Query         032245
Match_columns 144
No_of_seqs    32 out of 34
Neff          2.3 
Searched_HMMs 46136
Date          Fri Mar 29 11:32:27 2013
Command       hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/032245.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/032245hhsearch_cdd -cpu 12 -v 0 

 No Hit                             Prob E-value P-value  Score    SS Cols Query HMM  Template HMM
  1 PF03244 PSI_PsaH:  Photosystem 100.0 4.7E-85   1E-89  506.0  -5.1  139    6-144     1-140 (140)
  2 PLN00017 photosystem I reactio 100.0 1.6E-60 3.5E-65  348.0   7.7   90   44-133     1-90  (90)
  3 PF12622 NpwBP:  mRNA biogenesi  73.6     1.3 2.9E-05   29.2   0.5   10   52-61      1-10  (48)
  4 PLN00046 photosystem I reactio  63.3     4.1 8.8E-05   32.7   1.3   78   14-94     10-95  (141)
  5 cd07472 HmuY_like Bacterial pr  54.3     9.4  0.0002   28.2   1.9   20   53-72     16-42  (121)
  6 cd01370 KISc_KIP3_like Kinesin  47.8 1.1E+02  0.0025   25.6   7.5   77   46-128    22-105 (338)
  7 PHA02091 hypothetical protein   38.3      16 0.00035   26.4   1.0   33   59-91     36-70  (72)
  8 PF14064 HmuY:  HmuY protein; P  37.0      17 0.00036   26.9   0.9   20   53-72      4-32  (159)
  9 cd01368 KISc_KIF23_like Kinesi  34.3   2E+02  0.0044   24.2   7.0   68   52-125    29-103 (345)
 10 PF05757 PsbQ:  Oxygen evolving  29.7      18 0.00039   29.9   0.0   45   96-142    29-73  (202)
 11 PF08076 TetM_leader:  Tetracyc  29.7      20 0.00044   22.0   0.3    6   52-57     13-18  (28)
 12 PLN00170 photosystem II light-  29.3      47   0.001   28.5   2.5   46   15-60     10-57  (255)
 13 cd02979 PHOX_C FAD-dependent P  28.3      45 0.00097   25.6   2.0   40   57-100    17-59  (167)
 14 PF00225 Kinesin:  Kinesin moto  28.1      88  0.0019   25.5   3.7   42   71-124    47-88  (335)
 15 cd01371 KISc_KIF3 Kinesin moto  27.3      89  0.0019   26.0   3.7   53   67-125    44-96  (333)
 16 cd00314 plant_peroxidase_like   26.3      22 0.00048   28.4   0.0   14   85-98    239-252 (255)
 17 PF11607 DUF3247:  Protein of u  26.2      21 0.00045   27.4  -0.1   21   19-40     37-57  (101)
 18 KOG2948 Predicted metal-bindin  25.3      40 0.00087   30.3   1.4   27   71-97     53-81  (327)
 19 KOG4525 Jacalin-like lectin do  25.1      56  0.0012   31.3   2.4   39   21-59    490-533 (614)
 20 cd06396 PB1_NBR1 The PB1 domai  24.1      97  0.0021   22.4   3.0   22   46-67      2-23  (81)
 21 PLN02729 PSII-Q subunit         22.4      55  0.0012   28.0   1.6   37   99-137    52-88  (220)
 22 PLN02879 L-ascorbate peroxidas  21.3      37  0.0008   28.6   0.4   20   81-100   224-243 (251)
 23 cd01365 KISc_KIF1A_KIF1B Kines  20.7 1.7E+02  0.0037   24.6   4.2   48   72-125    55-103 (356)
 24 cd01367 KISc_KIF2_like Kinesin  20.6 1.3E+02  0.0028   25.0   3.4   37   83-125    63-99  (322)
 25 cd01373 KISc_KLP2_like Kinesin  20.5 1.7E+02  0.0036   24.6   4.1   37   83-125    53-89  (337)

No 1  
>PF03244 PSI_PsaH:  Photosystem I reaction centre subunit VI;  InterPro: IPR004928 Photosystem I, a membrane complex found in the chloroplasts of plants and cyanobacteria uses light energy to transfer electrons from plastocyanin to ferredoxin []. The electron transfer components of the photosystem include the primary electron donor chlorophyll P-700 and 5 electron acceptors: chlorophyll (A0), phylloquinone (A1) and three 4Fe-4S iron-sulphur centres, designated Fx, Fa and Fb. The role of this protein, subunit VI or PsaH, may be in docking of the light harvesting complex I antenna to the core complex.; GO: 0015979 photosynthesis, 0009522 photosystem I, 0009538 photosystem I reaction center; PDB: 2WSF_H 2WSE_H 2WSC_H 2O01_H.
Probab=100.00  E-value=4.7e-85  Score=506.03  Aligned_cols=139  Identities=84%  Similarity=1.318  Sum_probs=58.0

Q ss_pred             hhhhhccc-cccccccCCCCCceeeeccCccccCCCCcccceeEeeeCCeeeeeeccCCCCCcccceeeccCCCCCCChh
Q 032245            6 TIAAVQPA-TIKGLGGSSLAGTKLTVKPTRQSFRPKSFKAGAVVAKYGDKSVYFDLEDLGNTTGQWDLYGSDAPSPYNSL   84 (144)
Q Consensus         6 ~~~~~~~~-~v~gl~gSs~~g~kl~~kp~~~~~r~~~~ra~~v~AKYGdkSvYFDL~Di~nTTG~WDlYGsDaps~Yn~l   84 (144)
                      ++++|||+ +||||+||||+|+||+|||++++.|++++|+++|+||||||||||||+|||||||||||||+|+|||||+|
T Consensus         1 ~~a~~~~~~~~~gla~ss~~g~Kl~~~p~~~~~r~~~~ra~~v~AKYGdkSvYFDL~Di~nTTG~WDlYGsD~ps~Yn~l   80 (140)
T PF03244_consen    1 TLAAVQPTAAVKGLAGSSLSGTKLAVKPARQSFRRRNRRAGAVVAKYGDKSVYFDLEDIENTTGQWDLYGSDAPSPYNPL   80 (140)
T ss_dssp             --------------------------------------------------------S----SS-TTSS--SSSSS----S
T ss_pred             CcceeecccccccccccccccceEeecccccccccccccccceeeecccceeEEehhhccCCcccceecccCCCCCCCHH
Confidence            57899999 99999999999999999999999999999999999999999999999999999999999999999999999


Q ss_pred             HHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCcccccccCCCCCCCCCCCCCC
Q 032245           85 QSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGDILPIKKGPQLPPKLGPRGKI  144 (144)
Q Consensus        85 QskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D~LPIk~GPQ~pp~~GPRgki  144 (144)
                      |+||||+||+||||||+|||||+|||+++|+|+|+++++|+||||+|||+||++||||||
T Consensus        81 QskFFe~fA~~ftkRglllkfl~lgG~~~~~~~ga~~s~D~LPIk~GPq~pp~~GPRgki  140 (140)
T PF03244_consen   81 QSKFFETFAAPFTKRGLLLKFLALGGGSTLAYFGAKASKDLLPIKKGPQQPPKLGPRGKI  140 (140)
T ss_dssp             --SSSSSSS-TTSSSTTTSTTTTTTGGGTTTTTTST-SSS-SS---S--SS--SSSS---
T ss_pred             HHHHHHHHhcchhhHHHHHHHHHhcCcceEEEEcccCcccccccccCCCCCCCCCCCCCC
Confidence            999999999999999999999999999999999999999999999999999999999998


No 2  
>PLN00017 photosystem I reaction centre subunit VI; Provisional
Probab=100.00  E-value=1.6e-60  Score=348.01  Aligned_cols=90  Identities=84%  Similarity=1.295  Sum_probs=88.7

Q ss_pred             cceeEeeeCCeeeeeeccCCCCCcccceeeccCCCCCCChhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCC
Q 032245           44 AGAVVAKYGDKSVYFDLEDLGNTTGQWDLYGSDAPSPYNSLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASG  123 (144)
Q Consensus        44 a~~v~AKYGdkSvYFDL~Di~nTTG~WDlYGsDaps~Yn~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~  123 (144)
                      +++|+||||||||||||+|||||||+|||||+|+|||||++|+||||+||++|||||+|||||+|+|+++|+|+|+++++
T Consensus         1 a~~v~AKYGe~SvYFDL~Di~nTTGsWDlYG~d~~srY~~~QskFFe~~A~~~tkR~~l~~fl~l~g~~~~~~~g~~~~~   80 (90)
T PLN00017          1 AGAVSAKYGDKSVYFDLGDLENTTGSWDLYGSDAPSRYNPLQSKFFETFAAPFTKRGLLLKFLALGGGSALAYVGAKGSK   80 (90)
T ss_pred             CcccccccCcceeEEEhhhhccCcccceeeccCCCCCCChHHHHHHHHHhhhhhHHHHHHHHHHHcCcceEEEecccCcc
Confidence            47899999999999999999999999999999999999999999999999999999999999999999999999999999


Q ss_pred             cccccccCCC
Q 032245          124 DILPIKKGPQ  133 (144)
Q Consensus       124 D~LPIk~GPQ  133 (144)
                      |+||||+|||
T Consensus        81 d~LPI~~GPq   90 (90)
T PLN00017         81 DALPIKKGPQ   90 (90)
T ss_pred             cccccccCCC
Confidence            9999999998


No 3  
>PF12622 NpwBP:  mRNA biogenesis factor
Probab=73.64  E-value=1.3  Score=29.16  Aligned_cols=10  Identities=50%  Similarity=0.949  Sum_probs=8.4

Q ss_pred             CCeeeeeecc
Q 032245           52 GDKSVYFDLE   61 (144)
Q Consensus        52 GdkSvYFDL~   61 (144)
                      |++|||||=+
T Consensus         1 ~~kSiyydP~   10 (48)
T PF12622_consen    1 PEKSIYYDPE   10 (48)
T ss_pred             CCcceecCCc
Confidence            7899999953


No 4  
>PLN00046 photosystem I reaction center subunit O; Provisional
Probab=63.28  E-value=4.1  Score=32.69  Aligned_cols=78  Identities=29%  Similarity=0.309  Sum_probs=37.5

Q ss_pred             cccccccCCCCCceeeeccCcc-ccCCCCcccceeEeeeCCeeeeeeccCCCCC--cccceeeccCCCCC---C--ChhH
Q 032245           14 TIKGLGGSSLAGTKLTVKPTRQ-SFRPKSFKAGAVVAKYGDKSVYFDLEDLGNT--TGQWDLYGSDAPSP---Y--NSLQ   85 (144)
Q Consensus        14 ~v~gl~gSs~~g~kl~~kp~~~-~~r~~~~ra~~v~AKYGdkSvYFDL~Di~nT--TG~WDlYGsDaps~---Y--n~lQ   85 (144)
                      +|.||++++++-. ........ .+++.+.|+...++-=|++.  ||=+=+...  -=---|.|=-+||-   |  |+|-
T Consensus        10 tV~gL~~~sl~~~-~~~ss~f~~~~~~~~~~~~~~~a~~~~~t--F~rDWLr~d~~V~~~gl~GW~~PS~ipa~~g~sL~   86 (141)
T PLN00046         10 TVSGLGSSSLSAP-RRLSSGFVKGPVTVRRRAVLARASGSKKT--FDRDWLRKDLNVIGFGLIGWLAPSSIPAIGGNSLT   86 (141)
T ss_pred             HhhhccccCcccc-cccccccccCcccccchhhhhhhcccccc--cchhhhhcccceeeeeeeeeeccccccccCCchhH
Confidence            7889999988652 11111111 12333335554445446655  873212111  01123444445553   3  3566


Q ss_pred             HHHHHHhhc
Q 032245           86 SKFFETFAA   94 (144)
Q Consensus        86 skFFe~fA~   94 (144)
                      --||+....
T Consensus        87 glF~~sIg~   95 (141)
T PLN00046         87 GLFFDSIGT   95 (141)
T ss_pred             HHHHHHHHH
Confidence            678877654


No 5  
>cd07472 HmuY_like Bacterial proteins similar to Porphyromonas gingivalis HmuY. HmuY is a hemophore that scavenges heme from infected hosts and delivers it to the outer membrane receptor HmuR. Related but uncharacterized proteins do not appear to share the specific heme-binding site.
Probab=54.29  E-value=9.4  Score=28.16  Aligned_cols=20  Identities=40%  Similarity=0.772  Sum_probs=15.1

Q ss_pred             CeeeeeeccCCCC-------Cccccee
Q 032245           53 DKSVYFDLEDLGN-------TTGQWDL   72 (144)
Q Consensus        53 dkSvYFDL~Di~n-------TTG~WDl   72 (144)
                      .+-|||||++-+-       .+-.||+
T Consensus        16 ~~wvYf~l~t~~~v~~~~~~~~~~WDI   42 (121)
T cd07472          16 TKWVYFSLETGATVTVTDAENSTDWDI   42 (121)
T ss_pred             CceEEEECcCCCEEecCCcCCCCCccE
Confidence            8999999998532       2357997


No 6  
>cd01370 KISc_KIP3_like Kinesin motor domain, KIP3-like subgroup. The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a sec
Probab=47.78  E-value=1.1e+02  Score=25.57  Aligned_cols=77  Identities=22%  Similarity=0.254  Sum_probs=48.0

Q ss_pred             eeEeeeCCeeeeeeccCCCC-------CcccceeeccCCCCCCChhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEee
Q 032245           46 AVVAKYGDKSVYFDLEDLGN-------TTGQWDLYGSDAPSPYNSLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFS  118 (144)
Q Consensus        46 ~v~AKYGdkSvYFDL~Di~n-------TTG~WDlYGsDaps~Yn~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~g  118 (144)
                      .++.--.++.+-+|-.+-..       ..+....|--|.=-.-+..|..+|+..+.|+-     -. ++=|=-++|..+|
T Consensus        22 ~~v~~~~~~~v~~~~~~~~~~~~~~~~~~~~~~~f~Fd~vf~~~~~q~~vf~~~~~plv-----~~-~~~G~n~~i~ayG   95 (338)
T cd01370          22 RVVKVVDDRMLVFDPKDEEDAFRNLRARRNKELKYSFDRVFDETSTQEEVYENTTKPLV-----DG-VLNGYNATVFAYG   95 (338)
T ss_pred             eEEEEcCCCEEEEcCCcccccccchhcccCCceEEEeccccCCCCCHHHHHHHHHHHHH-----HH-HHCCCCceEEeeC
Confidence            44444566777777655322       23345555555544445679999999887753     22 2335556888889


Q ss_pred             cccCCccccc
Q 032245          119 ATASGDILPI  128 (144)
Q Consensus       119 a~as~D~LPI  128 (144)
                      .++||----+
T Consensus        96 qtGSGKTyTm  105 (338)
T cd01370          96 ATGAGKTHTM  105 (338)
T ss_pred             CCCCCCeEEE
Confidence            9999865443


No 7  
>PHA02091 hypothetical protein
Probab=38.34  E-value=16  Score=26.41  Aligned_cols=33  Identities=30%  Similarity=0.573  Sum_probs=28.5

Q ss_pred             eccCCCCCcccce--eeccCCCCCCChhHHHHHHH
Q 032245           59 DLEDLGNTTGQWD--LYGSDAPSPYNSLQSKFFET   91 (144)
Q Consensus        59 DL~Di~nTTG~WD--lYGsDaps~Yn~lQskFFe~   91 (144)
                      .|.=|.|.-|-|-  +||.--..+---.|.+|||-
T Consensus        36 ~l~ii~~d~~~w~lnvygp~~~~~i~~~~~~~fev   70 (72)
T PHA02091         36 ELQIIQRDRGMWTLNVYGPLGKAQICRDQQKFFEV   70 (72)
T ss_pred             eEEEEecCCceEEEEeecccchhhcchhHHhhhcc
Confidence            4667899999995  69999999999999999984


No 8  
>PF14064 HmuY:  HmuY protein; PDB: 3H8T_A 3U22_A.
Probab=37.03  E-value=17  Score=26.95  Aligned_cols=20  Identities=40%  Similarity=0.743  Sum_probs=13.9

Q ss_pred             CeeeeeeccCC---------CCCccccee
Q 032245           53 DKSVYFDLEDL---------GNTTGQWDL   72 (144)
Q Consensus        53 dkSvYFDL~Di---------~nTTG~WDl   72 (144)
                      ++-|||||++=         ..++..|||
T Consensus         4 ~~wvY~~l~~g~~~~~~~~~~~~~~~WDi   32 (159)
T PF14064_consen    4 TNWVYFDLETGAQVTVTDEAPAESTDWDI   32 (159)
T ss_dssp             TEEEEEETTTTEEEECT-TTGGG-TT-SE
T ss_pred             CccEEEECCCCcEeeccccccCCCCCccE
Confidence            46799999863         467889998


No 9  
>cd01368 KISc_KIF23_like Kinesin motor domain, KIF23-like subgroup. Members of this group may play a role in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, a
Probab=34.30  E-value=2e+02  Score=24.22  Aligned_cols=68  Identities=22%  Similarity=0.246  Sum_probs=42.8

Q ss_pred             CCeeeeeeccCC-------CCCcccceeeccCCCCCCChhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCc
Q 032245           52 GDKSVYFDLEDL-------GNTTGQWDLYGSDAPSPYNSLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGD  124 (144)
Q Consensus        52 GdkSvYFDL~Di-------~nTTG~WDlYGsDaps~Yn~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D  124 (144)
                      .+++|.++..+-       .|....+..|--|.==.-+.-|..+|+..+.|+-+.      ++-|--++|..+|.++||-
T Consensus        29 ~~~~v~~~~~~~~~~~~~~~~~~~~~~~f~Fd~vf~~~~tq~~vy~~~~~p~v~~------~l~G~n~ti~aYGqtGSGK  102 (345)
T cd01368          29 NSTTIQLHPPKGSAARKSERNGGQKETKFSFSKVFGPNTTQKEFFEGTALPLVQD------LLKGKNSLLFTYGVTNSGK  102 (345)
T ss_pred             CCCEEEEeCCccccccccccccCCCceEeecCeEECCCCCHHHHHHHHHHHHHHH------HhCCCceEEEEeCCCCCCC
Confidence            455565554332       223334555555544444578999999988776432      3346667899999999985


Q ss_pred             c
Q 032245          125 I  125 (144)
Q Consensus       125 ~  125 (144)
                      -
T Consensus       103 T  103 (345)
T cd01368         103 T  103 (345)
T ss_pred             e
Confidence            4


No 10 
>PF05757 PsbQ:  Oxygen evolving enhancer protein 3 (PsbQ);  InterPro: IPR008797 Oxygenic photosynthesis uses two multi-subunit photosystems (I and II) located in the cell membranes of cyanobacteria and in the thylakoid membranes of chloroplasts in plants and algae. Photosystem II (PSII) has a P680 reaction centre containing chlorophyll 'a' that uses light energy to carry out the oxidation (splitting) of water molecules, and to produce ATP via a proton pump. Photosystem I (PSI) has a P700 reaction centre containing chlorophyll that takes the electron and associated hydrogen donated from PSII to reduce NADP+ to NADPH. Both ATP and NADPH are subsequently used in the light-independent reactions to convert carbon dioxide to glucose using the hydrogen atom extracted from water by PSII, releasing oxygen as a by-product. PSII is a multisubunit protein-pigment complex containing polypeptides both intrinsic and extrinsic to the photosynthetic membrane [, ]. Within the core of the complex, the chlorophyll and beta-carotene pigments are mainly bound to the antenna proteins CP43 (PsbC) and CP47 (PsbB), which pass the excitation energy on to the reaction centre proteins D1 (Qb, PsbA) and D2 (Qa, PsbD) that bind all the redox-active cofactors involved in the energy conversion process. The PSII oxygen-evolving complex (OEC) oxidises water to provide protons for use by PSI, and consists of OEE1 (PsbO), OEE2 (PsbP) and OEE3 (PsbQ). The remaining subunits in PSII are of low molecular weight (less than 10 kDa), and are involved in PSII assembly, stabilisation, dimerisation, and photo-protection [].  In PSII, the oxygen-evolving complex (OEC) is responsible for catalysing the splitting of water to O(2) and 4H+. The OEC is composed of a cluster of manganese, calcium and chloride ions bound to extrinsic proteins. In cyanobacteria there are five extrinsic proteins in OEC (PsbO, PsbP-like, PsbQ-like, PsbU and PsbV), while in plants there are only three (PsbO, PsbP and PsbQ), PsbU and PsbV having been lost during the evolution of green plants []. This family represents the PSII OEC protein PsbQ. Both PsbQ and PsbP (IPR002683 from INTERPRO) are regulators that are necessary for the biogenesis of optically active PSII. The crystal structure of PsbQ from spinach revealed a 4-helical bundle polypeptide. The distribution of positive and negative charges on the protein surface might explain the ability of PsbQ to increase the binding of chloride and calcium ions and make them available to PSII [].; GO: 0005509 calcium ion binding, 0015979 photosynthesis, 0009523 photosystem II, 0009654 oxygen evolving complex, 0019898 extrinsic to membrane; PDB: 1VYK_A 1NZE_A 3LS1_A 3LS0_A.
Probab=29.72  E-value=18  Score=29.86  Aligned_cols=45  Identities=24%  Similarity=0.270  Sum_probs=2.7

Q ss_pred             chhhHHHHHHHHHhCCceEEEeecccCCcccccccCCCCCCCCCCCC
Q 032245           96 FTKRGLLLKFLILGGGSTLAYFSATASGDILPIKKGPQLPPKLGPRG  142 (144)
Q Consensus        96 ftkR~lllkfl~LgG~~~l~y~ga~as~D~LPIk~GPQ~pp~~GPRg  142 (144)
                      -+||-.|-.|++.|-.+ .....+ ...+.-+|+.||+.||..|..|
T Consensus        29 ~~RRa~l~~l~a~~~~~-~~~~~~-~~a~~~~~~~~~~~p~~~~~~g   73 (202)
T PF05757_consen   29 TSRRAVLGSLLAAALAG-GSFAQA-AAAAAWAIKVGLPPPPSGNLPG   73 (202)
T ss_dssp             ------------------------------S-EE-------------
T ss_pred             ccHHHHHHHHHHHHHHh-hhcccc-cccchhhhccCCCCCCCCCCCC
Confidence            45555443355554333 222222 2223678999999999877544


No 11 
>PF08076 TetM_leader:  Tetracycline resistance determinant leader peptide;  InterPro: IPR012992 The antibiotic tetracycline has a broad spectrum of activity, acting to inhibit bacterial protein synthesis by binding to the 30S ribosomal subunit, which prevents the association of the aminoacyl-tRNA to the ribosomal acceptor A site. Tetracycline binding is reversible, therefore diluting out the antibiotic can reverse its effects. Tetracycline resistance genes are often located on mobile elements, such as plasmids, transposons and/or conjugative transposons, which can sometimes be transferred between bacterial species. In certain cases, tetracycline can enhance the transfer of these elements, thereby promoting resistance amongst a bacterial colony. There are three types of tetracycline resistance: tetracycline efflux, ribosomal protection, and tetracycline modification [, ]:    Tetracycline efflux proteins belong to the major facilitator superfamily. Efflux proteins are membrane-associated proteins that recognise and export tetracycline from the cell. They are found in both Gram-positive and Gram-negative bacteria []. There are at least 22 different tetracycline efflux proteins, grouped according to sequence similarity: Group 1 are Tet(A), Tet(B), Tet(C), Tet(D), Tet(E), Tet(G), Tet(H), Tet(J), Tet(Z) and Tet(30); Group 2 are Tet(K) and Tet(L); Group 3 are Otr(B) and Tcr(3); Group 4 is TetA(P); Group 5 is Tet(V). In addition, there are the efflux proteins Tet(31), Tet(33), Tet(V), Tet(Y), Tet(34), and Tet(35).     Ribosomal protection proteins are cytoplasmic proteins that display homology with the elongation factors EF-Tu and EF-G. Protection proteins bind the ribosome, causing an alteration in ribosomal conformation that prevents tetracycline from binding. There are at least ten ribosomal protection proteins: Tet(M), Tet(O), Tet(S), Tet(W), Tet(32), Tet(36), Tet(Q), Tet(T), Otr(A), and TetB(P). Both Tet(M) and Tet(O) have ribosome-dependent GTPase activity, the hydrolysis of GTP providing the energy for the ribosomal conformational changes.      Tetracycline modification proteins include the enzymes Tet(37) and Tet(X), both of which inactivate tetracycline. In addition, there are the tetracycline resistance proteins Tet(U) and Otr(C).   The expression of several of these tet genes is controlled by a family of tetracycline transcriptional regulators known as TetR. TetR family regulators are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity []. The TetR proteins identified in over 115 genera of bacteria and archaea share a common helix-turn-helix (HTH) structure in their DNA-binding domain. However, TetR proteins can work in different ways: they can bind a target operator directly to exert their effect (e.g. TetR binds Tet(A) gene to repress it in the absence of tetracycline), or they can be involved in complex regulatory cascades in which the TetR protein can either be modulated by another regulator or TetR can trigger the cellular response.   This entry represents the tetracycline resistance leader peptide, which can be found in Tet(M) ribosomal protection proteins. A short open reading frame corresponding to a 28 amino acid peptide, which contains a number of inverted repeat sequences was found immediately upstream of tet(M). Transcriptional analyses has found that expression of tet(M) resulted from an extension of a small transcript representing the upstream leader region into the resistance determinant. Therefore, this leader sequence is responsible for transcriptional attenuation and thus regulation of the transcription of tet(M) [].
Probab=29.69  E-value=20  Score=22.02  Aligned_cols=6  Identities=67%  Similarity=1.187  Sum_probs=4.4

Q ss_pred             CCeeee
Q 032245           52 GDKSVY   57 (144)
Q Consensus        52 GdkSvY   57 (144)
                      ||+|+|
T Consensus        13 ~D~S~y   18 (28)
T PF08076_consen   13 SDKSIY   18 (28)
T ss_pred             Ccccee
Confidence            677777


No 12 
>PLN00170 photosystem II light-harvesting-Chl-binding protein  Lhcb6 (CP24); Provisional
Probab=29.30  E-value=47  Score=28.48  Aligned_cols=46  Identities=22%  Similarity=0.198  Sum_probs=26.4

Q ss_pred             ccccccCCCCCceeee--ccCccccCCCCcccceeEeeeCCeeeeeec
Q 032245           15 IKGLGGSSLAGTKLTV--KPTRQSFRPKSFKAGAVVAKYGDKSVYFDL   60 (144)
Q Consensus        15 v~gl~gSs~~g~kl~~--kp~~~~~r~~~~ra~~v~AKYGdkSvYFDL   60 (144)
                      +.||+.|.++|.|=+.  +++....+..++|...|+|-=.++..+||-
T Consensus        10 ~~~~~ssf~~g~~~~~~~~~~~~~~~~~~~~~~v~~~a~~~~k~w~p~   57 (255)
T PLN00170         10 LNGLGSSFLTGGKRSLALLVGTGAAKVGARTLLVVAAAAQPKKSWIPA   57 (255)
T ss_pred             HhhccCcccccchhhhcccccccccccccceeEEEEeccCCCccccCC
Confidence            4799999998887332  234333444443444443333566677774


No 13 
>cd02979 PHOX_C FAD-dependent Phenol hydoxylase (PHOX) family, C-terminal TRX-fold domain; composed of proteins similar to PHOX from the aerobic topsoil yeast Trichosporon cutaneum. PHOX is a flavoprotein monooxygenase that catalyzes the hydroxylation of phenol and simple phenol derivatives in the ortho position with the consumption of NADPH and oxygen. This is the first step in the biodegradation and detoxification of phenolic compounds. PHOX contains three domains. The substrate and FAD/NAD(P) binding sites are contained in the first two domains, which adopt a complicated folding pattern. The third or C-terminal domain contains a TRX fold and is involved in dimerization. The functional unit of PHOX is a dimer, although active tetramers of the recombinant enzyme can be isolated when overproduced in bacteria.
Probab=28.25  E-value=45  Score=25.60  Aligned_cols=40  Identities=18%  Similarity=0.287  Sum_probs=28.8

Q ss_pred             eeeccCCCCCcccceee---ccCCCCCCChhHHHHHHHhhccchhhH
Q 032245           57 YFDLEDLGNTTGQWDLY---GSDAPSPYNSLQSKFFETFAAPFTKRG  100 (144)
Q Consensus        57 YFDL~Di~nTTG~WDlY---GsDaps~Yn~lQskFFe~fA~~ftkR~  100 (144)
                      --+|+|.--.+|+|.+|   |...+    +.|.+..+.+++-|..-+
T Consensus        17 p~~L~~~~~adGrfrI~vFagd~~~----~~~~~~l~~~~~~L~~~~   59 (167)
T cd02979          17 PVHLGHRLPADGRFRIYVFAGDIAP----AQQKSRLTQLCDALDSPD   59 (167)
T ss_pred             CHhHhhhccCCCCEEEEEEcCCCCc----hhHHHHHHHHHHHHcCCc
Confidence            34788888889999998   33333    677778888887775543


No 14 
>PF00225 Kinesin:  Kinesin motor domain;  InterPro: IPR001752 Kinesin [, , ] is a microtubule-associated force-producing protein that may play a role in organelle transport. The kinesin motor activity is directed toward the microtubule's plus end. Kinesin is an oligomeric complex composed of two heavy chains and two light chains. The maintenance of the quaternary structure does not require interchain disulphide bonds. The heavy chain is composed of three structural domains: a large globular N-terminal domain which is responsible for the motor activity of kinesin (it is known to hydrolyse ATP, to bind and move on microtubules), a central alpha-helical coiled coil domain that mediates the heavy chain dimerisation; and a small globular C-terminal domain which interacts with other proteins (such as the kinesin light chains), vesicles and membranous organelles. A number of proteins have been recently found that contain a domain similar to that of the kinesin 'motor' domain [, ]:   Drosophila melanogaster claret segregational protein (ncd). Ncd is required for normal chromosomal segregation in meiosis, in females, and in early mitotic divisions of the embryo. The ncd motor activity is directed toward the microtubule's minus end.  Homo sapiens CENP-E []. CENP-E is a protein that associates with kinetochores during chromosome congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is probably an important motor molecule in chromosome movement and/or spindle elongation. H. sapiens mitotic kinesin-like protein-1 (MKLP-1), a motor protein whose activity is directed toward the microtubule's plus end.  Saccharomyces cerevisiae KAR3 protein, which is essential for nuclear fusion during mating. KAR3 may mediate microtubule sliding during nuclear fusion and possibly mitosis. S. cerevisiae CIN8 and KIP1 proteins which are required for the assembly of the mitotic spindle. Both proteins seem to interact with spindle microtubules to produce an outwardly directed force acting upon the poles.  Emericella nidulans (Aspergillus nidulans) bimC, which plays an important role in nuclear division. A. nidulans klpA.  Caenorhabditis elegans unc-104, which may be required for the transport of substances needed for neuronal cell differentiation. C. elegans osm-3.  Xenopus laevis Eg5, which may be involved in mitosis.  Arabidopsis thaliana KatA, KatB and katC.  Chlamydomonas reinhardtii FLA10/KHP1 and KLP1. Both proteins seem to play a role in the rotation or twisting of the microtubules of the flagella. C. elegans hypothetical protein T09A5.2.   The kinesin motor domain is located in the N-terminal part of most of the above proteins, with the exception of KAR3, klpA, and ncd where it is located in the C-terminal section. The kinesin motor domain contains about 330 amino acids. An ATP-binding motif of type A is found near position 80 to 90, the C-terminal half of the domain is involved in microtubule-binding.; GO: 0003777 microtubule motor activity, 0005524 ATP binding, 0007018 microtubule-based movement; PDB: 3NWN_A 2Y5W_A 2Y65_C 3BFN_A 2WBE_C 2ZFL_A 2ZFI_A 1I6I_A 2ZFM_A 1IA0_K ....
Probab=28.05  E-value=88  Score=25.49  Aligned_cols=42  Identities=24%  Similarity=0.481  Sum_probs=29.5

Q ss_pred             eeeccCCCCCCChhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCc
Q 032245           71 DLYGSDAPSPYNSLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGD  124 (144)
Q Consensus        71 DlYGsDaps~Yn~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D  124 (144)
                      .+|+.++.      |..+||....|+-..      ++-|--++|..+|.++|+-
T Consensus        47 ~vf~~~~~------q~~vy~~~~~~~v~~------~l~G~n~~i~ayG~tgSGK   88 (335)
T PF00225_consen   47 RVFDEDAT------QEDVYEEVVSPLVDS------VLDGYNATIFAYGQTGSGK   88 (335)
T ss_dssp             EEEETTST------HHHHHHHHTHHHHHH------HHTT-EEEEEEEESTTSSH
T ss_pred             eEECCCCC------HHHHHHHHHHHHHHH------hhcCCceEEEeeccccccc
Confidence            35676665      999999988776543      2245455888999998864


No 15 
>cd01371 KISc_KIF3 Kinesin motor domain, kinesins II or KIF3_like proteins. Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain
Probab=27.35  E-value=89  Score=26.02  Aligned_cols=53  Identities=21%  Similarity=0.256  Sum_probs=39.2

Q ss_pred             cccceeeccCCCCCCChhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCcc
Q 032245           67 TGQWDLYGSDAPSPYNSLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGDI  125 (144)
Q Consensus        67 TG~WDlYGsDaps~Yn~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D~  125 (144)
                      +.....|--|.--..+..|..+||..+.|+-      .-++-|--++|..+|.++||--
T Consensus        44 ~~~~~~f~fd~vf~~~~~q~~vy~~~~~plv------~~~~~G~n~~i~ayG~tgSGKT   96 (333)
T cd01371          44 KEPPKVFTFDAVYDPNSTQEDVYNETARPLV------DSVLEGYNGTIFAYGQTGTGKT   96 (333)
T ss_pred             cCCCceeeeccccCCCccHHHHHHHHHHHHH------HHHhCCCceeEEecCCCCCCCc
Confidence            4556667777666667889999999988763      3344566678888999998765


No 16 
>cd00314 plant_peroxidase_like Heme-dependent peroxidases similar to plant peroxidases. Along with animal peroxidases, these enzymes belong to a group of peroxidases containing a heme prosthetic group (ferriprotoporphyrin IX), which catalyzes a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. The plant peroxidase-like superfamily is found in all three kingdoms of life and carries out a variety of biosynthetic and degradative functions. Several sub-families can be identified. Class I includes intracellular peroxidases present in fungi, plants, archaea and bacteria, called catalase-peroxidases, that can exhibit both catalase and broad-spectrum peroxidase activities depending on the steady-state concentration of hydrogen peroxide. Catalase-peroxidases are typically comprised of two homologous domains that probably arose via a single gene duplication event. Class II includes ligninase and other extracellular fungal peroxidases, while class III is comprised 
Probab=26.26  E-value=22  Score=28.45  Aligned_cols=14  Identities=57%  Similarity=0.933  Sum_probs=12.6

Q ss_pred             HHHHHHHhhccchh
Q 032245           85 QSKFFETFAAPFTK   98 (144)
Q Consensus        85 QskFFe~fA~~ftk   98 (144)
                      |..||+.|+..+.|
T Consensus       239 ~~~f~~~Fa~a~~K  252 (255)
T cd00314         239 QEKFFEDFAKAWIK  252 (255)
T ss_pred             HHHHHHHHHHHHHH
Confidence            99999999988876


No 17 
>PF11607 DUF3247:  Protein of unknown function (DUF3247);  InterPro: IPR021649  This family of proteins is the protein product of the gene XC5848 from Xanthomonas campestris. The protein has no known function however its structure has been determined. The protein adopts a Lsm fold however differences with the fold were observed at the N-terminal and internal regions []. ; PDB: 2E12_B.
Probab=26.17  E-value=21  Score=27.39  Aligned_cols=21  Identities=52%  Similarity=0.795  Sum_probs=11.5

Q ss_pred             ccCCCCCceeeeccCccccCCC
Q 032245           19 GGSSLAGTKLTVKPTRQSFRPK   40 (144)
Q Consensus        19 ~gSs~~g~kl~~kp~~~~~r~~   40 (144)
                      -||++.|| +.++|+.|-+|-.
T Consensus        37 DGs~l~Gt-v~vrPtvQ~frD~   57 (101)
T PF11607_consen   37 DGSMLRGT-VAVRPTVQQFRDA   57 (101)
T ss_dssp             TS-EEEEE-ECC---EEEEE-T
T ss_pred             CCCeeeee-eccccchhhhhCc
Confidence            47888887 7889988854444


No 18 
>KOG2948 consensus Predicted metal-binding protein [General function prediction only]
Probab=25.29  E-value=40  Score=30.28  Aligned_cols=27  Identities=37%  Similarity=0.669  Sum_probs=21.1

Q ss_pred             eeeccCCC--CCCChhHHHHHHHhhccch
Q 032245           71 DLYGSDAP--SPYNSLQSKFFETFAAPFT   97 (144)
Q Consensus        71 DlYGsDap--s~Yn~lQskFFe~fA~~ft   97 (144)
                      ||=|+=+|  .||.-.|.-|||||--.+.
T Consensus        53 DVGg~yDp~~~ryDHHQr~F~ETfs~~~~   81 (327)
T KOG2948|consen   53 DVGGVYDPEKKRYDHHQRGFFETFSPKYK   81 (327)
T ss_pred             ecCccccccccccchhhhhhhhhcCCccc
Confidence            44455555  8999999999999986653


No 19 
>KOG4525 consensus Jacalin-like lectin domain-containing protein [General function prediction only]
Probab=25.12  E-value=56  Score=31.30  Aligned_cols=39  Identities=21%  Similarity=0.451  Sum_probs=24.4

Q ss_pred             CCCCCceee-eccCccccCCCCccc----ceeEeeeCCeeeeee
Q 032245           21 SSLAGTKLT-VKPTRQSFRPKSFKA----GAVVAKYGDKSVYFD   59 (144)
Q Consensus        21 Ss~~g~kl~-~kp~~~~~r~~~~ra----~~v~AKYGdkSvYFD   59 (144)
                      -+-+|..+. |.|+..-.+.-+.|-    -.+++-||||||.|-
T Consensus       490 r~~~gkei~lia~~~r~it~ir~~cg~aldg~~~~ygeEsvl~g  533 (614)
T KOG4525|consen  490 RGCNGKEIRLIAPSSRPITLIRLRCGQALDGLVAHYGEESVLEG  533 (614)
T ss_pred             CCCCCceeeeeccccccceEEEEeccccccceEEEecccceeec
Confidence            345556665 456655433333333    458999999999873


No 20 
>cd06396 PB1_NBR1 The PB1 domain is an essential part of NBR1 protein, next to BRCA1, a scaffold protein mediating specific protein-protein interaction with both titin protein kinase and with another scaffold protein p62. A canonical PB1-PB1 interaction, which involves heterodimerization of two PB1 domain, is required for the formation of macromolecular signaling complexes ensuring specificity and fidelity during cellular signaling. The interaction between two PB1 domain depends on the type of PB1. There are three types of PB1 domains: type I which contains an OPCA motif, acidic aminoacid cluster, type II which contains a basic cluster, and type I/II which contains both an OPCA motif and a basic cluster. The NBR1 protein contains a type I PB1 domain.
Probab=24.11  E-value=97  Score=22.39  Aligned_cols=22  Identities=32%  Similarity=0.363  Sum_probs=18.5

Q ss_pred             eeEeeeCCeeeeeeccCCCCCc
Q 032245           46 AVVAKYGDKSVYFDLEDLGNTT   67 (144)
Q Consensus        46 ~v~AKYGdkSvYFDL~Di~nTT   67 (144)
                      .|.|.||++.+=|-+++-+|++
T Consensus         2 ~vKaty~~d~~rf~~~~~~~~~   23 (81)
T cd06396           2 NLKVTYNGESQSFLVSDSENTT   23 (81)
T ss_pred             EEEEEECCeEEEEEecCCCCCC
Confidence            5899999999999998855554


No 21 
>PLN02729 PSII-Q subunit
Probab=22.45  E-value=55  Score=28.00  Aligned_cols=37  Identities=14%  Similarity=-0.075  Sum_probs=20.6

Q ss_pred             hHHHHHHHHHhCCceEEEeecccCCcccccccCCCCCCC
Q 032245           99 RGLLLKFLILGGGSTLAYFSATASGDILPIKKGPQLPPK  137 (144)
Q Consensus        99 R~lllkfl~LgG~~~l~y~ga~as~D~LPIk~GPQ~pp~  137 (144)
                      |.++|.+.+.|=.+ ..+.++ +-.+.-+|+.||.+||+
T Consensus        52 rr~~lgl~a~~l~~-~s~~~~-~~A~~~~i~~~~P~P~p   88 (220)
T PLN02729         52 RRLALGLASIALIG-NSGNGV-SLAEDNGFWLDGPLPVP   88 (220)
T ss_pred             HHHHHHHHHHHHhc-chhhhH-HHhcccCceeCCCCCCC
Confidence            45666666554111 112333 33445899999996654


No 22 
>PLN02879 L-ascorbate peroxidase
Probab=21.31  E-value=37  Score=28.60  Aligned_cols=20  Identities=25%  Similarity=0.501  Sum_probs=15.4

Q ss_pred             CChhHHHHHHHhhccchhhH
Q 032245           81 YNSLQSKFFETFAAPFTKRG  100 (144)
Q Consensus        81 Yn~lQskFFe~fA~~ftkR~  100 (144)
                      |-..|.+||+.||..+.|=+
T Consensus       224 ~A~d~~~F~~~Fa~Am~KL~  243 (251)
T PLN02879        224 YAADEDAFFEDYTEAHLKLS  243 (251)
T ss_pred             HhhCHHHHHHHHHHHHHHHH
Confidence            44568999999998877643


No 23 
>cd01365 KISc_KIF1A_KIF1B Kinesin motor domain, KIF1_like proteins. KIF1A (Unc104) transports synaptic vesicles to the nerve  terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively.
Probab=20.71  E-value=1.7e+02  Score=24.64  Aligned_cols=48  Identities=23%  Similarity=0.271  Sum_probs=33.0

Q ss_pred             eeccC-CCCCCChhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCcc
Q 032245           72 LYGSD-APSPYNSLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGDI  125 (144)
Q Consensus        72 lYGsD-aps~Yn~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D~  125 (144)
                      +|+++ ...+=+.-|..+|+..+.|+-.      -++-|=-.+|..+|.++||--
T Consensus        55 vf~~~~~~~~~~~tq~~vf~~~~~p~v~------~~l~G~n~~i~ayGqtGSGKT  103 (356)
T cd01365          55 SYWSHDSEDPHYASQEDVFEDLGRELLD------HAFEGYNVCLFAYGQTGSGKS  103 (356)
T ss_pred             EecccCCCCCCCCCHHHHHHHHHHHHHH------HHhCCCceEEEEecCCCCCCe
Confidence            45554 2335557899999998877643      334555668888999998853


No 24 
>cd01367 KISc_KIF2_like Kinesin motor domain, KIF2-like group. KIF2 is a protein expressed in neurons, which has been associated with axonal transport and neuron development; alternative splice forms have been implicated in lysosomal translocation. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found in the middle (M-type) of the protein chain. M-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second (KIF2 may be slower). To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and lo
Probab=20.60  E-value=1.3e+02  Score=25.05  Aligned_cols=37  Identities=19%  Similarity=0.343  Sum_probs=27.5

Q ss_pred             hhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCcc
Q 032245           83 SLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGDI  125 (144)
Q Consensus        83 ~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D~  125 (144)
                      .-|..+||..+.|+-..      ++-|--.+|..+|.++||--
T Consensus        63 ~~q~~vf~~~~~plv~~------~~~G~n~~i~ayGqtGSGKT   99 (322)
T cd01367          63 VTNEEVYRSTVKPLIPH------VFEGGVATCFAYGQTGSGKT   99 (322)
T ss_pred             CCHHHHHHHHHHHHHHH------HhCCCceEEEeccCCCCCCc
Confidence            45899999988876544      23365668888899999855


No 25 
>cd01373 KISc_KLP2_like Kinesin motor domain, KLP2-like subgroup. Members of this subgroup seem to play a role in mitosis and meiosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second
Probab=20.48  E-value=1.7e+02  Score=24.63  Aligned_cols=37  Identities=19%  Similarity=0.345  Sum_probs=27.5

Q ss_pred             hhHHHHHHHhhccchhhHHHHHHHHHhCCceEEEeecccCCcc
Q 032245           83 SLQSKFFETFAAPFTKRGLLLKFLILGGGSTLAYFSATASGDI  125 (144)
Q Consensus        83 ~lQskFFe~fA~~ftkR~lllkfl~LgG~~~l~y~ga~as~D~  125 (144)
                      ..|..+|+..+.|+-      .-++-|--++|..+|.++||--
T Consensus        53 ~~q~~vy~~~~~p~v------~~~~~G~n~ti~aYGqTGSGKT   89 (337)
T cd01373          53 TNQEDVFQSVGKPLV------EDCLSGYNGSIFAYGQTGSGKT   89 (337)
T ss_pred             CCHHHHHHHHHHHHH------HHHhCCCceeEEEeCCCCCCce
Confidence            469999999888743      3334566678888999998865


Done!