BLASTP 2.2.26 [Sep-21-2011]
Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.
Reference for compositional score matrix adjustment: Altschul, Stephen F.,
John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr Morgulis,
Alejandro A. Schaffer, and Yi-Kuo Yu (2005) "Protein database searches
using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109.
Query= 036405
(98 letters)
Database: pdbaa
62,578 sequences; 14,973,337 total letters
Searching..................................................done
>pdb|1GME|A Chain A, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
pdb|1GME|B Chain B, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
pdb|1GME|C Chain C, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
pdb|1GME|D Chain D, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
Length = 151
Score = 97.1 bits (240), Expect = 2e-21, Method: Compositional matrix adjust.
Identities = 53/104 (50%), Positives = 65/104 (62%), Gaps = 12/104 (11%)
Query: 6 SIFGNRSVFDPFSSDVWA-----------PLGSSSNEVSTFASAQVDWKETREAHVFKAD 54
SI +VFDPF+ D+WA + +E + FA+A++DWKET EAHVFKAD
Sbjct: 2 SIVRRSNVFDPFA-DLWADPFDTFRSIVPAISGGGSETAAFANARMDWKETPEAHVFKAD 60
Query: 55 LPGLXXXXXXXXXXDGRVLQISGERSVEKEDKNDKWHRVERGRG 98
LPG+ DG VL +SGER+ EKEDKNDKWHRVER G
Sbjct: 61 LPGVKKEEVKVEVEDGNVLVVSGERTKEKEDKNDKWHRVERSSG 104
>pdb|2BYU|A Chain A, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|B Chain B, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|C Chain C, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|D Chain D, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|E Chain E, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|F Chain F, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|G Chain G, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|H Chain H, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|I Chain I, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|J Chain J, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|K Chain K, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|L Chain L, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
Length = 101
Score = 81.3 bits (199), Expect = 1e-16, Method: Compositional matrix adjust.
Identities = 40/62 (64%), Positives = 46/62 (74%)
Query: 37 SAQVDWKETREAHVFKADLPGLXXXXXXXXXXDGRVLQISGERSVEKEDKNDKWHRVERG 96
+A++DWKET EAHVFKADLPG+ DG VL +SGER+ EKEDKNDKWHRVER
Sbjct: 1 NARMDWKETPEAHVFKADLPGVKKEEVKVEVEDGNVLVVSGERTKEKEDKNDKWHRVERS 60
Query: 97 RG 98
G
Sbjct: 61 SG 62
>pdb|2H50|A Chain A, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|B Chain B, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|C Chain C, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|D Chain D, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|E Chain E, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|F Chain F, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|G Chain G, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|H Chain H, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|I Chain I, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|J Chain J, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|K Chain K, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|L Chain L, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|M Chain M, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|N Chain N, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|O Chain O, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|P Chain P, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|Q Chain Q, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|R Chain R, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|S Chain S, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|T Chain T, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|U Chain U, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|V Chain V, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|W Chain W, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|X Chain X, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|A Chain A, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|B Chain B, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|C Chain C, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|D Chain D, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|E Chain E, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|F Chain F, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|G Chain G, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|H Chain H, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|I Chain I, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|J Chain J, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|K Chain K, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|L Chain L, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|M Chain M, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|N Chain N, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|O Chain O, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|P Chain P, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|Q Chain Q, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|R Chain R, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|S Chain S, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|T Chain T, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|U Chain U, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|V Chain V, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|W Chain W, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|X Chain X, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
Length = 93
Score = 80.5 bits (197), Expect = 2e-16, Method: Compositional matrix adjust.
Identities = 40/61 (65%), Positives = 45/61 (73%)
Query: 38 AQVDWKETREAHVFKADLPGLXXXXXXXXXXDGRVLQISGERSVEKEDKNDKWHRVERGR 97
A++DWKET EAHVFKADLPG+ DG VL +SGER+ EKEDKNDKWHRVER
Sbjct: 1 ARMDWKETPEAHVFKADLPGVKKEEVKVEVEDGNVLVVSGERTKEKEDKNDKWHRVERSS 60
Query: 98 G 98
G
Sbjct: 61 G 61
>pdb|3GT6|A Chain A, Crystal Structure Of The Hspa From Xanthomonas
Axonopodis
pdb|3GT6|B Chain B, Crystal Structure Of The Hspa From Xanthomonas
Axonopodis
pdb|3GUF|A Chain A, Crystal Structure Of The Hspa From Xanthomonas
Axonopodis
pdb|3GUF|B Chain B, Crystal Structure Of The Hspa From Xanthomonas
Axonopodis
Length = 103
Score = 35.4 bits (80), Expect = 0.009, Method: Compositional matrix adjust.
Identities = 21/60 (35%), Positives = 29/60 (48%), Gaps = 1/60 (1%)
Query: 39 QVDWKETREAHVFKADLPGLXXXXXXXXXXDGRVLQISGERSVEKEDKNDKWHRVERGRG 98
+VD KE V ADLPG+ G +L I GER E + +++ R+ER G
Sbjct: 9 RVDIKEEVNHFVLYADLPGIDPSQIEVQMDKG-ILSIRGERKSESSTETERFSRIERRYG 67
>pdb|3GLA|A Chain A, Crystal Structure Of The Hspa From Xanthomonas
Axonopodis
pdb|3GLA|B Chain B, Crystal Structure Of The Hspa From Xanthomonas
Axonopodis
Length = 100
Score = 35.0 bits (79), Expect = 0.011, Method: Compositional matrix adjust.
Identities = 21/60 (35%), Positives = 29/60 (48%), Gaps = 1/60 (1%)
Query: 39 QVDWKETREAHVFKADLPGLXXXXXXXXXXDGRVLQISGERSVEKEDKNDKWHRVERGRG 98
+VD KE V ADLPG+ G +L I GER E + +++ R+ER G
Sbjct: 6 RVDIKEEVNHFVLYADLPGIDPSQIEVQMDKG-ILSIRGERKSESSTETERFSRIERRYG 64
Database: pdbaa
Posted date: Mar 3, 2013 10:34 PM
Number of letters in database: 14,973,337
Number of sequences in database: 62,578
Lambda K H
0.314 0.131 0.396
Lambda K H
0.267 0.0410 0.140
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 2,662,268
Number of Sequences: 62578
Number of extensions: 75774
Number of successful extensions: 142
Number of sequences better than 100.0: 9
Number of HSP's better than 100.0 without gapping: 8
Number of HSP's successfully gapped in prelim test: 1
Number of HSP's that attempted gapping in prelim test: 132
Number of HSP's gapped (non-prelim): 9
length of query: 98
length of database: 14,973,337
effective HSP length: 64
effective length of query: 34
effective length of database: 10,968,345
effective search space: 372923730
effective search space used: 372923730
T: 11
A: 40
X1: 16 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 45 (21.9 bits)