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ABSTRACT

Motivation: Accurate multiple sequence alignments are essential

in protein structure modeling, functional prediction and efficient

planning of experiments. Although the alignment problem has

attracted considerable attention, preparation of high-quality

alignments for distantly related sequences remains a difficult task.

Results: We developed PROMALS, a multiple alignment method

that shows promising results for protein homologs with sequence

identity below 10%, aligning close to half of the amino acid residues

correctly on average. This is about three times more accurate than

traditional pairwise sequence alignment methods. PROMALS

algorithm derives its strength from several sources: (i) sequence

database searches to retrieve additional homologs; (ii) accurate

secondary structure prediction; (iii) a hidden Markov model that uses

a novel combined scoring of amino acids and secondary structures;

(iv) probabilistic consistency-based scoring applied to progressive

alignment of profiles. Compared to the best alignment methods that

do not use secondary structure prediction and database searches

(e.g. MUMMALS, ProbCons and MAFFT), PROMALS is up to 30%

more accurate, with improvement being most prominent for highly

divergent homologs. Compared to SPEM and HHalign, which also

employ database searches and secondary structure prediction,

PROMALS shows an accuracy improvement of several percent.

Availability: The PROMALS web server is available at:

http://prodata.swmed.edu/promals/

Contact: jpei@chop.swmed.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Multiple sequence alignments have broad applications in

sequence similarity searches, structure modeling and

phylogenetic analysis (Altschul et al., 1997; Eddy, 1998;

Ginalski and Rychlewski, 2003; Phillips et al., 2000). They

also aid in experimental design by revealing conserved residues

with potential functional importance. A variety of alignment

methods that rely on different algorithms and scoring

functions have been developed (Edgar and Batzoglou, 2006).

A rigorous method that aligns all sequences simultaneously

(Lipman et al., 1989) is computationally prohibitive for large

sets of sequences. In contrast, a progressive method that aligns

pairs of sequences and sequence groups along a tree is

algorithmically simpler and much faster, requiring only N�1

steps of pairwise alignments for N sequences. However, in

progressive methods, alignment errors made at each step are

propagated to subsequent steps. Many progressive methods use

a scoring function called sum-of-pairs, i.e. a sum of amino acid

substitution scores for pairs of amino acids between two

positions (Edgar and Batzoglou, 2006; Thompson et al., 1994).

Such a scoring function yields reasonable alignment quality

for closely related sequences (identity above 40%). However,

alignment quality drops rapidly with decreasing sequence

similarity (Thompson et al., 1999).
Effective construction of multiple alignments with respect to

accuracy and speed has been extensively researched in recent

years. Refinement and consistency-based scoring are two major

techniques to improve classical progressive methods. MUSCLE

(Edgar, 2004) and MAFFT (Katoh et al., 2005) represent two

recent methods that use extensive refinement to correct errors

made in progressive steps. They both implement sum-of-pairs

scores, which are easy to compute and offer the advantage of

great speed. In T-COFFEE (Notredame et al., 2000), the

scoring is derived by finding consistently aligned residue pairs

in a library of pairwise alignments. Such consistency-based

scoring functions can give better alignment quality than

sum-of-pairs scores. Further improvement comes with a

probabilistic treatment of consistency via pairwise hidden

Markov models (HMMs), as first implemented in ProbCons

(Do et al., 2005). MUMMALS (Pei and Grishin, 2006) builds

on the success of probabilistic consistency by introducing

HMMs with more states that capture local structural informa-

tion. Consistency transformation requires operations on

sequence triplets, and therefore is computationally intensive.

By aligning similar sequences with general substitution matrices

and aligning divergent sequence groups with profile-based

consistency, PCMA (Pei et al., 2003) is able to achieve a

balance between alignment accuracy and speed.
Even with refinement and consistency-based scoring,

current methods still have difficulty in obtaining high-quality

alignments when sequence identity drops below 20%.

As homologous proteins can have very low sequence

similarity while maintaining similar structures and functions*To whom correspondence should be addressed.
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(Murzin, 1998), aligning distantly related sequences is an
important task. A recent trend in the multiple alignment
field is to recruit various sources of sequence and structural

information to improve alignment accuracy (Edgar and
Batzoglou, 2006). Such sources include homologs detected in
database searches (Katoh et al., 2005; Simossis and Heringa,

2005; Thompson et al., 2000), predicted secondary structure
(Simossis and Heringa, 2005; Zhou and Zhou, 2005), and
known 3D structures (O’Sullivan et al., 2004). Since additional

homologs improve the quality of sequence profiles, and
structural features such as secondary structure are generally
more conserved than sequences, their usage can lead to

improved alignment quality.
Here, we describe PROMALS, a multiple sequence

alignment method that combines recent advances in computa-

tional approaches to tackle the difficult task of aligning
divergent sequences. PROMALS improves probabilistic

consistency-based scoring of profiles by utilizing predicted
secondary structures and additional homologs found in
database searches. To effectively combine these additional

data, we developed and implemented a new hidden Markov
model for profile-profile comparison, which scores both amino
acid similarity and secondary structure similarity, and has local

structure-dependent transition and emission probabilities.
Like PCMA, PROMALS is made more computationally
efficient by treating similar and divergent sequences with

different alignment strategies. On several difficult data sets,
we show that PROMALS gives the best alignment accuracy
among leading methods such as SPEM, HHalign (Soding,

2005), MUMMALS, ProbCons and MAFFT.

2 METHODS

2.1 A hidden Markov model of profile–profile alignment

A classical pairwise HMM for aligning two sequences has three types of

hidden states: a match state ‘M’ emitting a residue pair, an ‘X’ state

emitting a residue in the first sequence and a ‘Y’ state emitting

a residue in the second sequence (Durbin et al., 1998). ‘X’ and ‘Y’ states

correspond to insertions or deletions in the two sequences. Our hidden

Markov model for aligning two alignments (having profile representa-

tions) has the same architecture as a pairwise sequence HMM.

In our model, an ‘M’ state emits a pair of positions instead of a pair

of residues. For an ‘X’ or ‘Y’ state, a single position in the

first alignment or in the second alignment is emitted, respectively.

The emitted objects (observations) are amino acid frequency vectors

and predicted secondary structure types.

We adopt a representation of amino acid sequence profile similar

to the ones in PSI-BLAST (Altschul et al., 1997) and COMPASS

(Sadreyev and Grishin, 2003). Two profile components are estimated

for a position in an alignment: (i) effective frequencies of amino acids,

and (ii) target frequencies of amino acids. The effective frequencies

serve as the emitted objects (observations) in a position for the hidden

Markov model. They are estimated from the position-specific

independent counts (PSIC) of amino acids (Pei and Grishin, 2001;

Sunyaev et al., 1999), which is a sequence-weighting scheme that

corrects for biased similarities between sequences. If an amino acid

is not present in a position, it has an effective frequency of zero.

The target frequencies serve as the ‘hidden’ amino acid probabilistic

generator for a position. The target frequencies are estimated from the

effective frequencies, taking into account prior knowledge of amino

acid substitution characteristics. The target frequency is a mixture

(weighted average) between effective frequency and the pseudocount

frequency (Altschul et al., 1997; Tatusov et al., 1994). Defined in this

way, the target frequency of any amino acid, even if it is not present in

a position, is always greater than zero. Details on derivation of the two

profile components are in Supplementary Data.

For an ‘M’ state, the probability of emitting the observed amino acids

for a position pair (i, j) is the product of two probabilities: (i) the

probability of generating the effective frequencies of position i using

the target frequencies of position j, and (ii) the probability of generating

the effective frequencies of position j using the target frequencies of

position i. For an ‘X’ or ‘Y’ state, the probability of emitting the

observed amino acids in a position k is the probability of generating

the effective frequencies of position k using the background amino acid

frequencies in insertion regions. Besides amino acids, an ‘M’ state

also emits a pair of predicted secondary structures, and an ‘X’ or ‘Y’

state also emits a single predicted secondary structure. The emission

probability in a hidden state (‘M’, ‘X’ or ‘Y’) is a weighted product of

amino acid emission probability and secondary structure emission

probability. The relative weights for the scoring terms of amino acids

and predicted secondary structures have been optimized to increase the

alignment accuracy of the training sequence pairs. Details on emission

probability formulas, parameter estimation and the algorithm for

aligning two profiles with optimal posterior probabilities of position

matches are described in Supplementary Data.

2.2 PROMALS multiple sequence alignment procedure

PROMALS (PROfile Multiple Alignment with predicted Local

Structure) is a progressive method (Fig. 1). The alignment order is set

by a tree built using a k-mer count method (Edgar, 2004). Like PCMA

(Pei et al., 2003) and MUMMALS (Pei and Grishin, 2006), PROMALS

has two alignment stages for easy and difficult alignments. In the first

stage, highly similar sequences are progressively aligned in a fast way

with a weighted sum-of-pairs measure of BLOSUM62 scores (Henikoff

and Henikoff, 1992) (step 2 in Fig. 1). If two neighboring groups on the

tree have an average sequence identity higher than a certain threshold

(default: 60%), they are aligned in this fast way. The result of the first

alignment stage is a set of sequences or pre-aligned groups that are

relatively divergent from each other. In the second alignment stage,

one representative sequence (the longest one) is selected from each

pre-aligned group. For each representative, PSI-BLAST is used to

search for homologs from sequence database UNIREF90 (Wu et al.,

2006) with three iterations and an E-value cutoff of 0.001. Hits with

520% identity to the query are removed and up to 300 hits are selected.

The PSI-BLAST checkpoint file after three iterations is used to predict

secondary structures by PSIPRED (Jones, 1999). For each pair of

representatives, profiles are derived from the PSI-BLAST alignments

and PSIPRED secondary structure prediction, and a matrix of

posterior probabilities of matches between positions is obtained by

forward and backward algorithms of the profile-profile HMM

(see Supplementary Data for details). These matrices are used to

calculate the probabilistic consistency scores as described in Do et al.

(2005). The representatives are then aligned progressively according

to the consistency-based scoring function, and the pre-aligned

groups obtained in the first stage are merged to the multiple alignment

of the representatives. Finally, gap placement is refined to make the gap

patterns more realistic. For that, we define a core block as a set of

consecutive positions with gap content less than 0.5 at each position.

A highly gapped (‘gappy’) region is defined as a set of consecutive

positions with gap contents no less than 0.5 at each position. A gappy

region is either bound by two adjacent core blocks, or is at the start

or the end of the alignment. If there are l amino acid residues

in a gappy segment, gap refinement introduces continuous gap

characters in between the [l/2]th residue and the (l�[l/2])th residue,

with the exceptions for any gappy segment in N- or C-terminus,
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where a single run of continuous gap characters is introduced at the

sequence start or end.

2.3 Assessment of alignment methods

The following methods were tested: SPEM (Zhou and Zhou, 2005),

HHalign (Soding, 2005), MUMMALS (Pei and Grishin, 2006),

ProbCons (version 1.10) (Do et al., 2005), MAFFT (version 5.667)

(Katoh et al., 2005), MUSCLE (version 3.52) (Edgar, 2004) and

ClustalW (version 1.83) (Thompson et al., 1994). For MAFFT, we

report two alignment options (‘-linsi’ and ‘-ginsi’) that show the best

results. HHalign is an enhanced version of HHsearch (Soding, 2005)

that performs pairwise profile–profile alignment with predicted

secondary structures (J. Soding, personal communication). Several

parameters (score shift, secondary structure weight, pseudocount

weight) of HHalign were selected that gave optimal performance on

SCOP domain pairs with identity520%.

For pairwise alignment tests, we used divergent SCOP superfamily

domain pairs that were divided into three identity bins: below 10%,

10–15% and 15–20%. For multiple alignment tests, we added up to

24 homologs to each sequence in the testing cases of pairwise

alignments. Details on construction of these testing data sets were

given in our previous work (Pei and Grishin, 2006). Two large

benchmark data sets compiled by other researchers were used as well.

One is the SABmark database (version 1.65) (Van Walle et al., 2005),

which contains two sets of multiple protein domains related at SCOP

fold or superfamily level. The other is PREFAB database (version 4.0)

(Edgar, 2004), which is based on structural alignments in FSSP

database (Holm and Sander, 1998b) and homologous sequences

from database searches. Reference-dependent alignment quality scores

(Q-scores) were calculated using the built-in programs in SABmark and

PREFAB packages. The Q-score is the number of correctly aligned

residue pairs in the test alignment divided by the number of aligned

residue pairs in the reference alignment. The value of the Q-score is

between 0 and 1. Wilcoxon signed-ranks tests were performed to

calculate the statistical significance of comparisons between alignment

methods.

In addition to Q-score, we applied reference-independent evaluation

of alignment quality to SCOP domain pairs, as described in our

previous work (Pei and Grishin, 2006). We calculated several scores

reflecting structural similarity of two SCOP domains compared

according to aligned residues in a test alignment: DALI Z-score

(Holm and Sander, 1998a), GDT-TS score (Zemla et al., 1999),

TM-score (Zhang and Skolnick, 2004), 3D-score (Rychlewski et al.,

2003) and two LiveBench contact scores (Rychlewski et al., 2003).

These scores were scaled by taking into account self-comparison scores,

random scores and alignment coverage (scaled scores are no larger

than 1 and usually above 0). We also calculated two reference-

independent sequence similarity scores: sequence identity and

BLOSUM62 scores of aligned positions in a test alignment. These

scores were also calculated for DaliLite (Holm and Sander, 1998a)

structure-based alignments as a positive control.

3 RESULTS

PROMALS is a progressive multiple alignment method

based on probabilistic consistency of profile-profile compar-

ison, with enhanced profile information from homologs

detected by PSI-BLAST and secondary structures predicted

by PSIPRED (Fig. 1). SPEM and HHalign are comparable

methods as they also use these two sources of extra data. While

PROMALS and SPEM can align two or more sequences,

HHalign performs only pairwise alignments. The other tested

methods (MUMMALS, ProbCons, MAFFT, MUSCLE and

ClustalW) are stand-alone multiple sequence methods that do

not resort to other data sources or programs.

3.1 Reference-dependent evaluation of methods

3.1.1 Tests on weakly similar SCOP domain pairs We tested
our profile-profile HMM on 1207 divergent SCOP domain

pairs (Pei and Grishin, 2006) with 520% sequence identity

(Table 1, first numbers in columns under ‘SCOP’). The three

methods that use extra data (PROMALS, SPEM and HHalign)

produce substantially better results than stand-alone methods

(MUMMALS, ProbCons, MAFFT, MUSCLE and ClustalW)

that align a pair of sequences without using additional

homologs or predicted secondary structures. For sequence

N input sequences
UPGMA tree

1. k-mer
counting

2. Align similar 
sequences in a 
fast way

4. Run PSI-BLAST
and PSIPRED

Probabilistic 
consistency 
objective function

5. Build profile-profile
HMMs; consistency 
transformation

 

Alignment of  N ′
representatives

N ′ pre-aligned
groups (N ′≤N)

N ′ representatives

N ′ profiles with predicted
secondary structures

Final alignment 
of N sequences

3. Select one 
sequence from 
each group

6. Do progressive 
alignment based 
on consistency

7. Merge pre-
aligned groups;
refine gaps 

Fig. 1. PROMALS multiple sequence alignment procedure. The gray arrows indicate the two most time-consuming steps: running PSI-BLAST and

PSIPRED (step 4) and profile consistency transformation (step 5).
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pairs with identity below 10%, the average Q-score of

PROMALS (0.431) is almost three times higher than that

of MUMMALS (0.156). For alignments with identity ranges

10–15% and 15–20%, PROMALS also gives substantial

accuracy increases over MUMMALS of 0.272 and 0.176,

respectively. PROMALS shows about 3–4% accuracy increases

over SPEM and HHalign, suggesting that our profile-profile

HMM utilizes homologs and predicted secondary structures

in a better way.
We also tested the methods (except HHalign, which is a

pairwise alignment program) on data sets of multiple sequences

constructed by adding up to 48 homologs to each SCOP

domain pair (Table 1, second numbers in columns under

‘SCOP’). With multiple sequences, PROMALS and SPEM

both show slight improvement (1–2% for PROMALS and

2–3% for SPEM) over their pairwise profile–profile alignments.

PROMALS outperforms SPEM by �2% on multiple

sequences. With added homologs, stand-alone methods all

yield better accuracies than pairwise sequence alignments,

among which MUMMALS is the best method. PROMALS

outperforms MUMMALS by 0.13, 0.1, and 0.05 for data sets

with identities510%, 10–15% and 15–20%, respectively.

3.1.2 Tests on SABmark database SABmark database

(version 1.65) has two multiple alignment benchmark sets.

The ‘twilight zone’ set contains 209 tests of SCOP (version 1.65)

fold-level domains with very low similarity, and the ‘super-

family’ set contains 425 tests of SCOP superfamily-level

domains with low to intermediate similarity. PROMALS

achieves the best results among all methods for both sets.

Its accuracy is �6% and 4% higher than SPEM on ‘twilight

zone’ set and ‘superfamily’ set, respectively. For the most

difficult ‘twilight zone’ set, PROMALS doubles the

accuracy of the best stand-alone method (MUMMALS).

Nevertheless, only �40% residues were correctly aligned on

average by PROMALS for the ‘twilight zone’ set, suggesting

that homology modeling of extremely divergent domains

remains a difficult problem with regard to alignment quality.

3.1.3 Tests on and PREFAB database PREFAB 4.0 data-
base consists of 1682 alignments averaging 45.2 sequences per

alignment. Each alignment consists of two sequences with

known structures and their homologs found by PSI-BLAST

database searches. The reference structural alignment in each

test is based on the consensus of FSSP (Holm and Sander,

1998b) and CE (Shindyalov and Bourne, 1998) alignments.

We have used the performances of pairwise profile–profile

alignments of PROMALS and SPEM as an indicator of their

multiple alignment performances. The three methods that use

additional data (PROMALS, SPEM and HHalign) give similar

results, each with an average Q-score above 0.75. Their

accuracies are higher than those on the two SCOP data sets

with identity515% and the two SABmark sets, suggesting that

PREFAB 4.0 is an easier testing data set. PROMALS, SPEM

and HHalign are more accurate than MUMMALS by 4–6%.

PROMALS is statistically more accurate (P-value50.000001)

than SPEM and HHalign despite small differences in their

average Q-scores. Results on PREFAB 4.0 confirm that

alignment quality differences between methods become smaller

on easier tests.

3.2 Reference-independent evaluation of methods

On our data sets of 1207 SCOP domain pairs with identity

below 20%, we evaluated alignment quality using reference-

independent scores that reflect the similarity between two

structures compared according to aligned residue pairs in the

test alignment (Pei and Grishin, 2006). These structural

Table 1. Reference-dependent evaluation of alignment methods

Method SCOPa 0–10% (355) SCOPa 10–15% (432) SCOPa 15–20% (420) SABmark-twi (209) SABmark-sup (425) PREFABc (1682)

PROMALS 0.435/0.457 0.612/0.619 0.761/0.772 0.391 0.665 0.790

SPEM 0.377/0.411 0.558/0.578 0.727/0.751 0.326 0.628 0.774

HHalignb 0.406/– 0.567/– 0.730/– – – 0.787

MUMMALS 0.151/0.329 0.335/0.520 0.586/0.732 0.196 0.522 0.731

ProbCons 0.116/0.290 0.294/0.486 0.536/0.701 0.166 0.485 0.716

MAFFT-linsi 0.116/0.301 0.262/0.500 0.495/0.707 0.184 0.510 0.722

MAFFT-ginsi 0.116/0.308 0.265/0.497 0.496/0.714 0.176 0.495 0.715

MUSCLE 0.139/0.262 0.293/0.452 0.507/0.661 0.136 0.433 0.680

ClustalW 0.136/0.210 0.270/0.357 0.482/0.565 0.127 0.390 0.617

Average Q-scores of three testing data sets of ASTRAL SCOP40 superfamily pairs, two SABmark data sets (twi—‘twilight zone’ set, sup— ‘superfamily’ set) and the

PREFAB 4.0 data set are shown. Q-score is the number of correctly aligned residue pairs in the test alignment divided by the total number of aligned residue pairs in

the reference alignment. The number of alignments in each testing data set is shown in parentheses. Identity ranges are shown for the three SCOP data sets. The first three

methods use extra data from PSI-BLAST and PSIPRED. The other five are stand-alone methods. The option of MUMMALS (modeling secondary structure and solvent

accessibility) is set to produce the best results on these data sets. For each data set, PROMALS yields statistically higher accuracy (bold numbers) than any other method

(P-value50.000001) according to Wilcoxon signed rank test.
aFor tests on the SCOP data sets, there are two numbers in each cell separated by a slash. The first number is the average Q-score in pairwise alignment tests and the

second number is the average Q-score in multiple alignment tests.
bHHalign only performs pairwise profile–profile alignments and does not construct multiple sequence alignments. Thus the values for SCOP multiple alignment tests and

SABmark tests are not available.
cFor PREFAB 4.0 data set, the scores of PROMALS, HHalign and SPEM are based on pairwise profile–profile alignments, while the scores for other methods are based

on multiple alignments.
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similarity scores are DALI Z-score, TM-score, GDT-TS score,
3D-score, and two LiveBench contact scores (Table 2).

Consistent with reference-dependent evaluation, PROMALS
produces significantly higher average structural similarity

scores than other methods. Used as a positive control,

structural alignment method DaliLite yields higher structural
similarity scores than any sequence-based alignment method

(Table 2). Interestingly, DaliLite alignments have the lowest
reference-independent sequence similarity scores (sequence

identity and BLOSUM62 scores). PROMALS also shows

lower sequence similarity scores than several other sequence-
based methods. These observations suggest that for distantly

related sequences (sequence identity520%), sequence similarity
scores, such as identity or BLOSUM62, may not correlate

with alignment quality measured by 3D structural comparison,

and maximization of these scores may not improve structural
models based on sequence alignments.

3.3 Pairwise comparisons of alignment methods

To gain further understanding of the differences between

alignment methods, we compared their performance on

individual domain pairs from the SCOP sets (identity520%).
Table 3 shows the number of pairs, for which one method

performs better than another method by a relatively large
margin of 0.1 or more (measured by scaled TM-score or

Q-score, both scores are between 0 and 1). Although

PROMALS clearly leads by a large margin, it does not offer
the best alignment in each and every case. For example,

PROMALS gives a TM-score increase of 0.1 or more over
SPEM on 197 alignments, while producing significantly

inferior alignments for 109 pairs. Even stand-alone methods

(MUMMALS, ProbCons, MAFFT, MUSCLE and ClustalW)
outperform PROMALS by a TM-score of 0.1 or more

on a small number of pairs (�5%, i.e. 49–67 out of

1207 alignments). These comparisons suggest that alignments

constructed by different methods can vary much for divergent

sequences, and a method with an overall inferior performance is

capable of generating better alignments in some cases. Careful

inspection of alignments produced by several programs could

help improve alignment quality for divergent sequences.

4 DISCUSSION

Judging by its performance, PROMALS is a definite advance

compared to our previous alignment programs MUMMALS

(Pei and Grishin, 2006). MUMMALS derives probabilistic

consistency from pairwise HMMs with built-in local structural

information (secondary structure and/or solvent accessibility),

and shows slight but significant improvement (a few percent)

over other stand-alone methods such as ProbCons (Do et al.,

2005) and MAFFT (Katoh et al., 2005). However, since no

additional homologs are used, the local structure prediction

implicitly performed by MUMMALS is of low accuracy

compared to advanced methods such as PSIPRED

(Jones, 1999). In contrast, PROMALS incorporates database

searches and more accurate secondary structure prediction,

and derives probabilistic consistency from profile–profile

HMMs. Moreover, the HMM in PROMALS has a two-track

structure (Karchin et al., 2003) that treats both amino acids

and predicted secondary structures as emitted objects, while

MUMMALS HMMs only emit amino acids. Owing to

additional data sources and the advanced profile–profile

HMM, PROMALS shows significant improvement over

MUMMALS and other stand-alone methods, especially for

highly divergent sequences.
The HMM in PROMALS adopts a numerical representation

of sequence profile (see Supplementary Data for details) that

successfully works in other profile-sequence or profile–profile

Table 2. Reference-independent evaluation on 1207 representative SCOP40 domain pairs with identity520%

Method Structural similarity Sequence similarity

DALI Z-score GDT-TS TM-score 3D-score LBcona LBconb Identity BLOSUM62

PROMALS 0.1562
a

0.3079
a

0.3675
a

0.3097
a

0.2692
a

0.3527
a 0.0868 0.1555

SPEM 0.1400 0.2886 0.3451 0.2893 0.2521 0.3319 0.0992 0.1724

HHalign 0.1334 0.2914 0.3488 0.2907 0.2469 0.3263 0.0874 0.1535

MUMMALS 0.1231 0.2570 0.3070 0.2563 0.2240 0.2909 0.0932 0.1651

ProbCons 0.1003 0.2324 0.2767 0.2307 0.2060 0.2670 0.0983 0.1719

MAFFT-linsi 0.1135 0.2485 0.2982 0.2467 0.2143 0.2820 0.0923 0.1632

MAFFT-ginsi 0.1126 0.2454 0.2960 0.2429 0.2152 0.2803 0.0972 0.1725

MUSCLE 0.0980 0.2297 0.2777 0.2266 0.1941 0.2535 0.0939 0.1686

ClustalW 0.0723 0.1916 0.2318 0.1876 0.1551 0.2030 0.0733 0.1344

DaliLite 0.4206 0.4936 0.5571 0.5289 0.4087 0.5110 0.0697b 0.1268b

The first three methods use extra data given by PSI-BLAST and PSIPRED. The last method (DaliLite) produces alignments based on comparison of known

3D structures. The other five are stand-alone methods. All sequence-based methods except HHalign construct multiple sequence alignments for target domain pairs with

up to 48 homologs. HHalign constructs pairwise profile–profile alignments. Scores are calculated for pairwise alignments of target domain pairs extracted from multiple

sequence alignments.
aPROMAL yields statistically higher structure-similarity scores (in bold) than other sequence alignment methods (P-value5 0.000001) according to Wilcoxon signed

rank test.
bDaliLite structure-based sequence alignments have the lowest average sequence similarity scores (in bold).
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alignment methods such as PSI-BLAST (Altschul et al., 1997)

and COMPASS (Sadreyev and Grishin, 2003). A recent

comprehensive study also supported the effectiveness of this

profile–profile scoring scheme (Wang and Dunbrack, 2004).

To adequately use predicted secondary structures, we not only

score them as emitted objects, but also use transition and
emission probabilities that are dependent on predicted second-

ary structure types (Supplementary Data). Unlike HHalign,

which treats each alignment as a classical profile HMM

(Eddy, 1998), our HMM has a simpler structure similar

to the classical 3-state pairwise HMM (Durbin et al., 1998).

SPEM (Zhou and Zhou, 2005) does not use HMMs, but applies
an empirical profile–profile alignment method (SP2) that

identifies the optimal alignment path. In contrast, the HMM

in PROMALS allows estimation of posterior probabilities of

matches between positions. As a result, PROMALS has a

probabilistic treatment of consistency similar to the one in

ProbCons andMUMMALS, while simple consistency measures
are used in SPEM, T-COFFEE (Notredame et al., 2000) and

PCMA (Pei et al., 2003). PROMALS performs significantly

better than SPEM and HHalign on difficult tests, suggesting

the advantages of our profile–profile comparison scheme.
Since PROMALS relies on PSI-BLAST and PSIPRED to

collect additional homologs and predicted secondary structures,

the speed of PROMALS is considerably slower than that of

stand-alone progressive methods. Our strategy for improving

speed is to use different algorithms for easy and difficult
alignments (Pei et al., 2003). By aligning highly similar

sequences in a fast way, the number of sequences subject to

the time-consuming steps (running PSI-BLAST, PSIPRED and

consistency transformation) could be substantially reduced.

For example, for 1207 SCOP domain pairs with up to 48 added

homologs, the average number of sequences in an alignment
is 41.6. After PROMALS aligns similar sequences with identity

above 60% in the first stage, only �24 sequences on average

require database searches, secondary structure prediction,

and consistency transformation. For these tests, the median

CPU time of PROMALS is �30min per alignment, as

compared to 67min for SPEM (on Redhat Enterprise

Linux 3, AMD Opteron 2.0GHz). The stand-alone methods
(MUMMALS, PROBCONS, MAFFT, MUSCLE and

ClustalW) are much faster, all with a median CPU time51min.
As in our previous work (Pei and Grishin, 2006),

we demonstrated the effectiveness of reference-independent
evaluation of alignment quality in this study. First, we observed

a good correlation between reference-dependent and reference-

independent evaluations, suggesting that it may not be
necessary to spend significant efforts on development of

reference alignment databases. Second, reference-independent
techniques solve the problem of reference alignment ambiguity,

which becomes significant when similarity is low. Third,
reference-independent evaluation helps answer general ques-

tions such as whether alignments can be further improved for
sequences with low similarity, and whether such improvements

will help structure modeling. For several structural similarity
measures (GDT-TS, 3Dscore, TM-score, LB contact scores),

the ratio between the average score of PROMALS sequence-

based alignment and the average score of DaliLite structure-
based alignment is �0.6 on domain pairs with520% sequence

identity (Table 2), suggesting that we are still 40% below what
can be achieved with structures in hand. Notably, for these

divergent sequences, DaliLite structural alignments have lower
sequence similarity scores (identity and BLOSUM62 scores)

than alignments produced by any sequence method, suggesting
that scoring functions based only on amino acid sequence

similarity may not be suitable for aligning divergent sequences

for the purpose of homology modeling. This observation
further justifies the use of alternative scoring schemes, such as

the ones that recruit structural information.
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Table 3. Pairwise comparisons among alignment methods on 1207 SCOP domain pairs with identity520%

PROMALS SPEM HHalign MUMMALS ProbCons MAFFT-linsi MAFFT-ginsi MUSCLE ClustalW

PROMALS – 109/196 76/179 67/340 44/458 67/398 61/374 60/464 49/650
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HHalign 265/84 196/121 – 77/254 49/368 73/288 78/301 66/393 53/571

MUMMALS 685/286 648/305 627/333 – 38/169 111/138 82/128 82/227 59/431

ProbCons 726/263 693/277 674/303 201/62 – 172/80 162/76 162/169 110/336

MAFFT-linsi 718/276 680/295 662/325 239/128 133/188 – 85/98 93/196 60/387

MAFFT-ginsi 714/271 676/284 664/313 199/117 113/184 111/132 – 90/185 67/395

MUSCLE 783/239 741/255 727/279 401/83 302/138 295/110 327/106 – 75/288

ClustalW 858/193 840/209 819/228 649/55 559/103 585/70 600/76 449/100 –

Each off-diagonal cell has two numbers separated by a slash. The first number is the number of pairs where the alignment score of the method listed to the left is

inferior to that of the method listed above (in a column) by 0.1 or more. The second number is the number of pairs where the score of the method listed to the left is

better than that of the method listed above by 0.1 or more. The alignment quality scores used for comparison in the lower triangle and the upper triangle are Q-scores

and weighted and scaled TM-scores, respectively. These scores are calculated based on results of multiple sequence alignments (target domain pairs plus up to 48 added

homologs), with the exception of HHalign alignments, which are pairwise profile–profile alignments. Comparisons of PROMALS with other methods are highlighted in

bold.
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