Query 034304
Match_columns 98
No_of_seqs 120 out of 401
Neff 4.1
Searched_HMMs 46136
Date Fri Mar 29 12:00:52 2013
Command hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/034304.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/034304hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 COG2764 PhnB Uncharacterized p 99.6 4.5E-16 9.6E-21 112.4 6.4 59 12-71 1-69 (136)
2 PRK10148 hypothetical protein; 99.6 1E-14 2.3E-19 104.2 6.9 58 11-69 1-78 (147)
3 PF06983 3-dmu-9_3-mt: 3-demet 99.4 9.5E-13 2.1E-17 91.2 6.7 52 11-64 1-53 (116)
4 cd06588 PhnB_like Escherichia 99.3 2.7E-12 5.8E-17 87.1 6.4 56 13-69 1-66 (128)
5 cd08355 Glo_EDI_BRP_like_14 Th 98.5 2.9E-07 6.3E-12 60.2 6.4 36 13-50 1-36 (122)
6 cd07246 Glo_EDI_BRP_like_8 Thi 98.5 4.7E-07 1E-11 58.2 6.9 57 11-69 1-57 (122)
7 COG3865 Uncharacterized protei 98.1 1.3E-05 2.9E-10 59.6 6.5 55 11-66 4-59 (151)
8 cd08359 Glo_EDI_BRP_like_22 Th 97.3 0.00047 1E-08 44.5 4.2 30 11-42 1-30 (119)
9 cd08349 BLMA_like Bleomycin bi 96.7 0.0022 4.8E-08 40.4 3.7 28 14-43 1-28 (112)
10 PRK10291 glyoxalase I; Provisi 96.5 0.01 2.2E-07 39.4 5.8 30 17-48 2-31 (129)
11 PF00903 Glyoxalase: Glyoxalas 96.5 0.0068 1.5E-07 38.3 4.6 26 17-44 7-32 (128)
12 cd08350 BLMT_like BLMT, a bleo 96.4 0.0047 1E-07 40.4 3.6 29 11-42 2-30 (120)
13 TIGR00068 glyox_I lactoylgluta 96.3 0.036 7.8E-07 38.1 7.9 38 9-48 15-52 (150)
14 cd07238 Glo_EDI_BRP_like_5 Thi 96.3 0.0052 1.1E-07 39.4 3.5 26 13-40 2-27 (112)
15 cd09011 Glo_EDI_BRP_like_23 Th 96.1 0.014 3.1E-07 38.0 4.6 26 13-40 4-29 (120)
16 PF12681 Glyoxalase_2: Glyoxal 95.9 0.014 2.9E-07 36.7 3.9 23 17-41 1-23 (108)
17 cd08358 Glo_EDI_BRP_like_21 Th 95.9 0.022 4.8E-07 40.1 5.3 33 14-48 5-37 (127)
18 PLN03042 Lactoylglutathione ly 95.9 0.024 5.2E-07 42.2 5.6 37 10-48 26-62 (185)
19 cd08346 PcpA_N_like N-terminal 95.9 0.015 3.2E-07 37.0 3.9 29 16-46 6-34 (126)
20 cd08354 Glo_EDI_BRP_like_13 Th 95.8 0.018 3.8E-07 36.8 4.2 28 13-42 2-29 (122)
21 cd08342 HPPD_N_like N-terminal 95.7 0.018 3.9E-07 38.9 4.0 27 16-44 5-31 (136)
22 cd07233 Glyoxalase_I Glyoxalas 95.6 0.021 4.5E-07 36.5 4.0 30 16-47 5-34 (121)
23 cd08343 ED_TypeI_classII_C C-t 95.6 0.13 2.8E-06 34.3 7.7 27 16-44 4-30 (131)
24 cd08352 Glo_EDI_BRP_like_1 Thi 95.5 0.029 6.2E-07 35.5 4.2 26 16-43 8-33 (125)
25 cd07264 Glo_EDI_BRP_like_15 Th 95.5 0.026 5.6E-07 36.4 4.0 26 15-42 4-29 (125)
26 PLN02367 lactoylglutathione ly 95.5 0.055 1.2E-06 42.4 6.4 39 9-49 73-111 (233)
27 cd07241 Glo_EDI_BRP_like_3 Thi 95.4 0.033 7.2E-07 35.5 4.1 27 16-44 6-32 (125)
28 cd08356 Glo_EDI_BRP_like_17 Th 95.3 0.018 3.9E-07 37.9 2.9 28 12-42 2-29 (113)
29 PF13669 Glyoxalase_4: Glyoxal 95.3 0.12 2.5E-06 33.9 6.6 30 17-48 5-34 (109)
30 cd07263 Glo_EDI_BRP_like_16 Th 95.2 0.043 9.4E-07 34.3 4.1 26 17-44 4-29 (119)
31 TIGR03081 metmalonyl_epim meth 95.0 0.048 1E-06 35.1 4.2 29 16-46 6-34 (128)
32 cd08345 Fosfomycin_RP Fosfomyc 94.8 0.044 9.4E-07 34.8 3.5 25 16-42 3-27 (113)
33 TIGR03645 glyox_marine lactoyl 94.6 0.043 9.3E-07 38.8 3.4 24 16-41 9-32 (162)
34 cd07253 Glo_EDI_BRP_like_2 Thi 94.6 0.056 1.2E-06 34.2 3.6 26 16-43 8-33 (125)
35 cd07254 Glo_EDI_BRP_like_20 Th 94.5 0.074 1.6E-06 34.4 4.1 28 13-42 3-30 (120)
36 cd07243 2_3_CTD_C C-terminal d 94.5 0.077 1.7E-06 36.7 4.5 30 17-48 12-41 (143)
37 PRK11478 putative lyase; Provi 94.2 0.058 1.3E-06 35.1 3.1 25 16-42 11-35 (129)
38 cd09013 BphC-JF8_N_like N-term 94.2 0.076 1.7E-06 34.6 3.6 26 15-42 10-35 (121)
39 cd08362 BphC5-RrK37_N_like N-t 94.1 0.092 2E-06 33.6 3.8 26 15-42 7-32 (120)
40 cd07257 THT_oxygenase_C The C- 94.0 0.1 2.2E-06 36.4 4.2 27 17-45 7-33 (153)
41 cd08351 ChaP_like ChaP, an enz 93.9 0.077 1.7E-06 34.8 3.3 25 15-41 8-32 (123)
42 COG0346 GloA Lactoylglutathion 93.9 0.093 2E-06 32.2 3.5 28 15-44 6-33 (138)
43 cd07256 HPCD_C_class_II C-term 93.9 0.11 2.3E-06 36.5 4.1 26 16-43 8-33 (161)
44 cd07261 Glo_EDI_BRP_like_11 Th 93.8 0.062 1.3E-06 34.3 2.6 24 16-41 3-26 (114)
45 cd07265 2_3_CTD_N N-terminal d 93.8 0.097 2.1E-06 34.0 3.5 26 15-42 8-33 (122)
46 cd08360 MhqB_like_C C-terminal 93.7 0.1 2.2E-06 35.1 3.7 25 16-42 8-32 (134)
47 cd07240 ED_TypeI_classII_N N-t 93.7 0.12 2.5E-06 32.7 3.7 25 16-42 7-31 (117)
48 cd07251 Glo_EDI_BRP_like_10 Th 93.6 0.074 1.6E-06 33.8 2.7 25 16-42 3-27 (121)
49 cd07262 Glo_EDI_BRP_like_19 Th 93.4 0.12 2.5E-06 33.5 3.4 23 16-40 5-30 (123)
50 cd07252 BphC1-RGP6_N_like N-te 93.4 0.1 2.2E-06 34.2 3.2 26 15-42 6-31 (120)
51 cd08357 Glo_EDI_BRP_like_18 Th 93.4 0.13 2.8E-06 33.0 3.5 23 17-41 5-27 (125)
52 cd09014 BphC-JF8_C_like C-term 93.3 0.17 3.8E-06 35.8 4.4 30 16-47 11-40 (166)
53 cd07244 FosA FosA, a Fosfomyci 93.3 0.15 3.3E-06 33.3 3.9 25 16-42 6-30 (121)
54 cd07247 SgaA_N_like N-terminal 93.1 0.13 2.8E-06 32.7 3.3 26 15-42 4-29 (114)
55 cd07249 MMCE Methylmalonyl-CoA 93.1 0.17 3.7E-06 32.3 3.8 28 16-45 5-32 (128)
56 cd08348 BphC2-C3-RGP6_C_like T 93.0 0.19 4.1E-06 33.0 4.0 25 16-42 6-30 (134)
57 cd06587 Glo_EDI_BRP_like This 93.0 0.2 4.3E-06 30.0 3.8 26 17-44 4-29 (112)
58 cd07245 Glo_EDI_BRP_like_9 Thi 93.0 0.095 2.1E-06 32.1 2.4 24 17-42 6-29 (114)
59 cd07255 Glo_EDI_BRP_like_12 Th 92.7 0.18 3.9E-06 32.5 3.5 25 16-42 7-31 (125)
60 cd09012 Glo_EDI_BRP_like_24 Th 92.7 0.2 4.2E-06 32.7 3.7 26 14-42 3-28 (124)
61 TIGR03211 catechol_2_3 catecho 92.6 0.24 5.1E-06 37.7 4.6 31 16-48 150-180 (303)
62 cd07266 HPCD_N_class_II N-term 92.5 0.15 3.3E-06 32.8 3.0 25 15-41 8-32 (121)
63 PRK04101 fosfomycin resistance 92.4 0.2 4.3E-06 33.9 3.6 25 15-41 8-32 (139)
64 PLN02300 lactoylglutathione ly 92.3 0.26 5.7E-06 37.7 4.6 28 15-44 28-55 (286)
65 COG3324 Predicted enzyme relat 92.3 0.12 2.5E-06 37.3 2.4 21 22-42 18-38 (127)
66 cd07239 BphC5-RK37_C_like C-te 92.2 0.19 4.2E-06 34.8 3.4 25 16-42 9-33 (144)
67 cd07242 Glo_EDI_BRP_like_6 Thi 92.1 0.32 6.9E-06 31.5 4.1 26 16-43 6-34 (128)
68 cd08364 FosX FosX, a fosfomyci 91.9 0.27 5.8E-06 33.0 3.8 25 16-42 9-33 (131)
69 cd07235 MRD Mitomycin C resist 91.9 0.19 4.2E-06 32.4 2.9 21 17-40 6-26 (122)
70 TIGR02295 HpaD 3,4-dihydroxyph 91.6 0.35 7.6E-06 36.4 4.4 29 16-46 141-169 (294)
71 cd08361 PpCmtC_N N-terminal do 91.3 0.23 5E-06 33.0 2.9 26 15-42 10-35 (124)
72 cd08363 FosB FosB, a fosfomyci 91.1 0.3 6.6E-06 32.9 3.4 24 16-41 5-28 (131)
73 cd08353 Glo_EDI_BRP_like_7 Thi 91.1 0.26 5.7E-06 32.8 3.0 26 16-44 8-33 (142)
74 cd08347 PcpA_C_like C-terminal 90.7 0.42 9.1E-06 33.8 3.9 26 16-43 6-31 (157)
75 cd07237 BphC1-RGP6_C_like C-te 90.5 0.43 9.3E-06 33.2 3.8 26 16-43 14-39 (154)
76 PLN02300 lactoylglutathione ly 89.9 0.52 1.1E-05 36.1 4.1 31 15-47 158-188 (286)
77 cd07250 HPPD_C_like C-terminal 89.8 0.42 9E-06 35.1 3.4 26 22-47 14-39 (191)
78 TIGR03211 catechol_2_3 catecho 88.8 0.6 1.3E-05 35.4 3.7 26 15-42 8-33 (303)
79 cd07258 PpCmtC_C C-terminal do 88.6 0.7 1.5E-05 32.1 3.6 25 17-43 5-29 (141)
80 TIGR02295 HpaD 3,4-dihydroxyph 88.3 0.85 1.8E-05 34.3 4.2 26 15-42 8-33 (294)
81 PRK06724 hypothetical protein; 86.8 1.4 3.1E-05 30.1 4.3 18 17-36 13-30 (128)
82 TIGR03213 23dbph12diox 2,3-dih 86.1 1.2 2.7E-05 33.6 4.0 28 16-45 147-174 (286)
83 TIGR01263 4HPPD 4-hydroxypheny 85.4 3 6.4E-05 33.2 6.0 49 15-66 6-54 (353)
84 TIGR03213 23dbph12diox 2,3-dih 82.5 1.2 2.6E-05 33.7 2.6 25 15-41 7-31 (286)
85 cd07267 THT_Oxygenase_N N-term 81.8 2.1 4.6E-05 27.6 3.3 23 17-42 9-31 (113)
86 cd08344 MhqB_like_N N-terminal 81.3 2.2 4.7E-05 27.4 3.1 23 16-41 7-29 (112)
87 COG2514 Predicted ring-cleavag 80.6 2.2 4.9E-05 34.4 3.6 26 15-42 172-197 (265)
88 TIGR01263 4HPPD 4-hydroxypheny 78.6 2.7 5.8E-05 33.4 3.4 23 22-44 169-191 (353)
89 PF13176 TPR_7: Tetratricopept 73.3 3.3 7.1E-05 22.5 1.9 14 22-35 13-26 (36)
90 PF14506 CppA_N: CppA N-termin 71.7 6.2 0.00014 28.8 3.6 27 13-41 2-28 (125)
91 COG3185 4-hydroxyphenylpyruvat 59.1 23 0.0005 29.9 5.1 52 22-82 178-229 (363)
92 PLN02875 4-hydroxyphenylpyruva 58.5 9.8 0.00021 32.0 2.8 30 16-45 183-212 (398)
93 PF11324 DUF3126: Protein of u 55.6 20 0.00043 23.3 3.3 39 27-73 5-43 (63)
94 KOG2943 Predicted glyoxalase [ 55.0 9.5 0.00021 31.3 2.1 26 22-47 26-51 (299)
95 COG2514 Predicted ring-cleavag 52.5 33 0.00072 27.8 4.8 27 15-43 14-40 (265)
96 smart00671 SEL1 Sel1-like repe 51.4 16 0.00034 18.7 2.0 14 22-35 19-32 (36)
97 COG0456 RimI Acetyltransferase 50.5 28 0.0006 23.5 3.6 27 16-44 130-156 (177)
98 PHA01807 hypothetical protein 50.5 13 0.00029 26.8 2.1 26 6-34 111-136 (153)
99 PF14507 CppA_C: CppA C-termin 50.5 5.5 0.00012 27.9 0.1 22 15-39 9-30 (101)
100 PF13468 Glyoxalase_3: Glyoxal 46.8 15 0.00033 26.0 1.9 44 17-70 6-50 (175)
101 PRK01236 S-adenosylmethionine 43.6 54 0.0012 23.5 4.4 36 9-44 75-110 (131)
102 TIGR03330 SAM_DCase_Bsu S-aden 42.1 64 0.0014 22.3 4.4 36 9-44 73-108 (112)
103 KOG2943 Predicted glyoxalase [ 41.3 35 0.00076 28.0 3.4 27 13-41 151-177 (299)
104 PF08238 Sel1: Sel1 repeat; I 38.8 20 0.00044 18.7 1.2 14 22-35 22-35 (39)
105 PF00515 TPR_1: Tetratricopept 37.6 33 0.00072 17.4 1.9 14 22-35 15-28 (34)
106 PF14696 Glyoxalase_5: Hydroxy 37.4 55 0.0012 23.7 3.6 60 16-81 78-137 (139)
107 PF04212 MIT: MIT (microtubule 36.5 33 0.00071 21.0 2.1 16 21-36 18-33 (69)
108 PRK01706 S-adenosylmethionine 35.5 95 0.0021 22.0 4.5 37 9-45 76-112 (123)
109 PRK02770 S-adenosylmethionine 34.2 97 0.0021 22.5 4.5 37 9-45 87-123 (139)
110 PF13374 TPR_10: Tetratricopep 34.0 41 0.00088 17.3 1.9 16 22-37 16-31 (42)
111 PRK03124 S-adenosylmethionine 33.9 96 0.0021 22.1 4.3 36 9-44 74-109 (127)
112 PF14559 TPR_19: Tetratricopep 33.1 30 0.00065 19.9 1.4 16 21-36 4-19 (68)
113 PRK00458 S-adenosylmethionine 32.7 1.1E+02 0.0025 21.6 4.6 36 9-44 86-121 (127)
114 PRK04025 S-adenosylmethionine 32.6 1E+02 0.0022 22.3 4.4 36 9-44 74-109 (139)
115 PF07719 TPR_2: Tetratricopept 32.3 46 0.001 16.5 1.9 15 22-36 15-29 (34)
116 PF11211 DUF2997: Protein of u 32.0 60 0.0013 19.6 2.6 18 22-39 21-38 (48)
117 PRK01037 trmD tRNA (guanine-N( 31.3 66 0.0014 27.1 3.6 26 11-38 247-272 (357)
118 PF11001 DUF2841: Protein of u 30.6 25 0.00053 25.4 0.9 16 22-37 4-19 (126)
119 PF12688 TPR_5: Tetratrico pep 30.3 43 0.00093 23.3 2.0 16 22-37 15-30 (120)
120 PF13181 TPR_8: Tetratricopept 30.1 56 0.0012 16.4 2.0 15 22-36 15-29 (34)
121 PF11054 Surface_antigen: Spor 30.0 39 0.00084 27.4 2.0 15 22-36 117-131 (254)
122 PF13424 TPR_12: Tetratricopep 29.3 36 0.00079 20.3 1.4 15 22-36 60-74 (78)
123 PF05100 Phage_tail_L: Phage m 29.3 2.8E+02 0.006 21.7 6.5 66 13-96 47-127 (206)
124 KOG0553 TPR repeat-containing 28.7 25 0.00054 29.0 0.7 21 15-37 158-178 (304)
125 PRK10314 putative acyltransfer 28.5 45 0.00096 23.4 1.9 23 25-48 118-140 (153)
126 PF15433 MRP-S31: Mitochondria 26.7 16 0.00035 30.0 -0.7 25 13-39 268-292 (298)
127 PF08445 FR47: FR47-like prote 26.7 1E+02 0.0022 19.7 3.2 27 13-41 55-81 (86)
128 COG3565 Predicted dioxygenase 26.4 44 0.00095 24.7 1.6 21 17-39 10-30 (138)
129 PF02071 NSF: Aromatic-di-Alan 25.4 30 0.00066 15.6 0.4 8 27-34 1-8 (12)
130 PF02675 AdoMet_dc: S-adenosyl 24.6 87 0.0019 20.9 2.7 34 9-43 68-101 (106)
131 PF07240 Turandot: Stress-indu 24.1 53 0.0011 22.4 1.5 15 22-36 10-24 (85)
132 PF00568 WH1: WH1 domain; Int 23.3 95 0.0021 20.9 2.7 17 16-34 91-107 (111)
133 TIGR03112 6_pyr_pter_rel 6-pyr 22.6 61 0.0013 22.4 1.7 13 71-83 96-108 (113)
134 PF13428 TPR_14: Tetratricopep 22.1 89 0.0019 17.1 2.0 15 22-36 15-29 (44)
135 smart00028 TPR Tetratricopepti 20.9 90 0.002 13.5 1.6 15 22-36 15-29 (34)
136 cd02679 MIT_spastin MIT: domai 20.9 84 0.0018 20.8 2.0 16 22-37 22-37 (79)
No 1
>COG2764 PhnB Uncharacterized protein conserved in bacteria [Function unknown]
Probab=99.64 E-value=4.5e-16 Score=112.41 Aligned_cols=59 Identities=25% Similarity=0.328 Sum_probs=46.9
Q ss_pred eeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCC----------cccccccCcccceEEEecCCCchh
Q 034304 12 GMKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETK----------RKAEKELNSRLSAPHFLSLTFPMI 71 (98)
Q Consensus 12 ~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pD----------G~i~~~~~~VmHA~LmlsD~~P~~ 71 (98)
.|+|||+|| |||++||+||++|||||++.+++++| +++.|+..+|..+.||++|.+|..
T Consensus 1 ~l~PYl~f~-gn~~~Al~fY~~vFgae~~~~~~~~d~~~~~~~~~~~~i~HA~l~i~g~~im~sd~~~~~ 69 (136)
T COG2764 1 TLSPYLFFN-GNAREALAFYKEVFGAEELKRVPFGDMPSSAGEPPGGRIMHAELRIGGSTIMLSDAFPDM 69 (136)
T ss_pred CcceEEEEC-CCHHHHHHHHHHHhCceEEEEEEcCccCccccccccCceEEEEEEECCEEEEEecCCCcc
Confidence 478999994 89999999999999999999999988 444444444444445999998833
No 2
>PRK10148 hypothetical protein; Provisional
Probab=99.55 E-value=1e-14 Score=104.18 Aligned_cols=58 Identities=21% Similarity=0.239 Sum_probs=43.9
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCcccc---------c----ccCcccceEE-------EecCCCc
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKRKAE---------K----ELNSRLSAPH-------FLSLTFP 69 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~i~---------~----~~~~VmHA~L-------mlsD~~P 69 (98)
+.|+|||+|| |||+|||+||++||||+++.++++.|.+.. . +..+||||+| |++|.+|
T Consensus 1 m~l~pyL~f~-g~a~eAi~FY~~~Fgae~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~Ha~l~i~g~~lm~sD~~~ 78 (147)
T PRK10148 1 MPLSPYLSFA-GNCADAIAYYQQTLGAELLYKISFGEMPKSAQDSEEGCPSGMQFPDTAIAHANVRIAGSDIMMSDAIP 78 (147)
T ss_pred CeeEEEEEeC-CCHHHHHHHHHHHhCCEEEEEEEcccCCccccccccCCCccccCcCCcEEEEEEEECCEEEEEECCCC
Confidence 3589999994 999999999999999999999875432210 0 1257888876 7777655
No 3
>PF06983 3-dmu-9_3-mt: 3-demethylubiquinone-9 3-methyltransferase; PDB: 1U7I_A 1TSJ_A 1U69_D 3L20_B 3OMS_A.
Probab=99.39 E-value=9.5e-13 Score=91.18 Aligned_cols=52 Identities=23% Similarity=0.263 Sum_probs=38.0
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCCEEEEE-EecCCcccccccCcccceEEEe
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGAVEISR-IMETKRKAEKELNSRLSAPHFL 64 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~-~~~pDG~i~~~~~~VmHA~Lml 64 (98)
.+|+|||.|| |||+||++||++|||+.++.. ..+|+.... ..++||||+|.+
T Consensus 1 qki~pyL~F~-g~a~eA~~fY~~vf~~~~i~~~~~~~~~~~~-~~~~v~ha~l~i 53 (116)
T PF06983_consen 1 QKITPYLWFN-GNAEEALEFYKEVFGGSEIMTFGDYPDDEPE-WKDKVMHAELTI 53 (116)
T ss_dssp -SEEEEEEES-S-HHHHHHHHHHHSTTEEEEEEEE-TTTCTT-HTTSEEEEEEEE
T ss_pred CceEEEEEeC-CCHHHHHHHHHHHcCCCEEEEEeECCCCCCC-CCCcEEEEEEEE
Confidence 3689999995 999999999999999755444 456765432 457899999733
No 4
>cd06588 PhnB_like Escherichia coli PhnB and similar proteins; the E. coli phnB gene is found next to an operon involved in the cleavage of carbon-phosphorus bonds in unactivated alkylphosphonates. The Escherichia coli phnB gene is found next to an operon of fourteen genes (phnC-to-phnP) related to the cleavage of carbon-phosphorus (C-P) bonds in unactivated alkylphosphonates, supporting bacterial growth on alkylphosphonates as the sole phosphorus source. It was originally considered part of that operon. PhnB appears to play no direct catalytic role in the usage of alkylphosphonate. Although many of the proteins in this family have been annotated as 3-demethylubiquinone-9 3-methyltransferase enzymes by automatic annotation programs, the experimental evidence for this assignment is lacking. In Escherichia coli, the gene coding 3-demethylubiquinone-9 3-methyltransferase enzyme is ubiG, which belongs to the AdoMet-MTase protein family. PhnB-like proteins adopt a structural fold similar to
Probab=99.34 E-value=2.7e-12 Score=87.11 Aligned_cols=56 Identities=21% Similarity=0.219 Sum_probs=41.1
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCccc---ccccCcccceEE-------EecCCCc
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKRKA---EKELNSRLSAPH-------FLSLTFP 69 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~i---~~~~~~VmHA~L-------mlsD~~P 69 (98)
++|||+|| +||+|||+||+++||+++..++..++... .....+|+||+| |++|..|
T Consensus 1 l~p~L~~~-~~~~eAi~FY~~~fg~~~~~~~~~~~~~~~~~~~~~~~i~ha~l~i~g~~l~~~d~~~ 66 (128)
T cd06588 1 ITPYLWFN-GNAEEALEFYQSVFGGEITSLTRYGEGPPPDPEEPEGKVMHAELTIGGQRLMASDGGP 66 (128)
T ss_pred CeeEEeeC-CCHHHHHHHHHHHhCCEeEEEEEcCCCCCCCCCCcCCcEEEEEEEECCEEEEEEcCCC
Confidence 57999995 99999999999999999998887543321 112246677766 6666544
No 5
>cd08355 Glo_EDI_BRP_like_14 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The structures of this family demonstrate domain swapping, which is shared by glyoxalase I and antibiotic resistance proteins.
Probab=98.55 E-value=2.9e-07 Score=60.25 Aligned_cols=36 Identities=22% Similarity=0.186 Sum_probs=31.0
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCccc
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKRKA 50 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~i 50 (98)
++|+|.| .|.++|++||+++||.+...+...++|.+
T Consensus 1 ~~p~l~v--~d~~~a~~FY~~~lG~~~~~~~~~~~~~~ 36 (122)
T cd08355 1 VWPTLRY--RDAAAAIDWLTDAFGFEERLVVPDDDGGV 36 (122)
T ss_pred CeEEEEE--CCHHHHHHHHHHhcCCEEEEEEeCCCCcE
Confidence 5799999 79999999999999999988776556653
No 6
>cd07246 Glo_EDI_BRP_like_8 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The structures of this family demonstrate domain swapping, which is shared by glyoxalase I and antibiotic resistance proteins.
Probab=98.53 E-value=4.7e-07 Score=58.23 Aligned_cols=57 Identities=30% Similarity=0.389 Sum_probs=42.2
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCcccccccCcccceEEEecCCCc
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKRKAEKELNSRLSAPHFLSLTFP 69 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~i~~~~~~VmHA~LmlsD~~P 69 (98)
++|.|+|.| .|.+++++||+++||++.......++|...+.........+++.+..|
T Consensus 1 ~~~~~~l~v--~d~~~a~~FY~~~lG~~~~~~~~~~~~~~~~~~l~~~~~~~~l~~~~~ 57 (122)
T cd07246 1 HTVTPYLIV--RDAAAAIDFYKKAFGAEELERMPDDDGRVMHAELRIGDSVLMLADEFP 57 (122)
T ss_pred CceeEEEEE--CCHHHHHHHHHHhhCCEEEEEEeCCCCCEEEEEEEECCEEEEEecCCc
Confidence 478999999 799999999999999998887765666544333334455666665544
No 7
>COG3865 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=98.06 E-value=1.3e-05 Score=59.59 Aligned_cols=55 Identities=18% Similarity=0.135 Sum_probs=43.7
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCC-EEEEEEecCCcccccccCcccceEEEecC
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGA-VEISRIMETKRKAEKELNSRLSAPHFLSL 66 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGA-eev~~~~~pDG~i~~~~~~VmHA~LmlsD 66 (98)
..++|+|.|+ ++|+||.+||.+.|-- ++..+..+|++........|+++++.|++
T Consensus 4 ~kit~~L~F~-~~AeeA~~fY~s~FpdS~i~~i~r~p~~~~~g~~G~Vl~a~F~l~g 59 (151)
T COG3865 4 PKITPFLWFD-GNAEEAMNFYLSTFPDSKIIGITRYPEGEPGGKEGKVLVAEFTLNG 59 (151)
T ss_pred CcceeEEEEC-CcHHHHHHHHHHhCCcceeeeeeecCCCCCCCCCccEEEEEEEECC
Confidence 5789999995 9999999999999965 66667777776555455679999985554
No 8
>cd08359 Glo_EDI_BRP_like_22 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The structures of this family demonstrate domain swapping, which is shared by glyoxalase I and antibiotic resistance proteins.
Probab=97.28 E-value=0.00047 Score=44.50 Aligned_cols=30 Identities=13% Similarity=0.282 Sum_probs=26.5
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
+++.|.|.+ .|.+++++||+++||.+....
T Consensus 1 ~~~~~~l~v--~D~~~s~~FY~~~lG~~~~~~ 30 (119)
T cd08359 1 TSLYPVIVT--DDLAETADFYVRHFGFTVVFD 30 (119)
T ss_pred CcceeEEEE--CCHHHHHHHHHHhhCcEEEec
Confidence 368899999 899999999999999987643
No 9
>cd08349 BLMA_like Bleomycin binding protein (BLMA) and similar proteins; BLMA confers bleomycin (Bm) resistance by directly binding to Bm. BLMA also called Bleomycin resistance protein, confers Bm resistance by directly binding to Bm. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMA is produced by actinomycetes to protect themselves against their own lethal compound. BLMA has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMAs are dimers and each dimer binds to two Bm molecules at the Bm-binding pockets formed at the dimer interface; two Bm molecules are bound per dimer. BLMA belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. As for the large
Probab=96.74 E-value=0.0022 Score=40.36 Aligned_cols=28 Identities=21% Similarity=0.161 Sum_probs=24.4
Q ss_pred eEEEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 14 KLQLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 14 tPYL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
.|-|.+ .|.+++++||+++||.+.....
T Consensus 1 ~~~i~v--~d~~~s~~FY~~~lg~~~~~~~ 28 (112)
T cd08349 1 VPVLPV--SDIERSLAFYRDVLGFEVDWEH 28 (112)
T ss_pred CCEEEE--CCHHHHHHHHHhccCeEEEEEc
Confidence 378999 7999999999999999876654
No 10
>PRK10291 glyoxalase I; Provisional
Probab=96.51 E-value=0.01 Score=39.40 Aligned_cols=30 Identities=20% Similarity=0.297 Sum_probs=24.6
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
|.| .|.+++++||+++||.+.+.....+++
T Consensus 2 l~V--~Dle~s~~FY~~~LG~~~~~~~~~~~~ 31 (129)
T PRK10291 2 LRV--GDLQRSIDFYTNVLGMKLLRTSENPEY 31 (129)
T ss_pred EEe--cCHHHHHHHHHhccCCEEEEeecCCCC
Confidence 678 799999999999999988776655543
No 11
>PF00903 Glyoxalase: Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily This Prosite is specific to glyoxalases This Prosite is specific to Extradiol ring-cleavage dioxygenases This prints entry is specific to bleomycin resistance protein.; InterPro: IPR004360 Glyoxalase I (4.4.1.5 from EC) (lactoylglutathione lyase) catalyzes the first step of the glyoxal pathway. S-lactoylglutathione is then converted by glyoxalase II to lactic acid []. Glyoxalase I is an ubiquitous enzyme which binds one mole of zinc per subunit. The bacterial and yeast enzymes are monomeric while the mammalian one is homodimeric. The sequence of glyoxalase I is well conserved. The domain represented by this entry is found in glyoxalase I and in other related proteins, including fosfomycin resistance proteins FosB [], FosA [], FosX [] and dioxygenases (eg. 4-hydroxyphenylpyruvate dioxygenase).; PDB: 1CJX_A 1NPB_E 3OJT_C 3OJN_A 2IG9_B 3OJJ_B 3OJK_D 1Q0C_D 1F1X_C 3BZA_B ....
Probab=96.47 E-value=0.0068 Score=38.34 Aligned_cols=26 Identities=23% Similarity=0.308 Sum_probs=23.8
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
|.+ +|.+++++||+++||.+.+....
T Consensus 7 i~v--~d~~~~~~FY~~~lG~~~~~~~~ 32 (128)
T PF00903_consen 7 IRV--KDLEKAIDFYTDVLGFRLVEESD 32 (128)
T ss_dssp EEE--SCHHHHHHHHHHTTTSEEEEEEE
T ss_pred EEc--CCHHHHHHHHHHHhCCcEEeeec
Confidence 677 89999999999999999988876
No 12
>cd08350 BLMT_like BLMT, a bleomycin resistance protein encoded on the transposon Tn5, and similar proteins. BLMT is a bleomycin (Bm) resistance protein, encoded by the ble gene on the transposon Tn5. This protein confers a survival advantage to Escherichia coli host cells. Bm is a glycopeptide antibiotic produced naturally by actinomycetes. It is a potent anti-cancer drug, which acts as a strong DNA-cutting agent, thereby causing cell death. BLMT has strong binding affinity to Bm and it protects against this lethal compound through drug sequestering. BLMT has two identically-folded subdomains, with the same alpha/beta fold; these two halves have no sequence similarity. BLMT is a dimer with two Bm-binding pockets formed at the dimer interface.
Probab=96.39 E-value=0.0047 Score=40.44 Aligned_cols=29 Identities=17% Similarity=0.013 Sum_probs=25.4
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
.+++|.|.+ .|.+++++||++ ||.+....
T Consensus 2 ~~~~~~l~v--~Dl~~s~~FY~~-lG~~~~~~ 30 (120)
T cd08350 2 DTTIPNLPS--RDLDATEAFYAR-LGFSVGYR 30 (120)
T ss_pred CcccceeEc--CCHHHHHHHHHH-cCCEEEec
Confidence 368899999 799999999999 99987654
No 13
>TIGR00068 glyox_I lactoylglutathione lyase. Glyoxylase I is a homodimer in many species. In some eukaryotes, including yeasts and plants, the orthologous protein carries a tandem duplication, is twice as long, and hits this model twice.
Probab=96.34 E-value=0.036 Score=38.06 Aligned_cols=38 Identities=13% Similarity=0.115 Sum_probs=29.6
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
.+.--...|.+ .|.++|++||+++||.+++.....+++
T Consensus 15 ~~~i~hv~l~v--~Dl~~a~~FY~~vLG~~~~~~~~~~~~ 52 (150)
T TIGR00068 15 KRRLLHTMLRV--GDLDKSLDFYTEVLGMKLLRKRDFPEM 52 (150)
T ss_pred CceEEEEEEEe--cCHHHHHHHHHHhcCCEEEEEeccCCC
Confidence 33444578889 899999999999999998776655544
No 14
>cd07238 Glo_EDI_BRP_like_5 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The structure of this family is a that of a strand-swapped dimer.
Probab=96.33 E-value=0.0052 Score=39.39 Aligned_cols=26 Identities=23% Similarity=0.319 Sum_probs=23.7
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEI 40 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev 40 (98)
+.|.|.+ .|-+++++||+++||.+..
T Consensus 2 ~~~~l~v--~Dl~~s~~FY~~~lG~~~~ 27 (112)
T cd07238 2 IVPNLPV--ADPEAAAAFYADVLGLDVV 27 (112)
T ss_pred ccceEec--CCHHHHHHHHHHhcCceEE
Confidence 5799999 7999999999999999865
No 15
>cd09011 Glo_EDI_BRP_like_23 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=96.07 E-value=0.014 Score=37.97 Aligned_cols=26 Identities=19% Similarity=0.333 Sum_probs=23.3
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEI 40 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev 40 (98)
..|.|.+ .|-++|++||+++||.+..
T Consensus 4 ~~~~l~v--~D~~~a~~FY~~~lG~~~~ 29 (120)
T cd09011 4 KNPLLVV--KDIEKSKKFYEKVLGLKVV 29 (120)
T ss_pred EEEEEEE--CCHHHHHHHHHHhcCCEEe
Confidence 4589999 7999999999999999865
No 16
>PF12681 Glyoxalase_2: Glyoxalase-like domain; PDB: 3G12_B 1JIF_B 1JIE_B 1QTO_A 3OXH_A 2PJS_A 2RBB_A 3SK1_B 3SK2_B 3RRI_A ....
Probab=95.93 E-value=0.014 Score=36.75 Aligned_cols=23 Identities=30% Similarity=0.348 Sum_probs=21.0
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
|.+ .|.++|++||+++||.+.+.
T Consensus 1 l~v--~d~~~a~~FY~~~lg~~~~~ 23 (108)
T PF12681_consen 1 LPV--SDLEAAAAFYEDVLGFEVVF 23 (108)
T ss_dssp EEE--SSHHHHHHHHHHTTTSEEEE
T ss_pred Ccc--CCHHHHHHHHHHhcCCEEEE
Confidence 567 79999999999999999888
No 17
>cd08358 Glo_EDI_BRP_like_21 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=95.91 E-value=0.022 Score=40.10 Aligned_cols=33 Identities=15% Similarity=0.257 Sum_probs=28.8
Q ss_pred eEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 14 KLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 14 tPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
-.-|.| .|-++.|+||+++||-+++.+...|+|
T Consensus 5 Hv~irV--~DlerSi~FY~~vLG~~~~~~~~~~~~ 37 (127)
T cd08358 5 HFVFKV--GNRNKTIKFYREVLGMKVLRHEEFEEG 37 (127)
T ss_pred EEEEEe--CCHHHHHHHHHHhcCCEEEeeecCccc
Confidence 346788 899999999999999999988888874
No 18
>PLN03042 Lactoylglutathione lyase; Provisional
Probab=95.88 E-value=0.024 Score=42.23 Aligned_cols=37 Identities=11% Similarity=0.276 Sum_probs=29.6
Q ss_pred cceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 10 FMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 10 ~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
|..----|.| .|-+++|+||+++||.+++.+...+++
T Consensus 26 ~~~~Ht~i~V--~Dle~Si~FY~~vLG~~~~~r~~~~~~ 62 (185)
T PLN03042 26 YIMQQTMFRI--KDPKASLDFYSRVLGMSLLKRLDFPEM 62 (185)
T ss_pred cEEEEEEEee--CCHHHHHHHHHhhcCCEEEEEEEcCCC
Confidence 4334447888 899999999999999999888766654
No 19
>cd08346 PcpA_N_like N-terminal domain of Sphingobium chlorophenolicum 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins. The N-terminal domain of Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) 2,6-dichloro-p-hydroquinone1,2-dioxygenase (PcpA), and similar proteins. PcpA is a key enzyme in the pentachlorophenol (PCP) degradation pathway, catalyzing the conversion of 2,6-dichloro-p-hydroquinone to 2-chloromaleylacetate. This domain belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases.
Probab=95.86 E-value=0.015 Score=37.04 Aligned_cols=29 Identities=17% Similarity=0.464 Sum_probs=24.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecC
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMET 46 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~p 46 (98)
-|.+ .|.+++++||+++||.+.......+
T Consensus 6 ~l~v--~d~~~a~~FY~~~lG~~~~~~~~~~ 34 (126)
T cd08346 6 TLIT--RDAQETVDFYTDVLGLRLVKKTVNQ 34 (126)
T ss_pred EEEc--CChhHhHHHHHHccCCEEeeeEecc
Confidence 5678 7999999999999999987775443
No 20
>cd08354 Glo_EDI_BRP_like_13 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=95.83 E-value=0.018 Score=36.85 Aligned_cols=28 Identities=21% Similarity=0.336 Sum_probs=24.3
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
+...|.+ .|-+++++||+++||.++..+
T Consensus 2 ~~~~l~v--~d~~~s~~Fy~~~lG~~~~~~ 29 (122)
T cd08354 2 LETALYV--DDLEAAEAFYEDVLGLELMLK 29 (122)
T ss_pred eEEEEEe--CCHHHHHHHHHhccCCEEeec
Confidence 4578899 799999999999999997754
No 21
>cd08342 HPPD_N_like N-terminal domain of 4-hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate Synthase (HmaS). HppD and HmaS are non-heme iron-dependent dioxygenases, which modify a common substrate, 4-hydroxyphenylpyruvate (HPP), but yield different products. HPPD catalyzes the second reaction in tyrosine catabolism, the conversion of HPP to homogentisate (2,5-dihydroxyphenylacetic acid, HG). HmaS converts HPP to 4-hydroxymandelate, a committed step in the formation of hydroxyphenylglycerine, a structural component of nonproteinogenic macrocyclic peptide antibiotics, such as vancomycin. If the emphasis is on catalytic chemistry, HPPD and HmaS are classified as members of a large family of alpha-keto acid dependent mononuclear non-heme iron oxygenases most of which require Fe(II), molecular oxygen, and an alpha-keto acid (typically alpha-ketoglutarate) to either oxygenate or oxidize a third substrate. Both enzymes are exceptions in that they require two, instead of three, su
Probab=95.69 E-value=0.018 Score=38.93 Aligned_cols=27 Identities=15% Similarity=0.239 Sum_probs=23.4
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
-|.| .|.+++++||+++||.+...+..
T Consensus 5 ~i~V--~D~e~s~~FY~~vLGf~~~~~~~ 31 (136)
T cd08342 5 EFYV--GNAKQLASWFSTKLGFEPVAYHG 31 (136)
T ss_pred EEEe--CCHHHHHHHHHHhcCCeEEEecC
Confidence 3678 79999999999999999887754
No 22
>cd07233 Glyoxalase_I Glyoxalase I catalyzes the isomerization of the hemithioacetal, formed by a 2-oxoaldehyde and glutathione, to S-D-lactoylglutathione. Glyoxalase I (also known as lactoylglutathione lyase; EC 4.4.1.5) is part of the glyoxalase system, a two-step system for detoxifying methylglyoxal, a side product of glycolysis. This system is responsible for the conversion of reactive, acyclic alpha-oxoaldehydes into the corresponding alpha-hydroxyacids and involves 2 enzymes, glyoxalase I and II. Glyoxalase I catalyses an intramolecular redox reaction of the hemithioacetal (formed from methylglyoxal and glutathione) to form the thioester, S-D-lactoylglutathione. This reaction involves the transfer of two hydrogen atoms from C1 to C2 of the methylglyoxal, and proceeds via an ene-diol intermediate. Glyoxalase I has a requirement for bound metal ions for catalysis. Eukaryotic glyoxalase I prefers the divalent cation zinc as cofactor, whereas Escherichia coil and other prokaryotic gly
Probab=95.65 E-value=0.021 Score=36.46 Aligned_cols=30 Identities=20% Similarity=0.270 Sum_probs=24.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecCC
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMETK 47 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~pD 47 (98)
.|.+ .|.++|++||+++||.+.......++
T Consensus 5 ~i~v--~d~~~a~~fY~~~lG~~~~~~~~~~~ 34 (121)
T cd07233 5 MLRV--KDLEKSLDFYTDVLGMKLLRRKDFPE 34 (121)
T ss_pred EEEe--cCcHHHHHHHHhccCCeEEEEEecCC
Confidence 3566 79999999999999999877655444
No 23
>cd08343 ED_TypeI_classII_C C-terminal domain of type I, class II extradiol dioxygenases; catalytic domain. This family contains the C-terminal, catalytic domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this family are
Probab=95.58 E-value=0.13 Score=34.25 Aligned_cols=27 Identities=19% Similarity=0.250 Sum_probs=22.7
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
.|.| .|.++|++||+++||.+......
T Consensus 4 ~l~V--~dl~~a~~Fy~~~lG~~~~~~~~ 30 (131)
T cd08343 4 VLRT--PDVAATAAFYTEVLGFRVSDRVG 30 (131)
T ss_pred EEEc--CCHHHHHHHHHhcCCCEEEEEEc
Confidence 4677 79999999999999999876543
No 24
>cd08352 Glo_EDI_BRP_like_1 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.
Probab=95.53 E-value=0.029 Score=35.54 Aligned_cols=26 Identities=19% Similarity=0.342 Sum_probs=22.0
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
-|.+ .|.++|++||+++||.+.....
T Consensus 8 ~l~v--~d~~~a~~fy~~~lG~~~~~~~ 33 (125)
T cd08352 8 AIIC--SDYEKSKEFYVEILGFKVIREV 33 (125)
T ss_pred EEEc--CCHHHHHHHHHHhcCCEEeeee
Confidence 4677 7999999999999999876554
No 25
>cd07264 Glo_EDI_BRP_like_15 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=95.49 E-value=0.026 Score=36.35 Aligned_cols=26 Identities=23% Similarity=0.351 Sum_probs=21.8
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.+ .|.+++++||+++||.+....
T Consensus 4 ~~l~v--~D~~~s~~FY~~~lG~~~~~~ 29 (125)
T cd07264 4 TIIYV--EDVEKTLEFYERAFGFERRFL 29 (125)
T ss_pred EEEEE--cCHHHHHHHHHHhhCCeEEee
Confidence 35677 799999999999999987543
No 26
>PLN02367 lactoylglutathione lyase
Probab=95.46 E-value=0.055 Score=42.44 Aligned_cols=39 Identities=13% Similarity=0.276 Sum_probs=32.4
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCcc
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIMETKRK 49 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~ 49 (98)
||.----.|.| .|.+++|+||+++||.+.+.+...|++.
T Consensus 73 ~~~~~HtmlRV--kDle~Sl~FYt~vLGm~ll~r~d~pe~~ 111 (233)
T PLN02367 73 GYIMQQTMYRI--KDPKASLDFYSRVLGMSLLKRLDFPEMK 111 (233)
T ss_pred CcEEEEEEEEe--CCHHHHHHHHHHhcCCEEeEEEecCCCc
Confidence 45555567889 8999999999999999999988777754
No 27
>cd07241 Glo_EDI_BRP_like_3 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.
Probab=95.36 E-value=0.033 Score=35.49 Aligned_cols=27 Identities=22% Similarity=0.285 Sum_probs=22.8
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
.|.| .|-+++++||+++||.+...+..
T Consensus 6 ~l~v--~dl~~s~~FY~~~lg~~~~~~~~ 32 (125)
T cd07241 6 AIWT--KDLERMKAFYVTYFGATSNEKYH 32 (125)
T ss_pred EEEe--cCHHHHHHHHHHHhCCEeeceEe
Confidence 5788 79999999999999998765543
No 28
>cd08356 Glo_EDI_BRP_like_17 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=95.34 E-value=0.018 Score=37.91 Aligned_cols=28 Identities=14% Similarity=0.193 Sum_probs=24.7
Q ss_pred eeeEEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 12 GMKLQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 12 ~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
++.|+|.+ .|-+++++||++ ||.+....
T Consensus 2 ~~~~~l~v--~Dl~~s~~FY~~-LGf~~~~~ 29 (113)
T cd08356 2 SIRPFIPA--KDFAESKQFYQA-LGFELEWE 29 (113)
T ss_pred cceecccc--ccHHHHHHHHHH-hCCeeEec
Confidence 57899999 899999999987 99988655
No 29
>PF13669 Glyoxalase_4: Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily; PDB: 3RMU_B 3ISQ_A 1JC5_D 1JC4_D 3HDP_A 2QH0_A 3GM5_A 3OA4_A 3CT8_A.
Probab=95.25 E-value=0.12 Score=33.89 Aligned_cols=30 Identities=20% Similarity=0.282 Sum_probs=23.4
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
++| .|.++|++||+++||.+.......++.
T Consensus 5 i~V--~Dl~~a~~~~~~~lG~~~~~~~~~~~~ 34 (109)
T PF13669_consen 5 IVV--PDLDAAAAFYCDVLGFEPWERYRDEPQ 34 (109)
T ss_dssp EEE--S-HHHHHHHHHHCTTHEEEEEEEEGCT
T ss_pred EEc--CCHHHHHHHHHHhhCCcEEEEEecCCC
Confidence 578 799999999999999987766655443
No 30
>cd07263 Glo_EDI_BRP_like_16 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=95.15 E-value=0.043 Score=34.29 Aligned_cols=26 Identities=23% Similarity=0.322 Sum_probs=22.4
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
|.+ .|.+++++||+++||.+......
T Consensus 4 l~v--~d~~~~~~fY~~~lG~~~~~~~~ 29 (119)
T cd07263 4 LYV--DDQDKALAFYTEKLGFEVREDVP 29 (119)
T ss_pred EEe--CCHHHHHHHHHhccCeEEEEeec
Confidence 667 79999999999999998876654
No 31
>TIGR03081 metmalonyl_epim methylmalonyl-CoA epimerase. Members of this protein family are the enzyme methylmalonyl-CoA epimerase (EC 5.1.99.1), also called methylmalonyl-CoA racemase. This enzyme converts (2R)-methylmalonyl-CoA to (2S)-methylmalonyl-CoA, which is then a substrate for methylmalonyl-CoA mutase (TIGR00642). It is known in bacteria, archaea, and as a mitochondrial protein in animals. It is closely related to lactoylglutathione lyase (TIGR00068), which is also called glyoxylase I, and is also a homodimer.
Probab=95.03 E-value=0.048 Score=35.11 Aligned_cols=29 Identities=17% Similarity=0.164 Sum_probs=23.3
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecC
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMET 46 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~p 46 (98)
-|.| .|.+++++||+++||.+.......+
T Consensus 6 ~l~v--~D~~~s~~FY~~~lG~~~~~~~~~~ 34 (128)
T TIGR03081 6 GIAV--PDLEEAAKLYEDVLGAHVSHIEEVP 34 (128)
T ss_pred EEEe--CCHHHHHHHHHHHhCCCCccceeCC
Confidence 4678 7999999999999999886654333
No 32
>cd08345 Fosfomycin_RP Fosfomycin resistant protein; inhibits the biological function of fosfomycin. This family contains three types of fosfomycin resistant protein. Fosfomycin inhibits the enzyme UDP-N-acetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. The three types of fosfomycin resistance proteins, employ different mechanisms to render fosfomycin [(1R,2S)-epoxypropylphosphonic acid] inactive. FosB catalyzes the addition of L-cysteine to the epoxide ring of fosfomycin. FosX catalyzes the addition of a water molecule to the C1 position of the antibiotic with inversion of configuration at C1. FosA catalyzes the addition of glutathione to the antibiotic fosfomycin, making it inactive. Catalytic activities of both FosX and FosA are Mn(II)-dependent, but FosB is activated by Mg(II). Fosfomycin resistant proteins are evolutionarily related to glyoxalase I and type I extradiol dioxygenases.
Probab=94.79 E-value=0.044 Score=34.77 Aligned_cols=25 Identities=32% Similarity=0.495 Sum_probs=21.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
.|.+ .|.+++++||+++||.+...+
T Consensus 3 ~l~v--~d~~~s~~Fy~~~lg~~~~~~ 27 (113)
T cd08345 3 TLIV--KDLNKSIAFYRDILGAELIYS 27 (113)
T ss_pred eEEE--CCHHHHHHHHHHhcCCeeeec
Confidence 4677 799999999999999887544
No 33
>TIGR03645 glyox_marine lactoylglutathione lyase family protein. Members of this protein family share homology with lactoylglutathione lyase (glyoxalase I) and are found mainly in marine members of the gammaproteobacteria, including CPS_0532 from Colwellia psychrerythraea 34H. This family excludes a well-separated, more narrowly distributed paralogous family, exemplified by CPS_3492 from C. psychrerythraea. The function is of this protein family is unknown.
Probab=94.62 E-value=0.043 Score=38.80 Aligned_cols=24 Identities=25% Similarity=0.339 Sum_probs=21.3
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
-|.| .|-++|++||+++||.+.+.
T Consensus 9 ~i~V--~Dle~s~~FY~~~LG~~~~~ 32 (162)
T TIGR03645 9 GISV--PDLDAAVKFYTEVLGWYLIM 32 (162)
T ss_pred EEEe--CCHHHHHHHHHHhcCCEEEe
Confidence 5788 89999999999999998764
No 34
>cd07253 Glo_EDI_BRP_like_2 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.
Probab=94.61 E-value=0.056 Score=34.18 Aligned_cols=26 Identities=19% Similarity=0.268 Sum_probs=21.9
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
.|.+ .|.+++++||+++||.+.....
T Consensus 8 ~l~v--~d~~~s~~Fy~~~lG~~~~~~~ 33 (125)
T cd07253 8 VLTV--ADIEATLDFYTRVLGMEVVRFG 33 (125)
T ss_pred EEEe--cCHHHHHHHHHHHhCceeeccc
Confidence 5677 7999999999999998876543
No 35
>cd07254 Glo_EDI_BRP_like_20 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and types I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.
Probab=94.54 E-value=0.074 Score=34.37 Aligned_cols=28 Identities=25% Similarity=0.388 Sum_probs=23.7
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
+.+.|.+ .|.+++++||+++||.+....
T Consensus 3 ~hv~l~v--~d~~~a~~FY~~~lG~~~~~~ 30 (120)
T cd07254 3 FHVALNV--DDLEASIAFYSKLFGVEPTKV 30 (120)
T ss_pred EEEEEEe--CCHHHHHHHHHHHhCCeEecc
Confidence 5577899 799999999999999976544
No 36
>cd07243 2_3_CTD_C C-terminal domain of catechol 2,3-dioxygenase. This subfamily contains the C-terminal, catalytic, domain of catechol 2,3-dioxygenase. Catechol 2,3-dioxygenase (2,3-CTD, catechol:oxygen 2,3-oxidoreductase) catalyzes an extradiol cleavage of catechol to form 2-hydroxymuconate semialdehyde with the insertion of two atoms of oxygen. The enzyme is a homotetramer and contains catalytically essential Fe(II) . The reaction proceeds by an ordered bi-unit mechanism. First, catechol binds to the enzyme, this is then followed by the binding of dioxygen to form a tertiary complex, and then the aromatic ring is cleaved to produce 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase belongs to the type I extradiol dioxygenase family. The subunit comprises the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. This subfamily represents the C-terminal domain.
Probab=94.53 E-value=0.077 Score=36.69 Aligned_cols=30 Identities=10% Similarity=0.246 Sum_probs=24.3
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
|.| .|-+++++||+++||.++..++..++|
T Consensus 12 l~v--~Dle~s~~FY~~vLGf~~~~~~~~~~~ 41 (143)
T cd07243 12 LTG--EDIAETTRFFTDVLDFYLAERVVDPDG 41 (143)
T ss_pred Eec--CCHHHHHHHHHHhcCCEEEEEEecCCC
Confidence 677 799999999999999988777644443
No 37
>PRK11478 putative lyase; Provisional
Probab=94.19 E-value=0.058 Score=35.08 Aligned_cols=25 Identities=16% Similarity=0.212 Sum_probs=21.0
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-|.+ .|.+++++||+++||.+....
T Consensus 11 ~l~v--~D~~~a~~FY~~~LG~~~~~~ 35 (129)
T PRK11478 11 AIIA--TDYAVSKAFYCDILGFTLQSE 35 (129)
T ss_pred EEEc--CCHHHHHHHHHHHhCCEeccc
Confidence 4667 799999999999999887543
No 38
>cd09013 BphC-JF8_N_like N-terminal, non-catalytic, domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Bacillus sp. JF8 and similar proteins. 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, a key step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). BphC belongs to the type I extradiol dioxygenase family, which requires a metal ion in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. This subfamily of BphC is represented by the enzyme purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8. The members in this family of BphC enzymes may use either Mn(II) or Fe(II) as cofactors. The enzyme purified from Bacillus sp. JF8 is Mn(II)-dependent, however, the enzyme from Rhodococcus jostii RHAI has Fe(II) bound to it. BphC_JF8 is thermostable and its optimum activity is at 85 degrees C
Probab=94.17 E-value=0.076 Score=34.56 Aligned_cols=26 Identities=27% Similarity=0.546 Sum_probs=22.1
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
.-|.+ .|-+++++||+++||.+.+.+
T Consensus 10 v~l~v--~dl~~a~~FY~~~lG~~~~~~ 35 (121)
T cd09013 10 VELLT--PKPEESLWFFTDVLGLEETGR 35 (121)
T ss_pred EEEEe--CCHHHHHHHHHhCcCCEEEee
Confidence 35677 799999999999999987655
No 39
>cd08362 BphC5-RrK37_N_like N-terminal, non-catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Rhodococcus rhodochrous K37, and similar proteins. 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the N-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dioxyge
Probab=94.06 E-value=0.092 Score=33.59 Aligned_cols=26 Identities=23% Similarity=0.411 Sum_probs=21.8
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.+ .|.+++++||+++||.+....
T Consensus 7 v~l~v--~d~~~s~~FY~~~lG~~~~~~ 32 (120)
T cd08362 7 VGLGV--PDLAAAAAFYREVWGLSVVAE 32 (120)
T ss_pred EEEec--CCHHHHHHHHHhCcCcEEEEe
Confidence 35777 799999999999999987543
No 40
>cd07257 THT_oxygenase_C The C-terminal domain of 2,4,5-Trihydroxytoluene (THT) oxygenase, which is an extradiol dioxygenease in the 2,4-dinitrotoluene (DNT) degradation pathway. This subfamily contains the C-terminal, catalytic, domain of THT oxygenase. THT oxygenase is an extradiol dioxygenase in the 2,4-dinitrotoluene (DNT) degradation pathway. It catalyzes the conversion of 2,4,5-trihydroxytoluene to an unstable ring fission product, 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid. The native protein was determined to be a dimer by gel filtration. The enzyme belongs to the type I family of extradiol dioxygenases which contains two structurally homologous barrel-shaped domains at the N- and C-terminus of each monomer. The active-site metal is located in the C-terminal barrel. Fe(II) is required for its catalytic activity.
Probab=94.04 E-value=0.1 Score=36.40 Aligned_cols=27 Identities=22% Similarity=0.310 Sum_probs=22.3
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEec
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIME 45 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~~ 45 (98)
|.| .|-+++++||+++||.+.......
T Consensus 7 l~V--~Dle~a~~FY~~~LG~~~~~~~~~ 33 (153)
T cd07257 7 LEV--PDFAASFDWYTETFGLKPSDVIYL 33 (153)
T ss_pred Eec--CCHHHHHHHHHHhcCCeEEeeEec
Confidence 667 799999999999999987655443
No 41
>cd08351 ChaP_like ChaP, an enzyme involved in the biosynthesis of the antitumor agent chartreusin (cha); and similar proteins. ChaP is an enzyme involved in the biosynthesis of the potent antitumor agent chartreusin (cha). Cha is an aromatic polyketide glycoside produced by Streptomyces chartreusis. ChaP may play a role as a meta-cleavage dioxygenase in the oxidative rearrangement of the anthracyclic polyketide. ChaP belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases.
Probab=93.94 E-value=0.077 Score=34.84 Aligned_cols=25 Identities=12% Similarity=0.125 Sum_probs=21.8
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
.-|.| .|-++|++||+++||.+...
T Consensus 8 v~l~v--~Dl~~s~~FY~~~lG~~~~~ 32 (123)
T cd08351 8 TIVPA--RDREASAEFYAEILGLPWAK 32 (123)
T ss_pred EEEEc--CCHHHHHHHHHHhcCCEeee
Confidence 46778 89999999999999988754
No 42
>COG0346 GloA Lactoylglutathione lyase and related lyases [Amino acid transport and metabolism]
Probab=93.93 E-value=0.093 Score=32.15 Aligned_cols=28 Identities=21% Similarity=0.385 Sum_probs=24.0
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
.-|.| .|-+++++||+++||.+.+....
T Consensus 6 v~l~v--~dl~~s~~FY~~~LG~~~~~~~~ 33 (138)
T COG0346 6 VTLAV--PDLEASIDFYTDVLGLRLVKDTV 33 (138)
T ss_pred EEEee--CCHhHhHHHHHhhcCCeeeeecc
Confidence 45778 79999999999999999887764
No 43
>cd07256 HPCD_C_class_II C-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD), which catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate; belongs to the type I class II family of extradiol dioxygenases. This subfamily contains the C-terminal, catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of
Probab=93.87 E-value=0.11 Score=36.55 Aligned_cols=26 Identities=15% Similarity=0.257 Sum_probs=21.7
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
-|.| .|-+++++||+++||.+.....
T Consensus 8 ~l~V--~Dl~~s~~FY~~vLGl~~~~~~ 33 (161)
T cd07256 8 NLRV--PDVDAGLAYYRDELGFRVSEYT 33 (161)
T ss_pred EEec--CCHHHHHHHHHhccCCEEEEEe
Confidence 3677 7999999999999999876544
No 44
>cd07261 Glo_EDI_BRP_like_11 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=93.80 E-value=0.062 Score=34.32 Aligned_cols=24 Identities=21% Similarity=0.421 Sum_probs=20.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
.|.+ .|-++|++||+++||.+...
T Consensus 3 ~l~v--~d~~~a~~FY~~~lg~~~~~ 26 (114)
T cd07261 3 LLYV--EDPAASAEFYSELLGREPVE 26 (114)
T ss_pred EEEE--CCHHHHHHHHHHHcCCCccC
Confidence 4678 79999999999999977543
No 45
>cd07265 2_3_CTD_N N-terminal domain of catechol 2,3-dioxygenase. This subfamily contains the N-terminal, non-catalytic, domain of catechol 2,3-dioxygenase. Catechol 2,3-dioxygenase (2,3-CTD, catechol:oxygen 2,3-oxidoreductase) catalyzes an extradiol cleavage of catechol to form 2-hydroxymuconate semialdehyde with the insertion of two atoms of oxygen. The enzyme is a homotetramer and contains catalytically essential Fe(II) . The reaction proceeds by an ordered bi-unit mechanism. First, catechol binds to the enzyme, this is then followed by the binding of dioxygen to form a tertiary complex, and then the aromatic ring is cleaved to produce 2-hydroxymuconate semialdehyde. Catechol 2,3-dioxygenase belongs to the type I extradiol dioxygenase family. The subunit comprises the N- and C-terminal domains of similar structure fold, resulting from an ancient gene duplication. The active site is located in a funnel-shaped space of the C-terminal domain. This subfamily represents the N-terminal do
Probab=93.76 E-value=0.097 Score=34.02 Aligned_cols=26 Identities=35% Similarity=0.533 Sum_probs=22.3
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.| .|-+++++||+++||.+....
T Consensus 8 v~l~v--~Dl~~s~~FY~~~lG~~~~~~ 33 (122)
T cd07265 8 VQLRV--LDLEEAIKHYREVLGLDEVGR 33 (122)
T ss_pred EEEEe--CCHHHHHHHHHhccCCEeeee
Confidence 46788 799999999999999987654
No 46
>cd08360 MhqB_like_C C-terminal domain of Burkholderia sp. NF100 MhqB and similar proteins; MhqB is a type I extradiol dioxygenase involved in the catabolism of methylhydroquinone, an intermediate in the degradation of fenitrothion. This subfamily contains the C-terminal, catalytic, domain of Burkholderia sp. NF100 MhqB and similar proteins. MhqB is a type I extradiol dioxygenase involved in the catabolism of methylhydroquinone, an intermediate in the degradation of fenitrothion. The purified enzyme has shown extradiol ring cleavage activity toward 3-methylcatechol. Fe2+ was suggested as a cofactor, the same as most other enzymes in the family. Burkholderia sp. NF100 MhqB is encoded on the plasmid pNF1. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism.
Probab=93.74 E-value=0.1 Score=35.08 Aligned_cols=25 Identities=28% Similarity=0.376 Sum_probs=21.4
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-|.| .|.+++++||+++||.+....
T Consensus 8 ~l~v--~dl~~s~~FY~~vlGl~~~~~ 32 (134)
T cd08360 8 VLFV--PDVEAAEAFYRDRLGFRVSDR 32 (134)
T ss_pred EEEc--CCHHHHHHHHHHhcCCEEEEE
Confidence 4677 799999999999999987654
No 47
>cd07240 ED_TypeI_classII_N N-terminal domain of type I, class II extradiol dioxygenases; non-catalytic domain. This family contains the N-terminal, non-catalytic, domain of type I, class II extradiol dioxygenases. Dioxygenases catalyze the incorporation of both atoms of molecular oxygen into substrates using a variety of reaction mechanisms, resulting in the cleavage of aromatic rings. Two major groups of dioxygenases have been identified according to the cleavage site; extradiol enzymes cleave the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon, whereas intradiol enzymes cleave the aromatic ring between two hydroxyl groups. Extradiol dioxygenases are classified into type I and type II enzymes. Type I extradiol dioxygenases include class I and class II enzymes. These two classes of enzymes show sequence similarity; the two-domain class II enzymes evolved from a class I enzyme through gene duplication. The extradiol dioxygenases represented in this fa
Probab=93.67 E-value=0.12 Score=32.74 Aligned_cols=25 Identities=28% Similarity=0.513 Sum_probs=21.3
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
.|.+ .|-+++++||+++||.+....
T Consensus 7 ~l~v--~d~~~~~~FY~~~lg~~~~~~ 31 (117)
T cd07240 7 ELEV--PDLERALEFYTDVLGLTVLDR 31 (117)
T ss_pred EEec--CCHHHHHHHHHhccCcEEEee
Confidence 4667 799999999999999987654
No 48
>cd07251 Glo_EDI_BRP_like_10 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=93.63 E-value=0.074 Score=33.75 Aligned_cols=25 Identities=20% Similarity=0.242 Sum_probs=21.4
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
.|.+ .|.++|.+||+++||.+...+
T Consensus 3 ~l~v--~d~~~a~~FY~~~lg~~~~~~ 27 (121)
T cd07251 3 TLGV--ADLARSRAFYEALLGWKPSAD 27 (121)
T ss_pred eEee--CCHHHHHHHHHHhcCceeccc
Confidence 4678 799999999999999987655
No 49
>cd07262 Glo_EDI_BRP_like_19 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=93.42 E-value=0.12 Score=33.49 Aligned_cols=23 Identities=26% Similarity=0.372 Sum_probs=18.6
Q ss_pred EEEEecCCHHHHHHHHHHhh---CCEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAF---GAVEI 40 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AF---GAeev 40 (98)
-|.+ .|.+++++||+++| |.+.+
T Consensus 5 ~l~v--~d~~~s~~FY~~~f~~lg~~~~ 30 (123)
T cd07262 5 TLGV--NDLERARAFYDAVLAPLGIKRV 30 (123)
T ss_pred EEec--CcHHHHHHHHHHHHhhcCceEE
Confidence 4677 79999999999996 55554
No 50
>cd07252 BphC1-RGP6_N_like N-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC, EC 1.13.11.39) 1 from Rhodococcus globerulus P6 (BphC1-RGP6) and similar proteins. This subfamily contains the N-terminal, non-catalytic, domain of BphC1-RGP6 and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of 2,3-dihydroxybiphenyl 1,2-dioxygenases. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, and has Fe(II) at the catalytic site. Its N-
Probab=93.41 E-value=0.1 Score=34.25 Aligned_cols=26 Identities=19% Similarity=0.049 Sum_probs=21.9
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.| .|-++|++||+++||.+...+
T Consensus 6 v~l~v--~Dl~~s~~FY~~~LG~~~~~~ 31 (120)
T cd07252 6 LGVES--SDLDAWRRFATDVLGLQVGDR 31 (120)
T ss_pred EEEEe--CCHHHHHHHHHhccCceeccC
Confidence 45788 799999999999999987543
No 51
>cd08357 Glo_EDI_BRP_like_18 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.
Probab=93.39 E-value=0.13 Score=32.96 Aligned_cols=23 Identities=26% Similarity=0.290 Sum_probs=19.7
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
|.| .|-+++++||+++||.+...
T Consensus 5 l~v--~Dl~~s~~FY~~~lG~~~~~ 27 (125)
T cd08357 5 IPV--RDLEAARAFYGDVLGCKEGR 27 (125)
T ss_pred EEe--CCHHHHHHHHHHhcCCEEee
Confidence 566 79999999999999998643
No 52
>cd09014 BphC-JF8_C_like C-terminal, catalytic, domain of BphC_JF8, (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Bacillus sp. JF8 and similar proteins. 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, a key step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). BphC belongs to the type I extradiol dioxygenase family, which requires a metal ion in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. This subfamily of BphC is represented by the enzyme purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8. The members in this family of BphC enzymes may use either Mn(II) or Fe(II) as cofactors. The enzyme purified from Bacillus sp. JF8 is Mn(II)-dependent, however, the enzyme from Rhodococcus jostii RHAI has Fe(II) bound to it. BphC_JF8 is thermostable and its optimum activity is at 85 degrees C. Th
Probab=93.28 E-value=0.17 Score=35.83 Aligned_cols=30 Identities=20% Similarity=0.166 Sum_probs=24.6
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecCC
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMETK 47 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~pD 47 (98)
-|.| .|-+++++||+++||.+.......++
T Consensus 11 ~l~V--~Dle~a~~FY~~vLG~~~~~~~~~~~ 40 (166)
T cd09014 11 NLLA--SDVDANRDFMEEVLGFRLREQIRLDN 40 (166)
T ss_pred EEEc--CCHHHHHHHHHHccCCEEEEEEecCC
Confidence 4778 79999999999999999877655443
No 53
>cd07244 FosA FosA, a Fosfomycin resistance protein, catalyzes the addition of glutathione to the antibiotic fosfomycin, making it inactive. This subfamily family contains FosA, a fosfomycin resistant protein. Fosfomycin inhibits the enzyme UDP-N-acetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosA, catalyzes the addition of glutathione to the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid, making it inactive. FosA is a Mn(II) dependent enzyme. It is evolutionarily related to glyoxalase I and type I extradiol dioxygenases.
Probab=93.27 E-value=0.15 Score=33.30 Aligned_cols=25 Identities=28% Similarity=0.320 Sum_probs=21.1
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-|.+ .|.+++++||+++||.+....
T Consensus 6 ~l~v--~d~~~~~~FY~~vLG~~~~~~ 30 (121)
T cd07244 6 TLAV--SDLERSVAFYVDLLGFKLHVR 30 (121)
T ss_pred EEEE--CCHHHHHHHHHHhcCCEEEEe
Confidence 4677 799999999999999986543
No 54
>cd07247 SgaA_N_like N-terminal domain of Streptomyces griseus SgaA (suppression of growth disturbance caused by A-factor at a high concentration under high osmolality during early growth phase), and similar domains. SgaA suppresses the growth disturbances caused by high osmolarity and a high concentration of A-factor, a microbial hormone, during the early growth phase in Streptomyces griseus. A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) controls morphological differentiation and secondary metabolism in Streptomyces griseus. It is a chemical signaling molecule that at a very low concentration acts as a switch for yellow pigment production, aerial mycelium formation, streptomycin production, and streptomycin resistance. The structure and amino acid sequence of SgaA are closely related to a group of antibiotics resistance proteins, including bleomycin resistance protein, mitomycin resistance protein, and fosfomycin resistance proteins. SgaA might also function as a strep
Probab=93.13 E-value=0.13 Score=32.69 Aligned_cols=26 Identities=23% Similarity=0.276 Sum_probs=21.5
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.+ .|.+++++||+++||.+....
T Consensus 4 i~l~v--~d~~~s~~FY~~~lG~~~~~~ 29 (114)
T cd07247 4 FELPT--TDPERAKAFYGAVFGWTFEDM 29 (114)
T ss_pred EEeeC--CCHHHHHHHHHhccCceeeec
Confidence 35677 799999999999999877543
No 55
>cd07249 MMCE Methylmalonyl-CoA epimerase (MMCE). MMCE, also called methylmalonyl-CoA racemase (EC 5.1.99.1) interconverts (2R)-methylmalonyl-CoA and (2S)-methylmalonyl-CoA. MMCE has been found in bacteria, archaea, and in animals. In eukaryotes, MMCE is an essential enzyme in a pathway that converts propionyl-CoA to succinyl-CoA, and is important in the breakdown of odd-chain length fatty acids, branched-chain amino acids, and other metabolites. In bacteria, MMCE participates in the reverse pathway for propionate fermentation, glyoxylate regeneration, and the biosynthesis of polyketide antibiotics. MMCE is closely related to glyoxalase I and type I extradiol dioxygenases.
Probab=93.10 E-value=0.17 Score=32.29 Aligned_cols=28 Identities=21% Similarity=0.279 Sum_probs=23.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEec
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIME 45 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~ 45 (98)
.|.+ .|.+++.+||+++||.+.......
T Consensus 5 ~l~v--~d~~~~~~fy~~~lG~~~~~~~~~ 32 (128)
T cd07249 5 GIAV--PDLEAAIKFYRDVLGVGPWEEEEV 32 (128)
T ss_pred EEEe--CCHHHHHHHHHHhhCCCCcccccc
Confidence 4677 799999999999999988765543
No 56
>cd08348 BphC2-C3-RGP6_C_like The single-domain 2,3-dihydroxybiphenyl 1,2-dioxygenases (BphC, EC 1.13.11.39) from Rhodococcus globerulus P6, BphC2-RGP6 and BphC3-RGP6, and similar proteins. This subfamily contains Rhodococcus globerulus P6 BphC2-RGP6 and BphC3-RGP6, and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, yielding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. This is the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Most type I extradiol dioxygenases are activated by Fe(II). Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC2-RGP6 and BphC3-RGP6 are
Probab=93.00 E-value=0.19 Score=33.03 Aligned_cols=25 Identities=24% Similarity=0.434 Sum_probs=21.3
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
.|.+ .|.+++++||+++||.+....
T Consensus 6 ~l~v--~D~~~s~~FY~~~lG~~~~~~ 30 (134)
T cd08348 6 VLYV--RDLEAMVRFYRDVLGFTVTDR 30 (134)
T ss_pred EEEe--cCHHHHHHHHHHhcCCEEEee
Confidence 5677 799999999999999886544
No 57
>cd06587 Glo_EDI_BRP_like This domain superfamily is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. This domain superfamily is found in a variety of structurally related metalloproteins, including the type I extradiol dioxygenases, glyoxalase I and a group of antibiotic resistance proteins. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). Type I extradiol dioxygenases catalyze the incorporation of both atoms of molecular oxygen into aromatic substrates, which results in the cleavage of aromatic rings. They are key enzymes in the degradation of aromatic compounds. Type I extradiol dioxygenases include class I and class II enzymes. Class I and II enzymes show sequence similarity; the two-domain clas
Probab=92.97 E-value=0.2 Score=29.99 Aligned_cols=26 Identities=31% Similarity=0.345 Sum_probs=21.6
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
+.+ .|.+++++||+++||.+......
T Consensus 4 i~~--~d~~~~~~fy~~~lg~~~~~~~~ 29 (112)
T cd06587 4 LTV--SDLEAAVAFYEEVLGFEVLFRNG 29 (112)
T ss_pred eee--CCHHHHHHHHHhccCCEEEEeec
Confidence 456 79999999999999998766653
No 58
>cd07245 Glo_EDI_BRP_like_9 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases.
Probab=92.97 E-value=0.095 Score=32.13 Aligned_cols=24 Identities=29% Similarity=0.350 Sum_probs=20.1
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
|.+ .|.+++++||+++||.+....
T Consensus 6 l~v--~d~~~~~~FY~~~lG~~~~~~ 29 (114)
T cd07245 6 LRV--PDLEASRAFYTDVLGLEEGPR 29 (114)
T ss_pred Eec--CCHHHHHHHHHHccCCcccCc
Confidence 566 799999999999999876543
No 59
>cd07255 Glo_EDI_BRP_like_12 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=92.73 E-value=0.18 Score=32.47 Aligned_cols=25 Identities=24% Similarity=0.454 Sum_probs=21.5
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-|.+ .|.+++++||+++||.+....
T Consensus 7 ~l~v--~d~~~~~~Fy~~~lG~~~~~~ 31 (125)
T cd07255 7 TLRV--ADLERSLAFYQDVLGLEVLER 31 (125)
T ss_pred EEEE--CCHHHHHHHHHhccCcEEEEc
Confidence 4677 799999999999999887655
No 60
>cd09012 Glo_EDI_BRP_like_24 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping.
Probab=92.68 E-value=0.2 Score=32.74 Aligned_cols=26 Identities=19% Similarity=0.231 Sum_probs=21.1
Q ss_pred eEEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 14 KLQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 14 tPYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..-|.| .|-+++++||++ ||.+....
T Consensus 3 ~v~l~V--~Dl~~s~~FY~~-lGf~~~~~ 28 (124)
T cd09012 3 FINLPV--KDLEKSTAFYTA-LGFEFNPQ 28 (124)
T ss_pred EEEeec--CCHHHHHHHHHH-CCCEEccc
Confidence 456888 799999999976 99987643
No 61
>TIGR03211 catechol_2_3 catechol 2,3 dioxygenase. Members of this family all are enzymes active as catechol 2,3 dioxygenase (1.13.11.2), although some members have highly significant activity on catechol derivatives such as 3-methylcatechol, 3-chlorocatechol, and 4-chlorocatechol (see Mars, et al.). This enzyme is also called metapyrocatechase, as it performs a meta-cleavage (an extradiol ring cleavage), in contrast to the ortho-cleavage (intradiol ring cleavage)performed by catechol 1,2-dioxygenase (EC 1.13.11.1), also called pyrocatechase.
Probab=92.64 E-value=0.24 Score=37.67 Aligned_cols=31 Identities=10% Similarity=0.190 Sum_probs=25.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecCCc
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
-|.| .|-+++++||+++||.+...+...+++
T Consensus 150 ~l~V--~Dl~~s~~FY~~~LG~~~~~~~~~~~~ 180 (303)
T TIGR03211 150 LLYG--EDVAENTRFFTEVLGFRLTEQVVLGDG 180 (303)
T ss_pred eEEe--CCHHHHHHHHHHhcCCEEEeeEEcCCC
Confidence 3777 799999999999999998776655544
No 62
>cd07266 HPCD_N_class_II N-terminal domain of 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD); belongs to the type I class II family of extradiol dioxygenases. This subfamily contains the N-terminal, non-catalytic, domain of HPCD. HPCD catalyses the second step in the degradation of 4-hydroxyphenylacetate to succinate and pyruvate. The aromatic ring of 4-hydroxyphenylacetate is opened by this dioxygenase to yield the 3,4-diol product, 2-hydroxy-5-carboxymethylmuconate semialdehyde. HPCD is a homotetramer and each monomer contains two structurally homologous barrel-shaped domains at the N- and C-terminus. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism. Most extradiol dioxygenases contain Fe(II) in their active site, but HPCD can be activated by either Mn(II) or Fe(II). These enzymes belong to the type I class II family of extradiol dioxygenases. The class III 3,4-dihydroxyphenylacetate 2,3-dioxygenases belong to a differ
Probab=92.50 E-value=0.15 Score=32.79 Aligned_cols=25 Identities=28% Similarity=0.466 Sum_probs=21.1
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
.-|.+ .|-+++++||+++||.+...
T Consensus 8 i~l~v--~d~~~~~~Fy~~~lG~~~~~ 32 (121)
T cd07266 8 VELRV--TDLEKSREFYVDVLGLVETE 32 (121)
T ss_pred EEEEc--CCHHHHHHHHHhccCCEEec
Confidence 45777 79999999999999998653
No 63
>PRK04101 fosfomycin resistance protein FosB; Provisional
Probab=92.44 E-value=0.2 Score=33.92 Aligned_cols=25 Identities=28% Similarity=0.462 Sum_probs=21.6
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
..|.+ .|.+++++||+++||.+.+.
T Consensus 8 i~L~v--~Dl~~s~~FY~~~lG~~~~~ 32 (139)
T PRK04101 8 ICFSV--SNLEKSIEFYEKVLGAKLLV 32 (139)
T ss_pred EEEEe--cCHHHHHHHHHhccCCEEEe
Confidence 36778 79999999999999998764
No 64
>PLN02300 lactoylglutathione lyase
Probab=92.31 E-value=0.26 Score=37.70 Aligned_cols=28 Identities=18% Similarity=0.261 Sum_probs=23.4
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
.-|.| .|-+++++||+++||.+...+..
T Consensus 28 v~l~V--~Dle~s~~FY~~vLG~~~~~~~~ 55 (286)
T PLN02300 28 VVYRV--GDLDRTIKFYTECLGMKLLRKRD 55 (286)
T ss_pred EEEEe--CCHHHHHHHHHHhcCCEEEEeee
Confidence 35778 79999999999999998876543
No 65
>COG3324 Predicted enzyme related to lactoylglutathione lyase [General function prediction only]
Probab=92.27 E-value=0.12 Score=37.32 Aligned_cols=21 Identities=29% Similarity=0.270 Sum_probs=17.7
Q ss_pred CCHHHHHHHHHHhhCCEEEEE
Q 034304 22 SKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 22 gdA~eAIeFYk~AFGAeev~~ 42 (98)
+|-++|++||++|||=+....
T Consensus 18 ~D~~ra~~FY~~vFgW~~~~~ 38 (127)
T COG3324 18 SDLERAKAFYEKVFGWTFEDY 38 (127)
T ss_pred CCHHHHHHHHHHhhCceeccc
Confidence 899999999999999655443
No 66
>cd07239 BphC5-RK37_C_like C-terminal, catalytic, domain of BphC5 (2,3-dihydroxybiphenyl 1,2-dioxygenase) from Bacterium Rhodococcus rhodochrous K37 and similar proteins. 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). The enzyme contains a N-terminal and a C-terminal domain of similar structure fold, resulting from an ancient gene duplication. BphC belongs to the type I extradiol dioxygenase family, which requires a metal in the active site for its catalytic activity. Polychlorinated biphenyl degrading bacteria demonstrate multiplicity of BphCs. Bacterium Rhodococcus rhodochrous K37 has eight genes encoding BphC enzymes. This family includes the C-terminal domain of BphC5-RrK37. The crystal structure of the protein from Novosphingobium aromaticivorans has a Mn(II)in the active site, although most proteins of type I extradiol dio
Probab=92.25 E-value=0.19 Score=34.82 Aligned_cols=25 Identities=16% Similarity=0.206 Sum_probs=20.9
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-|.+ .|-+++++||+++||.++...
T Consensus 9 ~i~V--~Dle~s~~FY~~~LG~~~~~~ 33 (144)
T cd07239 9 VLNS--PDVDKTVAFYEDVLGFRVSDW 33 (144)
T ss_pred EEEC--CCHHHHHHHHHhcCCCEEEEe
Confidence 3567 799999999999999987544
No 67
>cd07242 Glo_EDI_BRP_like_6 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The proteins of this family share three conserved metal binding amino acids with the type I extradiol dioxygenases, which shows no domain swapping.
Probab=92.10 E-value=0.32 Score=31.52 Aligned_cols=26 Identities=23% Similarity=0.294 Sum_probs=22.1
Q ss_pred EEEEecCCHHHHHHHHHHhh---CCEEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAF---GAVEISRI 43 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AF---GAeev~~~ 43 (98)
.+.+ .|.+++++||+++| |-+.....
T Consensus 6 ~i~v--~d~~~~~~Fy~~~l~~~G~~~~~~~ 34 (128)
T cd07242 6 ELTV--RDLERSRAFYDWLLGLLGFEEVKEW 34 (128)
T ss_pred EEEe--CCHHHHHHHHHHHHhhcCCEEEEee
Confidence 5677 79999999999999 99876653
No 68
>cd08364 FosX FosX, a fosfomycin resistance protein, catalyzes the addition of a water molecule to the C1 position of the antibiotic with inversion of configuration at C1. This subfamily family contains FosX, a fosfomycin resistant protein. Fosfomycin inhibits the enzyme UDP-Nacetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosX catalyzes the addition of a water molecule to the C1 position of the antibiotic with inversion of the configuration at C1 in the presence of Mn(II). The hydrated fosfomycin loses the inhibition activity. FosX is evolutionarily related to glyoxalase I and type I extradiol dioxygenases.
Probab=91.94 E-value=0.27 Score=33.05 Aligned_cols=25 Identities=24% Similarity=0.371 Sum_probs=21.0
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-|.| .|-+++++||+++||.+++..
T Consensus 9 ~l~V--~dl~~s~~FY~~~lG~~~~~~ 33 (131)
T cd08364 9 TLIV--KDLNKTTAFLQNIFNAREVYS 33 (131)
T ss_pred EEEe--CCHHHHHHHHHHHhCCeeEEe
Confidence 3677 799999999999999876544
No 69
>cd07235 MRD Mitomycin C resistance protein (MRD). Mitomycin C (MC) is a naturally occurring antibiotic, and antitumor agent used in the treatment of cancer. Its antitumor activity is exerted primarily through monofunctional and bifunctional alkylation of DNA. MRD binds to MC and functions as a component of the MC exporting system. MC is bound to MRD by a stacking interaction between a His and a Trp. MRD adopts a structural fold similar to bleomycin resistance protein, glyoxalase I, and extradiol dioxygenases; and it has binding sites at an identical location to binding sites in these evolutionarily related enzymes.
Probab=91.89 E-value=0.19 Score=32.36 Aligned_cols=21 Identities=19% Similarity=0.439 Sum_probs=17.7
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEI 40 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev 40 (98)
|.| .|-++|++||++ ||.+..
T Consensus 6 l~V--~D~~~a~~FY~~-LGf~~~ 26 (122)
T cd07235 6 IVV--ADMAKSLDFYRR-LGFDFP 26 (122)
T ss_pred EEe--ccHHHHHHHHHH-hCceec
Confidence 678 799999999975 998754
No 70
>TIGR02295 HpaD 3,4-dihydroxyphenylacetate 2,3-dioxygenase. The enzyme from Bacillus brevis contains manganese.
Probab=91.57 E-value=0.35 Score=36.36 Aligned_cols=29 Identities=21% Similarity=0.365 Sum_probs=23.4
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecC
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMET 46 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~p 46 (98)
-|.| .|-+++++||+++||.+...+...+
T Consensus 141 ~l~v--~dl~~a~~Fy~~~lG~~~~~~~~~~ 169 (294)
T TIGR02295 141 NVFV--PDVQRALRFYKEELGFRVTEYTEDD 169 (294)
T ss_pred EEEe--CCHHHHHHHHHHhcCCEEEEEeccC
Confidence 3677 7999999999999999887665433
No 71
>cd08361 PpCmtC_N N-terminal domain of 2,3-dihydroxy-p-cumate-3,4-dioxygenase (PpCmtC). This subfamily contains the N-terminal, non-catalytic, domain of PpCmtC. 2,3-dihydroxy-p-cumate-3,4-dioxygenase (CmtC of Pseudomonas putida F1) is a dioxygenase involved in the eight-step catabolism pathway of p-cymene. CmtC acts upon the reaction intermediate 2,3-dihydroxy-p-cumate, yielding 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate. The CmtC belongs to the type I family of extradiol dioxygenases. Fe2+ was suggested as a cofactor, same as other enzymes in the family. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism.
Probab=91.32 E-value=0.23 Score=32.96 Aligned_cols=26 Identities=19% Similarity=0.217 Sum_probs=21.7
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.+ .|-+++++||++++|.+....
T Consensus 10 v~l~v--~d~~~s~~FY~~vLG~~~~~~ 35 (124)
T cd08361 10 VRLGT--RDLAGATRFATDILGLQVAER 35 (124)
T ss_pred EEEee--CCHHHHHHHHHhccCceeccC
Confidence 45677 799999999999999987543
No 72
>cd08363 FosB FosB, a fosfomycin resistance protein, catalyzes the Mg(II) dependent addition of L-cysteine to the epoxide ring of fosfomycin. This subfamily family contains FosB, a fosfomycin resistant protein. Fosfomycin inhibits the enzyme UDP-Nacetylglucosamine-3-enolpyruvyltransferase (MurA), which catalyzes the first committed step in bacterial cell wall biosynthesis. FosB catalyzes the Mg(II) dependent addition of L-cysteine to the epoxide ring of fosfomycin, (1R,2S)-epoxypropylphosphonic acid, rendering it inactive. FosB is evolutionarily related to glyoxalase I and type I extradiol dioxygenases
Probab=91.13 E-value=0.3 Score=32.87 Aligned_cols=24 Identities=29% Similarity=0.358 Sum_probs=20.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
-|.| .|-+++++||+++||.+...
T Consensus 5 ~l~V--~Dl~~a~~FY~~~LG~~~~~ 28 (131)
T cd08363 5 TFSV--SNLDKSISFYKHVFMEKLLV 28 (131)
T ss_pred EEEE--CCHHHHHHHHHHhhCCEEec
Confidence 3667 79999999999999987643
No 73
>cd08353 Glo_EDI_BRP_like_7 This conserved domain belongs to a superfamily including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. This protein family belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases. A bound metal ion is required for protein activities for the members of this superfamily. A variety of metal ions have been found in the catalytic centers of these proteins including Fe(II), Mn(II), Zn(II), Ni(II) and Mg(II). The protein superfamily contains members with or without domain swapping. The structures of this family demonstrate domain swapping, which is shared by glyoxalase I and antibiotic resistance proteins.
Probab=91.11 E-value=0.26 Score=32.77 Aligned_cols=26 Identities=23% Similarity=0.277 Sum_probs=21.2
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
-|.| .|.+++++||++ ||.+......
T Consensus 8 ~i~v--~Dl~~s~~FY~~-LG~~~~~~~~ 33 (142)
T cd08353 8 GIVV--RDLEAAIAFFLE-LGLELEGRAE 33 (142)
T ss_pred EEEe--CCHHHHHHHHHH-cCCEEccccc
Confidence 4678 799999999998 9987765543
No 74
>cd08347 PcpA_C_like C-terminal domain of Sphingobium chlorophenolicum 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins. The C-terminal domain of Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA), and similar proteins. PcpA is a key enzyme in the pentachlorophenol (PCP) degradation pathway, catalyzing the conversion of 2,6-dichloro-p-hydroquinone to 2-chloromaleylacetate. This domain belongs to a conserved domain superfamily that is found in a variety of structurally related metalloproteins, including the bleomycin resistance protein, glyoxalase I, and type I ring-cleaving dioxygenases.
Probab=90.72 E-value=0.42 Score=33.80 Aligned_cols=26 Identities=19% Similarity=0.253 Sum_probs=21.9
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
-|.| .|-+++.+||+++||.+...+.
T Consensus 6 ~i~V--~Dle~s~~FY~~~LG~~~~~~~ 31 (157)
T cd08347 6 TLTV--RDPEATAAFLTDVLGFREVGEE 31 (157)
T ss_pred EEEe--CCHHHHHHHHHHhcCCEEEeee
Confidence 3677 7999999999999999876553
No 75
>cd07237 BphC1-RGP6_C_like C-terminal domain of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC, EC 1.13.11.39) 1 from Rhodococcus globerulus P6 (BphC1-RGP6) and similar proteins. This subfamily contains the C-terminal, catalytic, domain of BphC1-RGP6 and similar proteins. BphC catalyzes the extradiol ring cleavage reaction of 2,3-dihydroxybiphenyl, the third step in the polychlorinated biphenyls (PCBs) degradation pathway (bph pathway). This subfamily of BphCs belongs to the type I extradiol dioxygenase family, which require a metal in the active site in its catalytic mechanism. Polychlorinated biphenyl degrading bacteria demonstrate a multiplicity of BphCs. For example, three types of BphC enzymes have been found in Rhodococcus globerulus (BphC1-RGP6 - BphC3-RGP6), all three enzymes are type I extradiol dioxygenases. BphC1-RGP6 has an internal duplication, it is a two-domain dioxygenase which forms octamers, and has Fe(II) at the catalytic site. Its C-terminal repeat is represented in thi
Probab=90.50 E-value=0.43 Score=33.24 Aligned_cols=26 Identities=23% Similarity=0.304 Sum_probs=22.1
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
-|.+ .|-+++++||+++||.+...+.
T Consensus 14 ~l~v--~Dl~~a~~FY~~~LGl~~~~~~ 39 (154)
T cd07237 14 VLAT--PDPDEAHAFYRDVLGFRLSDEI 39 (154)
T ss_pred EEEe--CCHHHHHHHHHHccCCEEEEEE
Confidence 5678 7999999999999999876553
No 76
>PLN02300 lactoylglutathione lyase
Probab=89.90 E-value=0.52 Score=36.08 Aligned_cols=31 Identities=26% Similarity=0.401 Sum_probs=25.0
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEEEecCC
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISRIMETK 47 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pD 47 (98)
..|.+ .|.++|++||+++||.+...+...|+
T Consensus 158 ~~l~~--~d~~~a~~Fy~~~lg~~~~~~~~~~~ 188 (286)
T PLN02300 158 VMLRV--GDLDRSIKFYEKAFGMKLLRKRDNPE 188 (286)
T ss_pred EEEEe--CCHHHHHHHHHhccCCEEEeeecccc
Confidence 35677 79999999999999999876555454
No 77
>cd07250 HPPD_C_like C-terminal domain of 4-hydroxyphenylpyruvate dioxygenase (HppD) and hydroxymandelate Synthase (HmaS). HppD and HmaS are non-heme iron-dependent dioxygenases, which modify a common substrate, 4-hydroxyphenylpyruvate (HPP), but yield different products. HPPD catalyzes the second reaction in tyrosine catabolism, the conversion of 4-hydroxyphenylpyruvate to homogentisate (2,5-dihydroxyphenylacetic acid, HG). HmaS converts HPP to 4-hydroxymandelate, a committed step in the formation of hydroxyphenylglycerine, a structural component of nonproteinogenic macrocyclic peptide antibiotics, such as vancomycin. If the emphasis is on catalytic chemistry, HPPD and HmaS are classified as members of a large family of alpha-keto acid dependent mononuclear non-heme iron oxygenases most of which require Fe(II), molecular oxygen, and an alpha-keto acid (typically alpha-ketoglutarate) to either oxygenate or oxidize a third substrate. Both enzymes are exceptions in that they require two,
Probab=89.79 E-value=0.42 Score=35.09 Aligned_cols=26 Identities=12% Similarity=0.176 Sum_probs=21.7
Q ss_pred CCHHHHHHHHHHhhCCEEEEEEecCC
Q 034304 22 SKAIDAIQFYKTAFGAVEISRIMETK 47 (98)
Q Consensus 22 gdA~eAIeFYk~AFGAeev~~~~~pD 47 (98)
+|-++|++||+++||.+.......++
T Consensus 14 ~dl~~a~~fY~~~LGf~~~~~~~~~~ 39 (191)
T cd07250 14 GEMDSWVDFYRKVLGFHRFWSFDIED 39 (191)
T ss_pred hHHHHHHHHHHHhhCCceeeEEccCc
Confidence 39999999999999999877765443
No 78
>TIGR03211 catechol_2_3 catechol 2,3 dioxygenase. Members of this family all are enzymes active as catechol 2,3 dioxygenase (1.13.11.2), although some members have highly significant activity on catechol derivatives such as 3-methylcatechol, 3-chlorocatechol, and 4-chlorocatechol (see Mars, et al.). This enzyme is also called metapyrocatechase, as it performs a meta-cleavage (an extradiol ring cleavage), in contrast to the ortho-cleavage (intradiol ring cleavage)performed by catechol 1,2-dioxygenase (EC 1.13.11.1), also called pyrocatechase.
Probab=88.81 E-value=0.6 Score=35.44 Aligned_cols=26 Identities=23% Similarity=0.422 Sum_probs=22.2
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.| .|-+++++||+++||.+...+
T Consensus 8 i~l~V--~Dle~s~~FY~~~LG~~~~~~ 33 (303)
T TIGR03211 8 VELRV--LDLEESLKHYTDVLGLEETGR 33 (303)
T ss_pred EEEEe--CCHHHHHHHHHHhcCCEEeee
Confidence 46778 799999999999999987644
No 79
>cd07258 PpCmtC_C C-terminal domain of 2,3-dihydroxy-p-cumate-3,4-dioxygenase (PpCmtC). This subfamily contains the C-terminal, catalytic, domain of PpCmtC. 2,3-dihydroxy-p-cumate-3,4-dioxygenase (CmtC of Pseudomonas putida F1) is a dioxygenase involved in the eight-step catabolism pathway of p-cymene. CmtC acts upon the reaction intermediate 2,3-dihydroxy-p-cumate, yielding 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate. The CmtC belongs to the type I family of extradiol dioxygenases. Fe2+ was suggested as a cofactor, same as for other enzymes in the family. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism.
Probab=88.55 E-value=0.7 Score=32.11 Aligned_cols=25 Identities=12% Similarity=-0.055 Sum_probs=21.6
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
|.| .|-+++++||+++||.+++.+.
T Consensus 5 l~V--~Dle~s~~Fy~~vLG~~~~~~~ 29 (141)
T cd07258 5 IGS--ENFEASRDSLVEDFGFRVSDLI 29 (141)
T ss_pred Eec--CCHHHHHHHHHhcCCCEeeeee
Confidence 567 7999999999999999976653
No 80
>TIGR02295 HpaD 3,4-dihydroxyphenylacetate 2,3-dioxygenase. The enzyme from Bacillus brevis contains manganese.
Probab=88.30 E-value=0.85 Score=34.29 Aligned_cols=26 Identities=23% Similarity=0.332 Sum_probs=22.4
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
..|.+ .|.+++++||+++||.+....
T Consensus 8 v~l~v--~Dl~~s~~FY~~vLGl~~~~~ 33 (294)
T TIGR02295 8 VELRV--TDLDKSREFYVDLLGFRETES 33 (294)
T ss_pred EEEEe--CCHHHHHHHHHHccCCEEEEe
Confidence 46788 899999999999999987644
No 81
>PRK06724 hypothetical protein; Provisional
Probab=86.82 E-value=1.4 Score=30.12 Aligned_cols=18 Identities=28% Similarity=0.586 Sum_probs=15.9
Q ss_pred EEEecCCHHHHHHHHHHhhC
Q 034304 17 LLVEASKAIDAIQFYKTAFG 36 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFG 36 (98)
|.| .|=+++++||+++||
T Consensus 13 l~V--~Dle~s~~FY~~vlg 30 (128)
T PRK06724 13 FWV--ANLEESISFYDMLFS 30 (128)
T ss_pred EEe--CCHHHHHHHHHHHHh
Confidence 677 799999999999884
No 82
>TIGR03213 23dbph12diox 2,3-dihydroxybiphenyl 1,2-dioxygenase. Members of this protein family all have activity as 2,3-dihydroxybiphenyl 1,2-dioxygenase, the third enzyme of a pathway for biphenyl degradation. Many of the extradiol ring-cleaving dioxygenases, to which these proteins belong, act on a range of related substrates. Note that some members of this family may be found operons for toluene or naphthalene degradation, where other activities of the same enzyme may be more significant; the trusted cutoff for this model is set relatively high to exclude most such instances.
Probab=86.07 E-value=1.2 Score=33.62 Aligned_cols=28 Identities=25% Similarity=0.209 Sum_probs=23.5
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEec
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIME 45 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~ 45 (98)
-|.+ .|-+++++||+++||.+...++..
T Consensus 147 ~l~v--~Dle~s~~FY~~~LGf~~~~~~~~ 174 (286)
T TIGR03213 147 VLRV--PDVDAALAFYTEVLGFQLSDVIDL 174 (286)
T ss_pred EEEc--CCHHHHHHHHHHccCCeEEEeEcc
Confidence 4677 799999999999999998766543
No 83
>TIGR01263 4HPPD 4-hydroxyphenylpyruvate dioxygenase. This protein oxidizes 4-hydroxyphenylpyruvate, a tyrosine and phenylalanine catabolite, to homogentisate. Homogentisate can undergo a further non-enzymatic oxidation and polymerization into brown pigments that protect some bacterial species from light. A similar process occurs spontaneously in blood and is hemolytic (see PubMed:8000039). In some bacterial species, this enzyme has been studied as a hemolysin.
Probab=85.42 E-value=3 Score=33.20 Aligned_cols=49 Identities=20% Similarity=0.295 Sum_probs=32.8
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEEEecCCcccccccCcccceEEEecC
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISRIMETKRKAEKELNSRLSAPHFLSL 66 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~i~~~~~~VmHA~LmlsD 66 (98)
+.+.| .|+++|++||.++||.+...+...+++.. ....+.....|+|+.
T Consensus 6 i~~~V--~D~~~a~~~y~~~LGf~~~~~~~~~~~~~-~~~~~~G~~~l~L~~ 54 (353)
T TIGR01263 6 VEFYV--GDAKQAAYYYFTRFGFEKVAKETGHREKA-SHVLRQGQINFVLTA 54 (353)
T ss_pred EEEEe--CCHHHHHHHHHHhcCCcEEEEeecCCcee-EEEEEeCCEEEEEec
Confidence 56788 89999999999999999887743333321 111234455666654
No 84
>TIGR03213 23dbph12diox 2,3-dihydroxybiphenyl 1,2-dioxygenase. Members of this protein family all have activity as 2,3-dihydroxybiphenyl 1,2-dioxygenase, the third enzyme of a pathway for biphenyl degradation. Many of the extradiol ring-cleaving dioxygenases, to which these proteins belong, act on a range of related substrates. Note that some members of this family may be found operons for toluene or naphthalene degradation, where other activities of the same enzyme may be more significant; the trusted cutoff for this model is set relatively high to exclude most such instances.
Probab=82.49 E-value=1.2 Score=33.66 Aligned_cols=25 Identities=24% Similarity=0.177 Sum_probs=21.2
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
..|.| .|-+++++||+++||.+++.
T Consensus 7 v~l~V--~Dl~~s~~FY~~~LGl~~~~ 31 (286)
T TIGR03213 7 LGIGV--SDVDAWREFATEVLGMMVAS 31 (286)
T ss_pred EEEEe--CCHHHHHHHHHhccCccccc
Confidence 35777 89999999999999988654
No 85
>cd07267 THT_Oxygenase_N N-terminal domain of 2,4,5-trihydroxytoluene (THT) oxygenase. This subfamily contains the N-terminal, non-catalytic, domain of THT oxygenase. THT oxygenase is an extradiol dioxygenase in the 2,4-dinitrotoluene (DNT) degradation pathway. It catalyzes the conversion of 2,4,5-trihydroxytoluene to an unstable ring fission product, 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid. The native protein was determined to be a dimer by gel filtration. The enzyme belongs to the type I family of extradiol dioxygenases which contains two structurally homologous barrel-shaped domains at the N- and C-terminus of each monomer. The active-site metal is located in the C-terminal barrel. Fe(II) is required for its catalytic activity.
Probab=81.79 E-value=2.1 Score=27.55 Aligned_cols=23 Identities=22% Similarity=0.226 Sum_probs=18.9
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
|.+ .|-+++.+||++ ||-+...+
T Consensus 9 l~v--~Dl~~s~~FY~~-lGl~~~~~ 31 (113)
T cd07267 9 FEH--PDLDKAERFLTD-FGLEVAAR 31 (113)
T ss_pred Ecc--CCHHHHHHHHHH-cCCEEEEe
Confidence 556 799999999999 99877544
No 86
>cd08344 MhqB_like_N N-terminal domain of MhqB, a type I extradiol dioxygenase, and similar proteins. This subfamily contains the N-terminal, non-catalytic, domain of Burkholderia sp. NF100 MhqB and similar proteins. MhqB is a type I extradiol dioxygenase involved in the catabolism of methylhydroquinone, an intermediate in the degradation of fenitrothion. The purified enzyme has shown extradiol ring cleavage activity toward 3-methylcatechol. Fe2+ was suggested as a cofactor, the same as most other enzymes in the family. Burkholderia sp. NF100 MhqB is encoded on the plasmid pNF1. The type I family of extradiol dioxygenases contains two structurally homologous barrel-shaped domains at the N- and C-terminal. The active-site metal is located in the C-terminal barrel and plays an essential role in the catalytic mechanism.
Probab=81.32 E-value=2.2 Score=27.40 Aligned_cols=23 Identities=35% Similarity=0.346 Sum_probs=18.7
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
-|.+ .|-+++.+||+ .||.+...
T Consensus 7 ~l~v--~d~~~s~~FY~-~lG~~~~~ 29 (112)
T cd08344 7 ALEV--PDLEVARRFYE-AFGLDVRE 29 (112)
T ss_pred EEec--CCHHHHHHHHH-HhCCcEEe
Confidence 3566 79999999997 69998754
No 87
>COG2514 Predicted ring-cleavage extradiol dioxygenase [General function prediction only]
Probab=80.61 E-value=2.2 Score=34.39 Aligned_cols=26 Identities=31% Similarity=0.462 Sum_probs=23.8
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISR 42 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~ 42 (98)
-+|.| +|..||=+||+++||-+.+.+
T Consensus 172 vHL~v--~~l~eA~~fY~~~LG~~~~~~ 197 (265)
T COG2514 172 VHLKV--ADLEEAEQFYEDVLGLEVTAR 197 (265)
T ss_pred EEEEe--CCHHHHHHHHHHhcCCeeeec
Confidence 58999 999999999999999888776
No 88
>TIGR01263 4HPPD 4-hydroxyphenylpyruvate dioxygenase. This protein oxidizes 4-hydroxyphenylpyruvate, a tyrosine and phenylalanine catabolite, to homogentisate. Homogentisate can undergo a further non-enzymatic oxidation and polymerization into brown pigments that protect some bacterial species from light. A similar process occurs spontaneously in blood and is hemolytic (see PubMed:8000039). In some bacterial species, this enzyme has been studied as a hemolysin.
Probab=78.55 E-value=2.7 Score=33.45 Aligned_cols=23 Identities=26% Similarity=0.362 Sum_probs=19.7
Q ss_pred CCHHHHHHHHHHhhCCEEEEEEe
Q 034304 22 SKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 22 gdA~eAIeFYk~AFGAeev~~~~ 44 (98)
+|.+++++||+++||.+......
T Consensus 169 ~dl~~~~~fY~~~lGf~~~~~~~ 191 (353)
T TIGR01263 169 GQMEPWAEFYEKIFGFREIRSFD 191 (353)
T ss_pred ccHHHHHHHHHHHhCCceeeEEE
Confidence 38999999999999998876554
No 89
>PF13176 TPR_7: Tetratricopeptide repeat; PDB: 3SF4_C 3RO3_A 3RO2_A.
Probab=73.31 E-value=3.3 Score=22.52 Aligned_cols=14 Identities=29% Similarity=0.551 Sum_probs=11.9
Q ss_pred CCHHHHHHHHHHhh
Q 034304 22 SKAIDAIQFYKTAF 35 (98)
Q Consensus 22 gdA~eAIeFYk~AF 35 (98)
|+-++||++|++++
T Consensus 13 g~~~~Ai~~y~~aL 26 (36)
T PF13176_consen 13 GDYEKAIEYYEQAL 26 (36)
T ss_dssp T-HHHHHHHHHHHH
T ss_pred CCHHHHHHHHHHHH
Confidence 78899999999976
No 90
>PF14506 CppA_N: CppA N-terminal; PDB: 3E0R_D.
Probab=71.69 E-value=6.2 Score=28.79 Aligned_cols=27 Identities=26% Similarity=0.292 Sum_probs=21.5
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
++|-|-| .|-+.=|+||++.+|.+.+.
T Consensus 2 ~~PvlRV--nnR~~ni~FY~~~LGfkll~ 28 (125)
T PF14506_consen 2 IIPVLRV--NNRDLNIDFYQKTLGFKLLS 28 (125)
T ss_dssp EEEEEEE--SSHHHHHHHHTTTT--EEEE
T ss_pred cCceEEE--cCHHHhHHHHHhccCcEEee
Confidence 5799999 59999999999999987653
No 91
>COG3185 4-hydroxyphenylpyruvate dioxygenase and related hemolysins [Amino acid transport and metabolism / General function prediction only]
Probab=59.10 E-value=23 Score=29.94 Aligned_cols=52 Identities=21% Similarity=0.194 Sum_probs=36.7
Q ss_pred CCHHHHHHHHHHhhCCEEEEEEecCCcccccccCcccceEEEecCCCchheeeeeeeeccC
Q 034304 22 SKAIDAIQFYKTAFGAVEISRIMETKRKAEKELNSRLSAPHFLSLTFPMILLQLRIWESDA 82 (98)
Q Consensus 22 gdA~eAIeFYk~AFGAeev~~~~~pDG~i~~~~~~VmHA~LmlsD~~P~~~~~~~~~~~~~ 82 (98)
++-+++..||++.||.+++.-..-+ |+.. -++++.|.|-. |. +||-|=+|+.
T Consensus 178 ~~md~w~~FY~~if~~~~~~~fdi~-~p~t-----gl~Sram~Sp~--G~-vrlplN~s~~ 229 (363)
T COG3185 178 GQMDTWVLFYESLFGFREIQYFDIP-GPIT-----GLRSRAMVSPC--GK-VRLPLNESAD 229 (363)
T ss_pred hhHHHHHHHHHHHhCccceeeEecc-CCcc-----cEEEeeEecCC--Cc-EEeecccCCC
Confidence 5678999999999999887776544 3322 66888887754 33 6666666543
No 92
>PLN02875 4-hydroxyphenylpyruvate dioxygenase
Probab=58.55 E-value=9.8 Score=31.99 Aligned_cols=30 Identities=10% Similarity=0.169 Sum_probs=21.8
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEec
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIME 45 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~ 45 (98)
+++.+=.+-++|++||+++||.+.......
T Consensus 183 Hi~iaV~~ld~a~~fY~~vlGf~~~~~~d~ 212 (398)
T PLN02875 183 HAVGNVPNLLPAVNYIAGFTGFHEFAEFTA 212 (398)
T ss_pred cceechhhHHHHHHHHHHhcCCeeeeeecc
Confidence 444421578999999999999987665443
No 93
>PF11324 DUF3126: Protein of unknown function (DUF3126); InterPro: IPR021473 This family of proteins with unknown function appear to be restricted to Alphaproteobacteria.
Probab=55.62 E-value=20 Score=23.29 Aligned_cols=39 Identities=18% Similarity=0.271 Sum_probs=29.4
Q ss_pred HHHHHHHhhCCEEEEEEecCCcccccccCcccceEEEecCCCchhee
Q 034304 27 AIQFYKTAFGAVEISRIMETKRKAEKELNSRLSAPHFLSLTFPMILL 73 (98)
Q Consensus 27 AIeFYk~AFGAeev~~~~~pDG~i~~~~~~VmHA~LmlsD~~P~~~~ 73 (98)
-=.|.++.||...+.+...|.- -..|+++++|+|.|...
T Consensus 5 lq~yLr~~f~n~~i~v~~rpk~--------~dsaEV~~g~EfiGvi~ 43 (63)
T PF11324_consen 5 LQAYLRRTFGNPGITVKARPKK--------DDSAEVYIGDEFIGVIY 43 (63)
T ss_pred HHHHHHHHhCCCceEEEcCCCC--------CCceEEEeCCEEEEEEE
Confidence 3468999999988888876642 24789999999887543
No 94
>KOG2943 consensus Predicted glyoxalase [Carbohydrate transport and metabolism]
Probab=54.98 E-value=9.5 Score=31.26 Aligned_cols=26 Identities=15% Similarity=0.263 Sum_probs=22.9
Q ss_pred CCHHHHHHHHHHhhCCEEEEEEecCC
Q 034304 22 SKAIDAIQFYKTAFGAVEISRIMETK 47 (98)
Q Consensus 22 gdA~eAIeFYk~AFGAeev~~~~~pD 47 (98)
||-..-|+||.++||-+.+..-..|+
T Consensus 26 gdr~kti~Fyt~vlgMkvLRheef~e 51 (299)
T KOG2943|consen 26 GDRAKTIDFYTEVLGMKVLRHEEFEE 51 (299)
T ss_pred cchHHHHHHHHHhhcceeeehhhhhh
Confidence 89999999999999999887766666
No 95
>COG2514 Predicted ring-cleavage extradiol dioxygenase [General function prediction only]
Probab=52.53 E-value=33 Score=27.78 Aligned_cols=27 Identities=19% Similarity=0.287 Sum_probs=22.9
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
--|.| +|.+++..||+++.|-+++.+.
T Consensus 14 v~L~v--rdL~~~~~FY~~ilGL~v~~~~ 40 (265)
T COG2514 14 VTLNV--RDLDSMTSFYQEILGLQVLEET 40 (265)
T ss_pred EEEEe--ccHHHHHHHHHHhhCCeeeecc
Confidence 46888 9999999999999998766553
No 96
>smart00671 SEL1 Sel1-like repeats. These represent a subfamily of TPR (tetratricopeptide repeat) sequences.
Probab=51.38 E-value=16 Score=18.72 Aligned_cols=14 Identities=29% Similarity=0.487 Sum_probs=12.3
Q ss_pred CCHHHHHHHHHHhh
Q 034304 22 SKAIDAIQFYKTAF 35 (98)
Q Consensus 22 gdA~eAIeFYk~AF 35 (98)
.|..+|+.||+++=
T Consensus 19 ~d~~~A~~~~~~Aa 32 (36)
T smart00671 19 KDLEKALEYYKKAA 32 (36)
T ss_pred cCHHHHHHHHHHHH
Confidence 68999999999873
No 97
>COG0456 RimI Acetyltransferases [General function prediction only]
Probab=50.50 E-value=28 Score=23.48 Aligned_cols=27 Identities=22% Similarity=0.224 Sum_probs=20.0
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
.|.|. .+=..||.||++ +|.++..+..
T Consensus 130 ~L~V~-~~N~~Ai~lY~~-~GF~~~~~~~ 156 (177)
T COG0456 130 VLEVR-ESNEAAIGLYRK-LGFEVVKIRK 156 (177)
T ss_pred EEEEe-cCChHHHHHHHH-cCCEEEeeeh
Confidence 45553 344599999999 9998877654
No 98
>PHA01807 hypothetical protein
Probab=50.48 E-value=13 Score=26.75 Aligned_cols=26 Identities=8% Similarity=-0.009 Sum_probs=20.6
Q ss_pred CCCCcceeeEEEEEecCCHHHHHHHHHHh
Q 034304 6 TSANFMGMKLQLLVEASKAIDAIQFYKTA 34 (98)
Q Consensus 6 ~~~g~~~ltPYL~v~ngdA~eAIeFYk~A 34 (98)
+..|+..| .|++| .++..||.||+++
T Consensus 111 r~~G~~~l--~l~v~-~~n~~a~~~y~~~ 136 (153)
T PHA01807 111 GEGNLPLI--AFSHR-EGEGRYTIHYRRV 136 (153)
T ss_pred HHCCCCEE--EEEec-CCcHHHHHHHHhc
Confidence 44566666 88894 8999999999986
No 99
>PF14507 CppA_C: CppA C-terminal; PDB: 3E0R_D.
Probab=50.45 E-value=5.5 Score=27.88 Aligned_cols=22 Identities=27% Similarity=0.542 Sum_probs=8.5
Q ss_pred EEEEEecCCHHHHHHHHHHhhCCEE
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGAVE 39 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGAee 39 (98)
-.|+| .| +++.+||+++||.+.
T Consensus 9 i~LNV--~d-~~~~~fy~~~f~~~~ 30 (101)
T PF14507_consen 9 IELNV--PD-AKSQSFYQSIFGGQL 30 (101)
T ss_dssp EEEEE---T--T---S--H---HHH
T ss_pred EEEeC--CC-hhHHHHHHhccccCC
Confidence 46788 78 679999999998643
No 100
>PF13468 Glyoxalase_3: Glyoxalase-like domain; PDB: 3P8A_B.
Probab=46.75 E-value=15 Score=25.95 Aligned_cols=44 Identities=9% Similarity=-0.022 Sum_probs=22.7
Q ss_pred EEEecCCHHHHHHHHHHhhCCEEEEEEecCC-cccccccCcccceEEEecCCCch
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVEISRIMETK-RKAEKELNSRLSAPHFLSLTFPM 70 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAeev~~~~~pD-G~i~~~~~~VmHA~LmlsD~~P~ 70 (98)
+.| .|-++|+++|++.+|.+....-..+. |+ -|+-++|.|++-.
T Consensus 6 ~~v--~dl~~a~~~~~~~lGf~~~~gg~h~~~GT--------~N~li~f~~~YlE 50 (175)
T PF13468_consen 6 IAV--RDLDAAVERFEQRLGFTVTPGGEHPGWGT--------ANALIPFGDGYLE 50 (175)
T ss_dssp EE---TTGGG----GGGS--S--EEEEE-TTT-E--------EEEEEE-SSSEEE
T ss_pred EEc--CCHHHHHHhhhhcceEeecCCCcCCCCcc--------EEEEEeeCCceEE
Confidence 556 69999999999999998887766666 43 3566677776443
No 101
>PRK01236 S-adenosylmethionine decarboxylase proenzyme; Provisional
Probab=43.65 E-value=54 Score=23.52 Aligned_cols=36 Identities=11% Similarity=0.172 Sum_probs=26.9
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
||-.+--|.+=++.+...|+++.+++|+++.+....
T Consensus 75 gyaavDiftCg~~~~p~~a~~~L~~~f~~~~~~~~~ 110 (131)
T PRK01236 75 GLVTLDVYTCGDPSKADKAFEYIIKKLKPKRVDHKV 110 (131)
T ss_pred CeEEEEEEecCCCCCHHHHHHHHHHHhCCCeEEEEE
Confidence 566666666653247999999999999998766544
No 102
>TIGR03330 SAM_DCase_Bsu S-adenosylmethionine decarboxylase proenzyme, Bacillus form. Members of this protein family are the single chain precursor of the two chains of the mature S-adenosylmethionine decarboxylase as found in Methanocaldococcus jannaschii, Bacillus subtilis, and a wide range of other species. It differs substantially in architecture from the form as found in Escherichia coli, and lacks any extended homology to the eukaryotic form (TIGR00535).
Probab=42.10 E-value=64 Score=22.26 Aligned_cols=36 Identities=8% Similarity=0.102 Sum_probs=26.6
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
||..+--|.+=++.|...|+++.+++|+++.+....
T Consensus 73 gyaavDiftCg~~~~p~~a~~~l~~~f~~~~~~~~~ 108 (112)
T TIGR03330 73 GYAAVDVFTCGDHSDPEKAFEYLVEALKPKRVEVRE 108 (112)
T ss_pred CcEEEEEEecCCCCCHHHHHHHHHHHhCCCeEEEEE
Confidence 566666664432148999999999999998876653
No 103
>KOG2943 consensus Predicted glyoxalase [Carbohydrate transport and metabolism]
Probab=41.30 E-value=35 Score=28.04 Aligned_cols=27 Identities=15% Similarity=0.374 Sum_probs=23.2
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
+...|.| +|-+.+|.||+++||-+++.
T Consensus 151 ~~V~l~V--gdL~ks~kyw~~~lgM~ile 177 (299)
T KOG2943|consen 151 LQVMLNV--GDLQKSIKYWEKLLGMKILE 177 (299)
T ss_pred EEEEEEe--hhHHHHHHHHHHHhCcchhh
Confidence 3457899 99999999999999987765
No 104
>PF08238 Sel1: Sel1 repeat; InterPro: IPR006597 Sel1-like repeats are tetratricopeptide repeat sequences originally identified in a Caenorhabditis elegans receptor molecule which is a key negative regulator of the Notch pathway []. Mammalian homologues have since been identified although these mainly pancreatic proteins have yet to have a function assigned.; PDB: 2XM6_A 3RJV_A 1OUV_A 1KLX_A.
Probab=38.81 E-value=20 Score=18.70 Aligned_cols=14 Identities=21% Similarity=0.332 Sum_probs=11.8
Q ss_pred CCHHHHHHHHHHhh
Q 034304 22 SKAIDAIQFYKTAF 35 (98)
Q Consensus 22 gdA~eAIeFYk~AF 35 (98)
.|.++|++||+++-
T Consensus 22 ~d~~~A~~~~~~Aa 35 (39)
T PF08238_consen 22 KDYEKAFKWYEKAA 35 (39)
T ss_dssp HHHHHHHHHHHHHH
T ss_pred ccccchHHHHHHHH
Confidence 46899999999874
No 105
>PF00515 TPR_1: Tetratricopeptide repeat; InterPro: IPR001440 The tetratrico peptide repeat (TPR) is a structural motif present in a wide range of proteins [, , ]. It mediates protein-protein interactions and the assembly of multiprotein complexes []. The TPR motif consists of 3-16 tandem-repeats of 34 amino acids residues, although individual TPR motifs can be dispersed in the protein sequence. Sequence alignment of the TPR domains reveals a consensus sequence defined by a pattern of small and large amino acids. TPR motifs have been identified in various different organisms, ranging from bacteria to humans. Proteins containing TPRs are involved in a variety of biological processes, such as cell cycle regulation, transcriptional control, mitochondrial and peroxisomal protein transport, neurogenesis and protein folding. The X-ray structure of a domain containing three TPRs from protein phosphatase 5 revealed that TPR adopts a helix-turn-helix arrangement, with adjacent TPR motifs packing in a parallel fashion, resulting in a spiral of repeating anti-parallel alpha-helices []. The two helices are denoted helix A and helix B. The packing angle between helix A and helix B is ~24 degrees; within a single TPR and generates a right-handed superhelical shape. Helix A interacts with helix B and with helix A' of the next TPR. Two protein surfaces are generated: the inner concave surface is contributed to mainly by residue on helices A, and the other surface presents residues from both helices A and B. ; GO: 0005515 protein binding; PDB: 3SF4_C 2LNI_A 1ELW_A 2C0M_A 1FCH_B 3R9A_B 2J9Q_A 2C0L_A 1KT1_A 3FWV_A ....
Probab=37.63 E-value=33 Score=17.44 Aligned_cols=14 Identities=21% Similarity=0.577 Sum_probs=11.6
Q ss_pred CCHHHHHHHHHHhh
Q 034304 22 SKAIDAIQFYKTAF 35 (98)
Q Consensus 22 gdA~eAIeFYk~AF 35 (98)
++-++|++.|++|.
T Consensus 15 ~~~~~A~~~~~~al 28 (34)
T PF00515_consen 15 GDYEEALEYYQRAL 28 (34)
T ss_dssp T-HHHHHHHHHHHH
T ss_pred CCchHHHHHHHHHH
Confidence 67899999999986
No 106
>PF14696 Glyoxalase_5: Hydroxyphenylpyruvate dioxygenase, HPPD, N-terminal ; PDB: 1CJX_A 2R5V_A.
Probab=37.37 E-value=55 Score=23.69 Aligned_cols=60 Identities=15% Similarity=0.122 Sum_probs=30.5
Q ss_pred EEEEecCCHHHHHHHHHHhhCCEEEEEEecCCcccccccCcccceEEEecCCCchheeeeeeeecc
Q 034304 16 QLLVEASKAIDAIQFYKTAFGAVEISRIMETKRKAEKELNSRLSAPHFLSLTFPMILLQLRIWESD 81 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~AFGAeev~~~~~pDG~i~~~~~~VmHA~LmlsD~~P~~~~~~~~~~~~ 81 (98)
=|.| .||++|.+- ....||+.+..-..+.....+..--+..+.++|-|..... -+||+.|
T Consensus 78 afrV--~Da~~A~~r-A~~~GA~~~~~~~~~~e~~~paI~g~G~sl~yfVdr~~~~---~~~~d~d 137 (139)
T PF14696_consen 78 AFRV--DDAAAAYER-AVALGAEPVQEPTGPGELNIPAIRGIGGSLHYFVDRYGDK---GSIYDVD 137 (139)
T ss_dssp EEEE--S-HHHHHHH-HHHTT--EEEEEEETT-BEEEEEE-CCC-EEEEEE--SSS-----HHHHH
T ss_pred EEEe--CCHHHHHHH-HHHcCCcCcccCCCCCcEeeeeEEccCCCEEEEEecCCCC---CCccccc
Confidence 4678 699999885 8889998876644332211222234666666666653321 2677765
No 107
>PF04212 MIT: MIT (microtubule interacting and transport) domain; InterPro: IPR007330 The MIT domain is found in vacuolar sorting proteins, spastin (probable ATPase involved in the assembly or function of nuclear protein complexes), and a sorting nexin, which may play a role in intracellular trafficking.; PDB: 2DL1_A 2JQK_A 1WR0_A 2CPT_A 2JQH_A 2V6Y_A 2JQ9_A 2K3W_A 1YXR_A 3EAB_E ....
Probab=36.49 E-value=33 Score=20.97 Aligned_cols=16 Identities=31% Similarity=0.497 Sum_probs=13.4
Q ss_pred cCCHHHHHHHHHHhhC
Q 034304 21 ASKAIDAIQFYKTAFG 36 (98)
Q Consensus 21 ngdA~eAIeFYk~AFG 36 (98)
.|+-++||++|+++.+
T Consensus 18 ~g~~~~A~~~Y~~ai~ 33 (69)
T PF04212_consen 18 AGNYEEALELYKEAIE 33 (69)
T ss_dssp TTSHHHHHHHHHHHHH
T ss_pred CCCHHHHHHHHHHHHH
Confidence 3788999999998864
No 108
>PRK01706 S-adenosylmethionine decarboxylase proenzyme; Validated
Probab=35.50 E-value=95 Score=21.96 Aligned_cols=37 Identities=14% Similarity=0.058 Sum_probs=27.9
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEec
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIME 45 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~ 45 (98)
||..+--|.+=++.|...|+++.+++|+++.+.....
T Consensus 76 gyaavDiftCg~~~~p~~a~~~L~~~l~~~~~~~~~~ 112 (123)
T PRK01706 76 NFAAIDCYTCGTTVEPQIAIDYIVSILKPNEMHIKRL 112 (123)
T ss_pred CeEEEEEEecCCCCCHHHHHHHHHHHhCCCeEEEEEE
Confidence 5666666666532489999999999999988766543
No 109
>PRK02770 S-adenosylmethionine decarboxylase proenzyme; Provisional
Probab=34.15 E-value=97 Score=22.47 Aligned_cols=37 Identities=11% Similarity=-0.012 Sum_probs=28.0
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEec
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIME 45 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~~ 45 (98)
||-.+--|.+=++.|...|+++.+++|+++.+.....
T Consensus 87 gyaavDiftCg~~~~p~~a~~~L~~~l~~~~~~~~~~ 123 (139)
T PRK02770 87 GYAAVDVFTCGDHTMPEKACQYLIEELMAKRHSLRSI 123 (139)
T ss_pred CcEEEEEEecCCCCCHHHHHHHHHHHhCCCeEEEEEE
Confidence 5666666666532389999999999999988777554
No 110
>PF13374 TPR_10: Tetratricopeptide repeat; PDB: 3CEQ_B 3EDT_H 3NF1_A.
Probab=34.02 E-value=41 Score=17.30 Aligned_cols=16 Identities=13% Similarity=0.287 Sum_probs=11.6
Q ss_pred CCHHHHHHHHHHhhCC
Q 034304 22 SKAIDAIQFYKTAFGA 37 (98)
Q Consensus 22 gdA~eAIeFYk~AFGA 37 (98)
|+-++|+++|+++...
T Consensus 16 g~~~~A~~~~~~al~~ 31 (42)
T PF13374_consen 16 GRYEEALELLEEALEI 31 (42)
T ss_dssp T-HHHHHHHHHHHHHH
T ss_pred hhcchhhHHHHHHHHH
Confidence 6778888888887764
No 111
>PRK03124 S-adenosylmethionine decarboxylase proenzyme; Provisional
Probab=33.88 E-value=96 Score=22.05 Aligned_cols=36 Identities=14% Similarity=0.188 Sum_probs=26.9
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
||-.+--|.+=++-|...|+++.+++|+++.+....
T Consensus 74 gyaavDiftCg~~~~p~~a~~~L~~~f~~~~~~~~~ 109 (127)
T PRK03124 74 GYAAVDVFTCGDRVDPWDACNYIAEGLGAKTREAIE 109 (127)
T ss_pred CeEEEEEEecCCCCCHHHHHHHHHHHhCCCeEEEEE
Confidence 566666666653238999999999999998876654
No 112
>PF14559 TPR_19: Tetratricopeptide repeat; PDB: 2R5S_A 3QDN_B 3QOU_A 3ASG_A 3ASD_A 3AS5_A 3AS4_A 3ASH_B 3FP3_A 3LCA_A ....
Probab=33.07 E-value=30 Score=19.92 Aligned_cols=16 Identities=19% Similarity=0.256 Sum_probs=13.8
Q ss_pred cCCHHHHHHHHHHhhC
Q 034304 21 ASKAIDAIQFYKTAFG 36 (98)
Q Consensus 21 ngdA~eAIeFYk~AFG 36 (98)
+|+-++|++.|++++.
T Consensus 4 ~~~~~~A~~~~~~~l~ 19 (68)
T PF14559_consen 4 QGDYDEAIELLEKALQ 19 (68)
T ss_dssp TTHHHHHHHHHHHHHH
T ss_pred ccCHHHHHHHHHHHHH
Confidence 3788999999999985
No 113
>PRK00458 S-adenosylmethionine decarboxylase proenzyme; Provisional
Probab=32.72 E-value=1.1e+02 Score=21.65 Aligned_cols=36 Identities=11% Similarity=0.126 Sum_probs=26.6
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
||..+--|.+=++.|...|+++.+++|+++.+....
T Consensus 86 gyaavDiftCg~~~~p~~a~~~L~~~f~~~~~~~~~ 121 (127)
T PRK00458 86 NFATVDVYTCGEHTDPQKAFEYIVSKLKPKRYTVNY 121 (127)
T ss_pred CcEEEEEEecCCCCCHHHHHHHHHHHhCCCEEEEEE
Confidence 455565565542248999999999999998876654
No 114
>PRK04025 S-adenosylmethionine decarboxylase proenzyme; Validated
Probab=32.56 E-value=1e+02 Score=22.34 Aligned_cols=36 Identities=11% Similarity=0.104 Sum_probs=26.6
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEEe
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRIM 44 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~~ 44 (98)
||..+--|.+=++.+...|+++.+++|+++......
T Consensus 74 gyaavDIftCg~~~~p~~a~~~L~~~f~~~~~~~~~ 109 (139)
T PRK04025 74 GYAALDVYTCGEKADPEKAVDYILEQFKAKYAHVSE 109 (139)
T ss_pred CeEEEEEEecCCCCCHHHHHHHHHHHhCCCeEEEEE
Confidence 566666666652138999999999999998765544
No 115
>PF07719 TPR_2: Tetratricopeptide repeat; InterPro: IPR013105 The tetratrico peptide repeat (TPR) is a structural motif present in a wide range of proteins [, , ]. It mediates protein-protein interactions and the assembly of multiprotein complexes []. The TPR motif consists of 3-16 tandem-repeats of 34 amino acids residues, although individual TPR motifs can be dispersed in the protein sequence. Sequence alignment of the TPR domains reveals a consensus sequence defined by a pattern of small and large amino acids. TPR motifs have been identified in various different organisms, ranging from bacteria to humans. Proteins containing TPRs are involved in a variety of biological processes, such as cell cycle regulation, transcriptional control, mitochondrial and peroxisomal protein transport, neurogenesis and protein folding. This repeat includes outlying Tetratricopeptide-like repeats (TPR) that are not matched by IPR001440 from INTERPRO.; PDB: 1XNF_B 3Q15_A 4ABN_A 1OUV_A 3U4T_A 3MA5_C 2KCV_A 2KCL_A 2XEV_A 3NF1_A ....
Probab=32.34 E-value=46 Score=16.55 Aligned_cols=15 Identities=20% Similarity=0.494 Sum_probs=12.0
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
|+-++|++.|+++..
T Consensus 15 ~~~~~A~~~~~~al~ 29 (34)
T PF07719_consen 15 GNYEEAIEYFEKALE 29 (34)
T ss_dssp T-HHHHHHHHHHHHH
T ss_pred CCHHHHHHHHHHHHH
Confidence 788999999999863
No 116
>PF11211 DUF2997: Protein of unknown function (DUF2997); InterPro: IPR021375 This family of proteins has no known function.
Probab=31.98 E-value=60 Score=19.60 Aligned_cols=18 Identities=28% Similarity=0.438 Sum_probs=16.3
Q ss_pred CCHHHHHHHHHHhhCCEE
Q 034304 22 SKAIDAIQFYKTAFGAVE 39 (98)
Q Consensus 22 gdA~eAIeFYk~AFGAee 39 (98)
.+|.++.++.++++|...
T Consensus 21 ~~C~~~t~~lE~~LG~v~ 38 (48)
T PF11211_consen 21 SSCLEATAALEEALGTVT 38 (48)
T ss_pred hhHHHHHHHHHHHhCcee
Confidence 469999999999999877
No 117
>PRK01037 trmD tRNA (guanine-N(1)-)-methyltransferase/unknown domain fusion protein; Reviewed
Probab=31.26 E-value=66 Score=27.13 Aligned_cols=26 Identities=27% Similarity=0.354 Sum_probs=22.1
Q ss_pred ceeeEEEEEecCCHHHHHHHHHHhhCCE
Q 034304 11 MGMKLQLLVEASKAIDAIQFYKTAFGAV 38 (98)
Q Consensus 11 ~~ltPYL~v~ngdA~eAIeFYk~AFGAe 38 (98)
.+|.--|-| .|-+++.+||+++|+-.
T Consensus 247 ~~IfVNLpV--~DL~rS~~FYt~LF~~n 272 (357)
T PRK01037 247 KTFSVVLEV--QDLRRAKKFYSKMFGLE 272 (357)
T ss_pred ceEEEEeee--CCHHHHHHHHHHHhCCC
Confidence 355667888 89999999999999976
No 118
>PF11001 DUF2841: Protein of unknown function (DUF2841); InterPro: IPR021264 This family of proteins with unknown function are all present in yeast.
Probab=30.60 E-value=25 Score=25.40 Aligned_cols=16 Identities=25% Similarity=0.453 Sum_probs=15.0
Q ss_pred CCHHHHHHHHHHhhCC
Q 034304 22 SKAIDAIQFYKTAFGA 37 (98)
Q Consensus 22 gdA~eAIeFYk~AFGA 37 (98)
||..+..+||+++|.+
T Consensus 4 gd~~~v~~yy~~~F~~ 19 (126)
T PF11001_consen 4 GDEEAVRAYYESAFKA 19 (126)
T ss_pred CCHHHHHHHHHHHHHH
Confidence 8999999999999985
No 119
>PF12688 TPR_5: Tetratrico peptide repeat
Probab=30.31 E-value=43 Score=23.31 Aligned_cols=16 Identities=31% Similarity=0.603 Sum_probs=14.6
Q ss_pred CCHHHHHHHHHHhhCC
Q 034304 22 SKAIDAIQFYKTAFGA 37 (98)
Q Consensus 22 gdA~eAIeFYk~AFGA 37 (98)
|+-++||.+|++++..
T Consensus 15 G~~~~Ai~~Y~~Al~~ 30 (120)
T PF12688_consen 15 GREEEAIPLYRRALAA 30 (120)
T ss_pred CCHHHHHHHHHHHHHc
Confidence 8899999999999874
No 120
>PF13181 TPR_8: Tetratricopeptide repeat; PDB: 3GW4_B 3MA5_C 2KCV_A 2KCL_A 3FP3_A 3LCA_A 3FP4_A 3FP2_A 1W3B_B 1ELW_A ....
Probab=30.10 E-value=56 Score=16.42 Aligned_cols=15 Identities=13% Similarity=0.461 Sum_probs=12.9
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
|+-++|++.|+++..
T Consensus 15 ~~~~~A~~~~~~a~~ 29 (34)
T PF13181_consen 15 GDYEEALEYFEKALE 29 (34)
T ss_dssp TSHHHHHHHHHHHHH
T ss_pred CCHHHHHHHHHHHHh
Confidence 788999999999863
No 121
>PF11054 Surface_antigen: Sporozoite TA4 surface antigen; InterPro: IPR021288 This family of proteins is a Eukaryotic family of surface antigens. One of the better characterised members of the family is the sporulated TA4 antigen. The TA4 gene encodes a single polypeptide of 25 kDa which contains a 17 and a 8kDa polypeptide [].
Probab=29.95 E-value=39 Score=27.36 Aligned_cols=15 Identities=27% Similarity=0.660 Sum_probs=14.0
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
.||+++++|+|.+|-
T Consensus 117 ~dCk~aVdYWKaafk 131 (254)
T PF11054_consen 117 PDCKEAVDYWKAAFK 131 (254)
T ss_pred CChHHHHHHHHHHHh
Confidence 689999999999996
No 122
>PF13424 TPR_12: Tetratricopeptide repeat; PDB: 3RO2_A 3Q15_A 3ASG_A 3ASD_A 3AS5_A 3AS4_A 3ASH_B 4A1S_B 3CEQ_B 3EDT_H ....
Probab=29.27 E-value=36 Score=20.25 Aligned_cols=15 Identities=20% Similarity=0.547 Sum_probs=13.0
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
|+-++|+++|++++.
T Consensus 60 g~~~~A~~~~~~al~ 74 (78)
T PF13424_consen 60 GDYEEALEYYQKALD 74 (78)
T ss_dssp THHHHHHHHHHHHHH
T ss_pred CCHHHHHHHHHHHHh
Confidence 678999999999874
No 123
>PF05100 Phage_tail_L: Phage minor tail protein L ; InterPro: IPR006487 This entry is represented by Bacteriophage lambda, GpL, a minor tail protein. The characteristics of the protein distribution suggest prophage matches in addition to the phage matches.
Probab=29.26 E-value=2.8e+02 Score=21.67 Aligned_cols=66 Identities=23% Similarity=0.257 Sum_probs=39.3
Q ss_pred eeEEEEEecCCHHHH----HHHHHHhhCCEEEEEEec---------CCcccccccCcccceEEEecCCCchheeeeeee-
Q 034304 13 MKLQLLVEASKAIDA----IQFYKTAFGAVEISRIME---------TKRKAEKELNSRLSAPHFLSLTFPMILLQLRIW- 78 (98)
Q Consensus 13 ltPYL~v~ngdA~eA----IeFYk~AFGAeev~~~~~---------pDG~i~~~~~~VmHA~LmlsD~~P~~~~~~~~~- 78 (98)
-.|-|+| +|-... +.-|...-||+++.+.++ |+|.. +.-|.+.. ..+|
T Consensus 47 ~rPtLtV--sNi~G~ital~~~~~dlvgAkV~r~~t~a~yLDa~NF~~GNp---------------~Adp~~e~-~~~~~ 108 (206)
T PF05100_consen 47 PRPTLTV--SNIDGLITALCLQFDDLVGAKVTRRRTLAKYLDAVNFPDGNP---------------TADPTQEF-VEIWY 108 (206)
T ss_pred CCCeEEE--ecccchHHHHHHHhCcccCcEEEEEEEEeecCCcceeccCCC---------------CCCcccee-eeeee
Confidence 3588888 675444 446677779999888773 23321 12233322 3444
Q ss_pred -eccCcccceeeEEeecCC
Q 034304 79 -ESDASSGRRLMTLRLSSP 96 (98)
Q Consensus 79 -~~~~~~~~~~~~~~~~~~ 96 (98)
|.-.+.-+..++.-||||
T Consensus 109 Ie~k~~e~~~~v~FeLssp 127 (206)
T PF05100_consen 109 IEQKSSENAEQVEFELSSP 127 (206)
T ss_pred EEeecccCccEEEEEecCC
Confidence 444456667788888887
No 124
>KOG0553 consensus TPR repeat-containing protein [General function prediction only]
Probab=28.66 E-value=25 Score=29.04 Aligned_cols=21 Identities=33% Similarity=0.357 Sum_probs=17.7
Q ss_pred EEEEEecCCHHHHHHHHHHhhCC
Q 034304 15 LQLLVEASKAIDAIQFYKTAFGA 37 (98)
Q Consensus 15 PYL~v~ngdA~eAIeFYk~AFGA 37 (98)
.|+.. |+.++||++|++|+.-
T Consensus 158 A~~~~--gk~~~A~~aykKaLel 178 (304)
T KOG0553|consen 158 AYLAL--GKYEEAIEAYKKALEL 178 (304)
T ss_pred HHHcc--CcHHHHHHHHHhhhcc
Confidence 36777 8999999999999863
No 125
>PRK10314 putative acyltransferase; Provisional
Probab=28.50 E-value=45 Score=23.36 Aligned_cols=23 Identities=22% Similarity=0.577 Sum_probs=16.8
Q ss_pred HHHHHHHHHhhCCEEEEEEecCCc
Q 034304 25 IDAIQFYKTAFGAVEISRIMETKR 48 (98)
Q Consensus 25 ~eAIeFYk~AFGAeev~~~~~pDG 48 (98)
..|+.||++ ||.+.+...-..+|
T Consensus 118 ~~a~~fY~k-~GF~~~g~~f~~~G 140 (153)
T PRK10314 118 AHLQNFYQS-FGFIPVTEVYEEDG 140 (153)
T ss_pred HHHHHHHHH-CCCEECCCccccCC
Confidence 458899999 99988776533444
No 126
>PF15433 MRP-S31: Mitochondrial 28S ribosomal protein S31
Probab=26.74 E-value=16 Score=30.03 Aligned_cols=25 Identities=16% Similarity=0.327 Sum_probs=21.9
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVE 39 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAee 39 (98)
=+|||+| ..=+|=|+||++-|..+.
T Consensus 268 kNPy~tv--~~K~eHi~Wfr~YF~~kk 292 (298)
T PF15433_consen 268 KNPYLTV--QQKKEHIEWFRDYFNEKK 292 (298)
T ss_pred cCCcccH--HHHHHHHHHHHHHHHHHH
Confidence 3699999 799999999999998754
No 127
>PF08445 FR47: FR47-like protein; InterPro: IPR013653 Proteins in this entry have a conserved region similar to the C-terminal region of the Drosophila melanogaster (Fruit fly) hypothetical protein FR47 (Q9VR51 from SWISSPROT). This protein has been found to consist of two N-acyltransferase-like domains swapped with the C-terminal strands. ; GO: 0016747 transferase activity, transferring acyl groups other than amino-acyl groups; PDB: 1SQH_A 3EC4_B.
Probab=26.66 E-value=1e+02 Score=19.70 Aligned_cols=27 Identities=26% Similarity=0.396 Sum_probs=19.0
Q ss_pred eeEEEEEecCCHHHHHHHHHHhhCCEEEE
Q 034304 13 MKLQLLVEASKAIDAIQFYKTAFGAVEIS 41 (98)
Q Consensus 13 ltPYL~v~ngdA~eAIeFYk~AFGAeev~ 41 (98)
..|++.++ .+=..|+.||++ +|.+...
T Consensus 55 ~~~~l~v~-~~N~~s~~ly~k-lGf~~~~ 81 (86)
T PF08445_consen 55 KTPFLYVD-ADNEASIRLYEK-LGFREIE 81 (86)
T ss_dssp SEEEEEEE-TT-HHHHHHHHH-CT-EEEE
T ss_pred CcEEEEEE-CCCHHHHHHHHH-cCCEEEE
Confidence 46899984 788899999987 4655553
No 128
>COG3565 Predicted dioxygenase of extradiol dioxygenase family [General function prediction only]
Probab=26.39 E-value=44 Score=24.70 Aligned_cols=21 Identities=24% Similarity=0.436 Sum_probs=17.8
Q ss_pred EEEecCCHHHHHHHHHHhhCCEE
Q 034304 17 LLVEASKAIDAIQFYKTAFGAVE 39 (98)
Q Consensus 17 L~v~ngdA~eAIeFYk~AFGAee 39 (98)
+-| .|-.|+=+||.++||+++
T Consensus 10 ~pV--~Dl~~tr~FYgevlG~~~ 30 (138)
T COG3565 10 IPV--NDLDETRRFYGEVLGCKE 30 (138)
T ss_pred eec--cccHHHHhhhhhhccccc
Confidence 346 589999999999999875
No 129
>PF02071 NSF: Aromatic-di-Alanine (AdAR) repeat ; InterPro: IPR000744 Regulated exocytosis of neurotransmitters and hormones, as well as intracellular traffic, requires fusion of two lipid bilayers. SNARE proteins are thought to form a protein bridge, the SNARE complex, between an incoming vesicle and the acceptor compartment. SNARE proteins contribute to the specificity of membrane fusion, implying that the mechanisms by which SNAREs are targeted to subcellular compartments are important for specific docking and fusion of vesicles. This mechanism involves a family of conserved proteins, members of which appear to function at all sites of constitutive and regulated secretion in eukaryotes []. Among them are 2 types of cytosolic protein, NSF (N-ethyl-maleimide-sensitive protein) and the SNAPs (alpha-, beta- and gamma-soluble NSF attachment proteins). The yeast vesicular fusion protein, sec17, a cytoplasmic peripheral membrane protein involved in vesicular transport between the endoplasmic reticulum and the golgi apparatus, shows a high degree of sequence similarity to the alpha-SNAP family. SNAP-25 and its non-neuronal homologue Syndet/SNAP-23 are synthesized as soluble proteins in the cytosol. Both SNAP-25 and Syndet/SNAP-23 are palmitoylated at cysteine residues clustered in a loop between two N- and C-terminal coils and palmitoylation is essential for membrane binding and plasma membrane targeting. The C-terminal and the N-terminal helices of SNAP-25, are each targeted to the plasma membrane by two distinct cysteine-rich domains and appear to regulate the availability of SNAP to form complexes with SNARE [].; GO: 0006886 intracellular protein transport
Probab=25.44 E-value=30 Score=15.62 Aligned_cols=8 Identities=50% Similarity=0.775 Sum_probs=5.5
Q ss_pred HHHHHHHh
Q 034304 27 AIQFYKTA 34 (98)
Q Consensus 27 AIeFYk~A 34 (98)
|+++|++|
T Consensus 1 A~~~y~~A 8 (12)
T PF02071_consen 1 AIKCYEKA 8 (12)
T ss_pred CcHHHHHH
Confidence 56777775
No 130
>PF02675 AdoMet_dc: S-adenosylmethionine decarboxylase ; InterPro: IPR003826 Polyamines such as spermidine and spermine are essential for cellular growth under most conditions, being implicated in a large number of cellular processes including DNA, RNA and protein synthesis. S-adenosylmethionine decarboxylase (AdoMetDC) plays an essential regulatory role in the polyamine biosynthetic pathway by generating the n-propylamine residue required for the synthesis of spermidine and spermine from putrescein [, ]. Unlike many amino acid decarboxylases AdoMetDC uses a covalently bound pyruvate residue as a cofactor rather than the more common pyridoxal 5'-phosphate. These proteins can be divided into two main groups which show little sequence similarity either to each other, or to other pyruvoyl-dependent amino acid decarboxylases: class I enzymes found in bacteria and archaea, and class II enzymes found in eukaryotes. In both groups the active enzyme is generated by the post-translational autocatalytic cleavage of a precursor protein. This cleavage generates the pyruvate precursor from an internal serine residue and results in the formation of two non-identical subunits termed alpha and beta which form the active enzyme. Members of this family are related to the amino terminus of Escherichia coli S-adenosylmethionine decarboxylase.; GO: 0004014 adenosylmethionine decarboxylase activity, 0008295 spermidine biosynthetic process; PDB: 1VR7_A 3IWC_D 3IWD_D 3IWB_C 1TMI_A 1TLU_A 2III_A.
Probab=24.60 E-value=87 Score=20.92 Aligned_cols=34 Identities=18% Similarity=0.242 Sum_probs=23.7
Q ss_pred CcceeeEEEEEecCCHHHHHHHHHHhhCCEEEEEE
Q 034304 9 NFMGMKLQLLVEASKAIDAIQFYKTAFGAVEISRI 43 (98)
Q Consensus 9 g~~~ltPYL~v~ngdA~eAIeFYk~AFGAeev~~~ 43 (98)
||-.+--|..=+ -|..+|+++.+++|+++.+...
T Consensus 68 ~~~avDiftC~~-~~p~~a~~~l~~~f~~~~~~~~ 101 (106)
T PF02675_consen 68 GYAAVDIFTCGE-FDPEKAIEYLKKAFKPDKVKIT 101 (106)
T ss_dssp TEEEEEEEEEST-HHHHHHHHHHHHHHT-SEEEEE
T ss_pred CeEEEEEEEcCC-CCHHHHHHHHHHHhCCCEEEEE
Confidence 344555555542 4799999999999999876654
No 131
>PF07240 Turandot: Stress-inducible humoral factor Turandot; InterPro: IPR010825 This family consists of several Drosophila species specific Turandot proteins. The Turandot A (TotA) gene encodes a humoral factor, which is secreted from the fat body and accumulates in the body fluids. TotA is strongly induced upon bacterial challenge, as well as by other types of stress such as high temperature, mechanical pressure, dehydration, UV irradiation, and oxidative agents. It is also upregulated during metamorphosis and at high age. Flies that overexpress TotA show prolonged survival and retain normal activity at otherwise lethal temperatures. Although TotA is only induced by severe stress, it responds to a much wider range of stimuli than heat shock genes such as hsp70 or immune genes such as Cecropin A1 [].
Probab=24.14 E-value=53 Score=22.37 Aligned_cols=15 Identities=20% Similarity=0.284 Sum_probs=12.9
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
.|..++|+||++-..
T Consensus 10 rni~eLi~fY~ky~~ 24 (85)
T PF07240_consen 10 RNIQELIAFYEKYSP 24 (85)
T ss_pred hhHHHHHHHHHHcCc
Confidence 578999999999766
No 132
>PF00568 WH1: WH1 domain; InterPro: IPR000697 The EVH1 (WH1, RanBP1-WASP) domain is found in multi-domain proteins implicated in a diverse range of signalling, nuclear transport and cytoskeletal events. This domain of around 115 amino acids is present in species ranging from yeast to mammals. Many EVH1-containing proteins associate with actin-based structures and play a role in cytoskeletal organisation. EVH1 domains recognise and bind the proline-rich motif FPPPP with low-affinity, further interactions then form between flanking residues [][]. WASP family proteins contain a EVH1 (WH1) in their N-terminals which bind proline-rich sequences in the WASP interacting protein. Proteins of the RanBP1 family contain a WH1 domain in their N-terminal region, which seems to bind a different sequence motif present in the C-terminal part of RanGTP protein [,]. Tertiary structure of the WH1 domain of the Mena protein revealed structure similarities with the pleckstrin homology (PH) domain. The overall fold consists of a compact parallel beta-sandwich, closed along one edge by a long alpha-helix. A highly conserved cluster of three surface-exposed aromatic side-chains forms the recognition site for the molecules target ligands. [].; GO: 0005515 protein binding; PDB: 1I2H_A 1DDV_A 1DDW_A 1EGX_A 3SYX_A 1TJ6_B 1XOD_B 1EVH_A 1I7A_B 2JP2_A ....
Probab=23.28 E-value=95 Score=20.85 Aligned_cols=17 Identities=35% Similarity=0.409 Sum_probs=15.2
Q ss_pred EEEEecCCHHHHHHHHHHh
Q 034304 16 QLLVEASKAIDAIQFYKTA 34 (98)
Q Consensus 16 YL~v~ngdA~eAIeFYk~A 34 (98)
-|+| .+-+||-+||+++
T Consensus 91 GLnF--~se~eA~~F~~~v 107 (111)
T PF00568_consen 91 GLNF--ASEEEADQFYKKV 107 (111)
T ss_dssp EEEE--SSHHHHHHHHHHH
T ss_pred EEec--CCHHHHHHHHHHH
Confidence 5889 8999999999876
No 133
>TIGR03112 6_pyr_pter_rel 6-pyruvoyl tetrahydropterin synthase-related domain. Members of this family are small proteins, or small domains of larger proteins, that occur in certain Firmicutes in the same regions as members of families TIGR03110 and TIGR03111. Members of TIGR03110 resemble exosortase, a proposed protein sorting transpeptidase (see TIGR02602). TIGR03111 represents a small clade among the group 2 glycosyltransferases. Members of the current protein family resemble eukaryotic known and prokaryotic predicted 6-pyruvoyl tetrahydropterin synthases.
Probab=22.58 E-value=61 Score=22.44 Aligned_cols=13 Identities=23% Similarity=0.230 Sum_probs=10.7
Q ss_pred heeeeeeeeccCc
Q 034304 71 ILLQLRIWESDAS 83 (98)
Q Consensus 71 ~~~~~~~~~~~~~ 83 (98)
.+.|+++||++.+
T Consensus 96 ~l~~V~l~Et~~~ 108 (113)
T TIGR03112 96 KLHSIEISETPTR 108 (113)
T ss_pred eEEEEEEEECCCc
Confidence 5789999999754
No 134
>PF13428 TPR_14: Tetratricopeptide repeat
Probab=22.06 E-value=89 Score=17.14 Aligned_cols=15 Identities=13% Similarity=0.262 Sum_probs=13.6
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
|+-++|++.|+++..
T Consensus 15 G~~~~A~~~~~~~l~ 29 (44)
T PF13428_consen 15 GQPDEAERLLRRALA 29 (44)
T ss_pred CCHHHHHHHHHHHHH
Confidence 899999999999875
No 135
>smart00028 TPR Tetratricopeptide repeats. Repeats present in 4 or more copies in proteins. Contain a minimum of 34 amino acids each and self-associate via a "knobs and holes" mechanism.
Probab=20.94 E-value=90 Score=13.47 Aligned_cols=15 Identities=20% Similarity=0.496 Sum_probs=12.4
Q ss_pred CCHHHHHHHHHHhhC
Q 034304 22 SKAIDAIQFYKTAFG 36 (98)
Q Consensus 22 gdA~eAIeFYk~AFG 36 (98)
++-++|+.+|+++..
T Consensus 15 ~~~~~a~~~~~~~~~ 29 (34)
T smart00028 15 GDYDEALEYYEKALE 29 (34)
T ss_pred hhHHHHHHHHHHHHc
Confidence 678899999988864
No 136
>cd02679 MIT_spastin MIT: domain contained within Microtubule Interacting and Trafficking molecules. This MIT domain sub-family is found in the AAA protein spastin, a probable ATPase involved in the assembly or function of nuclear protein complexes; spastins might also be involved in microtubule dynamics. The molecular function of the MIT domain is unclear.
Probab=20.87 E-value=84 Score=20.75 Aligned_cols=16 Identities=13% Similarity=0.329 Sum_probs=13.7
Q ss_pred CCHHHHHHHHHHhhCC
Q 034304 22 SKAIDAIQFYKTAFGA 37 (98)
Q Consensus 22 gdA~eAIeFYk~AFGA 37 (98)
|+-++||++|+++..-
T Consensus 22 g~~e~Al~~Y~~gi~~ 37 (79)
T cd02679 22 GDKEQALAHYRKGLRE 37 (79)
T ss_pred CCHHHHHHHHHHHHHH
Confidence 6789999999998763
Done!