Citrus Sinensis ID: 003809
Local Sequence Feature Prediction
| Prediction and Method | Result |
|---|
|
Function Prediction
Annotation transfered from Closely Related SWISS-PROT Entries 
Annotation ![]() | Function Description ![]() | Confidence Level ![]() | Reference Protein ![]() |
| DNA replication licensing factor Mcm6 | Acts as component of the Mcm2-7 complex (Mcm complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the Mcm2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity Required for DNA replication and cell proliferation. Required for mitotic cycles, endocycles, and the special S phase associated with the amplification of chorion genes; has a role in origin unwinding or fork elongation at chorion loci. | probable | Q9V461 |
| DNA replication licensing factor MCM6 | Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. | probable | Q2KIZ8 |
| Zygotic DNA replication licensing factor mcm6 | Acts as component of the mcm2-7 complex (mcm complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the mcm2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. The existence of maternal and zygotic forms of mcm3 and mcm6 suggests that specific forms of mcm2-7 complexes may be used during different stages of development. May replace mmcm6 in the mcm2-7 complex. | probable | Q6P1V8 |
Spatial Structural Prediction
Structural Models Based on Templates
|
Template: 3F9V, chain A Confidence level:very confident Coverage over the Query: 15-260,272-309,324-619 View the alignment between query and template View the model in PyMOL |
|
Template: 2KLQ, chain A Confidence level:very confident Coverage over the Query: 676-794 View the alignment between query and template View the model in PyMOL |