Figure 4). The group
{20–31} splits at a larger σ value than the group {1–11}
(0.995 versus 0.890). Thus the two parts {20–25} and
{26–31} of the group {20–31} are further from each other
in Euclidian space than the two parts {1–6} and {7–11} of
the group {1–11}. Wicker et al. group {44–59} is the sum
of our groups {54–59} and {44–53,93} after removing the
protein 93. The protein 93 splits from our group on the
step 39 (Figure 4). From the projection of the Euclidian
space into three dimensions (Figure 4) it is clear that the

group of yellow points contains one point that is further
from the rest. This point stands for the protein 93. Wicker
et al. group {72–80} is the sum of our groups {72–77}
and {78–80}. Wicker et al. group {81–94} is the sum of
our groups {81–91}, {92}, {94} and a protein 93. Our
method stresses the isolation of proteins 92 and 94, 92
in particular, which forms a separate group starting from
the set 7 (Figure 4). The remaining three Wicker et al.
groups are exactly the same as in our most stable con-
figuration. Thus there is a good correspondence between
the grouping obtained by Wicker et al. and SG results. A
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general trend is that Wicker et al. groups are larger than
SG groups and combine several groups from the most
stable configuration found by our method.

γ GCS/GS proteins. γ -Glultamylcysteine synthetase
(γ GCS) and glutamine synthase (GS) have recently
been shown to be homologous. These enzymes per-
form ATP-dependent ligation of amine/ammonia to
γ -carboxyl of glutamate. SG method has been applied
to the alignment of 39 diverse sequences of this fam-
ily taken from Abbott et al. (2001, see supplementary
data or ftp://iole.swmed.edu/pub/EESG/GCS.pdf for
the results). The most stable configuration persists
over a wide range of σ -values (0.671 � σ � 0.968,
steps 34–56) and contains 8 groups: {1–5} {6–12}
{13} {14–18} {19–28} {29–32} {33–36} {37–39} (see
ftp://iole.swmed.edu/pub/EESG/GCS.pdf). Multiple lines
of evidence support this grouping as biologically rea-
sonable with the exception that the protein 13 should be
placed in the same group with the proteins {6–12} (Abbott
et al., 2001). Such a configuration is found by SG method
but not as the most stable one (steps 28–33). Protein 13 is
the most distant protein in this group, which is reflected in
a three-dimensional projection of the Euclidian space (yel-
low protein in ftp://iole.swmed.edu/pub/EESG/GCS.pdf).
The projection also reveals a correlation between the life
span of the group and closeness of the points in space.
For instance, the group of proteins {19–28} represents
a visually tight cluster and is the most long-lived group
(63 steps out of 65). Abbott et al. (2001) predicted the
structure of γ GCS by homology with GS. The link be-
tween the two families of proteins was found by sequence
analysis using PSI-BLAST (Altschul et al., 1997; Aravind
and Koonin, 1999). The three dimensional projection of
the Euclidian space rationalizes the link between the two
families. γ GCS family protein sequences (pink, red, rosy
and yellow, proteins 1–18) were used to find GS family
proteins (green, olive, cyan, proteins 29–36) (Abbott et al.,
2001). The first GS protein that was found in the searches
was the protein 32, which is indeed the closest one to
the γ GCS family sequences (proteins 1–18) in the 3D
projection (ftp://iole.swmed.edu/pub/EESG/GCS.pdf).

CONCLUSIONS
We developed a novel approach to visualization of rela-
tionships between biological objects and to their cluster-
ing that is based on the Euclidian space mapping. We have
shown that our model-based grouping approach outper-
forms UPGMA and single linkage clustering, algorithms
commonly used in biology, for the cases when the groups
possess unusual cohesion and separation or display differ-
ent spreads of points. Our method is robust to noise caused
by adding random points or by random deviations in posi-
tions of points. The projections of the Euclidian space onto

2 or 3 dimensions can be used to visualize relationships
between sequences and to rationalize transitive sequence
search strategies for remote homolog detection.
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