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ABSTRACT

Motivation: Manual inspection has been applied to and is well
accepted for assessing critical assessment of protein structure
prediction (CASP) free modeling (FM) category predictions over the
years. Such manual assessment requires expertise and significant
time investment, yet has the problems of being subjective and unable
to differentiate models of similar quality. It is beneficial to incorporate
the ideas behind manual inspection to an automatic score system,
which could provide objective and reproducible assessment of
structure models.
Results: Inspired by our experience in CASP9 FM category
assessment, we developed an automatic superimposition
independent method named Quality Control Score (QCS) for
structure prediction assessment. QCS captures both global and
local structural features, with emphasis on global topology. We
applied this method to all FM targets from CASP9, and overall the
results showed the best agreement with Manual Inspection Scores
among automatic prediction assessment methods previously applied
in CASPs, such as Global Distance Test Total Score (GDT_TS) and
Contact Score (CS). As one of the important components to guide
our assessment of CASP9 FM category predictions, this method
correlates well with other scoring methods and yet is able to reveal
good-quality models that are missed by GDT_TS.
Availability: The script for QCS calculation is available at
http://prodata.swmed.edu/QCS/.
Contact: grishin@chop.swmed.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Critical assessment of protein structure prediction (CASP), is an
experiment running for 16 years that has been absolutely essential
for evaluating progress (or lack of thereof) in prediction, spotting and
encouraging most successful methods and stimulating discussions
in the field of structure prediction (Kryshtafovych et al., 2005;
Moult, 2006; Moult et al., 2009). For each biannual CASP prediction
period, organizers collect sequences with 3D structures in the works

∗To whom correspondence should be addressed.

and release them to predictors; predictors deliver structure models
and assessors critically evaluate the quality of predictions after the
experimental structures have been determined. By separating the
process of prediction and assessment, CASP provides an objective
basis for comprehensive evaluation of models (Moult et al., 1995).

Based on the availability of structural templates and the prediction
difficulty, targets in CASP are currently divided into two categories:
template-based modeling (TBM) and free modeling (FM) (Kinch
et al., 2011a). Without an easily detectable template, targets in
the FM category are the most challenging and predicted models
are usually of low quality. FM category models are traditionally
evaluated by manual inspection (Ben-David et al., 2009; Jauch
et al., 2007; Tai et al., 2005) because well-established structure
comparison measures, such as root-mean-square deviation (RMSD)
or even Global Distance Test Total Score (GDT_TS) may miss
promising models (Jauch et al., 2007). For instance, GDT-like scores
may emphasize on small but precisely modeled substructure (such
as a long α-helix) rather than decent general fold and topology.
However, model evaluation by human experts is subjective and
time consuming, and it is impossible to carefully examine all the
models within the time frame of a CASP experiment. A practical
compromise (Aloy et al., 2003; Ben-David et al., 2009; Jauch et al.,
2007; Tai et al., 2005) is to limit manual inspection to the top
models selected by a scoring system (e.g. GDT_TS). However,
this initial selection biases final results. To avoid the bias, recent
CASP assessors utilized additional scores (e.g. Cα–Cα contacts or
distances) to select candidates for visual inspection. Combination
of different methods lowers the probability of missing reasonable
models and improves the evaluation of structure prediction.

As the assessors of the CASP9 FM category, we introduced a novel
automatic structure prediction assessment method named Quality
Control Score (QCS). We suggest that the score is particularly useful
to compare poor predictions. QCS reflects our manual evaluation
experience and aims to capture global features of models defined
by mutual arrangement of secondary structure elements (SSEs).
Interresidue contact component is included in QCS to quantify the
accuracy of modeling atomic details. Overall, QCS is in agreement
with manual inspection and correlates well with GDT_TS. However,
QCS can reveal models with better global topology that are missed
by GDT_TS. QCS is not only suitable to select candidates for manual
inspection in the CASP assessment, but also can be used as an
independent and objective method to assess the quality of structure
prediction with emphasis on the global topology. Moreover, QCS
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can be expanded as a fold comparison tool and applied to remote
homology inference and protein fold classification.

2 METHODS
CASP9 targets and models were downloaded from the prediction center web
site (http://predictioncenter.org/). Representative evaluation units (T0531,
T0534 domains 1 and 2, T0537, T0550 domains 1 and 2, T0561, T0578,
T0581, T0604 domain 1, T0608 domain 1, T0618, T0621, T0624) from
the CASP9 FM category (Kinch et al., 2011a) were assessed by manual
inspection during CASP9 season. Briefly, for each target, a set of criteria
(points) was developed based on the target structural features, including the
size and orientation of SSEs, key contacts between SSEs and any additional
unusual structural features such as a kink in the helix. Models were visually
compared to the targets to evaluate whether the model agrees with the target
on these criteria (points) without superposition. Manual Inspection Scores
(MISs) were recorded as a percentage of the maximum points assigned to
each target (Kinch et al., 2011b).

Building on the experience in manual assessment, QCS (details described
in Section 3) focuses on global features of models on the basis of SSEs (the
SSE length, the relative position, angle and key interactions between SSE
pairs and the handedness of the structure). To discriminate the local structure
details between models, all interresidue contacts were assessed as well.

All the evaluation units from CASP9 FM category (a total of 29 protein
domains) were assessed by QCS, GDT_TS (Zemla, 2003; Zemla et al.,
1999b, 2001), Contact Score (CS) (Shi et al., 2009), TenS (a consensus-
based method used in CASP5 and CASP9) (Kinch et al., 2003), TM-align
(Zhang and Sholnick, 2005), Matching molecular models obtained from
theory (Mammoth) (Ortiz et al., 2002) and Segment OVerlap (SOV) (Zemla
et al., 1999a). To test QCS on easier targets, the 21 single domain TBM
targets were assessed by both QCS and GDT_TS.

The performance of QCS was first examined on the subset of FM models
that were assigned non-zero MISs. The agreement between QCS and MIS
was investigated and compared with other automatic methods by the general
correlation and the overlap in top models. Comparison between QCS and
other similarity scores was then carried out on all CASP9 FM targets and
TBM representatives by investigating correlation and visually comparing
the top models selected by various methods. Finally, we tested QCS on the
Template FM category targets from CASP7 and CASP8 and compared the
results to those obtained by previous assessors.

3 RESULTS AND DISCUSSION

3.1 Components of QCS
QCS calculation uses only Cα atoms and it relies heavily on SSEs
that define a protein’s architecture and topology. We used Predictive
Assignment of Linear Secondary Structure Elements (PALSSE)
(Majumdar et al., 2005), a sensitive secondary structure assignment
program to define SSEs from the target 3D coordinates (Fig. 1A) and
propagated these SSE definitions to models (Fig. 1C) by residue
numbers. Thus, the target and the model were simplified to a set
of SSE vectors (Fig. 1B and D). Several features were compared
between them and scores were assigned for all features.

3.1.1 The length of SSE vectors As we propagated the SSE
definition from a target to models, we expect the length of a certain
SSE in the model to agree with that in the target if the secondary
structures of residues are modeled correctly. The SSE lengths in the
model [Li(M), M indicates SSEs or measurements in the model] and
in the target [Li(T ),T represents SSEs or measurement in the target]
were used to calculate a length score [sLength (i), Equation (1)]
for SSE i. The average length score over all SSEs weighted by

Fig. 1. Simplification of the target and models. (A) Target T0531: SSEs
are colored in rainbow and one pair of residues where two SSEs interact
with each other (defined as interaction) are highlighted in magenta. (B)
Simplified T0531: the SSEs are represented by vectors and the interactions
are represented by pairs of points illustrated by the purple dots. (C) A
model for T0531 (TS399_4) colored in rainbow according to the target
SSE definition with the same interaction defined in the target highlighted
in magenta. (D) Simplified model TS399_4.

number of residues in each SSE [Equation (2)] was applied to assess
the secondary structure quality. As densely packed helices usually
contain more residues than strands, and yet strands are usually the
core of most α/β or α+β proteins, we counted all the residues in
β-strands twice to emphasize on the quality of β-strands (it is the
same for SP,SA and SI and SH ).

sLength(i)=exp

{
−
[

(Li(M)−Li(T ))

(0.25×Li(T ))

]2
×ln2

}
(1)

SL =
∑

i (wi ×sLength(i))∑
i wi

(2)

3.1.2 The global position of SSEs The position of SSEs was
evaluated by their pairwise distances that were measured in two
ways. In the first SSE position measurement (S1P), each SSE
was divided into three equal segments and reduced to three
points by averaging Cα coordinates. Position scores were assigned
by comparing the distances between all the points (i and j,
except points within one SSE) in the target (Di,j(T )) and in
the model (Di,j(M)), [Equation (3)]. This measurement favors
models with correct alignment of SSEs that were propagated
from the target. This meaningful dependence on correct alignment
might over-penalize models with reasonable SSE distances but
erroneous alignments. To balance this effect, we introduced the
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second SSE position measurement (S2P) that is less sensitive
to shifts in alignment. This measurement compared the closest Cα

distances between SSEs i and j in the model (Di,j(M)) and in the
target (Di,j(T )) to assess their relative positions [s2Position (i,j),
Equation (5)] Combining these two scoring functions resulted in
a balance between rewarding reasonable structure traces and high
quality of alignment [Equations (4), (6) and (7)].

s1Position(i,j)=exp

{
−
[

(Di,j(M)−Di,j(T ))

(0.5×Di,j(T ))

]2
×ln2

}
(3)

S1P =
∑

i,j (wi,j ×s1Position(i,j))∑
i,j wi,j

(4)

s2Position(i,j)=exp

{
−
[

(Di,j(M)−Di,j(T ))

(0.5×Di,j(T ))

]2
×ln2

}
(5)

S2P =
∑

i,j (wi,j ×s2Position(i,j))∑
i,j wi,j

(6)

SP = (S1P +S2P)

2
(7)

3.1.3 The angle between SSE vectors To assess the angle between
SSEs i and j, we transformed the 3D coordinates of the model
so that one of its SSE vectors (i(M)) is aligned in direction to
the corresponding vector (i(T )) in the target, and the centers of
other two SSE vectors [j(M) and j(T )] are superimposed. After
the transformation, the angle (Ai,j(M,T )) between j(M) and j(T )
(illustrated in Fig. 2A) was used to generate an angle score
sAngle (i,j) as shown in Equation (8). The average of angle scores
over all SSE pairs, weighted by the residue numbers of the pair
of SSEs (Ni and Nj) and the distance between central part of the
two SSEs (Di,j) [Equations (9) and (10)] was taken to evaluate the
accuracy of the packing angles between SSEs.

sAngle(i,j)=exp

{
−
[

Ai,j(M,T )

0.7

]2
× ln2

}
(8)

wi,j =
Ni ×Nj

Di,j
(9)

SA =
∑
i,j

(wi,j ×sAngle(i,j))∑
i,j wi,j

(10)

3.1.4 The handedness of SSE triplets When more than two SSEs
are considered, handedness (concept illustrated in Fig. 2B) is the
key to distinguish correct topology. Handedness defines the position
of a third SSE (k) in relative to the plane specified by two reference
SSEs (i and j). When k(M) and k(T ) is on the opposite sides of
the reference plane, certain penalty was introduced. Handedness
can be clearly defined when k(M) and k(T ) are not very close to
the reference plane. Moreover, when the reference SSEs are far
from each other, reversal of handedness should not be penalized
as much as when the reference vectors are directly interacting.
Based on these considerations, we designed the handedness score as
in Equation (11), where the penalty negatively correlates with the
distance (Di,j(T )) between i(T ) and j(T ) and positively correlates

Fig. 2. Illustration of SSE angle and handedness measurement. (A) The dark
blue and dark green vectors represent a pair of SSEs in the target. The blue
and green vectors represent the corresponding SSE pair in the model. The
red arrow indicates the angle discrepancy between the target and the model.
(B) The 3 SSE vectors (i(T ), j(T ) and k(T )) from the target are colored in
dark blue, dark green and red, and the corresponding SSEs (i(M), j(M) and
k(M)) in the model are in blue, green and orange. In both the target and the
model, we define the reference plane (colored in light purple) as the one that
passes through the centers of i, j and parallel to the general orientation of i
and j (i+j when the angle between them is <90◦ and i− j when their angle
is >90◦). The cross product of i’s projection on the reference plane and the
vector connecting the centers of i and j represent the norm of this plane.
After superimposing the reference planes in the target and in the model, the
third vectors, k(T ) and k(M) are on opposite sides of the plane, indicating an
error in handedness. In such case, certain penalty would be introduced as in
Equation (11). The black arrows show the distances (Dk,P(M),Dk,P(T ) and
Di,j(T )) that are measured for handedness score.

with the shorter distance between k(T ) or k(M) and the reference
plane.

sHand(i,j,k)=1− 2min(Dk,P(M),Dk,P(T ))

Di,j(T )
(11)

SH =
∑
i,j,k

(wi,j,k ×sHand(i,j,k))∑
i,j,k

wi,j,k
(12)

3.1.5 The interaction between SSE vectors Interactions between
SSEs i and j were represented by the closest pair of residues
with distance below 8.5 Å. Interacting residue pairs defined in the
target (or certain model) were propagated to the model (or the
target) by residue number. The distances between the propagated
interacting residue pairs in the model (or the target) could be
different than those defined in target (or the model), as a result of
incorrectly modeled interactions. By comparing the Cα distances
of the interacting residues in the target (Di,j(T )) and in the model
(Di,j(M)), we assigned interaction scores for each of the predefined
interactions in the target (tsInter (i,j)) and in the model (msInter (i,j))
[Equations (13) and 14)]. The average of these scores weighted by
the product of the residue numbers represented the final interaction
score [Equation (15)].

tsInter(i,j)=exp

{
−
[

(Di,j(M)−Di,j(T ))

Di,j(T )

]2
×ln2

}
(13)
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msInter(i,j)=exp

{
−
[

(Di,j(M)−Di,j(T ))

Di,j(M)

]2
× ln2

}
(14)

SI =

[∑
i,j

tsInter(i,j)×wt,i,j +
∑
i,j

msInter(i,j)×wm,i,j

]
(∑

i,j
wm,i.j +

∑
i,j

wt,i.j

) (15)

3.1.6 The contact between all Cα atoms Scores based on
interresidue contacts or distances were commonly used by previous
assessors (Ben-David et al., 2009; Jauch et al., 2007). We
incorporated a CS (Shi et al., 2009) into QCS to quantify the atomic
details of the models. In concept, it is similar to our interaction scores
for SSEs, except that it evaluates all Cα contacts in the target. CS
(sContact (i)) was calculated as in Equations (16) and (17), where
Di (M) is the distance between contacting residues in model and
Di (T ) is the distance in target, N is the total number of defined
contacts.

sContact(i,j)=exp

{
−
[

(Di,j(M)−Di,j(T ))

0.2

]2
× ln2

}
(16)

SC =
∑

i sContact(i)

N
(17)

3.1.7 The QCS is the weighted sum of the six components The
QCS was defined as a weighted sum of all six scores discussed
above. The weight of each component could be adjusted to
accentuate certain aspect of the models. In this work, by default, all
the components were weighted equally. To adjust the scale of QCS,
we performed a transformation per Equation (19). The parameter
a, specific for each target, was obtained from random models. Ten
random models were generated by circularly permuting the target
structure to abolish the correspondence between the sequence and
the 3D coordinates. CASP9 FM targets and TBM representatives
acquired average random QCSs from 28 to 45. By hyperbolic
transformation and adjusting the value of a, we rescaled the average
random QCS (QCSrandom) for each target to 20 [as shown in
Equation (20)]. As a result, the scores from different targets are
comparable to each other. The transformed scores correspond to the
final QCS.

QCS= 100∑6
i=1wi

(w1SP +w2SL +w3SH +w4SA +w5SI +w6SC)

(18)

QCSrescaled = QCSoriginal(a−100)

(a−QCSoriginal)
(19)

20= QCSrandom(a−100)

(a−QCSrandom)
(20)

3.2 Agreement between QCS and manual assessment
The traditional and well-accepted way to assess CASP template-
free structure prediction is manual inspection by experts. To test
the performance of QCS, we first compared QCS with the MIS
on CASP9 FM models, excluding those obtained a zero MIS (zero
MIS means either the global topology of the model is completely
wrong or redundant models that were not evaluated). Only models
that correctly predicted at least part of the structure core would

Fig. 3. The correlation between QCS and MIS on a set of CASP9 FM
models, which was evaluated by manual inspection.

Table 1. Correlation coefficient between automatic scores and MIS

Score name Weights of QCS components r ρ ιc ιi

SL SP SA SI SH SC

QCS 1/6 1/6 1/6 1/6 1/6 1/6 0.86 0.87 0.69 0.49
SL 0 1 0 0 0 0 0.70 0.69 0.49 0.37
SP 1 0 0 0 0 0 0.67 0.68 0.50 0.32
SA 0 0 1 0 0 0 0.69 0.70 0.53 0.34
SI 0 0 0 1 0 0 0.67 0.68 0.49 0.35
SH 0 0 0 0 1 0 0.55 0.51 0.37 0.23
SC (CS) 0 0 0 0 0 1 0.73 0.74 0.53 0.40
S5 1/5 1/5 1/5 1/5 1/5 0 0.85 0.86 0.68 0.48

QCSr 0.07 0.17 0.03 0.07 0.23 0.43 0.88 0.89 0.71 0.51
QCSρ 0.10 0.17 0.07 0.03 0.23 0.40 0.88 0.89 0.72 0.51
QCSιc 0.10 0.17 0.07 0.03 0.23 0.40 0.88 0.89 0.72 0.51
QCS ιi 0.07 0.20 0.07 0.03 0.20 0.43 0.88 0.89 0.71 0.51

GDT_TS – – – – – – 0.70 0.67 0.50 0.42
TenS – – – – – – – – – 0.44
Tm-align – – – – – – 0.55 0.53 0.40 0.34
Mammoth – – – – – – 0.52 0.54 0.38 0.34
SOV – – – – – – 0.46 0.48 0.34 0.26

attain a non-zero MIS, and thus these models were of relatively good
quality. On these models, QCS correlates well with MIS (Fig. 3) with
Pearson’s correlation coefficient of 0.86.

QCS harbors the highest correlation coefficients with MIS among
all the structure comparison methods we tested, including GDT_TS,
CS, TM-align and other traditional methods for structure comparison
(Table 1). It is within our expectation as several QCS criteria
were derived from the experience of manual inspection and both
QCS and MIS emphasize on the global features of the models.
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Notably, GDT_TS and CS show satisfactory correlation with manual
judgment as well, which is consistent with previous experiences in
CASP (Ben-David et al., 2009; Jauch et al., 2007).

Three out of the four correlation coefficients listed in Table 1 (the
Pearson’s correlation coefficient (r), the Spearman’s rank correlation
coefficient (ρ) and the overall Kendall tau rank correlation
coefficient (ιc)) estimate the agreement in both ranking models
of one target and comparing the relative prediction quality among
different targets. The fourth coefficient [average per target Kendall
tau rank correlation coefficient (ιi)] is the most indicative for the
ability of ranking models for a particular target (per target Kendall
tau rank correlation coefficients between MIS and automatic scores
are listed in Supplementary Tables S1 and S2). QCS and MIS obtain
a ιi of 0.49, suggesting for 75% of all cases, QCS and MIS agree in
their judgments.

Other similarity scores acquire even lower ιi. Moderate agreement
between MIS and automatic scores likely results from three reasons:
(i) MIS works differently from all automatic methods by design.
On one hand, MIS positively scores only SSEs appearing in a
correct local mutual arrangement (e.g. a helical hairpin). This
consideration differs from the scoring of QCS and reflects instead
that of superimposition-dependent scores like GDT_TS. On the other
hand, MIS assigns scores on the basis of the whole SSEs, considering
their general packing and interactions, which is more similar to QCS
(and not GDT_TS). (ii) The low quality of FM predictions and the
similarity among models made it impossible to clearly discern a
‘better’ model in many cases. The ranking was thus highly sensitive
to the differences in the criteria implemented by different methods.
This effect was exaggerated as only the ranking of relatively good
models were examined and the fact that many of these models were
generated by refining or selecting the predictions from several well-
performing servers. If we considered all models by including the
zero MISs, MIS correlated with automatic scores much better, with
QCS displaying the highest ιi of 0.67 (Supplementary Table S3).
(iii) MIS contains minor errors and the scores are sometimes
inconsistent, as the time devoted to each model is quite short, limited
by the time frame in the CASP season.

The correlation coefficients between the six individual QCS
component scores and MIS are shown in Table 1. The CS alone (SC)
displays the best correlation with MIS. Although, other components,
taken separately, show lower correlation; taken together (S5 in
Table 1), they correlate with MIS even better than CS. Similarly,
none of the other components dominates the performance of
QCS. Each individual component assesses a specific aspect of the
model, and their combination evaluates comprehensive features
required for a good model and lowers the possibility of assigning
a favorable score to a poor model due to a random match to the
target.

In addition to combining all the component scores with equal
weights, we optimized the weights on correlation coefficients with
MIS (QCSr , QCSρ, QCSιc, and QCSιi in Table 1 stand for the
optimized result on r, ρ, ιc and ιi, respectively). Optimization can
only boost the correlation slightly. This limited improvement is
firstly due to the absence of high agreement between any similarity
score and MIS, as discussed above. Moreover, as models of higher
quality are usually favored by all the QCS components, any change
of weights does not lead to a substantial change in QCS ranking
(Kendall tau rank correlation between QCSr , QCSρ, QCSιcι, QCSιi
and QCS are all >0.82).

Fig. 4. The Kendall tau rank correlation coefficient between QCS and
GDT_TS on CASP9 FM targets (represented by blue dots) and TBM
representatives (represented by red dots).

3.3 The correlation between QCS and other methods
We compared QCS with other assessment methods used in CASP9
and CASP8, including GDT_TS, CS, TenS, TenS components
for CASP9 (Kinch et al., 2011b) and GDT_TS, Mammoth,
Q scores for CASP8. QCS shows higher correlation with GDT_TS,
Qcomb (Qlong + Qshort), TenS and CS (average per target Kendall
tau rank correlation coefficient >0.65, shown in Supplementary
Tables S3–S6). These four scores have proved to be useful in
previous CASPs (Ben-David et al., 2009; Kinch et al., 2003), and
similar to QCS, they balance between local and global features.

We compared QCS and GDT_TS on CASP9 TBM
representatives, and the overall Kendall tau correlation coefficient
is ∼0.75 (Fig. 4). The general trend is that as the target becomes
easier for predictors and thus the overall performance of all groups
gets better, the correlation increases. This close correlation with
GDT_TS for TBM targets indicates that the QCS method can also
be applied to TBM model assessment. For the TBM category, even
though most models get the global features correct, SI and SC in
QCS still can reveal the difference in model quality.

3.4 Ability of revealing best models
An essential task of CASP assessment is to identify the best models.
To focus on the ability of identifying best models, we studied the
overlap between top models selected by automatic methods and by
MIS. The top five models (including ties) were taken for comparison,
and QCS top models overlap the most with MIS (43% overlap
overall, shown in Table 2). Likewise, QCS ranks top models by
MIS the highest, while GDT_TS and CS ranks them slightly lower
than QCS did (Supplementary Table S7).

This moderate overlap is likely due to similar reasons as discussed
in Section 3.3. For T0534d1 and T0534d2, as all the models failed
to predict the topology correctly, clearly best models do not exist.
In contrast, for T0537 and T0550d1, many models were based
on the same correct template and only precise measurement could
differentiate the model quality. In both cases, the top models selected
by MIS are questionably ideal. There are also a few cases where
MIS top models are worse than top models detected by other
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methods after careful manual inspection. Without special attention
to selecting the best few models, the models with highest MIS might
contain subjective judgment without careful study in the limited time
frame of CASP season.

In the development stage of QCS, we devoted special attention to
ensuring the top 10 models correspond to or are comparable with the
best models by careful manual inspection. Top 10 models selected
by QCS and top 5 models according to MIS and other methods are
available at http://prodata.swmed.edu/congqian/casp_sum.html.

3.5 QCS performance on previous CASPs
We designed QCS on the basis of our experience in CASP9
assessment. The criteria for assessing structure prediction we
implemented could be different from the standards of others. In the
CASP8 experiment, all the best FM models selected by the assessors
corresponded to the ones with highest GDT_TS (Ben-David et al.,
2009). This perfect overlap might either indicate their great emphasis
on the model’s ability in superimposing to the target or reflect the
bias placed by GDT_TS on the assessors (Ben-David et al., 2009).

Table 2. Top model overlaps between MIS and automatic scores

Target T531 T578 T581 T604d1 T608d1 T621 T624

CS 0.60 0.31 0.83 0.40 0.33 0.80 0.50
QCS 0.60 0.65 0.83 0.40 0.67 0.80 0.75
GDT_TS 0.20 0.54 0.83 0.40 0.67 0.20 0.75
TM 0.00 0.31 0.83 0.60 0.33 0.60 0.75
Mammoth 0.00 0.69 0.67 0.40 0.67 0.60 0.75
SOV 0.20 0.27 0.50 0.00 0.33 0.60 0.00
TenS 0.17 0.67 0.00 0.60 0.00 0.40 0.67

Target T534d1 T534d2 T537 T550d1 T550d2 T561 T618 Overall

CS 0.00 0.00 0.00 0.33 0.21 0.00 0.00 0.31
QCS 0.00 0.25 0.40 0.33 0.14 0.00 0.17 0.43
GDT_TS 0.20 0.25 0.13 0.17 0.19 0.00 0.17 0.34
TM 0.40 0.00 0.00 0.00 0.29 0.00 0.17 0.31
Mammoth 0.40 0.25 0.00 0.00 0.29 0.00 0.07 0.34
SOV 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.15
TenS 0.75 0.00 0.38 0.00 0.43 0.00 0.25 0.31

In contrast, QCS agrees with CASP7 assessors’manual inspection
results better than GDT_TS and the contact-based score (named
CMO) designed by CASP7 assessors. Even though GDT_TS and
CMO top 25 models were used as candidates, the best models
selected after three rounds of careful manual inspection are ranked
higher by QCS than by either GDT_TS or CMO (Supplementary
Table S9). Out of the 45 best models for 18 targets, 25 are in the
top 5 ranks by QCS, while 15 of them overlap with GDT_TS top 5
models and only 6 are among the CMO’s top 5 models. Moreover,
for most targets (15 out of 18), the average QCS ranks of the best
models are higher or about the same as GDT_TS and CMO ranks.
This good agreement between QCS selection and CASP7 assessors’
manual inspection results independently supports the value of QCS
in revealing the best models.

For three CASP7 targets (T0296, T0309, T0314), QCS ranked
the best models lower than GDT_TS and CMO did. However,
for T0296 and T0314, no predictions modeled the topology of
the structure correctly (Jauch et al., 2007), and the best models
selected by previous assessors are not clearly better than QCS top
models. Only for T0309, the best manually selected models is of
better quality than QCS picks. This target is a domain-swapped
octamer. Manually selected models placed the strands involved
in oligomerization correctly, somewhat neglecting other parts of
the molecule, while QCS preferred models that packed the rest
of the molecule correctly. Manual inspectors paid more attention
to the oligomerization strands since they form the core of the
octamer. However, as the oligomerization strands are loosely packed
in the monomer, QCS, by design placed less emphasis on them.
Such a priority defined by the specific features of certain target
is the unique advantage of manual inspection, and it signifies the
importance of manual assessment.

3.6 QCS reveal models of superior global topology
Best models selected by QCS were compared with best
models suggested by GDT_TS (overlap between them shown in
Supplementary Table S8). In most cases, the best models selected
by both scores agree with each other (Table 3). For some cases, QCS
did reveal models with good features that were missed by GDT_TS.
Three such examples are shown in Figures 5–7.

The first example is target T0561 (Fig. 5A). QCS selects model
TS295_2 (Fig. 5B) as the best model with a score of 62.4 and scores

Table 3. Comparison of best models selected by GDT_TS and QCS

Target T0531 TS534d1 T0534d2 T0537 T0550d1 T0550d2 T0561

Method QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS

First model TS399_5 TS399_5 TS114_4 TS297_4 TS172_4 TS110_4 TS065_3 TS065_5 TS065_2 TS065_2 TS104_3 TS104_3 TS295_2 TS324_5
MIS 55.8 55.8 40.9 40.9 n/a 46.4 52.4 52.4 88.9 88.9 81.2 81.2 54 68
Careful inspection Equal Equal Equal Equal Equal Equal Equal Equal Equal Equal Equal Equal Better Worse

Target T0578 T0581 T0604d1 T0608d1 T0618 T0621 T0624

Method QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS QCS GDT_TS

Top model TS065_3 TS428_2 TS065_2 TS170_1 TS096_1 TS096_1 TS147_1 TS147_1 TS386_4 TS380_4 TS065_5 TS002_5 TS172_1 TS172_1
MIS 56.3 62.5 90.6 81.3 96.3 96.3 n/a 59.3 n/a 50.1 50 48.3 81.3 81.3
Careful inspection Equal Equal Better Worse Equal Equal Equal Equal Better Worse Better Worse Equal Equal

3376

 at U
niversity of T

exas Southw
estern M

edical C
enter at D

allas on M
arch 13, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[10:15 21/11/2011 Bioinformatics-btr572.tex] Page: 3377 3371–3378

CASP9 FM

Fig. 5. Example (Target 561) of QCS revealing models with good global
topology and correct interactions. The first panel: the target or model
structures; the second panel: the topology diagrams; the last panel: the
structures with interactions colored in magenta. (A), (E), (I) target T0561;
(B), (F), (J) the best model selected by QCS; (C), (G), (K) the best model
selected by GDT_TS; (D), (H), (L) the best model selected by MIS.

Fig. 6. Example (Target 618) of QCS revealing models with correct topology
and global shape. (A) Structure of the target T0618 colored in rainbow; (B) the
best model selected by QCS; (C) the best model selected by GDT_TS.

Fig. 7. Example (Target 621) of QCS revealing models with superior global
features. (A) The structure of target T0621 colored in rainbow; (B) the best
model selected by QCS; (C) the best model selected by GDT_TS.

46.9 for model TS324_5 (Fig. 5C), while GDT_TS favors model
TS324_5 (GDT_TS: 39.4) over TS295_2 (GDT_TS: 31.5), as the
three helices at the N-terminus of model TS324_5 (colored in blue,
green and yellow in Fig. 5) can be precisely superimposed to the
corresponding helices in the target. However, in terms of global
topology, the two helices at the C-terminus of model TS324_5
(Fig. 5G) are packed in opposite orientations compared with the
target (Fig. 5E), which diminishes the quality of this model. On the
contrary, the global topology of model TS295_2 (Fig. 5F) agrees
exactly with that of the target. Moreover, out of the three key
interactions (Fig. 5I, colored in magenta) defined in target, TS295_2
(Fig. 5J) predicts all of them correctly while in TS324_5 (Fig. 5K)
only one of them is correct. Apparently, by paying attention to
the global features, QCS has revealed models with superior global
topology and interactions, which should be favored after closer
inspection.

The model (TS096_4, Fig. 5D) selected by MIS also adopts
correct topology (Fig. 5H). QCS ranks this model at 18, after a
group of models that assemble TS295_2. A superior feature of this
model is that the N- and C-termini are placed close to each other
as they are in the target. Nevertheless, the helices in this model
are overpredicted (see elongated helical segments in gray), causing
the loop regions to be inadequate to allow correct packing angles
between the helices. Moreover, close study shows poorly predicted
interactions in this model. Such features downgraded the quality
of this model and made it worse than TS295_2 by careful manual
comparison.

The second example is target T0618 (Fig. 6A). For this target,
QCS ranks TS386_4 (Fig. 6B) as the best model (QCS: 61.3,
GDT_TS: 39.6), which is visually identical to the best model
according to MIS, and GDT_TS selects TS380_4 (Fig. 6C) as
the first model (QCS: 53.3, GDT_TS: 41.9). TS380_4 is worse
in topology than TS386_4 as the green helix is in a completely
wrong orientation, leading to opposite handedness between the
green, yellow and orange (or red) helices. Moreover, different from
the real structure, the N- and C-terminal helices in TS380_4 are
almost perpendicular, and the shape of the whole protein is a poor
representation of reality. Comparatively, the best model selected by
QCS almost correctly predicted the topology and the global shape
of the model, promising an undoubtedly better model by manual
inspection.
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Fig. 8. Example (Target 578) of GDT_TS and QCS revealing models with
different advantages. (A) The structure of target T0578; (B) the structure of
best model selected by QCS; (C) the structure of best model selected by
GDT_TS.

The third example is target T0621 (Fig. 7A). QCS favors model
TS065_5 (Fig. 7B, QCS: 65.3, GDT_TS: 32.2) over TS002_5
(Fig. 7C, QCS: 53.2, GDT_TS: 34.0). The core of this target is
a jelly roll β-sandwich, and the model favored by QCS positions all
the β-strands in the core correctly. However, the model favored by
GDT_TS failed to pack the N- and C-terminal strands, even though
it may have better superimposition with the target because of better
details in the shape of the β-sandwich. Similar to QCS, MIS ranked
model TS065_1 (QCS rank it as 2nd) as the best, which is very
similar to TS065_5 in global topology, with differences mainly in
the inserted helices and hairpin colored in cyan in Figure 7A.

These three examples illustrate general properties of QCS.
Compared to the well-established GDT_TS, this new method
emphasizes on the global topology, thus it can overcome the problem
caused by domination of local features, which is frequently revealed
in GDT_TS. QCS defines all the SSEs and contacts in target and
propagates these definitions to the model. Shift in the alignment
will lead to incorrect definition of SSEs in the model and result
in unfavorable QCS. As most structure prediction methods more
or less take advantage of a template structure or template structure
fragment, the correct alignment between the template sequence and
the target sequence during structure prediction procedure will be
highly favored by QCS.

The best models selected by QCS and GDT_TS sometimes
reveal different advantages, as illustrated by target T0578 (Fig. 8A).
Two features, the unusual crossover between the green and yellow
strands and the packing of the three helices in this target, were
poorly modeled by all the groups participated in CASP9. TS428_2
(Fig. 7C), the first model ranked by GDT_TS, is among the few
models that pack these helices in a correct orientation, which
explains the high MIS it obtained. However, this model only
predicted half of the β-sheet in the target, and failed to adopt an
elongated shape as in the target. On the contrary, QCS’s top model
(TS065_3, Fig. 7B) correctly predicted the shape of the protein and
the major part of the β-sheet, while it failed to place the C-terminal
helix properly. QCS likely favors such a model because we designed
QCS to emphasize strands by weighing the residues of a strand twice
as much as residues in a helix. In such cases, top models selected by
different methods reveal different positive features. By combining

them, we can generate a better pool of candidates for best models
and provide a better assessment of structure predictions.

4 CONCLUSION
We developed an automatic method for structure prediction
assessment, which is inspired by the manual assessment traditionally
carried out by CASP assessors. Not dominated by local features of
the prediction, QCS emphasizes the global topology. QCS is a good
complement for superimposition-based scores as GDT_TS and can
be used for CASP in the future and generally for automatic structure
prediction assessment. Moreover, QCS can be upgraded into a tool
for general structure alignment and comparison. With emphasis on
global features of the structure, QCS or the ideas presented could be
useful for remote homology detection and structure classification of
proteins.
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