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Abstract

Modeling side-chain conformations on a fixed protein backbone has a wide application in structure pre-
diction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring
function, and search strategy. We have developed a new and simple scoring function, which operates on
side-chain rotamers and consists of the following energy terms: contact surface, volume overlap, backbone
dependency, electrostatic interactions, and desolvation energy. The weights of these energy terms were
optimized to achieve the minimal average root mean square (rms) deviation between the lowest energy
rotamer and real side-chain conformation on a training set of high-resolution protein structures. In the course
of optimization, for every residue, its side chain was replaced by varying rotamers, whereas conformations
for all other residues were kept as they appeared in the crystal structure. We obtained prediction accuracy
of 90.4% for �1, 78.3% for �1 + 2, and 1.18 Å overall rms deviation. Furthermore, the derived scoring
function combined with a Monte Carlo search algorithm was used to place all side chains onto a protein
backbone simultaneously. The average prediction accuracy was 87.9% for �1, 73.2% for �1 + 2, and 1.34 Å
rms deviation for 30 protein structures. Our approach was compared with available side-chain construction
methods and showed improvement over the best among them: 4.4% for �1, 4.7% for �1 + 2, and 0.21 Å for
rms deviation. We hypothesize that the scoring function instead of the search strategy is the main obstacle
in side-chain modeling. Additionally, we show that a more detailed rotamer library is expected to increase
�1 + 2 prediction accuracy but may have little effect on �1 prediction accuracy.
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Side-chain modeling plays an important role in molecular
docking and protein structure prediction. Protein side chains
make a dominant contribution to molecular recognition
(Vasquez 1996). Homology modeling of a protein from its
sequence using the structure of its homolog is widely used
in structure-based drug design (Lybrand 1995). Detailed
information about the binding site of the target protein is
essential to generate new lead compounds. The ab initio
protein folding problem can be divided into two sequential

tasks of approximately equal computational complexity: the
generation of nativelike backbone folds and the positioning
of side chains on these backbones (Huang et al. 1998). The
combinatorial complexity of the entire problem is merely
additive for the two steps, rather than multiplicative, which
makes this task computationally feasible.

Protein side chains tend to exist in a limited number of
low energy conformations called rotamers (Ponder and
Richards 1987). Instead of considering the full geometri-
cally possible conformational space, only a small number of
rotamers can be used to describe most naturally occurring
conformers of a side chain. Growth of the Protein Data
Bank (PDB, Berman et al. 2000) provides more high-quality
protein structures for statistical analysis, which increases the
reliability and completeness of rotamer libraries. Two types
of rotamer libraries have been developed, namely, a back-
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bone-independent library (Ponder and Richards 1987;
Tuffery et al. 1991; De Maeyer et al. 1997; Lovell et al.
2000) and a backbone-dependent library (Dunbrack and
Karplus 1993). Both of them have been widely used for
predicting side-chain conformations. As a consequence, the
speed and efficiency of finding an optimal protein confor-
mation is dramatically enhanced compared with the con-
tinuous space methods.

Even when rotamer libraries are used, the combinatorial
nature of side-chain placement on a given protein backbone
has been often cited as the main obstacle to the correct
prediction of side-chain conformation (Lee and Subbiah
1991; Eisenmenger et al. 1993; Petrella et al. 1998). Many
strategies have been proposed to solve this problem: Monte
Carlo searches (Holm and Sander 1992; Vasquez 1995),
genetic algorithms (Tuffery et al. 1991), neural networks
(Hwang and Liao 1995), mean-field optimization (Koehl
and Delarue 1994; Mendes et al. 1999), dead-end elimina-
tion (DEE) method (Desmet et al. 1992; De Maeyer et al.
1997), and actual combinatorial searches (Dunbrack and
Karplus 1993; Wilson et al. 1993; Bower et al. 1997). Al-
though DEE is considered to be the most powerful algo-
rithm, designed to identify global minimum energy confor-
mations, its predictions are far from being 100% accurate
even for the core residues (De Maeyer et al. 1997; Looger
and Hellinga 2001). Recently, Xiang and Honig (2001) ob-
tained the greatest accuracy for core residues with an ex-
tensive library of 7560 rotamers. However, their methods
did not show advantages for all residues. Thus, a scoring
function might be the real obstacle for side-chain predic-
tion.

Unlike search strategies, relatively less attention has been
paid to the scoring function. The simplest energy functions,
which are limited to estimating Van der Waals interactions
by a Lennard-Jones potential, appear to give excellent re-
sults for buried nonpolar amino acids (Vasquez 1996).
However, these approaches do not give accurate results for
exposed, partially exposed, or buried polar residues. The use
of electrostatic or hydrogen-bonding terms, which are typi-
cal of commonly used force fields, have not shown a sig-
nificant improvement over the simple Van der Waals po-
tential (Vasquez 1996; Bower et al. 1997; De Maeyer et al.
1997). Wilson et al. (1991) added a desolvation energy term
to the AMBER force field. The weight of the desolvation
energy was derived from protein–ligand interaction. How-
ever, the combined scoring function did not prove to be
successful in side-chain modeling (Wilson et al. 1993). The
failure of force field applications indicates that special en-
ergy functions should be used for side-chain modeling.
Samudrala and Moult (1998) used a discriminatory function
based on a statistical analysis of atomic contacts in protein
structures for selecting side-chain rotamers, given a protein
backbone. Their program, however, does not perform better
than others.

The PDB contains many high-quality protein structures
for derivation or testing of scoring functions. Wilson et al.
(1993) tested their scoring function by searching for an
optimal conformation for a single residue. Different rotam-
ers were checked at the position of the search while other
residues were fixed in their conformations observed in the
experimental structure. However, the test was done only on
one protein. Petrella et al. (1998) did a similar test of
CHARMM energy functions for side-chain prediction on 10
proteins.

Instead of testing existing potential functions, we devel-
oped a scoring function by minimizing the average root
mean square (rms) deviation between the lowest energy
rotamer and real conformation in the search for a single
residue rotamer. During this minimization, the weights of
different energy terms were optimized. The derived scoring
function exhibited better performance than the CHARMM
or AMBER force field in predicting the conformation of a
single residue side chain in the tested proteins. Then we
used the derived scoring function combined with a Monte
Carlo algorithm to predict the side-chain conformations of
an entire protein. The results are discussed and compared
with other side-chain modeling programs.

Results and Discussion

The scoring function

The optimized scoring function was found to be

E � −Scontact + 3.931 × Voverlap

− 6.401 × lnf + 149.5 × Eelec + 5.45 × Nphil (1)

where Scontact, Voverlap, and Eelec are contact surface, over-
lapped volume, and electrostatic interaction energy between
the rotamer and other parts of the protein, respectively; f is
the observed frequency of the rotamer given a backbone
conformation; and Nphil is the number of totally buried non-
hydrogen-bonded hydrophilic atoms at the interface. The
values in the equation are the optimized weights of the
energy terms (the weight for Scontact was set to –1, see
Materials and Methods).

The weights for the energy terms were optimized in the
following way. Starting from random parameters, the aver-
age rms deviation of the predicted side chains from the true
structure was calculated for each training protein. The mean
rms deviation value of the 15 training proteins was mini-
mized. The Monte Carlo searches converged very fast. For
the 20 repetitions of parameter optimization procedure, the
minimized rms deviation values were in the narrow range of
0.714–0.717 Å. However, the optimized values of param-
eters displayed larger variance. The average values and
standard errors of the weights for volume overlap, backbone
dependency, electrostatic interaction, and desolvation en-
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ergy were 3.912 ± 0.072, –6.427 ± 0.145, 152.1 ± 13.5, and
5.316 ± 0.385, respectively. We accepted the parameter val-
ues when the objective function value was minimized to the
lowest value (0.714 Å). The derived scoring function took
the form of equation (1). Table 1 lists the prediction results
for the 15 training proteins.

Furthermore, we probed the contribution of individual
energy terms to the prediction of the side-chain conforma-
tion (Table 2). For example, we compared the traditionally
used Van der Waals interactions (attractive/repulsive terms)
with the corresponding terms from Equation 1: contact sur-
face/overlapped volume. It appears that contact surface/
overlapped volume performs better than Van der Waals po-
tential (Table 2). This may be because the contact surface/
overlapped volume describes the complementary packing of
the rotamers more accurately. As other workers have men-
tioned (Vasquez 1996; Bower et al. 1997; De Maeyer et al.
1997), steric interactions play the most important role in
determining side-chain conformations. It is also well known
that rotamers are strongly backbone dependent (Dunbrack
and Cohen 1997). Thus, it is not surprising that a combina-
tion of contact surface, volume overlap, and backbone de-
pendency results in 89.2% accuracy for �1 and 74.6% for
�1 + 2. The prediction results show only moderate improve-
ment when electrostatic interactions are added. Since elec-
trostatic interactions mainly affect conformations of polar
residues, the improvements for some polar residues are sig-

nificant. For example, �1 + 2 prediction accuracy of Asn is
improved from 41.6% to 53.0%. Addition of the desolvation
energy term (the buried surface of nonhydrogen-bonded po-
lar atoms) results in only a small improvement of the pre-
dictions (Table 2), but the predicted structures contain fewer
clearly incorrect conformations with totally buried nonhy-
drogen-bonded polar atoms. We have probed other forms of
desolvation energy potential, such as atomic contact energy
(Zhang et al. 1997) or buried surfaces of hydrophobic and
hydrophilic atoms at the interface, but the prediction results
showed no apparent improvement (Table 2).

Testing of the derived scoring function

The derived scoring function was tested with the 15 proteins
selected as described in Materials and Methods. Single resi-
due conformations were predicted. The prediction results of
the testing proteins are slightly different from those of the
training proteins (Table 3). We believe these differences are
due to the properties of the set of testing proteins. Specifi-
cally, the training proteins are on average larger than the
testing proteins and have a higher percentage of core resi-
dues, which are easier to correctly predict than are surface
residues. Thus the prediction accuracy of the training pro-
teins is slightly better than that of testing proteins (Tables 1
and 3). When the testing proteins are predicted by a scoring
function derived from themselves, the results are very simi-
lar to those predicted by the scoring function derived from
the training proteins (Tables 3 and 4). This indicates that the
scoring function derived from the training proteins performs
well on other proteins.

The strategy of searching for a single residue con-
formation has been used by Wilson et al. (1993) to test the
AMBER nonbonded energy plus a weighted solvation term.
Petrella et al. (1998) used the same strategy to test the
CHARMM22 energy function. Instead of using a rotamer
library, Petrella et al. rotated �1 and �2 of side chains at the
intervals of 5° or 10°, which made the prediction results less
feasible computationally to model side chains simulta-
neously for an entire protein. Here, the protein used by
Wilson et al. (PDB code 2alp) and the 10 proteins of Petrella
et al. (PDB code 5pti, 1crn, 2cro, 1ctf, 4fxn, 1hiv, 1lz1,
3app, 3rn3, 3tln) were also used to test our scoring function
(2fox and 4tln were used here instead of 4fxn and 3tln,
which have been updated in the March 2001 release of
PDB). The results calculated by our scoring function were
compared with those listed by Wilson et al. and Petrella et
al. (Table 5). Our scoring function achieves better results
than that of the CHARMM22 or AMBER force field. These
results may indicate that force fields that are widely used in
molecular mechanics calculations may not necessarily be
the best for side-chain modeling.

The predicted results of 18 residue types were analyzed
for the 30 training and testing proteins (Table 6). In general,

Table 1. Prediction results for the 15 training proteins

PDB

Average
rms

deviationa

(Å)

Overall
rms

deviationb

(Å)

%�1

correctc
%�1+2

correctd

No. of
predicted
residues

All Core All Core All Core

1a8q 0.588 1.060 94.2 98.1 82.9 91.6 225 104
1amm 0.726 1.171 93.5 100 81.5 94.9 154 55
1bd8 0.839 1.409 81.8 92.7 73.6 92.3 121 41
1cem 0.648 1.098 91.8 97.3 82.7 91.7 292 150
1chd 0.784 1.397 87.7 92.3 66.1 75.6 154 65
1edg 0.730 1.258 88.8 94.4 76.4 86.9 329 161
1ifc 0.795 1.077 90.3 100 79.6 96.2 113 32
1mla 0.618 1.006 90.3 95.2 80.3 88.1 227 105
1nar 0.795 1.185 88.9 95.7 72.7 86.0 262 117
1npk 0.728 1.321 90.2 97.6 78.9 100 122 41
1thv 0.741 1.255 89.2 95.8 74.8 82.1 167 71
1vjs 0.736 1.133 90.5 94.7 78.3 90.6 391 190
2baa 0.731 1.149 88.8 90.2 80.0 83.3 178 82
2end 0.680 1.048 95.8 100 79.6 83.8 113 45
2pth 0.578 1.057 93.6 96.6 86.7 92.9 140 58

Mean 0.714 1.175 90.4 96.0 78.3 89.1 199 88

a Averaging the root-mean-square (rms) deviation calculated for each resi-
due.
b Global root-mean-square deviation of nonalanine side-chain atoms.
c Percentage of side chains with �1 correctly predicted.
d Percentage of side chains with both �1 and �2 correctly predicted.
(PDB) Protein Data Bank.
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the percentages of correctly predicted hydrophobic residues
were much larger than those of hydrophilic residues. This is
expected because more hydrophobic residues are buried
compared with hydrophilic residues. Surprisingly, the con-
formations of most buried hydrophilic residues, except �1 of
Ser and �1 + 2 of Asp, Asn, and His, are predicted, as well as
those for buried hydrophobic residues. Serine may be too
small to be affected by steric conflicts. Similarly, carbox-
ylate group of aspartic acid is not sensitive to �2 rotation
concerning steric or electrostatic interactions. The poor
�1 + 2 prediction of Asn and His may be partly due to the
fact that the observed frequency of a rotamer, given back-
bone conformation, is not correctly evaluated (see Materials
and Methods). The two aromatic residues, Phe and Tyr,

were predicted accurately (�1 correct >97%; �1 + 2 correct
>93%). Pro was poorly predicted (�1 correct � 85%; �1 + 2

correct � 78%). The two rotamers of Pro are rather similar
in shape and do not depend on the backbone conformation
significantly. Cys side chain was 100% accurately predicted
for both core and surface residues, which indicated that our
simple strategy to manipulate disulfide bridges (see Mate-
rials and Methods) was successful. The average percentage
of crystal structure side chains within 40° of any rotamer in
the library is 99.1% for �1 and 97.2% for �1 + 2 (Table 6).
However, the average prediction accuracy is only 91.1% for
�1, and 77.6% for �1 + 2. For core residues, the correspond-
ing values are 99.5%, 98.2%, 97.0%, and 87.5%, respec-
tively. Thus, it should be possible to further increase pre-
diction accuracy by adopting better scoring functions.

Modeling the side chains for a whole protein

DEE, which detects and eliminates rotamers that cannot be
the members of global minimum energy conformation, is
the most powerful algorithm in side-chain modeling (Des-
met et al. 1992; Voigt et al. 2000); however, it cannot be
used together with our scoring function. DEE assumes that

Table 3. Testing of the derived scoring function on 15 proteins

PDB

Average
rms

deviation
(Å)

Overall
rms

deviation
(Å)

%�1

correct
%�1+2

correct

No. of
predicted
residues

All Core All Core All Core

153l 0.663 1.056 92.0 96.8 77.5 89.1 149 63
1ako 0.851 1.528 89.7 98.0 76.4 88.5 234 101
1arb 0.515 0.818 95.5 94.9 87.4 88.7 202 97
1bj7 0.710 1.129 91.0 97.9 75.7 91.7 133 48
1cex 0.648 1.289 90.4 98.3 78.6 97.7 136 59
1dhn 0.856 1.365 89.5 100 65.1 86.4 105 33
1hcl 0.971 1.538 85.6 95.0 62.9 77.5 257 100
1koe 0.726 1.325 89.6 94.8 83.2 91.9 144 58
1mml 0.845 1.283 88.7 94.9 70.4 85.3 221 79
1noa 0.551 1.087 91.3 100 85.0 91.7 80 23
1thx 0.648 0.971 88.4 100 73.5 95.2 95 33
1whi 0.771 1.437 88.1 100 78.9 100 101 30
2cpl 0.680 1.247 90.9 100 79.0 97.2 132 59
2hvm 0.627 0.950 92.3 98.0 78.2 90.4 221 99
2rn2 0.956 1.632 92.1 100 74.3 96.7 127 43

Mean 0.735 1.244 90.4 97.9 76.4 91.2 156 62

Table 4. Comparison of the prediction results for the 15 testing
proteins calculated by scoring functions derived from different
data sets

Average
rms

deviation
(Å)

Overall
rms

deviation
(Å)

%�1

correct
%�1+2

correct

All Core All Core

Scoring function Ia 0.735 1.244 90.4 97.9 76.4 91.2
Scoring function IIb 0.722 1.218 90.6 97.8 77.0 90.6

a Derived from the training proteins.
b Derived from the testing proteins themselves.

Table 2. The roles of different energy items in the scoring function

Van der
waalsa

Surface
and

volume
Backbone

dependency
Electrostatic

energy
Desolvation

energyb ACEc

Sphi

and
Spho

d

Average
rms

deviation

Overall
rms

deviation

%�1

correct
%�1+2

correct

All Core All Core

+ − − − − − − 1.094 1.723 79.0 91.0 60.0 79.6
− + − − − − − 1.003 1.619 82.5 94.0 64.3 82.5
− − + − − − − 1.290 2.065 72.1 74.0 52.3 58.5
− + + − − − − 0.778 1.254 89.2 95.2 74.6 86.9
− + + + − − − 0.741 1.211 89.9 95.2 77.1 87.9
− + + + + − − 0.714 1.175 90.4 96.0 78.3 89.1
− + + + − + − 0.729 1.162 90.1 95.4 77.5 88.1
− + + + + − + 0.730 1.173 90.0 95.6 77.1 88.6

a CHARMM Van der Waals potential functions were used. All atom radii were scaled by 0.9 to relieve the errors caused by discrete rotamers.
b The number of completely buried nonhydrogen-bonded polar atoms
c Atomic contact energy (Zhang et al. 1997).
d Buried surfaces of hydrophobic and hydrophilic atoms.
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the total rotamer–rotamer interaction energy is the sum of
the interaction energy between any two rotamers. This is not
true for contact surface, volume overlap, or the number of
totally buried nonhydrogen-bonded polar atoms, which can
only be calculated when conformations of all side chains are
known. Thus, we used the Monte Carlo-simulated annealing
method to model the side-chain conformations of a whole
protein. Because the derived scoring function performed
equally well on the training and testing proteins, both sets
were combined and used to test the program. For the 30
resulting proteins, we obtained average predictions of

87.9% for �1, 73.2% for �1 + 2, and 1.34 Å for rms deviation
(Table 7). These results are clearly inferior to the differ-
ences between the experimental structure and the model
built from the most similar rotamers, which indicates that
we are still far from the maximal prediction accuracy pos-
sible with the current rotamer set (Table 8).

We compared our program with the torso program from
the MAXSPROUT package (Holm and Sander 1991),
SCWRL2.2 (Bower et al. 1997), and that of Mendes et al.
(1999). Like our method, torso was based on the Monte
Carlo algorithm. The other two programs are the best avail-
able side-chain modeling programs developed in the last
several years (Mendes et al. 1999). Mendes et al. used self-
consistent mean field theory and a flexible rotamer model
that handled a continuous ensemble of conformations
around the classic rigid rotamer. SCWRL initializes a struc-
ture with residues in their most favorable backbone-depen-
dent rotamers and systematically resolves steric clashes.
Among the 30 selected proteins, the terminal carbonyl oxy-
gen named “OXT” was not found in the PDB files of five
proteins (1cem, 1nar, 1vjs, 1arb, and 1mml) and they could
not be operated by the Mendes program. Twenty-five other
proteins were used in comparison (Table 9 and Figure 1).
The prediction accuracy of SCWRL is similar to torso but
lower than the Mendes algorithm. Compared with the pro-
gram of Mendes et al., our program has an improvement of
4.4% in average �1 prediction, 4.7% in average �1 + 2 pre-
diction, and 0.21 Å in average global rms deviation. For

Table 5. Comparison of potential energy functions in searching
a single residue

Average
rms

deviation
(Å)

Overall
rms

deviation
(Å)

%�1

%�1×�2

correct

All Core All Core

AMBER 0.68 1.21 82 — — —
This work 0.58 1.00 94 — — —
CHARMM — — 86.8 94.9 77.4 89.5
This work — — 88.8 96.2 80.3 91.1

�1×�2, the number of residues with both dihedral angles correct or, in the
cases of valine, threonine, serine, and cysteine, only the single angle cor-
rect over the total number of rotatable residues. The prediction results of
AMBER force field and the calculated protein were given in Wilson et al.
(1993); those of CHARMM and calculated proteins were listed in Petrella
et al. (1998).

Table 6. Prediction results of 30 high-quality proteins arranged by residue types

Residue
type

%�1

correct
%�1+2

correct

%�1
a

consistent with
rotamer model

%�1+2

consistent with
rotamer model

Number of
residues

All Core All Core All Core All Core All Core

Arg 89.0 98.2 74.4 91.2 98.5 100 96.7 100 336 57
Asn 92.5 100 61.9 79.2 99.7 100 93.1 97.4 318 77
Asp 92.4 100 66.3 71.9 100 100 92.9 93.3 395 89
Cys 100 100 100 100 106 85
Gln 84.5 98.1 68.2 94.2 97.9 100 96.7 100 239 52
Glu 81.6 94.9 68.7 92.3 98.8 97.4 97.5 97.4 326 39
Ile 96.6 98.1 88.8 93.9 99.4 99.6 98.6 98.9 349 263

Leu 93.6 96.3 82.8 85.8 97.4 98.0 95.4 96.0 500 352
Lys 86.2 100 70.2 84.2 98.0 100 97.4 100 439 19
Met 89.5 96.0 81.6 90.7 97.4 100 97.4 100 114 75
Phe 99.6 100 96.3 97.5 100 100 98.5 98.5 271 204
Pro 85.4 90.8 78.4 82.8 100 100 100 100 301 87
Trp 96.6 100 84.0 86.7 100 100 98.3 97.3 119 75
Val 92.1 92.7 97.7 97.5 441 314
Ser 74.7 82.6 99.2 100 383 132
Thr 91.9 97.6 99.2 99.2 372 123
Tyr 97.6 100 93.7 96.5 99.6 100 98.8 99.3 254 143
His 96.2 100 70.7 78.6 157 56

Mean 91.1 97.0 77.6 87.5 99.1 99.5 97.2 98.2 296 125

a The percentage of crystal structure side chains within 40° of any rotamer in the library.
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core residues, the differences are small: 1.8% improvement
in �1 prediction and 3.3% improvement in �1 + 2 prediction.
Our method has a more significant advantage for surface
residues. SCWRL and torso run much faster than our pro-

gram and the Mendes algorithm. However, our program is
two times faster than the Mendes algorithm. Both SCWRL
and our program use the rotamer library of Dunbrack (Dun-
brack and Karplus 1993). Our program shows an advantage
over SCWRL in average �1 prediction, �1 + 2 prediction, and
rms deviation for all residue types. SCWRL predicted �1 + 2

of Asn and His poorly because it does not contain a mecha-
nism to distinguish � and 180° + � of �2 angles of the two
residues. The Mendes algorithm, using the Tuffery rotamer
library (Tuffery et al. 1991) shows obvious disadvantages
for small polar residues such as Ser, Thr, and Asp. It pre-
dicted �1 more accurately for Pro, Cys, and His, and �1 + 2

for Gln, Met, Tyr, and Pro. The Mendes algorithm also
predicted �1 of Tyr and Met with the same accuracy as our
methods. Cysteines were predicted with a high correct per-
centage by the Mendes algorithm partly because the pro-
gram takes the disulfide bridge pairings as input.

We also compared our program with the Mendes algo-
rithm on the Mendes et al. testing proteins. Five of the 20
high-quality protein structures used by Mendes et al. were
also included in our training and testing proteins. Thus the
comparison was done on the other 15 proteins: 2erl, 1cbn,
5rxn, 1bpi, 1igd, 1ptx, 1ctj, 1plc, 9rnt, 1aac, 256b, 1isu, 2ihl,
2hbg, and 1xnb. Among them, 12 proteins contain ligands.
We removed all ligands in the calculation, which affected

Table 8. Comparison of the native and predicted structures
with the structure built from rotamers most similar to
real conformation

Average rms
deviation

(Å)

Overall rms
deviation

(Å)

%�1

correct
%�1+2

correct

All Core All Core

Native/Built 0.412 0.570 98.5 99.3 94.3 96.7
Predicted/Built 0.596 1.314 88.1 95.2 73.7 87.1
Predicted/Native 0.800 1.337 87.9 95.0 73.2 87.0

Thirty high-quality proteins were calculated and averaged. The rotamer
with the lowest rms deviation from the crystal structure side chain was
defined as the most similar rotamer.

Table 9. Comparison of our side-chain modeling program with other methods

Average rms
deviation

(Å)

Overall rms
deviations

(Å)

%�1 correct
%�1+2

correct Computing
time

(hours)All Core All Core

Holm and Sander 1.074 1.707 79.4 89.5 60.7 75.6 0.05
Scwrl 1.040 1.696 80.7 88.0 62.3 74.5 0.5
Mendes et al. 0.968 1.560 83.5 93.6 68.6 84.4 120
This work 0.802 1.348 87.9 95.4 73.3 87.7 40

Twenty-five of the 30 carefully selected proteins, which could be operated by all programs, were
calculated and averaged. The computational results of Holm and Sander (1991), SCWRL (Bower et
al. 1997), Mendes et al. (1999), and this work were equally evaluated as described earlier. The
computing time was counted on a Silicon graphic 400MHZ IP30 processor.

Table 7. Side-chain construction on the 30 high-quality proteins

PDB

Average rms
deviation

(Å)

Overall rms
deviation

(Å)

%�1

correct
%�1+2

correct

All Core All Core

1a8q 0.663 1.170 92.0 97.1 76.6 80.3
1amm 0.887 1.384 90.3 100 73.4 89.7
1bd8 0.879 1.537 81.0 90.2 70.3 88.5
1cem 0.725 1.250 90.4 95.3 76.7 86.1
1chd 0.826 1.474 87.0 93.9 65.2 73.2
1edg 0.741 1.281 89.4 94.4 73.2 83.6
1ifc 0.964 1.358 83.2 96.9 69.3 92.3
1mla 0.733 1.294 89.0 95.2 75.3 89.6
1nar 0.843 1.213 84.7 91.5 68.3 80.7
1npk 0.783 1.347 87.7 95.1 75.6 92.9
1thv 0.828 1.374 85.6 87.3 74.8 92.3
1vjs 0.930 1.522 84.7 90.0 66.9 78.3
2baa 0.793 1.311 86.5 90.2 76.9 85.0
2end 0.700 1.067 94.9 100 79.6 86.5
2pth 0.730 1.310 90.0 93.1 80.5 90.5
1531 0.738 1.248 92.0 95.2 73.9 87.0
1ako 1.042 1.705 81.2 89.1 64.1 80.8
1arb 0.594 1.125 93.6 92.8 81.1 82.3
1bj7 0.705 1.111 90.2 97.9 74.8 86.1
1cex 0.652 1.297 90.4 98.3 78.6 97.7
1dhn 1.006 1.591 85.7 100 65.1 86.4
1hcl 1.026 1.592 81.7 89.0 61.4 71.3
1koe 0.849 1.492 84.7 87.9 75.3 86.5
1mml 0.849 1.289 86.4 94.9 71.0 88.5
1noa 0.534 1.024 91.3 100 82.5 91.7
1thx 0.629 0.918 87.4 97.0 75.0 95.2
1whi 0.899 1.758 85.2 100 70.4 92.9
2cpl 0.733 1.288 89.4 100 78.0 91.7
2hvm 0.687 1.089 91.0 98.0 73.9 89.0
2rn2 1.017 1.677 90.6 100 67.3 93.3

Mean 0.800 1.337 87.9 95.0 73.2 87.0

Side-chain conformations were modeled simultaneously, given protein
backbone and sequence.
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the performance of the Mendes algorithm. Because Mendes
et al. included ligands in their calculation, the calculated
results here are not as accurate as those presented by
Mendes et al. (1999). Our method shows a significant ad-
vantage over the Mendes algorithm: 3.7% in average �1

prediction, 6.1% in average �1 + 2 prediction, and 0.12 Å in
average global rms deviation (Table 10). We then investi-
gated the effect of protein resolution on prediction accuracy.
Because the Mendes algorithm is only effective on very
high quality proteins and very time consuming, we com-
pared our methods with SCWRL. The prediction ability of
the two programs deteriorates as the resolution of a crystal
structure decreases (Table 11). Bower et al. (1997) noted
that the lower resolution structures might be poorly pre-
dicted because they contained errors in side-chain assign-
ments. Our methods show an advantage over SCWRL for
both high and low resolution structures.

The prediction results for modeling of the whole protein
simultaneously are inferior to those of searching for a single
residue conformation (Tables 1, 3, and 7). For the 30 tested
proteins, the prediction accuracy decreases 2.5% for �1 and
4.1% for �1 + 2. The decreased accuracy of the prediction
results for the whole protein modeling may be due to the
errors caused by rotamer approximation. Compared with
searches for a single residue conformation, the positional
errors double when both interacted residues are represented
by rotamers. To eliminate the rotamer approximation effect,
we included the real conformation to the rotamer library to
substitute for the rotamer with the lowest rms deviation. The
scoring function was reoptimized. For the 30 selected pro-
teins, the average accuracy was 92.2% for �1 and 84.2% for
�1 + 2 when a single residue conformation was predicted.
The prediction accuracy in this case depends on the scoring
function only. Thus our scoring function can potentially be
significantly improved. Then we modeled all side chains
simultaneously. The average accuracy was 91.1% for �1 and
82.6% for �1 + 2. These values represent improvements of
3.2% for �1 and 9.4% for �1 + 2 compared with predictions
that used standard rotamer library. The improvements in
�1 + 2 prediction are larger than the improvements in �1

prediction. Thus a more detailed rotamer library is expected
to increase �1 + 2 prediction accuracy; however, it should
have little effect on �1 accuracy. The prediction accuracy
decreases by 1.1% for �1 and 1.6% for �1 + 2 compared with
the single residue predictions. These small decreases might
be caused by the search strategy or occur for other reasons.

Table 10. Comparison of our program with that of Mendes et
al. on their testing proteins

Average rms
deviation (Å)

Overall rms
deviation (Å)

%�1 %�1+2

All Core All Core

Mendes et al. 0.922 1.477 83.9 94.9 65.4 87.6
This work 0.775 1.362 87.6 97.4 71.5 90.5

Fifteen very high quality proteins were calculated and averaged, which
were used by Mendes et al. (1999) and not selected to train or test the
scoring function in this work. All ligands were not included in calculation.

Fig. 1. Comparison of prediction results over different residue types. Re-
sults of Holm and Sander (1991) are shown in white, the results of SCWRL
(Bower et al. 1997) are in light gray, the results of Mendes et al. (1999) are
in dark gray, and the results of this work are in black. Percent correct
within 40° for �1 (a), percent correct within 40° for �1 + 2 (b), and rmsd (c)
were plotted for each residue type.
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Conclusions

We have developed a new and simple scoring function for
side-chain modeling. Compared with the CHARMM and
AMBER force fields, our scoring function shows clear ad-
vantages in predicting the conformation of a single residue.
Our scoring function was combined with a Monte Carlo
algorithm to place all the side chains onto a protein back-
bone. The prediction results compared favorably with ex-
isting methods. It appears that the search strategy is not the
main obstacle in side-chain modeling, but better scoring
function and more detailed rotamer library are needed to
achieve higher accuracy. A detailed rotamer library is ex-
pected to increase �1 + 2 prediction accuracy; however, it
will have little effect on �1 accuracy.

Materials and methods

Scoring function

Five energy terms are considered in the scoring function: backbone
dependency, contact surface, overlapped volume, electrostatic in-
teractions, and desolvation energy.

The backbone-dependent rotamer library and
rotamer energies

The backbone-dependent rotamer library of Dunbrack is used in
this study (Dunbrack and Cohen 1997). The intrinsic energies of
rotamers are represented by their expected frequencies (f), given a
backbone conformation, which are derived by Bayesian statistical
analysis of protein side-chain rotamer preferences (Dunbrack and
Cohen 1997). Here, lnf is considered an energy term and is called
backbone dependency. The Dunbrack library is modified as fol-
lows. (1) Polar hydrogen atoms, which are absent in the Dunbrack
library, are added for the convenience of calculating electrostatic
interactions. Each �2 for Ser and Thr and �3 for Tyr are assigned
three possible values: –60°, 60°, and 180°. The frequency of the
new rotamers is set to one-third of the observed frequency of their
parent rotamer. (2) Three protonation states of His with the same
expected frequencies are considered, N�1 protonated, N�2 proto-
nated, and both. (3) We supplemented additional rotamers to cor-
rect for the lack of defined rotameric states for the amide planes of

Asn and Gln and for the aromatic plane of His in the Dunbrack
library. �2 of Asn and His and �3 of Gln are flipped 180° to make
new rotamers. Thus the rotamer numbers of these residues are
doubled and the expected frequencies are correspondingly reduced
by one-half. Bond lengths and angles from Engh and Huber (1991)
are used to build the rotamer library. The rotamers with standard
geometries are placed on the protein backbone by superimposing
N, C, and C� atoms.

Contact surface and volume overlap

The contact surface and overlapped volume between the selected
rotamer and other parts of the protein (termed protein environment,
which consists of all atoms in a protein that do not belong to the
selected rotamer) are calculated by the grid-based method.
CHARMM22 atom radii are used (Brooks et al. 1983; Mackerell
et al. 1998). The grid step is set to 0.6 Å. The selected rotamer and
the protein environment are mapped using the same strategy. The
grid points within the Van der Waals radius (r) of an atom are
labeled as interior points. The first layer of grid points on the atom
surface (between r and r+0.6 Å) are labeled as surface points. In
case of a conflict, for example, if a grid point is an interior point
of one atom but is a surface point of another atom, the interior
points override surface points. The overlapped volume (Å3) is
counted according to the number of grid points that belong to the
interior points of the rotamer and protein environment simulta-
neously. Each co-occupied grid point corresponds to 0.216 Å3

volume overlap. The contact surface (Å3) is counted as the number
of grid points that belong to the surface points of the rotamer and
interior points of the protein environment, the interior points of the
rotamer and surface points of the protein environment, or the sur-
face points of both sides. Interactions between the rotamer and
local backbone, which starts from the C� of the last residue to the
C� of the next residue at the searched position, are not considered.
They are assumed to be included in the backbone-dependent ro-
tamer energy. Special attention is paid to the joint between the
local backbone and other parts of the protein. A plane cuts the
joining bond perpendicularly at the middle point to separate the
surface and interior grid points of the two joined atoms. The grid
points on the side of the local backbone are not considered. For
two cysteine residues (residue 1 and residue 2) that form a disul-
fide bridge, the overlapped volume of S�1– S�2, S�1–C�2, or C�1–
S�2, is not counted. We consider that two cysteine residues form a
disulfide bridge when the distance between the two sulfur atoms is
within 2.09 ± 1 Å and both angles of C�–S–S are within
104.2° ± 30°. Here, 2.09 Å and 104.2° are CHARMM22 param-
eters for a disulfide bridge.

Table 11. Effect of resolution on prediction accuracy

Resolution 0.0 to 1.6 (Å) 1.6 to 2.0 (Å) 2.0 to 2.5 (Å) 2.5 to 3.0 (Å) Total
No. of structures in average 15 49 48 11 123

Scwrl This work Scwrl This work Scwrl This work Scwrl This work Scwrl This work
Average rms deviation (Å) 1.009 0.778 1.050 0.866 1.195 1.034 1.311 1.184 1.125 0.949
Overall rms deviation (Å) 1.652 1.348 1.652 1.392 1.781 1.580 1.861 1.745 1.721 1.492
%�1 correct of all residues 82.8 89.2 79.3 84.5 73.7 78.3 70.7 75.7 76.8 81.9
%�1 correct of core residues 88.7 95.8 87.3 92.7 83.0 89.1 80.0 88.2 85.1 91.3
%�1+2 correct of all residues 64.8 75.1 59.4 68.9 53.6 61.5 47.8 55.0 56.8 65.5
%�1+2 corrct of core residues 75.8 88.5 72.5 83.9 68.6 79.0 60.2 71.3 70.3 81.4

PDB codes were downloaded from ftp://fccc.edu/dunbrack/pub/culledpdb updated on March 8, 2001. All the selected proteins were single-chain proteins,
which contained no ligands and had fewer than 50% sequence identities.
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Electrostatic interactions

The electrostatic interactions between the modeled rotamer and the
protein environment are calculated as follows:

���qi × qj��r
2

r = Rij if 0.8 × �ri + rj� 	 Rij 	 12
r = 0.8 × �ri + rj� if Rij 
 0.8 × �ri + rj�

where indices i and j refer to the atoms of the rotamer and the
environment, respectively, qi and qj are partial charges, and ri and
rj are atom radii from CHARMM22. Rij is the distance between the
two atoms. The summation is over all atoms i and j for which
Rij 	 12. Similar to the calculation of contact surface and volume
overlap, the electrostatic interactions between the selected rotamer
and the local backbone are not considered.

Desolvation energy

Desolvation energy is evaluated as the number of totally buried
(<5% solvent accessible surface) nonhydrogen-bonded hydrophilic
atoms. Polar H and O and nonprotonated N of His that can be an
acceptor of a hydrogen bond are considered as hydrophilic atoms.
Solvent-accessible surface area is calculated as described by Zou
et al. (1999). The probe radius is set to 1.2 Å. The radii of polar
hydrogen atoms are set to 1.0Å. The radii of other atoms are taken
from CHARMM and are scaled by 0.8. The definition of hydrogen
bonds is similar to that of Dahiyat et al. (1997):

2.0 Å 
 R 
 3.6 Å
� � 90°

� − 109.5° 
 90° for sp3 donor–sp3 acceptor
� � 90° for sp3 donor–sp2 acceptor

where R is the distance between donor and acceptor of a hydrogen
bond, � is the donor-hydrogen acceptor angle, and � is the hydro-
gen-acceptor base angle (the base is the atom attached to the ac-
ceptor).

Minimization methods

Continuous minimization methods by simulated annealing are
used (Press et al. 1992). The basic ideas follow the Metropolis
Monte Carlo simulation except that a modified downhill simplex
method is used to generate random changes (Metropolis et al.
1953; Nelder and Mead 1965). The “moves” include reflections,
expansions, and contractions of the simplex. −T × ln� [T is the
temperature; � is a small random number in the range of (0,1 )] is
added to the stored function value associated with every vertex of
the simplex, and a similar random variable is subtracted from the
function value of every new point that is tried as a replacement
point. The modified function values of the new and old points are
compared. This procedure takes a downhill step while sometimes
takes an uphill step and converges to a local minimum in the limit
T → 0. In this study, the weight of the contact surface is set to –1
(because favorable interactions are defined as having negative en-
ergy) and those of the other four energy terms are subject to
optimization. For the training protein, a single residue is checked
for different rotamers at each trial, and other residues are un-
changed from the experimental structure. The rms difference be-
tween the lowest-energy rotamer and the real conformation is cal-
culated and averaged for all the residues of the protein. The mean
value of the averaged rms deviations for the training proteins is the
objective function value to be minimized. Initial values of the

parameters to be optimized are set to ±ln� (� is a random number
as was the case earlier). The simulated annealing temperature starts
from 0.01 and is gradually reduced to 0 with the step of 0.001. Two
thousand moves are made at each temperature.

Training and testing protein sets

The proteins for training and testing sets were chosen according to
the following criteria. Sequence identity cutoff was set to 50%, the
resolution cutoff was set to 1.8 Å, and the R-factor cutoff was set
to 0.2. A total of 761 chains that met the criteria were downloaded
from ftp://fccc.edu/dunbrack/pub/culledpdb on March 8, 2001.
Only single-chain proteins with 100–500 monomers and contain-
ing no incomplete side chains or ligands were kept. A total of 30
proteins meeting all the requirements were selected: 1a8q, 1amm,
1bd8, 1cem, 1chd, 1edg, 1ifc, 1mla, 1nar, 1npk, 1thv, 1vjs, 2baa,
2end, 2pth, 153l, 1ako, 1arb, 1bj7, 1cex, 1dhn, 1hcl, 1koe, 1mml,
1noa, 1thx, 1whi, 2cpl, 2hvm, 2rn2. The first 15 proteins were used
to derive the scoring function and the remaining proteins were
used for testing. The program REDUCE (Word et al. 1999) was
used to add hydrogen atoms to all proteins. Nonpolar hydrogen
atoms were deleted. The amide plane of Asn or Gln and the aro-
matic ring of His were flipped if needed to form more hydrogen
bonds. When a residue had multiple conformations, only the one
with the highest occupancy was used.

Modeling the side chains for an entire protein

Metropolis Monte Carlo-simulated annealing methods (Metropolis
et al. 1953) with the rotamer library of Dunbrack (Dunbrack and
Cohen 1997) are used to predict side-chain conformations, given a
protein backbone conformation and sequence. Initially, the rotam-
ers for the sequence are selected at random. Then, a rotamer sub-
stitution is made at a selected position. The frequency to select a
position is proportional to the number of rotamers for the residue
in the position. One rotamer is selected at random and the inter-
action energy with the other parts of the protein Enew is calculated
using the derived scoring function. If the energy value is lower
than the previous energy Eold, the move is accepted, or the move
is accepted with the probability exp[(Eold–Enew)/T]. The initial
temperature T is set to 50 and is scaled by 0.8 after each cycle. A
total of 25 cycles are repeated. We hold the temperature constant
at each cycle for 10,000 substitutions or 1,000 successful substi-
tutions, whichever comes first.

Evaluation methods

Several evaluation methods for side-chain modeling programs
have been proposed (De Maeyer et al. 1997). We make sure that
the evaluation methods obey the same standards when the results
obtained by different programs are compared. Unless specifically
indicated, all computational results in this work are evaluated as
the following. C� is included in rms deviation calculation and
hydrogen atoms are excluded. Incomplete residues, Ala, or resi-
dues with alternative conformation are not evaluated. Residues
with <20% solvent accessibility are considered as core residues. If
the �1 angle of a predicted residue is within 40° of the experimen-
tal value, the residue is considered correctly predicted until �1.
�1 + 2 only refers to residues that have more than one side-chain
dihedral angle (not including Ser, Thr, Val, and Cys). �1 + 2 is
considered correctly predicted when both �1 and �2 are within 40°
of their experimental values. For residues with a rotational sym-
metry axis (Asp, Glu, Phe, and Tyr), we consider the torsion angle
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corresponding to this axis correct if either of the symmetric con-
formations obeys the above criteria, and the rms deviation is cal-
culated from the closest symmetric conformation. Asn, Gln, and
His especially are compared with the structures resulting from
running REDUCE.
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