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ABSTRACT

Motivation: The structures of homologous proteins are generally
better conserved than their sequences. This phenomenon is demon-
strated by the prevalence of structurally conserved regions (SCRs)
even in highly divergent protein families. Defining SCRs requires the
comparison of two or more homologous structures and is affected by
their availability and divergence, and our ability to deduce structurally
equivalent positions among them. In the absence of multiple homolo-
gous structures, it is necessary to predict SCRs of a protein using
information from only a set of homologous sequences and (if available)
a single structure. Accurate SCR predictions can benefit homology
modelling and sequence alignment.

Results: Using pairwise DaliLite alignments among a set of homolo-
gous structures, we devised a simple measure of structural conserva-
tion, termed structural conservation index (SCl). SCI was used to
distinguish SCRs from non-SCRs. A database of SCRs was compiled
from 386 SCOP superfamilies containing 6489 protein domains.
Artificial neural networks were then trained to predict SCRs with vari-
ous features deduced from a single structure and homologous
sequences. Assessment of the predictions via a 5-fold cross-validation
method revealed that predictions based on features derived from a
single structure perform similarly to ones based on homologous
sequences, while combining sequence and structural features was
optimal in terms of accuracy (0.755) and Matthews correlation coeffi-
cient (0.476). These results suggest that even without information from
multiple structures, it is still possible to effectively predict SCRs for a
protein. Finally, inspection of the structures with the worst predictions
pinpoints difficulties in SCR definitions.

Availability: The SCR database and the prediction server can be
found at http://prodata.swmed.edu/SCR.

Contact: 91huangi@gmail.com or grishin@chop.swmed.edu
Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Proteins descending from a common ancestor usually conserve
certain features of sequence, structure or function. These features
can often be used to assess evolutionary relationships. Although
it is generally accepted that high sequence similarity implies

*To whom correspondence should be addressed.

protein homology, it is not uncommon for homologous proteins
to exhibit significant sequence variability (Murzin et al., 1995),
underscoring the need for additional ways to deduce homolo-
gous relationships. In these cases, the use of 3-dimensional struc-
tures can aid homology inference (Cheng et al., 2008; Dietmann
and Holm, 2001), as structures tend to be more conserved than
sequences (Chothia and Lesk, 1986). Distantly related proteins
generally maintain similar structural folds, and as a result, a large
fraction of regions (e.g. >50%) can be structurally aligned even
given very low sequence identity (e.g. <20%) (Chothia and Lesk,
1986; Hilbert et al., 1993). Therefore, study of structurally con-
served regions (SCRs) and structurally variable regions (SVRs)
can help characterize protein families and is useful in applica-
tions that rely on homology, such as structure modelling and
sequence alignment (Bates and Sternberg, 1999; Chakrabarti
et al., 2006; Chivian and Baker, 2006; Greer, 1980).

SCRs are generally characterized by, but not limited to, a set
of key secondary structures arranged in an overall topology
shared by most members of a protein family. In practice,
SCRs are usually deduced by aligning a set of two or more hom-
ologous structures and then inspecting which positions were
alignable in the majority of the structures (Chothia and Lesk,
1986; Deane et al., 2001; Greer, 1980; Hilbert er al., 1993;
Sandhya er al., 2008). The number and divergence of available
homologous structures can affect SCR definition, as a positive
correlation exists between the fraction of structurally alignable
parts and sequence similarity (Hilbert et al., 1993). The exact
methodology of aligning structures also affects SCR definition.
SCR definitions have often relied on a structural superposition
procedure that aims to optimize scoring functions (e.g. RMSD)
based on intermolecular distances of structurally equivalent resi-
dues. A fixed distance cut-off is then selected to define all SCRs
(Chothia and Lesk, 1986; Hilbert ez al., 1993). However, rigid
structural alignment methods based on minimizing intermolecu-
lar distances might be problematic, because proteins are fairly
elastic in evolution and can exhibit significant secondary struc-
ture deformations, shifts and rotations when divergent structures
are compared. Therefore, it has been noted that SCRs defined
with a fixed cut-off of intermolecular distance tend to underesti-
mate structurally equivalent positions for divergent homologues.
Extensions of these SCRs with other geometric features such as
backbone conformations have been shown to improve the per-
formance of comparative modelling (Deane er al., 2001;
Montalvao et al., 2005). More ‘elastic’ alignment methods,
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such as those based on comparison of intramolecular contacts,
emphasize similarities in the local structural environment and
allow deducing correspondences even for structural elements
with larger deviations (Fong and Marchler-Bauer, 2009;
Hasegawa and Holm, 2009; Holm and Sander, 1996).

Although the number of solved structures is growing rapidly,
it still pales in comparison with the amount of available sequence
data (Levitt, 2007). There are still quite a number of protein
families with few or even no experimental structures. For these
cases, it is necessary to rely on predictive methods to identify
SCRs. A few methods have been developed to predict the con-
servation of various structural properties similar to SCRs with
measured success. Hydrophobicity plots and wavelet analysis
have been used to predict ‘hydrophobic cores’, hydrophobic
regions that determine the ‘native-like’ structure of a protein
(Hirakawa et al., 1999). However, hydrophobic cores do not
comprise the entire set of SCRs, because not all structurally
conserved residues are buried within a hydrophobic environ-
ment. In the MegaMotifBase database, conserved ‘structural
motifs’ were defined based on multiple homologous structures
as short isolated fragments that exhibit both high sequence and
structural conservation (Pugalenthi et al., 2008). These structural
motifs were subsequently predicted without information about
multiple structural homologues by using a neural network en-
semble (Pugalenthi er al., 2009). However, the structural motifs
in MegaMotifBase are different from general SCRs, which har-
bour residues that are not necessarily highly conserved in terms
of sequence. In fact, owing to the requirement of both sequence
and structural conservation, the fraction of residues in the motifs
defined in MegaMotifBase is quite low (~20%), as compared
with the fraction of structurally conserved residues (>60%) in
even highly divergent protein families (Hilbert ez al., 1993). To
our knowledge, methods for prediction of SCRs in absence of
multiple structures are currently not available.

In this work, we approach the process of SCR delineation as
two separate challenges. When a given protein family has mul-
tiple known structures, SCRs can be defined by accurate struc-
tural alignments. However, in the absence of structural
homologues, SCRs can be predicted given information from a
single structure and/or homologous sequences. Here, based on
DaliLite (Holm and Sander, 1996) alignments of homologous
structures, we introduce structural conservation index (SCI) as
a simple measure of positional structural conservation. Using
SCI, we constructed a database of SCRs found in SCOP
(Murzin et al., 1995) superfamilies with five or more non-redun-
dant members. This database was used to develop an SCR pre-
dictor based on artificial neural networks, with inputs of various
features derived in each case from homologous sequences and at
most a single structure. We further analysed the results of SCR
predictions and identified common problems and difficulties in
SCR definitions.

2 METHODS
2.1 Compilation of the SCR database

2.1.1 Selection of protein superfamilies Our dataset was based
on the SCOP (version 1.75) database, which contains protein domain
structures divided hierarchically into classes, folds, superfamilies, families,

protein domains, species and PDB domains (from highest to lowest).
We were particularly interested in the conservation at the superfamily
level, which is the largest grouping of evolutionarily related proteins in
SCOP that share common structural folds.

To define the dataset, we only considered the structures in the
ASTRAL SCOP40 database (Chandonia et al., 2004). ASTRAL contains
a subset of SCOP domains with a level of non-redundancy corresponding
to at most 40% sequence identity. We excluded certain superfamilies that
we anticipated to have poor alignments by the DaliLite algorithm. In
particular, SCOP classes g—k (small proteins, coiled coil proteins, low
resolution proteins, peptides and fragments, and designed proteins)
were removed. A handful of individual folds and superfamilies in the
remaining six classes (all alpha proteins, all beta proteins, a/b proteins,
a+b proteins, multi-domain proteins, and membrane and cell surface
proteins and peptides) were also omitted from the dataset as they
exhibited either high structural variability or topologies, such as repeating
or duplicated domains and circular permutations, that could pose prob-
lems for DaliLite (a.6.1, a.100.1, a.118, a.138.1, b.34.5, b.82.1, b.84.2,
b.108.1, c.1.8, ¢.10.2, ¢.37.1, c.47.1, d.2.1, d.3.1, d.52.3, d.133, d.169.1,
d.198.1,d.211.1,d.325.1, f.4.1). Finally, superfamilies with fewer than five
domains were removed to ensure that there were enough members to
provide meaningful structural conservation measurement. In total, 386
superfamilies with a total of 6489 protein domains were used.

2.1.2  Structure alignments and SCR definition Using the pro-
gram DaliLite, all-against-all pairwise alignments were generated for the
domains in every superfamily. For each domain, we combined the align-
ments in a master-slave fashion to obtain a multiple structure-based se-
quence alignment. From these alignments, a value called the SCI was
assigned to each residue in every structure, measuring positional conser-
vation of 3-dimensional structure within the superfamily. For a target
residue, the SCI was defined as:

SCI = Na]igned/(Naligned + Nunaligned + Ngap) = Naligned/Nlotal (1)

where Nijigned> Nunaligneds Neap ad Nigiar are, respectively, the number of
residues alignable to the target residue (uppercase letters in DaliLite align-
ment), the number of unalignable residues (lowercase letters in DaliLite
alignment), the number of gaps in the position containing the target
residue and the total number of proteins in the superfamily (the target
residue itself is counted as one aligned residue). Thus, SCI is a measure of
the alignability of each amino acid by DaliLite, with a higher SCI sug-
gesting more structural conservation among superfamily members. After
manual inspection, the criterion of 80% conservation (SCI: > 0.8) was
used to define SCRs.

2.2 Prediction of SCRs

2.2.1 Neural network procedure We implemented a neural net-
work prediction procedure that explores information from a window of
positions centred at a target residue. Using Fast Artificial Neural
Network (http://leenissen.dk/fann), a neural network package based on
the feedforward/backpropagation training algorithm, we performed
S-fold cross validation experiments in which we predicted real-valued
SCIs for individual residues based on a variety of sequence and structural
features.

To generate the dataset for cross validation, we randomly selected a
single representative from each protein superfamily in the SCR database.
The 386 domains were then partitioned uniformly into 5 sets of 77 (one
with 78) domains. Each set was used as a testing set, with the remaining
four sets used for training the neural network. To prevent over-training,
the members not included in the testing set were randomly divided into (i)
a subset of 259 (258) domains that was fed into the neural network for
training and (ii) a monitoring subset of 50 domains. The monitoring
subset was used to find the training round that returned the lowest
mean-squared error (MSE) between the predicted and calculated SCIs,
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at which point the training procedure was considered to be complete.
We then reported the results on the testing set.

Inputs of neural networks were various positional features derived
from one 3-dimensional structure and/or sequence homologues. To ac-
count for a residue in the context of its neighbours, we included a window
of residue features, a technique popularized by secondary structure pre-
diction algorithms (Qian and Sejnowski, 1988). We fixed a local window
of size 2 x k+ 1, centred on one residue, and containing features from
k residues before and k residues after. We considered the case when
windows near the start or end of the protein sequence would extend
beyond the sequence itself by adding a binary tag as an input feature
to indicate its occurrence.

We then monitored the MSE between the predicted and defined SCIs
to determine the parameters to be used in the neural network. Varying
parameters and monitoring the MSE suggested these best parameter set-
tings: one hidden layer of 20 neurons, and both activation steepness and
output steepness of 0.5.

2.2.2  Features derived from a 3-dimensional structure The
DSSP program (Kabsch and Sander, 1983) was used to calculate second-
ary structure (SS) and solvent accessibility for each residue. The SS values
were categorized into three states: a-helices (H, G and I), S-strands
(E and B) and loop regions (other letters reported by DSSP). The solvent
accessibility, a measure of the number of water molecules in contact with
a given residue, was normalized between 0 and 1 to give the relative
solvent accessibility (RSA). The number of CS atoms in a 14A radius
of the Cp of the target residue (CB14) was also calculated and scaled by a
constant of 0.01 to yield values approximately between 0 and 1.

2.2.3  Features derived from sequence We used four iterations
of PSI-BLAST (Altschul ef al., 1997) with an inclusion e-value of le-4 to
generate multiple sequence alignments which were used to derive three
positional features. The position-specific scoring matrix (PSSM), a meas-
urement of the amino acid occurrences, was obtained from the
PSI-BLAST checkpoint file. Conservation indices calculated by the
AL2CO (Pei and Grishin, 2001) were used as a measure of sequence
conservation between homologous sequences. The last alignment-derived
feature was the fraction of gaps per residue position. The combination of
features derived from PSI-BLAST alignment (PSSM, conservation value
and gap fraction) is called PBL.

Local structure prediction results were also used as neural network
inputs. PSIPRED (Jones, 1999) was used to obtain predicted secondary
structures (SSP). Predicted RSA values (RSAP) were generated by using
a simple neural network with the PSI-BLAST PSSM as inputs. The se-
quence length of the protein was also added as a feature and was scaled
by dividing by 200.

2.24  Performance measures We considered a residue to be in
an SCR when the SCI of that residue was at least 0.8. A cut-off value for
the prediction values was also used to separate predicted SCRs (positives)
from predicted non-SCRs (negatives). The results of our prediction meth-
ods were thus categorized in a 2 by 2 contingency table consisting of TP
(true positives: correctly predicted SCRs), TN (true negatives: correctly
predicted non-SCRs), FP (false positives: non-SCRs predicted to be
SCRs) and FN (false negatives: SCRs predicted to be non-SCRs).

The cut-off value for the predicted SCI values was determined by
scanning the space [0.5, 1] at increments of 0.01 and optimizing once
on accuracy score (Q2) and again on Matthews correlation coefficient
(MCC) given by equations (2) and (3), respectively.

Q2 = (TP + TN)/(TP+ TN+ FP + FN) = (TP + TN)/N (2

MCC = (TP x TN — FP x FN)/

3
V(TP + FP)(TP + FN)(TN + FP)(TN + FN) @)

Additionally, we performed receiver-operating characteristic (ROC)
analysis, which plots the true positive rate (sensitivity, equation 4)
versus false positive rate [l-specificity (equation 5)] of a prediction
method when the cut-off value for SCR predictions was systematically
varied:

Sensitivity = TP/(TP + FN) 4)

Specificity = TN/(TN + FP) (5)

The area under the ROC curve (AUC) gives an overall estimate of
performance, with a higher AUC value implying better prediction results
(Baldi et al., 2000).

2.2.5 SCR predictions compared with MegaMotif Base structural
motif predictions We compared our work with another
neural network predictor (Pugalenthi et al., 2009) based on the
MegaMotifBase database (Pugalenthi ez al., 2008). First, we tested their
structural motif predictors on our data by running their neural network
ensemble on our dataset of 386 proteins. Our neural network was then
used to predict structural motifs defined in MegaMotifBase. Of the 1194
SCOP superfamilies listed on their server, 23 single-membered superfa-
milies (a.2.2, a.4.8, a.7.6, a.8.2, a.38.1, a.49.1, a.50.1, a.118.13, a.137.1,
a.148.1,a.165.1, b.20.1, b.119.1, ¢.9.2, ¢.23.8, ¢.96.1, d.28.1, d.29.1, d.50.2,
d.58.42, d.58.45, e.15.1, g.41.8) had proteins with sequences that did not
match those listed in the SCOP version 1.75 files. These superfamilies
were omitted from the testing set. With the remaining 1171 superfamilies,
we selected a single protein structure at random as a representative of the
superfamily and ran our neural network prediction. The SCI cut-offs in
our prediction results were optimized both on the MCC and Q2.

3 RESULTS AND DISCUSSION
3.1 The database of SCRs

A database of protein structures was assembled from the 386
SCOP superfamilies with five or more nonredundant structures
at the 40% sequence identity level (see Methods). For any struc-
ture, its DaliLite pairwise alignments to other members in the
same superfamily were used to calculate the SCI, i.e. the fraction
of alignable residues in each position (see Methods). An SCI cut-
off of 80% (inclusive) was applied to determine SCRs. This
definition resulted in a total of 653 362 residues in SCRs out
of 1 172 507 residues, or a fraction of 55.72%. The distribution
of SCIs (Fig. 1) shows that about 30% of the residues were
structurally conserved in all members of a superfamily
(SCI=1), while the SCI values have a nearly uniform distribu-
tion between 0.2 and 0.8.

The fraction of SCRs has a negative correlation with the
number of structures in a superfamily. For superfamilies with
eight or less members, the average fraction of SCRs is about
70%, while for superfamilies with 20 or more members, the aver-
age SCR fraction is about 52%. Structural diversity is also re-
flected in the number of SCOP families classified in a SCOP
superfamily. While more than half of the superfamilies (223
out of 386) have three or more SCOP families, there are 89
and 74 superfamilies with only one and two SCOP families,
respectively. SCOP families with three or more families have
median SCR factions <62% (Supplementary Fig. S1). On the
other hand, SCOP superfamilies with one family and two
families have higher median SCR fractions of 77.8% and
72.5%, respectively (Supplementary Fig. S1). SCRs in some of
these superfamilies could be overestimated. It has also been
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Fig. 1. The distribution of SCI values in the SCR database. The range in
the format of [a, b) suggests SCI values no less than « and less than b

observed that the fraction of SCRs is correlated with the
sequence similarity (Hilbert ez al., 1993). As a crude measure-
ment of sequence similarity, we calculated pairwise sequence
identities of all domain pairs in each superfamily. For the
majority of the superfamilies (362 out of 386), the average
sequence identity among domain pairs is <25%. The median
of the average sequence identity among the 386 SCOP super-
families is only 17.1%. A positive correlation between SCR frac-
tion and average sequence identity in a superfamily was observed
(Supplementary Fig. S2).

Nine superfamilies have <30% residues defined as SCRs, sug-
gesting high structural divergence between the superfamily mem-
bers. The five superfamilies with the lowest SCR fractions (all
<20%) are well known for their high structural divergence:
His-Me finger endonucleases (d.4.1, SCR fraction 9.3%)
(Friedhoff et al., 1999; Shub et al., 1994), DNA/RNA polymer-
ases (e.8.1, SCR fraction 10.3%) (Majumdar et al., 2009),
Restriction endonuclease-like (c.52.1, SCR fraction 17.2%)
(Bujnicki, 2001; Roberts and Macelis, 1991), Ribonuclease
H-like (c.55.3, SCR fraction 18.9%) (Nowotny, 2009), and
Metalloproteases (‘zincins’), catalytic domain (d.92.1, SCR
fraction 19.3%) (Gomis-Ruth, 2003). One common feature for
these superfamilies is that they have a core consisting of several
structural elements, while many members have diverse structural
decorations that fall into unalignable regions. Conversely, there
are 18 superfamilies with very high SCR fraction (i.e. >85%).
These superfamilies have relatively few members (12 at most).

Our SCR definition relies on pairwise DaliLite structural
alignments. For each target structure, a master—slave pseudo-
multiple alignment was constructed from the pairwise alignments
of that structure (master) to all the other structures (slaves) in the
same superfamily (these alignments are available at the website
of SCR database). SCRs were then deduced from this alignment.
However, information in structural alignments among the slaves
is not used in SCR definition. Structural equivalences deduced
from pairwise structural alignments among three or more struc-
tures are not always consistent. For example, even if position i,
in a master structure A is aligned to position jz in one slave
structure B and aligned to position k¢ in another slave structure
C, positions jg and k¢ may not be aligned between the two slave

structures B and C. Such inconsistency should compromise the
structural conservation for position i, of structure 4. Multiple
structural alignment methods that explore the consistency among
pairwise structural alignments could lead to improved definitions
of SCRs.

3.2 Predictions of SCRs using neural networks

We used artificial neural network to predict SCRs based on fea-
tures derived from a single structure and/or homologous se-
quences. A S-fold cross-validation procedure was conducted
(see Methods) with input features derived from a window of
positions centred at a target position. We varied window sizes
starting from a size of one residue and increasing by increments
of four residues. Plotting the MCC and Q2 of the neural net-
works as a function of window size for a variety of combinations
of input features, we observed that the scores stopped increasing
when the window size exceeded 13 (Supplementary Fig. S3). This
suggests that a local window of 13 residues is optimal for neural
network predictors in terms of accuracy and speed. We thus
report results of neural network predictions with a fixed
window size of 13 for all feature combinations to facilitate
their comparisons. Neural networks were also trained with or
without sequence length (scaled by a factor of 1/200) as a feature
to determine its necessity in SCR prediction. We found that as an
input feature, sequence length benefited both MCC and Q2 in
every case (data not shown), so it was included in all experiments
described below.

To evaluate the performance of SCR predictions, we applied a
cut-off to predicted SCIs to distinguish predicted SCRs (residues
with predicted SCIs no less than the cut-off) from predicted
non-SCRs (residues with predicted SCIs less than the cut-off),
which allows us to assign true/false positive or true/false negative
for each residue (see Methods). For each neural network, such a
cut-off of predictions was systematically varied to obtain the
ROC curve, from which the AUC was calculated and served as
a performance evaluation score (Fig. 2 and Supplementary Figs
S4-S6). For each neural network, we also determined a cut-off of
predicted SCIs that reported the best MCC and another cut-off
that reported the optimal Q2. MCC, Q2, sensitivity (SE) and
specificity (SP) given both cases are shown in Table 1.

3.2.1 SCR predictions using information derived from a single
structure Conventionally, defining SCRs has required align-
ment of two or more homologous structures, and the result
depends on the diversity of available structures. In contrast, we
explored the prediction of SCRs using features derived from just
one structure. The three structural features we tested were sec-
ondary structure (SS) and two residue burial properties: RSA
and CBI14 (Table 1). The single feature with the best predictive
power was CB14 (MCC =0.423, Q2=0.731, AUC=0.783). It
outperformed RSA (MCC=0.391, Q2=0.716, AUC=0.767;
Table 1 and Supplementary Fig. S4), suggesting that the
number of residue contacts and solvent accessibility are not inter-
changeable properties despite the strong correlation between
them (Pollastri et al., 2001). Our result is consistent with previous
finding that CB14 is one of the most effective residue burial
properties, outperforming RSA in fold recognition and align-
ment experiments (Karchin ez al., 2004). Both CB14 and RSA
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gave better results than SS (MCC=0.315, Q2=0.687,
AUC=0.724), suggesting that residue burial properties
are more important in determination of SCRs than secondary
structure. When combining structural features, the best perform-
ance was achieved by the combination of SS and CB14
(MCC=0.436, Q2=10.739, AUC =0.802), which performs simi-
larly to the combination of all three structural features
(MCC=0.433, Q2=0.735, AUC=0.797; Table 1).

3.2.2  SCR predictions using sequence information For pro-
tein families without available structures, we explored

0.5
0.8+ P 4
9] /A /7
IS 04t A
206F / / B
B 0.3} " g
o 4 /'
Q 3 !
3
= 04r SS+CB14 —— 02} /f 1
STR (SS+CB14+RSA) -----
PBL+SSP —— | f/ i
02l SEQ(PBL+SSP+RSAP) ----- : ]
SS+CB14+PBL+SSP ——
STR+SEQ ----- 0 ‘
0 0.05 0.1
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1

False positive rate

Fig. 2. ROC curves of selected neural network predictions. Two best
neural networks using structure features (blue lines), sequence features
(black lines) and combined features (red lines) are shown

Table 1. Evaluation of SCR predictions

information from homologous proteins to predict SCRs. For
each family, we first tested the performance of a PSI-BLAST
PSSM coupled with two additional alignment-derived positional
properties, sequence conservation value and gap fraction (com-
bination of the three features named PBL in Table 1). Two struc-
tural properties predicted from PSI-BLAST PSSMs were
independently tested, SSP and RSAP. Of the three variables
PBL, SSP and RSAP, PBL performed at the highest level
(MCC=0.408, Q2=0.728, AUC =0.777). The features that per-
formed the best when in combination were PBL and SSP
(MCC=0.424, Q2=0.735, AUC=0.788), showing a similar
performance to that of combining all the sequence-based features
(MCC=0.423, Q2=0.733, AUC=0.788; Table 1 and
Supplementary Fig. S5). The best performer using sequence in-
formation yielded slightly worse results compared with the best
performer using information from a single structure (Table 1).

3.2.3  Combining information from both sequence and structure
improves SCR predictions We varied the combinations of
features from the structural category and the sequence category.
Various combinations all gave similar performance (Table 1 and
Supplementary Fig. S6). The best result (MCC=0.476,
Q2=0.755, AUC=0.817) was achieved when combining the
two features that gave the best performance in the structural
category (SS+ CBI14) and the two features that gave the best
performance in the sequence category (PBL + SSP). This result
was similar to that of combining all structural and
sequence features (STR+SEQ in Table 1). Given the input
SS+ CB14+PBL+SSP, adding sequence information
improved MCC by about 9%, Q2 by about 2% and AUC by

Features used in Optimization on MCC Optimization on Q2 AUC
neural network
MCC Q2 SE SP Q2 MCC SE SP
Structural features
SS 0.315 0.681 0.768 0.541 0.687 0.308 0.837 0.445 0.724
RSA 0.391 0.711 0.757 0.636 0.716 0.388 0.807 0.57 0.767
CBl4 0.423 0.726 0.769 0.655 0.731 0.414 0.85 0.541 0.783
SS+ RSA 0.414 0.719 0.751 0.668 0.728 0.406 0.853 0.527 0.784
SS+ CBl14 0.436 0.719 0.703 0.745 0.739 0.432 0.852 0.556 0.802
RSA 4+ CB14 0.417 0.727 0.795 0.618 0.729 0.41 0.84 0.55 0.777
STR (SS+ RSA + CB14) 0.433 0.726 0.747 0.692 0.735 0.429 0.824 0.592 0.797
Sequence features
PBL 0.408 0.721 0.783 0.623 0.728 0.404 0.861 0.513 0.777
SSP 0.364 0.698 0.746 0.621 0.707 0.354 0.854 0.469 0.749
RSAP 0.389 0.713 0.776 0.61 0.716 0.387 0.808 0.568 0.766
PBL + SSP 0.424 0.735 0.844 0.559 0.735 0.423 0.855 0.543 0.788
PBL + RSAP 0.405 0.727 0.842 0.541 0.727 0.402 0.868 0.501 0.775
SSP + RSAP 0.418 0.731 0.826 0.578 0.732 0.413 0.862 0.521 0.782
SEQ (PBL + SSP + RSAP) 0.423 0.725 0.765 0.661 0.733 0.417 0.865 0.522 0.788
Combined features
SS+ CB14+ PBL 0.465 0.752 0.836 0.617 0.753 0.464 0.861 0.58 0.812
SS + CB14+ PBL + SSP 0.476 0.75 0.782 0.698 0.755 0.468 0.867 0.575 0.817
SS+ CB14+ SEQ 0.467 0.753 0.841 0.512 0.753 0.467 0.841 0.512 0.814
STR + PBL 0.465 0.751 0.83 0.624 0.752 0.461 0.864 0.572 0.814
STR + PBL + SSP 0.468 0.751 0.815 0.647 0.752 0.461 0.853 0.589 0.814
STR +SEQ 0.474 0.753 0.809 0.662 0.755 0.471 0.846 0.61 0.814

SE and SP are sensitivity and specificity, respectively. The best two predictions in each category are shown in bold and underlined numbers.
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about 2% when compared with the best performer that used
structural information only (SS + CB14).

3.3 Comparison with the predictions of
MegaMotifBase structural motifs

In a related study, neural network predictions of conserved
structural motifs in the MegaMotifBase were reported
(Pugalenthi et al., 2009). These MegaMotifBase motifs were
defined as segments with both high sequence conservation and
structural conservation, while our SCR definitions do not include
sequence conservation. Our neural network did not accurately
predict MegaMotifBase motifs (see Methods; best MCC was
only 0.348), as compared with the reported performance of
neural networks trained directly on these motifs (MCC = 0.845)
(Pugalenthi ez al., 2009). Likewise, the MegaMotifBase motif pre-
diction program is inferior in predicting our definitions of SCRs
MCC=0.192, Q2=0.476). The relatively inaccurate predictions
of both our program on the MegaMotifBase dataset and
Pugalenthi ez al.’s program on our SCR dataset highlight how
our SCR definitions differ from the MegaMotifBase motifs.

3.4 Structural analysis of SCR predictions

We compared prediction results (based on the feature combin-
ation of SS+ CB14+PBL + SSP) to SCR definitions for each
individual protein to determine prediction sensitivity, specificity
and accuracy (Supplementary Table S1). The prediction accura-
cies for individual domains ranged from 0.119 to 0.977, with a
median value of 0.783 and an average value of 0.765.
Inspection of SCR definitions and predictions revealed two
major reasons for the worst prediction accuracies. The first
was unreasonable SCR definitions owing to the inconsistency
in SCOP domain definitions in a superfamily. In particular, for
some SCOP superfamilies, a domain definition comprised a
single unit for some members, but duplicate units for other mem-
bers. One example is the low prediction accuracy for the struc-
ture of a hypothetical protein (SCOP ID: d1u9da_, pdb code:
1U9D, chain A) from the Tautomerase/MIF superfamily (SCOP
ID: d.80.1). This structure is characterized by a duplication of
two beta-alpha-beta structural units (Fig. 3a). However, 4 out of
11 domains in this superfamily contain only one beta-alpha-beta
unit, and they are all aligned to the C-terminal beta-alpha-beta
unit of dlu9da_ (B-strands b3 and b4 and a-helix A2 in Fig. 3a).
The N-terminal beta-alpha-beta unit of dlu9da_ (B-strands bl
and b2 and a-helix A1, Fig. 3a) is thus devoid of SCRs according
to our SCR definition, as the SCI values for the residues in the
N-terminal unit are no more than 7/11 and less than the SCR
cut-off of 0.8 (see Supplementary Fig. S7a for the alignment).
Our neural network predicted a similar fraction of SCRs in both
the N- and C-terminal units of dlu9da_. However, the SCR
predictions in the N-terminal unit were counted as false positives
(green, Fig. 3a) according to the unreasonable SCR definitions,
which resulted in the low prediction accuracy for dlu9da_
(Q2=0.500). Besides d1u9da_, we found low prediction accura-
cies for several other proteins with unreasonable SCR definitions
owing to inconsistent SCOP domain definitions involving dupli-
cated domains (such as dls7ja_ and dlwwial, Supplementary
Table S1). A similar problem was found for a few cases where
SCRs were not defined for regions corresponding to an inserted

NS
N/

Fig. 3. Structural mapping of SCR predictions for (a) dlu9da_ from the
Tautomerase/MIF superfamily and (b) d2etjal from the Ribonuclease
H-like superfamily. True positives, false positives, true negatives and
false negatives are coloured red, green, yellow and blue, respectively.
N- and C-termini are marked. Major secondary structural elements are
labelled ‘A’ for a-helices and ‘b’ for B-strands

domain, while reasonable SCR predictions were made for the
inserted domain (e.g., d1t3qc2 in the superfamily of d.145.1,
Supplementary Table S1).

A second cause of low prediction accuracy was found in sev-
eral domains from SCOP superfamilies with high structural
divergence and low fractions of defined SCRs. One example is
the domain (SCOP ID: d2etjal) from the Ribonuclease H-like
superfamily (SCOP ID: ¢.33.3, Fig. 3b). Our SCR definition pro-
cedure successfully identified the five central g-strands of this
domain as its SCRs (bl-b5 in Fig. 3b), consistent with the
SCOP description of the general ‘Ribonuclease H-motif* fold.
The neural network also predicted these five g-strands as SCRs
(true positives, coloured red in Fig. 3b), resulting in high sensi-
tivity of the prediction (SE =1.0, all 35 defined SCRs were pre-
dicted as SCRs). However, the neural network predictor also
included additional structural elements as predicted SCRs
(a total of 44 residues were false positives), resulting in low pre-
diction specificity (SP =0.426) and a low Q2 score of 0.521. Most
noticeably, two a-helices (Al and A2 in Fig. 3b) sandwiching the
central beta sheet were predicted as SCRs, while they were not
defined as SCRs. In quite a number of members of the
Ribonuclease H-like superfamily, these two a-helices are indeed
present and could be structurally aligned to their counterparts in
d2etjal (Supplementary Fig. S7b). However, the SCI values for
residues in these two «-helices were around 0.5, and so did not
pass the SCR definition cut-off of 0.8.

High structural divergence among some superfamily members
also resulted in incorrect DaliLite alignments, as observed for
some members in the His-Me endonuclease superfamily (SCOP
ID: d.4.1). Other structural changes that posed problems for
DaliLite alignment program and SCR definitions included circu-
lar permutation (such as superfamily d1r5ba2 in the superfamily
of b.44.1) and domain swap (such as d2gmyal in the superfamily
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SCRs in protein superfamilies

of a.152.1). Manual inspection of structures with the worst pre-
diction results revealed 11 protein domains with SCR definition
problems (gray lines in Supplementary Table S1). For the neural
network (SS+ CB14+PBL + SSP) trained on 386 domains,
removal of the 11 domains led to improved performance for
the remaining 375 domains (MCC=0.491, Q2=0.765,
AUC =0.826, Supplementary Table S2) compared with the per-
formance averaged on the 386 domains (MCC=0.476,
Q2=0.755, AUC=0.817). To investigate whether those cases
of unreasonable SCR definitions negatively affected neural net-
work training, we excluded them and did new cross-validation
tests of neural networks using the remaining 375 domains
(Supplementary Table S3). However, this procedure yielded no
improvement over the procedure trained using the entire 386
domains (Supplementary Tables S2 and S3). This result suggests
that our neural network procedure is robust and can tolerate a
few cases of unreasonable SCR definitions.

4 CONCLUSION

We developed SCI, a measure of positional structural conserva-
tion based on pairwise DaliLite alignments among a set of hom-
ologous structures. A database of SCRs was defined for 386
SCOP superfamilies with five or more structures at the <40%
sequence identity. We explored various structure-based and
sequence-based features in SCR predictions using the artificial
neural network technique. For features derived from a single
structure, we observed that CB14 was a more informative residue
burial property than relative solvent accessibility, and that CB14
coupled with SS achieved a prediction Q2 of 0.739 and MCC of
0.436. For features derived from homologous sequences, we
observed that SSP contributed to prediction accuracy, and SSP
coupled with PBL properties [PSI-BLAST position scoring matrix
(PSSM), gap fraction and positional amino acid conservation
score] gave Q2 of 0.735 and MCC of 0.424. Combination of fea-
tures derived from a single structure and features derived from
homologous sequences (SS + CB14 + PBL + SSP) resulted in the
best predictor with Q2 of 0.755 and MCC of 0.476. Inspection of
the discrepancies between the prediction results and SCR defin-
itions for structures with low prediction accuracies highlights
problems and difficulties in defining SCRs caused by inconsist-
ency in domain definitions and high structural divergence.
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