Query 033324
Match_columns 122
No_of_seqs 116 out of 132
Neff 4.0
Searched_HMMs 46136
Date Fri Mar 29 12:31:19 2013
Command hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/033324.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/033324hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 KOG4103 Mitochondrial F1F0-ATP 100.0 1.5E-33 3.2E-38 203.4 8.9 100 1-122 1-103 (103)
2 PF04718 ATP-synt_G: Mitochond 100.0 2.8E-33 6E-38 200.7 9.3 99 10-122 2-103 (103)
3 PF11221 Med21: Subunit 21 of 67.2 49 0.0011 24.5 8.5 17 1-17 1-17 (144)
4 PF04718 ATP-synt_G: Mitochond 61.1 8.6 0.00019 27.6 2.6 32 48-79 19-55 (103)
5 PF08565 CDC37_M: Cdc37 Hsp90 36.0 68 0.0015 24.9 4.2 39 52-90 128-168 (173)
6 KOG1510 RNA polymerase II holo 33.2 1.7E+02 0.0036 22.7 5.8 17 1-17 1-17 (139)
7 PF08285 DPM3: Dolichol-phosph 30.1 67 0.0015 22.7 3.0 24 60-83 64-87 (91)
8 cd05515 Bromo_polybromo_V Brom 26.7 80 0.0017 22.1 2.9 45 1-71 1-45 (105)
9 cd02678 MIT_VPS4 MIT: domain c 23.4 1.7E+02 0.0038 19.0 3.9 48 21-73 23-70 (75)
10 COG4333 Uncharacterized protei 22.0 40 0.00086 26.7 0.7 21 39-59 53-73 (167)
11 COG1084 Predicted GTPase [Gene 21.0 3.9E+02 0.0085 23.5 6.6 40 41-81 120-159 (346)
12 PLN03070 photosystem I reactio 20.5 44 0.00096 25.5 0.6 26 94-120 97-122 (128)
13 smart00745 MIT Microtubule Int 20.3 2.5E+02 0.0054 17.9 4.3 46 21-71 25-70 (77)
14 COG1133 SbmA ABC-type long-cha 20.1 49 0.0011 29.3 0.9 27 90-118 15-41 (405)
No 1
>KOG4103 consensus Mitochondrial F1F0-ATP synthase, subunit g/ATP20 [Energy production and conversion]
Probab=100.00 E-value=1.5e-33 Score=203.42 Aligned_cols=100 Identities=31% Similarity=0.455 Sum_probs=95.9
Q ss_pred ChhHHHHHHHHHHHHHHHHHhhhhhhHHHHHHHhhhhh---cCCCChhhHHHHHHHHhhhhcccchhHHHHHHHHHHHHH
Q 033324 1 MASKLVQLQSKAAEASKFVAKHGTSYYRQLLEQNKQYI---QEPPTVEKCNLLSKQLFYTRLSSIPGRYEAFWKELDYVK 77 (122)
Q Consensus 1 ma~~l~~l~~ka~~~~~~~~k~~~~~~k~~l~~~~~y~---~~PPt~~k~~~L~k~~fyt~lA~ip~~~~~~~k~v~~~k 77 (122)
||..+.+|.+|+..+++ .+..|.+|.++.+|.|. |.|||| ||||..++++.++.+.++
T Consensus 1 ma~~~~~l~~K~~~L~~----~~~~~~~p~l~~~~~y~K~eL~PPt~---------------Ad~pai~q~l~~~~~~~~ 61 (103)
T KOG4103|consen 1 MANYMSGLVEKAANLVN----AALTYAKPRLAIFWKYAKVELAPPTP---------------ADIPAIKQDLAKLKKFAQ 61 (103)
T ss_pred CchHHHHHHHHHHHHHH----HHHHhcCchHHHHHHHHhcccCCCCh---------------hhHHHHHHHHHHhHHHHh
Confidence 89999999999999999 77888889999999997 999999 999999999999999999
Q ss_pred HHHhhcccccHHHHHHHHHHHHHHHHHHHhhhhcccCcccccccC
Q 033324 78 HLWKNRQELKLEDAGIAALFGLECFAWYCAGEIIGRGFTITGYYV 122 (122)
Q Consensus 78 ~~~~~~~~ltVkea~~~~Lv~~Ev~~WF~vGEiIGR~f~ivGY~V 122 (122)
++ ..+||||+|+++|++|++||++||||||||||| +|+||+|
T Consensus 62 t~--~~Knltv~Eall~~~v~~Evi~wf~vGEiIGrR-~ivGY~v 103 (103)
T KOG4103|consen 62 TG--CYKNLTVKEALLNGLVTLEVIFWFYVGEIIGRR-HIVGYKV 103 (103)
T ss_pred hh--hhhhhhHHHHHHHHHHHHHHHHHHHHHHHhccc-ccccccC
Confidence 87 678999999999999999999999999999999 9999997
No 2
>PF04718 ATP-synt_G: Mitochondrial ATP synthase g subunit; InterPro: IPR006808 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include: F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP. F-ATPases (also known as F1F0-ATPase, or H(+)-transporting two-sector ATPase) (3.6.3.14 from EC) are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits (alpha, beta, gamma, delta, epsilon), while the F0 ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), nine in mitochondria (A-G, F6, F8). Both the F1 and F0 complexes are rotary motors that are coupled back-to-back. In the F1 complex, the central gamma subunit forms the rotor inside the cylinder made of the alpha(3)beta(3) subunits, while in the F0 complex, the ring-shaped C subunits forms the rotor. The two rotors rotate in opposite directions, but the F0 rotor is usually stronger, using the force from the proton gradient to push the F1 rotor in reverse in order to drive ATP synthesis []. These ATPases can also work in reverse to hydrolyse ATP to create a proton gradient. This entry represents the G subunit found in the F0 complex of F-ATPases in mitochondria. The function of subunit G is currently unknown. There is no counterpart in chloroplast or bacterial F-ATPases identified so far []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0015078 hydrogen ion transmembrane transporter activity, 0015986 ATP synthesis coupled proton transport, 0000276 mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)
Probab=100.00 E-value=2.8e-33 Score=200.71 Aligned_cols=99 Identities=32% Similarity=0.431 Sum_probs=86.1
Q ss_pred HHHHHHHHHHHhhhhhhHHHHHHHhhhhh---cCCCChhhHHHHHHHHhhhhcccchhHHHHHHHHHHHHHHHHhhcccc
Q 033324 10 SKAAEASKFVAKHGTSYYRQLLEQNKQYI---QEPPTVEKCNLLSKQLFYTRLSSIPGRYEAFWKELDYVKHLWKNRQEL 86 (122)
Q Consensus 10 ~ka~~~~~~~~k~~~~~~k~~l~~~~~y~---~~PPt~~k~~~L~k~~fyt~lA~ip~~~~~~~k~v~~~k~~~~~~~~l 86 (122)
+|+..+++ +++.|+|+.||.+++|. +.||||++|+++.+.+++... ++++.+..|+.|++++||
T Consensus 2 ~~~~~l~~----~~v~~~kv~le~~k~v~k~El~PPt~~~~~~~~~~l~~~~~---------~~~~~~~~~~~~~~~~~l 68 (103)
T PF04718_consen 2 AKVTSLVN----PAVYYSKVGLELFKQVYKKELAPPTPAEFQSVYQQLFKTVK---------SAKSGSSPKSKLKQWKNL 68 (103)
T ss_pred chHHHHHH----HHHHHhHHHHHHHhHHHhhccCCcCHHHHHHHHHHHHHHHH---------HhhhhhhHHHHHHHhhcC
Confidence 56666666 89999999999999999 999999777666666666555 455666778888999999
Q ss_pred cHHHHHHHHHHHHHHHHHHHhhhhcccCcccccccC
Q 033324 87 KLEDAGIAALFGLECFAWYCAGEIIGRGFTITGYYV 122 (122)
Q Consensus 87 tVkea~~~~Lv~~Ev~~WF~vGEiIGR~f~ivGY~V 122 (122)
|++|++.++++++||++||||||||||| +|+||+|
T Consensus 69 ~~~e~~~~~l~~~Ev~~wF~vGEiIGRr-~ivGY~V 103 (103)
T PF04718_consen 69 TVKEAAKNGLVGAEVYGWFFVGEIIGRR-SIVGYKV 103 (103)
T ss_pred CHHHHHHHHHHHHHHHHHHhhheeeccC-ceeCccC
Confidence 9999999999999999999999999997 9999998
No 3
>PF11221 Med21: Subunit 21 of Mediator complex; InterPro: IPR021384 The Mediator complex is a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. The Mediator complex, having a compact conformation in its free form, is recruited to promoters by direct interactions with regulatory proteins and serves for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. On recruitment the Mediator complex unfolds to an extended conformation and partially surrounds RNA polymerase II, specifically interacting with the unphosphorylated form of the C-terminal domain (CTD) of RNA polymerase II. The Mediator complex dissociates from the RNA polymerase II holoenzyme and stays at the promoter when transcriptional elongation begins. The Mediator complex is composed of at least 31 subunits: MED1, MED4, MED6, MED7, MED8, MED9, MED10, MED11, MED12, MED13, MED13L, MED14, MED15, MED16, MED17, MED18, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, MED27, MED29, MED30, MED31, CCNC, CDK8 and CDC2L6/CDK11. The subunits form at least three structurally distinct submodules. The head and the middle modules interact directly with RNA polymerase II, whereas the elongated tail module interacts with gene-specific regulatory proteins. Mediator containing the CDK8 module is less active than Mediator lacking this module in supporting transcriptional activation. The head module contains: MED6, MED8, MED11, SRB4/MED17, SRB5/MED18, ROX3/MED19, SRB2/MED20 and SRB6/MED22. The middle module contains: MED1, MED4, NUT1/MED5, MED7, CSE2/MED9, NUT2/MED10, SRB7/MED21 and SOH1/MED31. CSE2/MED9 interacts directly with MED4. The tail module contains: MED2, PGD1/MED3, RGR1/MED14, GAL11/MED15 and SIN4/MED16. The CDK8 module contains: MED12, MED13, CCNC and CDK8. Individual preparations of the Mediator complex lacking one or more distinct subunits have been variously termed ARC, CRSP, DRIP, PC2, SMCC and TRAP. Med21 has been known as Srb7 in yeasts, hSrb7 in humans and Trap 19 in Drosophila. The heterodimer of the two subunits Med7 and Med21 appears to act as a hinge between the middle and the tail regions of Mediator []. ; PDB: 1YKE_B 1YKH_B.
Probab=67.16 E-value=49 Score=24.55 Aligned_cols=17 Identities=35% Similarity=0.438 Sum_probs=14.3
Q ss_pred ChhHHHHHHHHHHHHHH
Q 033324 1 MASKLVQLQSKAAEASK 17 (122)
Q Consensus 1 ma~~l~~l~~ka~~~~~ 17 (122)
||.+|.|||.....++.
T Consensus 1 M~DrlTQLQd~ldqL~~ 17 (144)
T PF11221_consen 1 MADRLTQLQDCLDQLAE 17 (144)
T ss_dssp --HHHHHHHHHHHHHHH
T ss_pred CCcHHHHHHHHHHHHHH
Confidence 99999999999999988
No 4
>PF04718 ATP-synt_G: Mitochondrial ATP synthase g subunit; InterPro: IPR006808 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include: F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP. F-ATPases (also known as F1F0-ATPase, or H(+)-transporting two-sector ATPase) (3.6.3.14 from EC) are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits (alpha, beta, gamma, delta, epsilon), while the F0 ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), nine in mitochondria (A-G, F6, F8). Both the F1 and F0 complexes are rotary motors that are coupled back-to-back. In the F1 complex, the central gamma subunit forms the rotor inside the cylinder made of the alpha(3)beta(3) subunits, while in the F0 complex, the ring-shaped C subunits forms the rotor. The two rotors rotate in opposite directions, but the F0 rotor is usually stronger, using the force from the proton gradient to push the F1 rotor in reverse in order to drive ATP synthesis []. These ATPases can also work in reverse to hydrolyse ATP to create a proton gradient. This entry represents the G subunit found in the F0 complex of F-ATPases in mitochondria. The function of subunit G is currently unknown. There is no counterpart in chloroplast or bacterial F-ATPases identified so far []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0015078 hydrogen ion transmembrane transporter activity, 0015986 ATP synthesis coupled proton transport, 0000276 mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)
Probab=61.09 E-value=8.6 Score=27.55 Aligned_cols=32 Identities=22% Similarity=0.295 Sum_probs=27.1
Q ss_pred HHHHHHHhhhhc-----ccchhHHHHHHHHHHHHHHH
Q 033324 48 NLLSKQLFYTRL-----SSIPGRYEAFWKELDYVKHL 79 (122)
Q Consensus 48 ~~L~k~~fyt~l-----A~ip~~~~~~~k~v~~~k~~ 79 (122)
.|++|+++...| ++||..++++++.+++++++
T Consensus 19 le~~k~v~k~El~PPt~~~~~~~~~~l~~~~~~~~~~ 55 (103)
T PF04718_consen 19 LELFKQVYKKELAPPTPAEFQSVYQQLFKTVKSAKSG 55 (103)
T ss_pred HHHHhHHHhhccCCcCHHHHHHHHHHHHHHHHHhhhh
Confidence 578888887664 99999999999999988776
No 5
>PF08565 CDC37_M: Cdc37 Hsp90 binding domain; InterPro: IPR013874 Cdc37 is a molecular chaperone required for the activity of numerous eukaryotic protein kinases. This entry corresponds to the Hsp90 chaperone (heat shock protein 90) binding domain of Cdc37 []. It is found between the N-terminal Cdc37 domain IPR013855 from INTERPRO, which is predominantly involved in kinase binding, and the C-terminal domain of Cdc37 IPR013873 from INTERPRO whose function is unclear. ; PDB: 1US7_B 2W0G_A 2K5B_B.
Probab=35.99 E-value=68 Score=24.93 Aligned_cols=39 Identities=23% Similarity=0.430 Sum_probs=29.7
Q ss_pred HHHhhhhccc--chhHHHHHHHHHHHHHHHHhhcccccHHH
Q 033324 52 KQLFYTRLSS--IPGRYEAFWKELDYVKHLWKNRQELKLED 90 (122)
Q Consensus 52 k~~fyt~lA~--ip~~~~~~~k~v~~~k~~~~~~~~ltVke 90 (122)
=.+||.|+.+ =|.+.+.|.+.|+....-.++|-....+|
T Consensus 128 v~~FF~r~~~~~~~~~~~~F~~dv~~~~~rIk~Ra~~~~~E 168 (173)
T PF08565_consen 128 VRLFFKRIKTPGHPEAKKVFEDDVEAFYERIKERAKEKMEE 168 (173)
T ss_dssp HHHHHHHHTT-SSHHHHHHHHHHHHHHHHHHHHHHHHHHHH
T ss_pred HHHHHHHHHhccCHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Confidence 3579999866 78899999999999887777774444444
No 6
>KOG1510 consensus RNA polymerase II holoenzyme and mediator subcomplex, subunit SURB7/SRB7 [Transcription]
Probab=33.18 E-value=1.7e+02 Score=22.68 Aligned_cols=17 Identities=41% Similarity=0.567 Sum_probs=15.7
Q ss_pred ChhHHHHHHHHHHHHHH
Q 033324 1 MASKLVQLQSKAAEASK 17 (122)
Q Consensus 1 ma~~l~~l~~ka~~~~~ 17 (122)
||.+|.|||.-..+.+.
T Consensus 1 MaDRlTQLQd~vn~~A~ 17 (139)
T KOG1510|consen 1 MADRLTQLQDTVNEMAE 17 (139)
T ss_pred CchHHHHHHHHHHHHHH
Confidence 89999999999988887
No 7
>PF08285 DPM3: Dolichol-phosphate mannosyltransferase subunit 3 (DPM3); InterPro: IPR013174 This family corresponds to subunit 3 of dolichol-phosphate mannosyltransferase, an enzyme which generates mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation. DPM3 is an integral membrane protein and plays a role in stabilising the dolichol-phosphate mannosyl transferase complex [].
Probab=30.09 E-value=67 Score=22.68 Aligned_cols=24 Identities=17% Similarity=0.227 Sum_probs=21.0
Q ss_pred ccchhHHHHHHHHHHHHHHHHhhc
Q 033324 60 SSIPGRYEAFWKELDYVKHLWKNR 83 (122)
Q Consensus 60 A~ip~~~~~~~k~v~~~k~~~~~~ 83 (122)
.|-|.+++.+.++|+.||.-.+.+
T Consensus 64 nDcpeA~~eL~~eI~eAK~dLr~k 87 (91)
T PF08285_consen 64 NDCPEAAKELQKEIKEAKADLRKK 87 (91)
T ss_pred CCCHHHHHHHHHHHHHHHHHHHHc
Confidence 788999999999999999876543
No 8
>cd05515 Bromo_polybromo_V Bromodomain, polybromo repeat V. Polybromo is a nuclear protein of unknown function, which contains 6 bromodomains. The human ortholog BAF180 is part of a SWI/SNF chromatin-remodeling complex, and it may carry out the functions of Yeast Rsc-1 and Rsc-2. It was shown that polybromo bromodomains bind to histone H3 at specific acetyl-lysine positions. Bromodomains are found in many chromatin-associated proteins and in nuclear histone acetyltransferases. They interact specifically with acetylated lysine, but not all the bromodomains in polybromo may bind to acetyl-lysine.
Probab=26.74 E-value=80 Score=22.08 Aligned_cols=45 Identities=24% Similarity=0.226 Sum_probs=24.2
Q ss_pred ChhHHHHHHHHHHHHHHHHHhhhhhhHHHHHHHhhhhhcCCCChhhHHHHHHHHhhhhcccchhHHHHHHH
Q 033324 1 MASKLVQLQSKAAEASKFVAKHGTSYYRQLLEQNKQYIQEPPTVEKCNLLSKQLFYTRLSSIPGRYEAFWK 71 (122)
Q Consensus 1 ma~~l~~l~~ka~~~~~~~~k~~~~~~k~~l~~~~~y~~~PPt~~k~~~L~k~~fyt~lA~ip~~~~~~~k 71 (122)
|.+++..+.+....... + ..+++-.-| +.||+. .++|..++-+.+
T Consensus 1 ~~~~~~~~~~~i~~~~d----~---~~~~~a~~F----~~~p~~---------------~~~pdYy~iIk~ 45 (105)
T cd05515 1 MQQKLWELYNAVKNYTD----G---RGRRLSLIF----MRLPSK---------------SEYPDYYDVIKK 45 (105)
T ss_pred ChHHHHHHHHHHHHhhC----c---CCCcccHHh----ccCCCc---------------ccCCcHHHHcCC
Confidence 56666666665555443 1 122333333 667877 666666655554
No 9
>cd02678 MIT_VPS4 MIT: domain contained within Microtubule Interacting and Trafficking molecules. This sub-family of MIT domains is found in intracellular protein transport proteins of the AAA-ATPase family. The molecular function of the MIT domain is unclear.
Probab=23.41 E-value=1.7e+02 Score=19.05 Aligned_cols=48 Identities=15% Similarity=0.142 Sum_probs=33.1
Q ss_pred hhhhhhHHHHHHHhhhhhcCCCChhhHHHHHHHHhhhhcccchhHHHHHHHHH
Q 033324 21 KHGTSYYRQLLEQNKQYIQEPPTVEKCNLLSKQLFYTRLSSIPGRYEAFWKEL 73 (122)
Q Consensus 21 k~~~~~~k~~l~~~~~y~~~PPt~~k~~~L~k~~fyt~lA~ip~~~~~~~k~v 73 (122)
+.+..+|..-++.+.+++-..|.+.+ +..+..++.+...+.+.++..+
T Consensus 23 ~eA~~~Y~~aie~l~~~~k~e~~~~~-----k~~~~~k~~eyl~RaE~LK~~l 70 (75)
T cd02678 23 EEALRLYQHALEYFMHALKYEKNPKS-----KESIRAKCTEYLDRAEKLKEYL 70 (75)
T ss_pred HHHHHHHHHHHHHHHHHHhhCCCHHH-----HHHHHHHHHHHHHHHHHHHHHH
Confidence 46888999999999999856666633 4445556666666666666544
No 10
>COG4333 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=21.97 E-value=40 Score=26.67 Aligned_cols=21 Identities=19% Similarity=0.390 Sum_probs=19.6
Q ss_pred cCCCChhhHHHHHHHHhhhhc
Q 033324 39 QEPPTVEKCNLLSKQLFYTRL 59 (122)
Q Consensus 39 ~~PPt~~k~~~L~k~~fyt~l 59 (122)
++.||..+|..+++-|-|+-|
T Consensus 53 ~Dd~Ti~rci~fA~swgyGgv 73 (167)
T COG4333 53 KDDRTLSRCISFAKSWGYGGV 73 (167)
T ss_pred hcchHHHHHHHHHhhcccCcE
Confidence 899999999999999999874
No 11
>COG1084 Predicted GTPase [General function prediction only]
Probab=20.95 E-value=3.9e+02 Score=23.49 Aligned_cols=40 Identities=20% Similarity=0.218 Sum_probs=27.6
Q ss_pred CCChhhHHHHHHHHhhhhcccchhHHHHHHHHHHHHHHHHh
Q 033324 41 PPTVEKCNLLSKQLFYTRLSSIPGRYEAFWKELDYVKHLWK 81 (122)
Q Consensus 41 PPt~~k~~~L~k~~fyt~lA~ip~~~~~~~k~v~~~k~~~~ 81 (122)
-++|.+|.+|-|+ +|+|+||+=..+..--.-+..++..++
T Consensus 120 a~~~~~~~~lrR~-a~GR~aSiik~i~~~L~fL~~~r~~l~ 159 (346)
T COG1084 120 AKDPKEANQLRRQ-AFGRVASIIKKIDDDLEFLRKARDHLK 159 (346)
T ss_pred CCChhHHHHHHHH-HHHHHHHHHHHhhHHHHHHHHHHHHHh
Confidence 3467899999998 789999876655544444555555444
No 12
>PLN03070 photosystem I reaction center subunit psaK 247; Provisional
Probab=20.49 E-value=44 Score=25.51 Aligned_cols=26 Identities=31% Similarity=0.436 Sum_probs=20.9
Q ss_pred HHHHHHHHHHHHHhhhhcccCcccccc
Q 033324 94 AALFGLECFAWYCAGEIIGRGFTITGY 120 (122)
Q Consensus 94 ~~Lv~~Ev~~WF~vGEiIGR~f~ivGY 120 (122)
+++=..++++|-+.|-|||=| .|.|-
T Consensus 97 aGf~~~~~La~~s~GHiiG~G-~ILGL 122 (128)
T PLN03070 97 AGFTLADTLACGAVGHIIGVG-VVLGL 122 (128)
T ss_pred CCcCHHHHHHhhhHHHHHHHH-HHhcc
Confidence 445567899999999999997 77763
No 13
>smart00745 MIT Microtubule Interacting and Trafficking molecule domain.
Probab=20.29 E-value=2.5e+02 Score=17.92 Aligned_cols=46 Identities=13% Similarity=0.176 Sum_probs=29.0
Q ss_pred hhhhhhHHHHHHHhhhhhcCCCChhhHHHHHHHHhhhhcccchhHHHHHHH
Q 033324 21 KHGTSYYRQLLEQNKQYIQEPPTVEKCNLLSKQLFYTRLSSIPGRYEAFWK 71 (122)
Q Consensus 21 k~~~~~~k~~l~~~~~y~~~PPt~~k~~~L~k~~fyt~lA~ip~~~~~~~k 71 (122)
+.+..+|+.-++...+.+-.+|.+.. +..+..+..+.-.+.+.+..
T Consensus 25 ~eAl~~Y~~a~e~l~~~~~~~~~~~~-----~~~~~~k~~eyl~raE~lk~ 70 (77)
T smart00745 25 EEALELYKKAIEYLLEGIKVESDSKR-----REAVKAKAAEYLDRAEEIKK 70 (77)
T ss_pred HHHHHHHHHHHHHHHHHhccCCCHHH-----HHHHHHHHHHHHHHHHHHHH
Confidence 45788899999999888866666533 33444445555555554443
No 14
>COG1133 SbmA ABC-type long-chain fatty acid transport system, fused permease and ATPase components [Lipid metabolism]
Probab=20.09 E-value=49 Score=29.29 Aligned_cols=27 Identities=26% Similarity=0.470 Sum_probs=19.9
Q ss_pred HHHHHHHHHHHHHHHHHhhhhcccCcccc
Q 033324 90 DAGIAALFGLECFAWYCAGEIIGRGFTIT 118 (122)
Q Consensus 90 ea~~~~Lv~~Ev~~WF~vGEiIGR~f~iv 118 (122)
-|.+=+|.+ +++||..||-+|.-+|+.
T Consensus 15 sa~vWal~A--vL~w~~gg~~lg~~~gl~ 41 (405)
T COG1133 15 SAFVWALIA--VLFWFAGGEDLGAVTGLS 41 (405)
T ss_pred HHHHHHHHH--HHHHHHhhhHHHHhhCCC
Confidence 345555554 799999999999876554
Done!