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A natural way to study protein sequence, structure, and function is to put
them in the context of evolution. Homologs inherit similarities from their
common ancestor, while analogs converge to similar structures due to a
limited number of energetically favorable ways to pack secondary structural
elements. Using novel strategies, we previously assembled two reliable
databases of homologs and analogs. In this study, we compare these two
data sets and develop a support vector machine (SVM)-based classifier to
discriminate between homologs and analogs. The classifier uses a number
of well-known similarity scores. We observe that although both structure
scores and sequence scores contribute to SVMperformance, profile sequence
scores computed based on structural alignments are the best discriminators
between remote homologs and structural analogs. We apply our classifier to
a representative set from the expert-constructed database, Structural
Classification of Proteins (SCOP). The SVM classifier recovers 76% of the
remote homologs defined as domains in the same SCOP superfamily but
from different families. More importantly, we also detect and discuss
interesting homologous relationships between SCOP domains from differ-
ent superfamilies, folds, and even classes.
© 2008 Elsevier Ltd. All rights reserved.
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Introduction

Three-dimensional structural similarities among
proteins are explained by either divergence or con-
vergence. In divergent evolution, homologs inherit
similar structures from their common ancestor.
In convergent evolution, proteins from distinct
evolutionary lineages arrive independently at simi-
lar structures due to a limited number of energe-
tically favorable ways to pack secondary structural
ess:
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elements (SSEs),1–3 and such proteins are called
analogs. Judging if two structurally similar proteins
are homologous or analogous remains a difficult
task. Statistically significant sequence similarity, as
detected by sequence search tools such as PSI-
BLAST,4 is generally accepted as adequate evidence
for homology.5,6 In the absence of significant se-
quence similarity, remote homology inference can be
based on overall structural similarity, augmented by
other properties such as similar arrangements of
functional residues, common ligand-binding modes,
shared unusual structural features, and similar
domain organizations.7,8 However, capturing these
features often requires visual inspection by human
experts and is more in the realm of art than science.
The Structural Classification of Proteins (SCOP)

database9 represents a comprehensive collection of
manually curated homologous superfamilies of
protein domains with known structures. In the
SCOP hierarchy, domains with significant sequence
similarity or overwhelming structural and func-
tional similarity (close homologs) are grouped into
d.
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the same family; families with convincing struc-
tural and/or functional evidence for common ances-
try are grouped into the same superfamily; super-
families with the same overall three-dimensional
structure and topology but without very strong
evidence for homology are grouped into the same
fold; and folds are grouped into classes based on
their SSE compositions. SCOP is manually main-
tained by human experts, and its superfamily level
is regarded as the most reliable standard for remote
homologs.10

Several efforts have been made to discern the
boundary between homology and analogy in an
automated and quantitative way. Russell et al.11

statistically analyzed structurally aligned homolo-
gous and analogous pairs and found that homologs
generally retain higher sequence identity, more
conserved SSEs, and solvent accessibility compared
to analogs. Matsuo and Bryant12 defined a homo-
logous core structure representing the consensus
substructure in a protein family, and used the
overlap of homologous core structure to distinguish
homologs and analogs. Dietmann and Holm13

trained a neural network to discriminate homologs
and analogs based on sequence, structure, and
functional similarities. All three studies used do-
mains in the same SCOP superfamily as homologs
and domains in different SCOP superfamilies as
analogs in their analysis. Given the conservative
nature of the SCOP hierarchy, a potential flaw of this
approach is the contamination of the analog data set
by homologs. Domains in different superfamilies are
not necessarily analogs and may in fact be homo-
logous when new evidence emerges.9 For instance,
through careful analysis, Ponting and Russell14 sug-
gested that at least five SCOP superfamilies under
the β-trefoil fold were actually homologous and had
descended from a common ancestor.
To avoid the aforementioned ambiguity, we

approach the problem of discriminating between
homologs and analogs with more clear-cut and
reliable data sets. Previously, we manually con-
structed a homolog database (MALIDUP15) com-
posed of duplicated domain pairs and an analog
database (MALISAM16) composed of three cate-
gories of analogous pairs (a hybrid motif and a core
motif, an interface motif and a core motif, and an
artificial protein and a natural protein). Each pair in
MALIDUP or MALISAM is carefully inspected to
convincingly support homology or analogy and
then manually superimposed and aligned to ensure
good alignment quality. In this study, we use pairs
from these two databases as reliable homologs and
analogs to understand the differences as well as
to develop a discriminator between homology and
structural analogy.
We first characterize and compare the MALIDUP

and MALISAM pairs in terms of structure, se-
quence, and profile scores. Combining these scores,
we train support vector machines (SVMs) to
discriminate between the homologs in MALIDUP
and the analogs in MALISAM. Since MALIDUP and
MALISAM are quite small in size and may not be
representative of the total protein variety found in
nature, we test the resulting SVM-based classifier on
the comprehensive SCOP database. We show that
although the classifier is trained on the manually
constructed data sets with particular statistical pro-
perties, it can recover the majority of distant homo-
logs classified in the same SCOP superfamily but
different families. Moreover, the classifier is capable
of finding more distantly related pairs between
SCOP superfamilies, folds, and classes. We discuss
some of these interesting pairs and argue that many
of them indeed represent remote homologs.
Results and Discussion

Comparison of homologs and analogs in the
manually constructed data sets

To better understand the differences between
homology and analogy, we compare the homolo-
gous pairs in MALIDUP and the analogous pairs in
MALISAM in terms of aligned length, sequence
identity, and RMSD of structure superposition
(Fig. 1). Apparently, MALIDUP includes more
pairs with longer alignments, higher sequence
identity, or lower RMSD. To focus on the differences
between remote homologs and structural analogs as
well as to obtain balanced data sets for develo-
ping the classifier, we partitioned MALIDUP and
MALISAM into three nonoverlapping data sets:
“close,” “comparable,” and “remaining” (summar-
ized in Table 1). The “close” data set consists of
similar MALIDUP pairs and is used as a positive
control to monitor the classifier's performance on
relatively close homologs. Pairs that do not belong
to “close” form a data set called “remote” and have
average sequence identity in the “twilight zone”
(0–20%). The “remote” data set is further partitioned
into “comparable” and “remaining.” The “compar-
able” data set, in which homologous and analogous
pairs possess comparable aligned length and se-
quence identity, serves as the most challenging set in
developing the classifier (see Methods for details in
partitioning the data sets).
To characterize a homologous or analogous pair,

we compute 13 scores based on the manual struc-
tural alignment. These scores represent four major
score types that are developed in computational
studies of proteins: pairwise sequence scores (com-
paring two single sequences), profile sequence
scores (comparing two multiple sequence align-
ments), intramolecule structure scores (comparing
corresponding Cα–Cα distances within the two
domains), and intermolecule structure scores (mea-
suring interdomain distances between correspond-
ing Cα atoms in the structural superposition). In
addition to these structural-alignment-based scores,
each pair is aligned and scored regardless of the
structures by the sequence profile comparison
program, HHsearch.17 Inclusion of this HHsearch
score is intended to detect sequence motifs that



Fig. 1. Aligned length, sequence
identity, and RMSD distributions of
the manually prepared homologs
and analogs. (a) Aligned length in
number of residues. (b) Sequence
identity in percent. (c) RMSD in ang-
stroms. In all three histograms, filled
bars represent homologous pairs
and open bars represent analogous
pairs. The horizontal axis shows the
range of each bin and the vertical
axis shows the number of pairs that
fall into each bin.
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frequently reside in loop regions. In remote homo-
logs, such loop regions often assume variable
conformations and tend to be ignored or misaligned
in structural alignments. See Methods and Appen-
dix A for details in score calculations.
Using the manually constructed data sets (Table 1),

we study different scores' ability to discriminate bet-
ween remote homologs and structural analogs. For
an individual score, one can measure this ability by
its “separation parameter” as well as its performance
as a single-score classifier. Separation parameter
measures the distance between the centers of the
score distributions of homologs and analogs. A
single-score classifier predicts a pair as homologous
if the pair's score is above a predefined threshold, or
as nonhomologous if its score is below that threshold
(see Table 3 legend for details). As shown in Table 3,
profile sequence scores (compass-like, correl, and
HHsearch) have better separations than pairwise se-
quence scores or structure scores and are more effec-
tive as single-score classifiers. The compass-like score,
Table 1. Summary of the manually constructed data sets

Data set

No. of pairs
Aligned length
(amino acids)

Homologs Analogs Homologs An

Close 111 0 91/101 N
Remote 130 130 67/72 57

Comparable 65 65 58/62 58
Remaining 65 65 77/83 56

Numbers before the slashes are based on manual alignments, while n
which is a profile score calculated on structure-based
alignments, displays the largest separation parameter
and the highest accuracy on the difficult set “com-
parable” when used as a single-score classifier.

Comparison of the manually constructed data
sets with the SCOP-based data sets

We assemble four large data sets using domains
from SCOP9 as a comprehensive representation of
the protein world. Table 2 summarizes these four
SCOP-based data sets. As the two domains in a pair
differ in higher levels of the SCOP hierarchy, they
share lower sequence and structure similarity: in
Table 2, the average aligned length and sequence
identity decrease, while the average RMSD increases
from SF to RT. Many class-level (CL) or root-level
(RT) pairs do not share overall structural similarity,
and their alignments are limited to a couple of SSEs
and reflect some local similarities that have arisen
by chance.
Average identity (%) Average RMSD (Å)

alogs Homologs Analogs Homologs Analogs

/A 24.9/23.6 N/A 2.2/2.2 N/A
/57 12.1/11.5 8.5/8.1 2.7/2.7 2.9/2.8
/59 10.1/9.8 10.1/9.5 2.6/2.7 2.9/2.8
/56 14.1/13.2 7.0/6.8 2.8/2.8 3.0/2.8

umbers after the slashes are based on DALI alignments.



Table 2. Summary of the SCOP-based data sets

Data set
Differed SCOP

level
Shared SCOP

level No. of pairs Labeled as
Average aligned

length (amino acids)
Average

identity (%)
Average
RMSD (Å)

SF Family Superfamily 6920/6323 Homologs 113/118 11.8/12.0 3.3/3.2
FD Superfamily Fold 15,416/12,380 Nonhomologs 96/107 9.0/9.2 3.5/3.5
CL Fold Class 80,599/8346 Nonhomologs 51/77 7.6/8.7 5.0/4.1
RT Class Root 202,294/2353 Nonhomologs 45/60 7.2/8.1 5.4/4.6

SF pairs are from different families but the same superfamily. FD pairs are from different superfamilies but the same fold. CL pairs are
from different folds but the same class. RT pairs are from different classes but the same root. Scores are calculated based on DALI18

alignments. Numbers before the slashes are based on the whole data sets, while numbers after the slashes are based on the filtered data
sets that only include pairs with DALI z-scores more than 2.
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To compare the manually constructed and the
SCOP-based data sets, we also align the pairs in the
manually constructed data sets automatically with
the DALI18 program and calculate aligned length,
sequence identity, and RMSD based on the DALI
alignments (shown as numbers after the slashes in
Table 1). Comparing Tables 1 and 2, we observe that
MALIDUP remote homologs (homologs in “remote”)
are much shorter but structurally more similar than
SCOP remote homologs (SF pairs). Also, the manu-
ally prepared analogs (analogs in “remote”) are close
to the SCOP CL pairs in terms of average aligned
length, but are much more structurally similar than
the CL pairs. In general, this comparison reflects
the way the manual data sets are constructed: homo-
logs come from duplicates, which are often structural
repeats, and analogs come from similar structural
motifs.
The accuracies of each single-score classifier on the

four SCOP-based data sets are also shown in Table 3.
As mentioned above, the compass-like score dis-
plays the highest accuracy on the manually con-
structed data set “comparable.” However, TM score
outperforms compass-like score on the SCOP-based
data sets with higher accuracies on both SF and RT,
Table 3. Each individual score's separation parameter and p

Score Type Separationa
Optimal
thresholdb Remaining

Dali Intra 0.42 0.75 67.69
Daliz Intra 0.36 0.52 70.77
GDT_TS Inter 0.28 0.66 66.92
TM score Inter 0.42 0.56 74.62
RMSD Inter 0.38 0.77 70.00
AHM Inter 0.39 0.64 73.85
LBa Intra 0.29 0.36 61.54
LBb Intra 0.24 0.48 58.46
LHM Inter 0.11 0.52 63.08
Id Pair 0.41 0.06 80.00
Blosum Pair 0.53 0.07 79.23
Compass-like Profile 0.86 0.18 86.15
Correl Profile 0.70 0.19 83.08
HHsearch Profile 0.75 0.02 86.15
SVM scorec 0.93 0.40 94.62

a Separation of a score is calculated by the following equation: sep
and standard deviation for homologs and analogs in the “remote” da

b The optimal threshold for a single-score classifier is found by scan
the accuracy on “remaining” is the highest.

c This is the SVM prediction score given by the final classifier.
indicating its good ability to discriminate between
overall and sporadic structural similarities. Appar-
ently, different scores offer varied advantages.
Hence, combining these scores to obtain a better
classifier on all data sets seems sensible. Meanwhile,
accuracies in Table 3 serve as a baseline for evalua-
ting the performance of the SVM classifiers obtained
by combining different scores.

Development of the classifier

In developing the classifier, we first use the
simplest linear SVM, then try the more complex
and powerful nonlinear SVM, and last add a filter to
boost the performance on the SCOP-based data sets.
Based on the final classifier, a probability model is
built to estimate the probability of being homologous
for a pair with a certain SVM prediction score.

Performance of a classifier

The performance of a classifier is monitored by its
accuracies on the manually constructed (Table 1) as
well as the SCOP-based (Table 2) data sets. How-
ever, the accuracies on the four SCOP-based data
erformance as a one-score classifier

Accuracy (%)

Comparable Close SF FD CL RT

70.00 73.87 24.60 93.18 90.04 92.15
63.08 71.17 20.87 95.57 97.35 98.55
63.08 67.57 12.95 96.35 98.99 99.36
63.08 83.78 69.96 54.92 96.67 99.59
60.00 86.49 59.02 77.08 96.31 98.32
63.85 77.48 74.44 46.05 80.45 85.74
56.92 96.40 84.03 37.95 47.02 60.04
60.00 92.79 87.04 29.22 48.05 64.52
52.31 74.77 21.07 94.03 99.91 99.98
51.54 88.29 46.40 81.42 86.13 87.44
56.92 95.50 76.21 52.76 72.37 77.09
76.92 93.69 45.06 82.40 95.72 97.87
70.77 91.89 57.69 75.96 92.26 95.33
66.15 90.09 70.17 58.21 87.10 95.08
76.15 90.99 75.04 56.59 80.63 84.01

aration=(μh−μa)/(σh+σa), where μh, σh, μa, and σa are the mean
ta set, respectively.
ning a wide range of thresholds and identifying the one at which
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sets are not equally informative when it comes to
comparing the performance of various classifiers.
Particularly, we usually ignore the accuracies on the
fold-level (FD) and CL sets because, although these
pairs are labeled as “nonhomologs,” many of them
may actually be homologous. Also, since a classifier
can almost always increase its accuracy on a set
composed entirely of homologs (SF) by sacrificing
its accuracy on a set composed entirely of nonhomo-
logs (RT), we need to consider the accuracies on
these two sets together in order to obtain balanced
classifiers.

Linear SVM models

We compute 13 structural alignment-based scores
as well as the HHsearch score to characterize each
domain pair. However, these scores almost certainly
carry redundant information. Hence, all of them
may not be needed to build a good classifier. In
order to find the most effective score subset, we try
all the possible combinations with two or more
scores. For each score combination, we train linear
SVM using the procedure described in Methods.
From the resulting thousands of SVM models, we
select the ones with the highest performance (Model
L1 to L4 in Table 4). Interestingly, these selected
models are all built of only five to seven scores. This
result confirms our speculation that these scores are
redundant to some extent and, more important,
suggests that redundant scores lead to overtraining
and inferior models.
To better understand and interpret these models,

we deduce the explicit linear decision function for
each model and transform the function into an
equivalent function for the standard z-scores as des-
cribed in Methods. In the transformed function for
z-scores, the components of the weight vector indi-
cate the relative importance of the individual scores:
a score with a large weight is more influential in the
decision function than a score with a small weight.
Comparing the transformed decision functions in
Table 4, we observe that the four high-performance
linear models (L1 to L4) are very similar in terms
of the scores used and their weights. In these models,
the TM score measuring intermolecular structural
similarity and the structure-alignment-based Pear-
son's correlation coefficient between sequence pro-
files (correl) are the most influential as they have the
largest weights.

Nonlinear SVM models

Although linear SVM offers the convenience of
deducing the explicit decision function, it only has
limited capacity as a discriminator. To improve our
classifier, we move to the more complex nonlinear
SVM using the radial basis function kernel. For each
of the combinations with two or more scores, we
train SVM using the procedure described in Meth-
ods. From the resulting models, we select the ones
with the highest performance (R1 to R3 in Table 4).
Although a nonlinear model does not allow infer-
ence of the explicit decision function, we can calcu-
late the Pearson's correlation coefficient between the
SVM prediction score and each individual score
used in that model in order to gain a better under-
standing of the model. As shown in Table 4, the
three selected high-performance models (R1 to R3)
are quite similar in terms of the scores used, the
correlation coefficients, and the performances.
If we only consider the accuracies on the manually

constructed data sets, nonlinear models perform
much better than the linear ones, e.g., 1986 nonlinear
models have accuracies on “remaining,” “compar-
able,” and “close” above 80%, 80%, and 95%,
respectively, while only 172 linear models meet the
same criteria. However, when we consider the accu-
racies on both the manual and the SCOP-based data
sets, the selected nonlinear models (R1 to R3) display
very similar performance as the linear models (L1 to
L4). It seems that some models, especially nonlinear
ones, perform well on the manual data sets but
poorly on the SCOP-based data sets. We speculate
that this effect is due to the different statistical
properties of the manual and the SCOP-based data
sets. Particularly, the RT data set has shorter aligned
length and much larger RMSD than both homologs
and analogs in the manually constructed data sets
(Tables 1 and 2). Although most RT pairs only share
limited or sporadic structural similarities involving a
couple of SSEs, the aligned parts in these pairs may
have similar hydrophilicity/hydrophobicity pat-
terns resulting in high sequence profile scores.
Since the SVM models are trained on pairs with
global structural similarity, they may not be applic-
able to alignments involving only local similarity. To
approach the problem of discriminating between
globally similar and dissimilar proteins, we impose a
filter to remove pairs lacking overall structural
similarity. Because we choose the DALI program to
align the pairs in the SCOP-based data sets, we
simply follow the observations made by the DALI
authors19 and use a DALI z-score cutoff (N2) as the
filter for global structural similarity.

Classifiers with the filter

We add the “DALI z-score above 2” filter before
each SVM model and recalculate the accuracies as
described in Methods. Based on the recalculated
accuracies, we reselect the best linear classifiers (LF1
to LF5 in Table 4) and the best nonlinear classifiers
(RF1 to RF3 in Table 4). LF1 to LF4 are actually the
same models as L1 to L4. Comparing their perfor-
mances on the SCOP-based data sets with and with-
out filtering, we see that filtering decreases the
accuracy of remote homology inference (accuracy on
SF), but increases the accuracies on all other sets (FD,
CL, and RT), making the models more conservative
and probably more realistic. The best nonlinear
classifiers with (RF1 to RF3) and without (R1 to R3)
filtering are very different: RF1 to RF3 do not use TM
score or sequence identity, and are obtained with
larger C values (a larger C means a heavier penalty
on training errors20). While the filter does not affect



Table 4. Best classifiers

Model
name

Selection
criteriaa C/gamma

Scoresb and weights Accuracy (%)c

Dali Daliz GDT_TS
TM
score RMSD AHM LBa LBb LHM Id Blosum

Compass-
like Correl HHsearch Threshold b

Remainingd Comparabled

Close SF FD CL RTH A T H A T

L1 a 1/ 0.02 0.31 0.13 0.09 0.13 0.32 −0.35 80.0 86.2 83.1 66.2 86.2 76.2 95.5 68.1 70.8 97.1 99.5
L2 a 1/ 0.31 0.04 0.12 0.09 0.13 0.32 −0.35 78.5 84.6 81.5 66.2 86.2 76.2 95.5 68.3 70.8 97.2 99.5
L3 a 1/ 0.33 0.13 0.09 0.13 0.32 −0.36 80.0 86.2 83.1 66.2 87.7 76.9 95.5 68.7 69.6 97.1 99.5
L4 a 1/ 0.01 0.30 0.04 0.12 0.09 0.13 0.32 −0.34 78.5 84.6 81.5 66.2 86.2 76.2 95.5 67.9 71.3 97.2 99.5
R1 a 1/.5 0.63 0.75 0.62 0.64 0.77 0.86 78.5 87.7 83.1 64.6 87.7 76.2 95.5 67.3 72.2 97.4 99.6
R2 a 1/.5 0.76 0.71 0.63 0.64 0.77 0.85 78.5 86.2 82.3 66.2 87.7 76.9 95.5 68.0 71.2 97.3 99.5
R3 a 1/.5 0.75 0.63 0.64 0.77 0.86 80.0 86.2 83.1 66.2 87.7 76.9 95.5 68.4 70.2 97.2 99.5
LF1 a 1/ 0.02 0.31 0.13 0.09 0.13 0.32 −0.35 80.0 86.2 83.1 66.2 86.2 76.2 95.5 67.3 71.5 98.1 99.9
LF2 a 1/ 0.31 0.04 0.12 0.09 0.13 0.32 −0.35 78.5 84.6 81.5 66.2 86.2 76.2 95.5 67.6 71.4 98.1 99.9
LF3 a 1/ 0.33 0.13 0.09 0.13 0.32 −0.36 80.0 86.2 83.1 66.2 87.7 76.9 95.5 68.0 70.1 98.1 99.9
LF4 a 1/ 0.01 0.30 0.04 0.12 0.09 0.13 0.32 −0.34 78.5 84.6 81.5 66.2 86.2 76.2 95.5 67.2 71.9 98.2 99.9
LF5 a 0.25/ 0.08 0.18 0.15 0.16 0.42 −0.38 87.7 76.9 82.3 81.5 70.8 76.2 97.3 68.4 71.3 97.6 99.9
RF1 b 1000/1 0.26 0.42 0.53 0.25 0.18 0.84 92.3 87.7 90.0 81.5 81.5 81.5 96.4 77.0 49.8 94.6 99.6
RF2 b 100/2 0.35 0.51 0.64 0.09 0.66 0.81 93.9 90.8 92.3 75.4 84.6 80.0 95.5 75.2 50.5 95.7 99.8
RF3 b 100/1 0.35 0.56 0.15 0.66 0.81 0.81 95.4 92.3 93.9 74.9 84.6 79.2 95.5 76.3 52.4 95.6 99.8

A linear classifier's name begins with an “L,”while a nonlinear classifier's name begins with an “R.” If a classifier uses the filter, the second letter in its name is “F.” For a linear model, the weights and
threshold b in the transformed function for z-scores are shown. For a nonlinear model, the Pearson's correlation coefficients between the SVM prediction score and each individual score used in that
model are shown (correlation coefficients are calculated on the data set “remote”).

a Selection criteria: a, percent accuracies on “remaining,” “comparable,” “close,” SF, and RTabove 80, 76, 95, 67, and 99.5, respectively; b, percent accuracy on “remaining,” “comparable,” “close,” SF,
and RT above 80, 79, 95, 75, and 99.5, respectively.

b See Methods and Appendix A for the equations, abbreviations, and references of these scores.
c Accuracy is defined as the percentage of the data set that is correctly classified. A pair is considered to be correctly classified if the classification agrees with its label.
d In the “Remaining” or “Comparable” column, “H,” “A,” and “T” stand for “homologs,” “analogs,” and “total,” respectively.
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much the performance of the best linear models, it
does improve the performance of the best nonlinear
models on the SCOP-based data sets. We consider
the nonlinear models with filtering to be our best
classifiers, for they achieve the highest overall
accuracy on the difficult set “comparable” as well
as on the SCOP-based data sets SF and RT.

Final classifier

Out of the three nonlinear classifiers with filtering
(RF1 to RF3 in Table 4), we chose RF3 as the final
classifier, because it appears more conservative with
the highest accuracy on the analogs in “remaining”
and “comparable” and it has reasonable accuracies
on SCOP-based data sets. Shown in Table 4, the
Pearson's correlation coefficients between the SVM
prediction score and each individual score used in
this final classifier suggest that profile sequence
scores (correl and HHsearch) contribute the most to
discriminating homologs and analogs. The separa-
tion parameter of the SVM score between the homo-
logs and analogs in “remote” is 0.93, larger than any
individual score (Table 3).
We studied some of the pairs in the manually

constructed data sets that are misclassified by the
final classifier. The analogous pair that is misclassi-
fied as homologous with the highest prediction
score (7.3) is composed of a de novo designed enzyme
[Protein Data Bank (PDB) code 1lq721] and a natural
protein (domain 1 of the bacterial polypeptide
release factor RF2, PDB code 1gqe22). These two
proteins are both three-helical bundles and can be
aligned on 61 residues with an RMSD of 1.5 Å. In
addition to considerable structural similarity, they
show similar hydrophobicity/hydrophilicity pat-
terns so that their sequence scores are quite high.
For instance, HHsearch probability for this pair is
0.61, although the de novo protein's multiple
sequence alignment contains only its own sequence.
The homologous pair that is misclassified as

analogous with one of the lowest predictions scores
(−4.3) is composed of the two barrels in the chymo-
trypsin-like protease, elastase (PDB code 1haz23).
Despite the fact that these two barrels share the same
overall structure and most likely result from a dupli-
cation event,24 they can only be aligned over 58
residues with an RMSD of 3.0 Å. Moreover, their
sequence scores are very low (HHsearch probability
is 0.015). Indeed, this pair is so diverged that their
alignment could have a register problem.25,26 Thus,
the final SVM model appears to make reasonable
mistakes, and correct classification of such pairs
based only on the current score set may be very
difficult, if not impossible. Perhaps more scores
carrying additional information (e.g., functional
information) are needed to discriminate such distant
homologs and similar analogs.

Probability model

To quantify the reliability of the SVM scores, we
develop an empirical statistical model. As described
in Methods, we estimate the probability of being
homologous (p) for a pair with an SVM prediction
score x as:

p ¼ 1
2
þ arctan xþ0:929

0:696

� �
p

According to this model, at prediction score 3.5, the
probability of being homologous is about 0.95. A
higher prediction score corresponds to a larger
likelihood for a pair to be homologous.

High-scoring pairs between SCOP classes,
folds, or superfamilies

Pairs from different SCOP classes, folds, or super-
families that are classified as homologs are sorted by
their probability of being homologous, and we
manually examined some pairs with high probabil-
ities from the top of the lists. For many of them,
evidence supporting homology has been published;
and some of them are even classified within the
same superfamily in the latest version of SCOP.
Below, we discuss several typical examples of the
top-scoring pairs and the performance of the final
classifier.
High-scoring pairs between classes

The highest-scoring pair between SCOP classes is
composed of the transcription factor Myc27 and the
cell-division regulator ZapA28 (Fig. 2a). SCOP class-
ifies Myc in the all α-class and ZapA in the α+β
class, respectively. Although this pair has a high
prediction score (7.88, probability 0.97) as well as a
reasonably high HHsearch score (probably 0.48), we
suspect that this link is fortuitous because the
aligned part is basically a single, although very
long, helix (red in Fig. 2a). Coiled coils are known to
create problems for various sequence analysis tech-
niques and, being quite low in amino acid com-
plexity and very similar in structure, represent a
case of unclear evolutionary origin.
Another highest-scoring pair (SVM score 4.30, prob-

ability 0.96) between classes consists of the orni-
thine decarboxylase C-terminal domain (OrnDC-C)
and the molybdenum cofactor biosynthesis protein
MoeA domain I (MoeA-I), which are classified in the
α+β and the all-β SCOP classes, respectively.
OrnDC-C contributes in channeling the cofactor
pyridoxal-5′-phosphate,30 while MoeA-I plays an
important role inMoeA dimerization.31 As shown in
Fig. 2b, these two domains share four β-strands and
two α-helices connected as βαββαβ. (The first helix
in OrnDC-C is much deteriorated.) This topology
and its circular permutations are characteristic of the
recently defined RAGNYA fold.32 However, unlike
the RAGNYA domains, there is a deep cleft bet-
ween the second (cyan) and the fourth (red) β-
strands that is covered by an additional β-strand
(gray) in OrnDC-C but is open in MoeA-I. Though
the RAGNYA article32 mentioned neither OrnDC-C
nor MoeA-I, we suggest including these two



Fig. 2. High-scoring pairs between SCOP classes, folds, or superfamilies. In (a–d), based on DALI alignments, aligned
residues are shown in bright colors, while unaligned residues are shown in dark, grayish colors. Structurally equivalent
regions are shown in the same color. The SVM prediction score, probability value, and the individual scores used in the
final classifier are shown to the left of each pair. In (e), major SSEs are in bright colors, while other parts of the structures
are in gray, and corresponding SSEs are in the same color. In the linkage diagram on the left, the probability values
between two superfamilies are shown, and the superfamilies that are considered to be “possibly related” by SCOP are
linked by red dotted lines. In all panels, each domain is colored in a spectrum from blue (N-terminus) to red (C-terminus).
Discontinuous regions are represented as dotted curves. Diagrams are generated byMOLSCRIPT29. (a) Top: transcription
factor Myc (PDB code 1nkp, chain A, residues 907–984). Bottom: bacterial cell division protein ZapA (PDB code 1t3u,
chain A, residues 6–97). (b) Left: ornithine decarboxylase C-terminal domain (PDB code 1c4k, chain A, residues 616–730).
Right: MoeA domain I (PDB code 1g8l, chain A, residues 23–53 and 139–177). (c) Left: archaeal histone (PDB code 1f1e,
chain A, residues 4–154). Right: hypothetical protein Aq_328 (PDB code 1r4v, chain A, residues 21–171). (d) Left:
collagenase collagen-binding domain (PDB code 1nqj, chain A, residues 909–1008). Right: carbohydrate-binding module
CBM6-3 (PDB code 1od3, chain A, residues 19–149). (e) From left: threonyl-tRNA synthetase, N1 domain (PDB code 1nyr,
chain A, residues 4–62); CO dehydrogenase N-terminal domain (PDB code 1n62, chain A, residues 4–77); molybdopterin
synthase subunit MoaD (PDB code 1fm0, chain D, residues 1–76); ubiquitin (PDB code 1ogw, chain A, residues 1–70); PB1
domain (PDB code 1oey, chain A, residues 352–427). In each panel, DALI alignment of the diagramed structures are
shown with hydrophobic positions highlighted in yellow. PDB identifiers, chain identifiers, and beginning and ending
residue numbers are shown for each sequence.
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domains in the RAGNYA fold based on the shared
topology. The study reporting the Escherichia coli
MoeA structure31 noted that MoeA-I has the same
fold as OrnDC-C based on a decent superposition
(DALI z-score 4.2, RMSD 1.8 Å over 51 residues), yet
evolutionary implications of this similarity were not
discussed. Manual superposition and inspection
reveal that although their β-sheets are both irregular
and split with the cleft, these two domains can be
aligned closely with few indels over almost their
entire lengths. Moreover, the alignment includes
unusual structural features such as β-bulges that are
regarded as evidence for homology.8 Thus, we
believe that they are most likely homologous.

High-scoring pairs between folds

Most of the high-scoring pairs between folds
belong to the α/β class and adopt the Rossmann-
like structure. Many of these links have been noticed
and commented upon before. For instance, the links
between the NAD(P)-binding Rossmann fold, the
flavin adenine dinucleotide/NAD(P)-binding do-
main fold, the preATP-grasp domain fold, and the
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nucleotide-binding domain fold are mentioned on
the SCOP Web site and in the literature.33,34

In the all-α class, the highest-scoring pair (SVM
score 8.11, probability 0.98) is archaeal histone35 and
hypothetical protein Aq_32836 (Fig. 2c). This homo-
logous link has been previously reported,36,37 and in
fact, the updated SCOP 1.71 moves Aq_328 to the
same superfamily as the histones, thus eliminating
the “hypothetical protein Aq_328” fold present in
the previous SCOP version.
In the all-β class, the highest-scoring pair (SVM

score 7.59, probability 0.97) is the Clostridium
histolyticum class I collagenase collagen-binding do-
main (CBD)38 and the Clostridium stercorarium
putative xylanase carbohydrate-binding module
CBM6-3.39 As shown in Fig. 2d, both CBD and
CBM6-3 adopt a β-sandwich structure with the so-
called jelly roll topology. Although these two
domains have somewhat different sheet-to-sheet
packing angles, DALI aligns them with z-score 5.2
and RMSD 2.7 Å over 80 residues (83% of CBD and
61% of CBM6-3). Both CBD and CBM6-3 bind metal
ions at their N-terminal region, but they use diffe-
rent residues to coordinate the ions. The proposed
collagen-binding site in CBD and the observed
sugar-binding site in CBM6-3 do not overlap, al-
though they are located on the same side in both
molecules. Thus, we are not sure if these two do-
mains are indeed homologous. In addition, it is
worth noting that theβ-propeller foldswith different
numbers of blades are scored to be homologous by
our classifier, in line with previous reports.40,41

High-scoring pairs between superfamilies

A significant fraction of the high-scoring pairs
between superfamilies but within the same fold are
the TIM β/α-barrels, and many of these links have
been previously reported in the literature.42,43

Additionally, different superfamilies in the follow-
ing SCOP folds are found to be homologous by our
classifier: DNA/RNA-binding three-helical bundle,
α–α superhelix, α/α toroid, immunoglobulin-like
β-sandwich, β-propellers, and β-trefoil. Many of
these relationships have been discussed in previous
studies.14,33,44,45
The top-scoring pairs outside of these well-known

examples of homology between SCOP superfamilies
come from the β-grasp fold. Five superfamilies
(TGS-like, 2Fe–2S ferredoxin-like, MoaD/ThiS, ubi-
quitin-like, and CAD and PB1 domains) in this fold
are linked by single linkage with high probabilities
(Fig. 2e). As shown by the representative structures
of these five superfamilies in Fig. 2e, the β-grasp fold
is composed of five major SSEs: four β-strands and
one α-helix connected as ββαββ. Ubiquitin is a
highly conserved eukaryotic protein functioning as
a “tag” in protein degradation.46 MoaD and ThiS are
both sulfur carrier proteins involved in small-
molecule biosynthesis pathways.47,48 2Fe–2S ferre-
doxins (also referred to as β-grasp ferredoxins) are
electron transporters in photosynthesis and nitrogen
fixation.49,50 TGS domain is named after three pro-
teins [ThrRS, guanosine 5′-triphosphatase (GTPase),
and SpoT] in which it is found,51 and the TGS-like
superfamily is represented by the N1 domain of the
threonyl-tRNA synthetase52 that may participate in
the proofreading activity of this enzyme.53 CAD and
PB1 domains mediate protein complex formation
through heterodimerization.54,55 The evolutionary
relatedness between MoaD/ThiS and ubiquitin has
been convincingly argued based on structural and
functional similarities.47 Using transitive PSI-
BLAST, Iyer et al.56 linked MoaD/ThiS, TGS do-
mains, and β-grasp ferredoxins. Our links between
these five superfamilies agree with SCOP annota-
tions (in Fig. 2e, the superfamilies that are consid-
ered to be “possibly related” by SCOP are linked by
red dotted lines) as well as the suggestion in a recent
study57 that all five-stranded β-grasp domains
“form a monophyletic assemblage”.
Methods

Manually constructed data sets

The MALIDUP database contains manual structure-
based alignments of 241 homologous pairs, while the
MALISAM database contains 130 analogous pairs. As
shown in Fig. 1, MALIDUP includes many close homo-
logous pairs whose long aligned length, high sequence
identity, or low RMSD is not matched by any analogous
pairs in MALISAM. Since we are interested in discriminat-
ing remote homologs and analogs, we divide MALIDUP
into two parts: 111 close homologous pairs (aligned length
above 100 residues, sequence identity above 20%, or RMSD
below 1.5 Å) and 130 remote homologous pairs (those that
do not pass any of the above three conditions). The 111 close
homologous pairs compose the data set “close,” while the
130 remote homologous pairs together with the 130
analogous pairs from MALISAM compose the data set
“remote.” Furthermore, 65 homologous pairs and 65
analogous pairs that have comparable aligned lengths and
sequence identities are manually selected from “remote” to
form another data set called “comparable,” and the
remaining 65 homologous pairs and 65 analogous pairs
form the data set “remaining.” Table 1 summarizes the four
manually prepared data sets.

SCOP-based data sets

Using SCOP domains in the ASTRAL58 1.69 less than
40% sequence identity set, we construct four large data
sets: SF, FD, CL, and RT (summarized in Table 2). Each
pair in SF consists of domains from different SCOP
families but the same superfamily; each pair in FD
consists of domains from different SCOP superfamilies
but the same fold; each pair in CL consists of domains
from different SCOP folds but the same class; and each
pair in RT consists of domains from different SCOP
classes. We limit ASTRAL domains to those belonging to
the four major SCOP classes [all-alpha proteins, all-beta
proteins, alpha and beta proteins (a/b), and alpha and
beta proteins (a+b)]. From these domains, we select one
structure with the best resolution from each SCOP
family to serve as that family's representative and one
structure with the best resolution from each SCOP fold
to serve as that fold's representative. From the family
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representatives, we exhaustively select domain pairs for
SF and FD. From the fold representatives, we exhaus-
tively select domain pairs for CL and RT. We use the
program DALI59 to align the pairs in these four SCOP-
based data sets. Pairs for which DALI fails to output any
alignments are discarded.

Scores

We use 13 structural alignment-based scores to char-
acterize each pair in the manually constructed and the
SCOP-based data sets. These scores belong to four different
types: (1) pairwise sequence scores, including sequence
identity (id) and blosum score (blosum)60; (2) profile
sequence scores, including compass-like61 and Pearson's
correlation coefficient (correl)62; (3) intramolecule structure
scores, including DALI score (dali),18 DALI z-score
(daliz),19 LiveBench contact score A (LBa),63 and Live-
Bench contact score B (LBb)63; and (4) intermolecule struc-
ture scores, including TM score,64 RMSD, GDT_TS,65

alignment-based Hausdorff measure (AHM),66 and loop-
based Hausdorff measure (LHM).66 For the manually
constructed data sets, all 13 scores are calculated based on
manual structural alignments; for the SCOP-based data
sets, all 13 scores are calculated based onDALI alignments.
Equations of these scores are given in Appendix A.
Particularly, to calculate the profile sequence scores for a
pair, we first generate a multiple-sequence alignment for
each domain by running PSI-BLAST4 (-j 1, -m 6, -e 0.002, -b
5000, nr database), then align the two multiple sequence
alignments of the two domains according to their
structural alignment (positions that are not aligned in the
structure alignment are discarded), then score the aligned
columns according to the equations in Appendix A.
In addition, we run the HHsearch17,67 program for each

pair. The HHsearch score using domain 1 as query and the
HHsearch score using domain 2 as query are compared,
and the larger one is used as theHHsearch score of the pair.

Score scaling

Since the raw scores are in different orders of
magnitude, they have to be properly scaled before
SVM training.68 We use the following scaling method:
S=(S12−Srandom)/(Sself−Srandom). S12 is the raw score
calculated from the alignment between domain 1 and
domain 2. In calculating Srandom, we circularly permute
the domain 1 sequence relative to the domain 2
sequence in the alignment 10 times, reconstruct the
structural superposition for each permutation, calculate
the score based on the reconstructed superposition, and
take the median of the resulting 10 scores as Srandom.
(The Srandom for compass-like and correl is calculated in
a different way.) Sself is the average of the two self
scores S11 and S22, which are calculated from domain 1
aligned to itself and domain 2 aligned to itself, respectively.
Since S12 generally falls between Srandom and Sself, the
scaled score S generally falls between 0 and 1. Moreover,
after scaling, all the scores have the same directionality: the
larger the score, the higher the similarity.

SVM training

We use the SVM package SVM-light (version 6.01)†.
Different subsets or combinations of the 14 scores areused to
†Downloaded from http://svmlight.joachims.org/
train SVM. We try all the possible score combinations with
two or more scores (16,369 combinations in total). All SVM
models are trained on the manually constructed data sets.
In linear SVM training, we optimize the parameter C (-c

option in SVM-light) in the following steps: (1) set an
appropriate initial value Cinitial and a proper multiplier m;
(2) train SVM on the “remaining” data set at three C values
(Cinitial/m, Cinitial, Cinitial* m); (3) apply the three resulting
models on the “comparable” data set; (4) check the weight
vectorw (see the next section) of each model and change a
model's accuracy on the “comparable” data set to zero if
its w has negative components (This step is to avoid
overfitting, because we observed that negative weights
usually occurred simultaneously with overfitting69); (5)
denote the C value whose model has the highest accuracy
on the “comparable” data set as Coptimal; (6) if Coptimal
equals Cinitial, stop and use Coptimal as the optimal C value;
otherwise, use Coptimal as Cinitial and repeat the whole
procedure. The model trained at the optimal C value is
regarded as the optimal model given the particular score
combination.
Two key parameters in nonlinear SVM training using

the radial basis function kernel are C and γ68 (-c and -g
options in SVM-light). Using a simple extension of the
above method, we optimize the parameters C and γ in
the following steps: (1) set appropriate initial values for C
(Cinitial) and γ (γinitial) and proper multipliers for C (mc)
and γ (mγ); (2) train SVM on “remaining” at nine (C, γ)
combinations (Cinitial/mc, γinitial/mγ), (Cinitial/mc, γinitial),
(Cinitial/mc, γinitial* mγ), (Cinitial, γinitial/mγ), (Cinitial, γinitial),
(Cinitial, γinitial* mγ), (Cinitial* mc, γinitial/mγ), (Cinitial* mc, γinitial),
and (Cinitial* mc, γinitial* mγ); (3) apply the resulting nine
models on “comparable”; (4) denote the (C, γ) combination
whose model has the highest accuracy on “comparable” as
(Coptimal, γoptimal); (5) if (Coptimal, γoptimal) equals (Cinitial,
γinitial), stop and use (Coptimal, γoptimal) as the optimalC and
γ values; otherwise, use (Coptimal, γoptimal) as (Cinitial, γinitial)
and repeat the whole procedure. The model trained at the
optimal C and γ values is regarded as the optimal model
given the particular score combination.

Deducing and transforming the decision
function of a linear SVM model

The decision function of a linear SVM model can be
written as f ðxÞ ¼ wd x� b ¼Pn

i¼1 wixi � b, where x, w, b,
and n are the score vector, the weight vector, the threshold
scalar, and the number of scores, respectively. A pair with f
(x)N0 is classified as homologous, while a pair with f(x)b0
is classified as nonhomologous. The specific value of f(x) is
called the “prediction score” in this study. The decision
function can be explicitly deduced from a linear SVM
model: the weight vector w can be calculated by the
program “svm2weight.pl”‡, and the threshold b is
specified in the model file.
If standard z-scores were used in SVM training, the

components of the weight vector w in the decision
function would indicate the relative importance of each
individual score. However, the SVM-light package
recommends that the input data be within [−1, +1],
and it is also our own experience that using scaled scores
instead of z-scores in SVM training usually yields better
models. Therefore, we train SVM on scaled scores,
deduce the decision function from the resulting model,
and then transform the decision function into an
‡Found in the FAQ page at http://svmlight.joachims.
org/

http://svmlight.joachims.org/
http://svmlight.joachims.org/
http://svmlight.joachims.org/
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equivalent function for z-scores. The following example
with two scores explains how to transform the decision
function. Here, x1 and x2 are the scaled scores, while z1
and z2 are their respective standard z-scores. μ1 and σ1
are the mean and standard deviation, respectively, of
score 1, and μ2 and σ2 are the mean and standard
deviation, respectively, of score 2.
Initial decision function of the linear SVM model:

w1x1 þ w2x2 ¼ b: ð1Þ

Since z1=(x1−μ1)/σ1 and z2= (x2−μ2)/σ2, we have the
following:

x1 ¼ z1r1 þ A1 ð2Þ

x2 ¼ z2r2 þ A2 ð3Þ

Plugging (2) and (3) into (1), we get:

w1ðz1r1 þ A1Þ þ w2ðz2r2 þ A2Þ ¼ b

which is equivalent to:

w1r1z1 þ w2r2z2 ¼ b� w1A1 � w2A2 ð4Þ
Defining w1

z=w1σ1, w2
z=w2σ2, b

z=b−w1μ1−w2μ2, we can
rewrite (4) into

w z
1 z1 þ w z

2 z2 ¼ bz ð5Þ
Equation (5) is the equivalent decision function for the
standard z-scores: w1

z and w2
z are the weights for score 1

and score 2, respectively, and bz is the threshold. We use
the data set SF to calculate the mean and standard
deviation for each score.

Filter

To remove pairs that lack overall structural similarity,
we apply the “DALI z-score above 2” filter. Pairs with
DALI z-score less than or equal to 2 do not pass the filter
and are automatically classified as nonhomologs. Pairs
that pass the filter are classified as homologs or
nonhomologs according to their prediction scores given
by the SVM model. The filter is only applied to the four
SCOP-based data sets. After the filter is incorporated, a
classifier's accuracies are calculated as follows:

for a data set composed entirely of homologs,
Accuracy=p/(p+q+ f );
for a data set composed entirely of nonhomologs,
Accuracy=(q+ f )/(p+q+ f ).

Here, p is the number of pairs classified as homologs by
the SVM model, q is the number of pairs classified as
nonhomologs by the SVM model, and f is the number of
pairs that do not pass the filter.

Probability model

Given an SVMprediction score x, we count the number of
homologous pairs whose prediction scores are above x (nh)
and the number of analogous pairs whose prediction scores
are above x (na). Thenwe define p[x]=nh[x]/(nh[x]+na[x]). p
[x] can be interpreted as the probability of being homo-
logous for a pair with prediction score at least x. We
plot p against x using the homologs and analogs
in themanually constructeddata set “remote.”The resulting
curve can be mimicked by the function p=(1+cdf[x] *r)/(1
+r),where cdf[x] is any cumulative density function, and r is
the ratio of analogs to homologs. This function ensures that
when x→−∞, p→1/(1+r), and that when x→+∞, p→1.
Taking Cauchy distribution for the cdf[x] and assuming
r→+∞, we fit the curve to the following function:

p ¼ 1
2
þ arctan xþ0:929

0:696

� �
p

where arctan is the inverse function of the tangent.
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Appendix A. Score Equations

Scores are organized in four groups: pairwise se-
quence scores, profile sequence scores, intramole-
cule structure scores, and intermolecule structure
scores. The abbreviation we use in this study is
given in the parentheses after each score name.

A.1. Pairwise sequence scores

(1) Sequence identity (id)

id ¼ Ialigned
Laligned

;

where Ialigned is the number of identical residue
pairs in aligned positions and Laligned is the aligned
length.
(2) Blosum score (blosum)

blosum ¼
XLaligned
i¼1

BLOSUM 62ða1i ; a2i Þ;

where ai
1, ai

2 are the amino acids at the ith aligned
position in domain 1 and domain 2, respectively.
BLOSUM62(ai

1, ai
2) is the substitution score of ai

1 and
ai
2 given by the blosum62 matrix.60

A.2. Profile sequence scores

In the equations for profile sequence scores, pa is
the background frequency of residue a, Qa is the
target frequency of residue a, and wa

1= ln Qa
1/pa and

wa
2= ln Qa

2/pa.62
(1) COMPASS-like (compass-like)61

compass ¼ c1
X20
a¼1

n1aw
2
aþc2

X20
a¼1

n2aw
1
a :
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(2) Pearson's correlation coefficient (correl)

pccoef ¼

X20
a¼1

ðw1
a�hw1

aiÞðw2
a�hw2

aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20
a¼1

ðw1
a�hw1

aiÞ2
P20
a¼1

s
ðw2

a�hw2
aiÞ2

A.3. Intramolecule structure scores

(1) DALI score (dali)

dali ¼
XLaligned
i

XLaligned
j

0:2� jd1ij�d2ijj
dij*

 !
e�ðdij*=20A°Þ2:

Residue i in domain 1 and residue i in domain 2 are
structurally equivalent to each other, and so are
residue j in domain 1 and residue j in domain 2. d1ij
and d2ij are the intramolecular Cα–Cα distances
between residues i and j in domain 1 and domain 2,
respectively. d*ij is the average of d1ij and d2ij. This
scoring function was used in the structure super-
position program DALI.18

(2) DALI z-score (daliz)

daliz ¼ dali� A
r;

where μ=7.95 + 0.71x+0.00026x2 − 0.0000019x3,
x=aligned length, and σ=μ/2. This equation is
modified from Eqs. (3) and (4) in Ref. 19.
(3) LiveBench contact score A (LBa)

LBa ¼
XLaligned
i¼1

PLaligned
j¼1

minðDðd1ijÞ;Dðd2ijÞÞ

1
2

PLaligned
j¼1

Dðd1ijÞ þ
PLaligned
j¼1

Dðd2ijÞ
 !

DðdijÞ ¼ expð�ln2� dijÞ; if ji� jjz6
0; otherwise

�

(4) LiveBench contact score B (LBb)

LBb¼

PLaligned
i¼1

PLaligned
j¼1

minðDðd1ijÞ;Dðd2ijÞÞ

1
2

PLaligned
i¼1

PLaligned
j¼1

Dðd1
ijÞþ

PLaligned
i¼1

PLaligned
j¼1

Dðd2ijÞ
 !�Laligned

DðdijÞ ¼ expð�ln2� dijÞ; ifji−jj≥6
0; otherwise

�

LBcontacta and LBcontactb were developed in the
LiveBench experiments.63
A.4. Intermolecule structure scores

(1) TM score (TM score)

tmscore ¼
XLaligned
i

1

1þ di
d0

� �2 ;

where di is the Cα–Cα distance of the ith aligned
residue pair. d0 is a normalization factor.64

(2) Root mean square deviation (RMSD)

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLaligned
i¼1

d2i

Laligned
;

vuuuut

where di is the Cα–Cα distance of the ith aligned
position in the superposition of domain 1 and
domain 2.
(3) GDT_TS (GDT_TS)

gdtts ¼ n1þ n2þ n4þ n8
4

;

where n1, n2, n4, n8 are the number of aligned resi-
dues within 1, 2, 4, and 8 Å, respectively.65
(5) Alignment-based Hausdorff measure (AHM)

AHM ¼ 1
ns

Xns
i¼1

hi

(6) Loop-based Hausdorff measure (LHM)

LHM ¼ 1
ns�1

Xns�1

i¼1

h1

In AHM and LHM equations, ns is the total
number of aligned segments and hi is the Hausdorff
distance for the ith aligned segment (in AHM) or for
the ith unaligned segment (in LHM).66
Supplementary Material

Lists of pairs between SCOP superfamilies, folds,
and classes that are classified as homologous with
high scores can be accessed via theWeb page http://
prodata.swmed.edu/HorA/.
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