Query 036836
Match_columns 122
No_of_seqs 117 out of 732
Neff 5.7
Searched_HMMs 46136
Date Fri Mar 29 05:57:39 2013
Command hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/036836.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/036836hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 COG0435 ECM4 Predicted glutath 100.0 1.2E-53 2.6E-58 342.5 7.1 118 1-122 88-205 (324)
2 KOG2903 Predicted glutathione 100.0 4.7E-51 1E-55 325.7 6.4 122 1-122 74-203 (319)
3 PF13409 GST_N_2: Glutathione 98.2 1E-06 2.2E-11 56.6 2.5 31 40-72 40-70 (70)
4 PLN02395 glutathione S-transfe 97.0 0.0015 3.4E-08 48.8 5.4 67 28-105 39-107 (215)
5 PRK15113 glutathione S-transfe 96.3 0.0086 1.9E-07 45.2 5.2 66 30-105 47-114 (214)
6 PLN02473 glutathione S-transfe 96.1 0.014 3E-07 43.7 5.4 56 43-105 51-108 (214)
7 PF13417 GST_N_3: Glutathione 96.0 0.0095 2E-07 38.1 3.5 38 30-74 35-72 (75)
8 cd03041 GST_N_2GST_N GST_N fam 96.0 0.01 2.2E-07 38.2 3.5 31 42-73 47-77 (77)
9 TIGR01262 maiA maleylacetoacet 95.9 0.021 4.6E-07 42.4 5.6 52 41-101 47-100 (210)
10 KOG0867 Glutathione S-transfer 95.7 0.023 4.9E-07 44.1 5.1 62 27-100 39-100 (226)
11 PRK10387 glutaredoxin 2; Provi 95.7 0.029 6.2E-07 41.7 5.3 59 41-109 43-102 (210)
12 PRK11752 putative S-transferas 95.6 0.025 5.4E-07 44.7 5.0 52 42-101 97-151 (264)
13 COG0625 Gst Glutathione S-tran 95.5 0.041 8.9E-07 41.2 5.6 70 28-109 37-111 (211)
14 PRK09481 sspA stringent starva 95.2 0.048 1E-06 41.1 5.3 46 30-88 47-92 (211)
15 PRK10542 glutathionine S-trans 95.2 0.057 1.2E-06 39.8 5.6 65 31-107 41-108 (201)
16 TIGR02182 GRXB Glutaredoxin, G 95.1 0.06 1.3E-06 40.8 5.7 53 43-105 44-97 (209)
17 cd03058 GST_N_Tau GST_N family 94.9 0.029 6.2E-07 35.4 2.9 37 31-73 38-74 (74)
18 PRK13972 GSH-dependent disulfi 94.8 0.067 1.4E-06 40.2 5.1 62 30-103 40-107 (215)
19 cd03048 GST_N_Ure2p_like GST_N 94.8 0.042 9E-07 35.2 3.4 40 30-74 40-80 (81)
20 cd03075 GST_N_Mu GST_N family, 94.7 0.029 6.4E-07 36.8 2.5 28 42-72 54-81 (82)
21 PRK10357 putative glutathione 94.3 0.12 2.6E-06 38.2 5.4 53 40-100 43-97 (202)
22 cd03038 GST_N_etherase_LigE GS 94.1 0.084 1.8E-06 34.2 3.8 31 41-73 53-83 (84)
23 cd03057 GST_N_Beta GST_N famil 94.1 0.077 1.7E-06 33.5 3.5 39 30-74 39-77 (77)
24 cd03080 GST_N_Metaxin_like GST 93.9 0.088 1.9E-06 33.5 3.4 32 40-74 44-75 (75)
25 PLN02378 glutathione S-transfe 93.7 0.13 2.7E-06 39.1 4.5 36 32-74 50-85 (213)
26 KOG0868 Glutathione S-transfer 93.6 0.17 3.7E-06 39.6 5.2 60 42-110 54-119 (217)
27 cd03059 GST_N_SspA GST_N famil 93.5 0.081 1.8E-06 32.8 2.8 36 31-73 38-73 (73)
28 cd03077 GST_N_Alpha GST_N fami 93.3 0.093 2E-06 34.0 2.9 32 40-74 46-77 (79)
29 cd03040 GST_N_mPGES2 GST_N fam 93.1 0.13 2.9E-06 32.4 3.4 30 42-72 44-75 (77)
30 cd03046 GST_N_GTT1_like GST_N 93.1 0.13 2.9E-06 32.0 3.2 29 42-73 47-75 (76)
31 cd03050 GST_N_Theta GST_N fami 93.0 0.1 2.2E-06 33.0 2.7 35 32-73 42-76 (76)
32 cd00570 GST_N_family Glutathio 93.0 0.11 2.3E-06 30.7 2.6 27 41-70 45-71 (71)
33 cd03037 GST_N_GRX2 GST_N famil 93.0 0.12 2.5E-06 32.3 2.9 27 42-70 44-70 (71)
34 cd03061 GST_N_CLIC GST_N famil 92.9 0.12 2.6E-06 35.4 3.1 37 31-74 51-87 (91)
35 TIGR00862 O-ClC intracellular 92.5 0.16 3.6E-06 40.1 3.7 38 30-74 47-84 (236)
36 cd03042 GST_N_Zeta GST_N famil 92.2 0.15 3.2E-06 31.5 2.6 26 42-70 48-73 (73)
37 cd03076 GST_N_Pi GST_N family, 92.1 0.14 3E-06 32.5 2.4 28 41-71 45-72 (73)
38 cd03053 GST_N_Phi GST_N family 91.7 0.19 4.2E-06 31.5 2.7 35 30-71 41-75 (76)
39 cd03052 GST_N_GDAP1 GST_N fami 91.7 0.18 3.9E-06 32.2 2.6 25 43-70 49-73 (73)
40 cd03039 GST_N_Sigma_like GST_N 90.5 0.24 5.2E-06 30.9 2.3 27 41-70 45-71 (72)
41 cd03056 GST_N_4 GST_N family, 90.4 0.33 7.2E-06 29.8 2.9 34 30-70 40-73 (73)
42 cd03045 GST_N_Delta_Epsilon GS 89.8 0.4 8.6E-06 29.7 2.9 34 30-70 40-73 (74)
43 PF02798 GST_N: Glutathione S- 89.6 0.66 1.4E-05 29.7 3.9 35 31-70 41-75 (76)
44 PLN02817 glutathione dehydroge 89.3 0.71 1.5E-05 36.8 4.7 42 44-94 111-152 (265)
45 PLN02907 glutamate-tRNA ligase 88.5 1 2.3E-05 41.1 5.6 50 43-100 35-86 (722)
46 cd03051 GST_N_GTT2_like GST_N 87.8 0.63 1.4E-05 28.4 2.8 27 42-70 48-74 (74)
47 cd03047 GST_N_2 GST_N family, 87.6 0.56 1.2E-05 29.3 2.5 34 30-70 40-73 (73)
48 cd03044 GST_N_EF1Bgamma GST_N 86.8 0.75 1.6E-05 29.0 2.7 36 30-71 39-74 (75)
49 PTZ00057 glutathione s-transfe 86.1 0.79 1.7E-05 34.3 2.9 31 41-74 54-84 (205)
50 cd03049 GST_N_3 GST_N family, 85.9 0.71 1.5E-05 28.7 2.3 27 42-70 47-73 (73)
51 cd03054 GST_N_Metaxin GST_N fa 85.4 1.3 2.8E-05 27.5 3.3 28 41-71 44-71 (72)
52 cd03060 GST_N_Omega_like GST_N 85.2 1.2 2.5E-05 27.8 3.0 26 42-69 45-70 (71)
53 KOG0406 Glutathione S-transfer 84.8 1.9 4.1E-05 34.4 4.7 65 30-105 46-112 (231)
54 cd03079 GST_N_Metaxin2 GST_N f 84.0 1.2 2.6E-05 29.3 2.8 26 43-71 48-73 (74)
55 cd03055 GST_N_Omega GST_N fami 82.9 1.4 3.1E-05 28.9 2.8 27 42-70 63-89 (89)
56 PF10568 Tom37: Outer mitochon 80.8 1 2.2E-05 29.4 1.4 37 31-69 35-71 (72)
57 cd03043 GST_N_1 GST_N family, 80.7 1.7 3.6E-05 27.5 2.4 33 31-70 41-73 (73)
58 cd03078 GST_N_Metaxin1_like GS 77.2 4.5 9.7E-05 26.0 3.7 33 36-71 39-71 (73)
59 PF03469 XH: XH domain; Inter 76.8 0.94 2E-05 33.3 0.4 31 40-72 94-124 (132)
60 cd03029 GRX_hybridPRX5 Glutare 63.6 8.2 0.00018 23.9 2.6 27 41-70 46-72 (72)
61 TIGR02190 GlrX-dom Glutaredoxi 62.1 8.3 0.00018 24.6 2.5 27 41-70 53-79 (79)
62 TIGR02196 GlrX_YruB Glutaredox 60.0 9.7 0.00021 22.6 2.4 28 42-70 47-74 (74)
63 COG2999 GrxB Glutaredoxin 2 [P 59.8 16 0.00034 28.8 3.9 57 41-106 43-99 (215)
64 PF11734 TilS_C: TilS substrat 57.1 5.6 0.00012 25.6 1.0 34 23-58 17-50 (74)
65 COG0522 RpsD Ribosomal protein 53.6 8.2 0.00018 30.2 1.5 22 95-116 87-108 (205)
66 PRK11200 grxA glutaredoxin 1; 48.4 24 0.00052 22.6 2.9 29 42-73 55-83 (85)
67 TIGR02200 GlrX_actino Glutared 44.3 35 0.00076 20.6 3.1 28 42-69 48-75 (77)
68 TIGR02183 GRXA Glutaredoxin, G 40.2 43 0.00093 21.7 3.2 29 43-74 55-83 (86)
69 PF15567 Imm19: Immunity prote 39.3 20 0.00043 24.3 1.5 23 36-58 48-70 (88)
70 PF02852 Pyr_redox_dim: Pyridi 37.2 57 0.0012 21.8 3.6 31 42-72 47-82 (110)
71 cd02976 NrdH NrdH-redoxin (Nrd 36.9 34 0.00074 20.1 2.2 21 42-64 47-67 (73)
72 TIGR02194 GlrX_NrdH Glutaredox 36.7 43 0.00092 20.7 2.7 24 42-65 45-68 (72)
73 KOG4420 Uncharacterized conser 35.3 52 0.0011 27.4 3.6 39 43-89 75-113 (325)
74 PF06823 DUF1236: Protein of u 34.4 25 0.00055 22.6 1.3 14 46-59 49-62 (65)
75 PF05402 PqqD: Coenzyme PQQ sy 33.5 86 0.0019 19.0 3.7 53 48-100 4-61 (68)
76 PHA02057 ADP-ribosylation supe 32.7 90 0.0019 26.0 4.5 100 15-115 36-156 (319)
77 TIGR00676 fadh2 5,10-methylene 31.9 32 0.00069 27.4 1.8 59 58-121 108-168 (272)
78 PF05341 DUF708: Protein of un 31.1 45 0.00098 23.6 2.3 26 44-70 53-78 (105)
79 PF09635 MetRS-N: MetRS-N bind 30.3 42 0.00091 24.4 2.0 31 45-76 35-65 (122)
80 PF12663 DUF3788: Protein of u 30.0 63 0.0014 23.3 2.9 38 26-70 93-130 (133)
81 cd00537 MTHFR Methylenetetrahy 30.0 48 0.001 26.1 2.5 60 57-121 109-171 (274)
82 COG1313 PflX Uncharacterized F 28.7 87 0.0019 26.4 3.9 41 19-70 173-213 (335)
83 PF04674 Phi_1: Phosphate-indu 28.5 26 0.00056 28.7 0.7 15 42-56 254-268 (273)
84 PF03413 PepSY: Peptidase prop 28.1 40 0.00087 19.8 1.4 19 42-60 45-63 (64)
85 PF10143 PhosphMutase: 2,3-bis 27.6 30 0.00065 26.1 0.9 28 48-75 70-97 (172)
86 TIGR02433 lysidine_TilS_C tRNA 27.1 38 0.00083 19.4 1.2 27 25-51 19-45 (47)
87 PRK10972 Z-ring-associated pro 26.4 42 0.00092 23.8 1.5 54 53-106 43-96 (109)
88 PHA02956 hypothetical protein; 26.4 1.2E+02 0.0027 22.9 4.0 70 37-110 98-171 (189)
89 PF05314 Baculo_ODV-E27: Bacul 25.8 1E+02 0.0023 25.4 3.8 30 45-74 118-152 (279)
90 cd02066 GRX_family Glutaredoxi 25.3 86 0.0019 18.0 2.6 24 42-68 47-70 (72)
91 cd03419 GRX_GRXh_1_2_like Glut 24.2 1E+02 0.0022 18.8 2.9 29 40-71 48-76 (82)
92 PF13076 DUF3940: Protein of u 23.4 41 0.00088 19.5 0.8 15 98-112 5-19 (38)
93 PF10545 MADF_DNA_bdg: Alcohol 23.2 17 0.00037 22.7 -1.0 24 47-70 9-37 (85)
94 KOG1695 Glutathione S-transfer 23.1 79 0.0017 24.6 2.5 26 45-74 51-77 (206)
95 PF11776 DUF3315: Domain of un 22.4 63 0.0014 19.6 1.5 12 48-59 40-51 (52)
96 PF14380 WAK_assoc: Wall-assoc 22.2 62 0.0014 21.5 1.6 31 42-74 27-57 (94)
97 KOG1838 Alpha/beta hydrolase [ 21.5 62 0.0014 28.0 1.8 29 22-50 298-327 (409)
98 PF11417 Inhibitor_G39P: Loade 21.5 1.1E+02 0.0025 19.8 2.7 38 60-101 4-41 (71)
99 KOG0361 Chaperonin complex com 20.7 93 0.002 27.4 2.7 50 23-75 26-75 (543)
100 PRK09239 chorismate mutase; Pr 20.5 1.3E+02 0.0028 20.8 3.0 19 88-106 14-32 (104)
No 1
>COG0435 ECM4 Predicted glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=100.00 E-value=1.2e-53 Score=342.55 Aligned_cols=118 Identities=53% Similarity=0.959 Sum_probs=113.9
Q ss_pred CCCCCceeCCCCCCCCCCCCCCCCCcchHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccC
Q 036836 1 MRHRGWVFPATDTEEPGAEPDPLNGAKTIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENA 80 (122)
Q Consensus 1 ~~~~gW~F~~~~~~~~g~~~Dpv~g~~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~ 80 (122)
|+++||+|.+. .+|++.||++|+++|+|+|.+++|+|+||+|||||||+++++||||||+|||||||++|++++.+
T Consensus 88 m~~~GW~F~~~---~~g~t~dpl~g~~~L~~~Y~~adP~YsgRvTVPVLwDk~~~tIVnNES~eIirm~N~aFde~~~~- 163 (324)
T COG0435 88 MDENGWTFDPE---FPGATGDPLYGIERLSQLYTRADPDYSGRVTVPVLWDKKTQTIVNNESAEIIRMFNSAFDEFGAS- 163 (324)
T ss_pred ccCCCceEcCC---CCCCCCCcccchhHHHHHHhhcCCCCCCceeEEEEEecCCCeeecCCcHHHHHHHHHHHHHHhhh-
Confidence 68999999885 47999999999999999999999999999999999999999999999999999999999999987
Q ss_pred CCCCCCcccHHHHHHHHHHHhhcchhhhhccCCCCCccCccC
Q 036836 81 SLDLHPSDQRDQIDGTNEWIYNGINNGVYRCGFATKQGPYDE 122 (122)
Q Consensus 81 ~~dL~P~~l~~~Id~~~~~i~~~inngVYk~GfA~~Q~~Y~~ 122 (122)
++||||++||.+||++|+|||+.|||||||||||++|+|||+
T Consensus 164 ~~dlyP~~Lr~eId~~n~~Iy~~vNNGVYk~GFA~tq~aYee 205 (324)
T COG0435 164 AVDLYPEALRTEIDELNKWIYDTVNNGVYKAGFATTQEAYEE 205 (324)
T ss_pred ccccCCHHHHHHHHHHHhhhcccccCceeeecccchHHHHHH
Confidence 699999999999999999999999999999999999999984
No 2
>KOG2903 consensus Predicted glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=100.00 E-value=4.7e-51 Score=325.75 Aligned_cols=122 Identities=62% Similarity=1.075 Sum_probs=113.0
Q ss_pred CCCCCceeCC-----CCCCCCCCCCCCCCCcchHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcch
Q 036836 1 MRHRGWVFPA-----TDTEEPGAEPDPLNGAKTIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFND 75 (122)
Q Consensus 1 ~~~~gW~F~~-----~~~~~~g~~~Dpv~g~~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~ 75 (122)
++++||+|.+ .+.+..+.++||++|+++|+|||..++|+|+||+|||||||+|+++||||||+||+||||++|++
T Consensus 74 ~d~~gW~F~~~~~~~nDs~~l~~~~d~~~g~k~l~elY~~~~p~Y~grfTVPVLWD~k~ktIVnNES~eIIr~fNs~f~e 153 (319)
T KOG2903|consen 74 LDDKGWRFLDEHIIINDSERLGVTPDPLNGAKRLRELYYIASPNYTGRFTVPVLWDLKTKTIVNNESSEIIRMFNSAFDE 153 (319)
T ss_pred cCCCcccCCCcccCCCchhcccCCCcccccchhHHHHHhhcCCCCCceEEEEEEEccccceeecCchHHHHHHHhhhhhh
Confidence 5789999988 55567788999999999999999999999999999999999999999999999999999955555
Q ss_pred ---hhccCCCCCCCcccHHHHHHHHHHHhhcchhhhhccCCCCCccCccC
Q 036836 76 ---IAENASLDLHPSDQRDQIDGTNEWIYNGINNGVYRCGFATKQGPYDE 122 (122)
Q Consensus 76 ---~~~~~~~dL~P~~l~~~Id~~~~~i~~~inngVYk~GfA~~Q~~Y~~ 122 (122)
.++++.+||||.+|+++||++|+|+|+.|||||||||||++|++||+
T Consensus 154 f~~~~e~~~lDL~P~~L~~~Ide~N~wvy~~INNGVYk~GFA~~~e~Ye~ 203 (319)
T KOG2903|consen 154 FNGIAENPVLDLYPSSLRAQIDETNSWVYDKINNGVYKCGFAEKQEAYEE 203 (319)
T ss_pred hhccccCCccccCCHHHHHHHhhhhceecccccCceeeeccccccchHHH
Confidence 46678899999999999999999999999999999999999999984
No 3
>PF13409 GST_N_2: Glutathione S-transferase, N-terminal domain; PDB: 3C8E_B 3M1G_A 3R3E_A 3O3T_A 1RK4_A 1K0O_B 1K0N_A 3QR6_A 3SWL_A 3TGZ_B ....
Probab=98.20 E-value=1e-06 Score=56.56 Aligned_cols=31 Identities=35% Similarity=0.382 Sum_probs=24.8
Q ss_pred CCCceeeceEeeCCCCceecCChHHHHHHHHhh
Q 036836 40 YSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTE 72 (122)
Q Consensus 40 y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~ 72 (122)
++++.+||+|+|. +|+ |.+||.+|+++|+++
T Consensus 40 ~~p~~~VP~L~~~-~g~-vi~eS~~I~~yL~~~ 70 (70)
T PF13409_consen 40 LNPRGKVPVLVDP-DGT-VINESLAILEYLEEQ 70 (70)
T ss_dssp HSTT-SSSEEEET-TTE-EEESHHHHHHHHHHT
T ss_pred cCcCeEEEEEEEC-CCC-EeeCHHHHHHHHhcC
Confidence 4567799999997 666 667899999999964
No 4
>PLN02395 glutathione S-transferase
Probab=97.01 E-value=0.0015 Score=48.81 Aligned_cols=67 Identities=19% Similarity=0.177 Sum_probs=46.3
Q ss_pred hHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCc--ccHHHHHHHHHHHhhcch
Q 036836 28 TIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPS--DQRDQIDGTNEWIYNGIN 105 (122)
Q Consensus 28 ~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~--~l~~~Id~~~~~i~~~in 105 (122)
...+-|.+-+|- -+||+|+|. + .+=.||..|+++|++.|.. ....|+|. ..+..++.|..++...+.
T Consensus 39 ~~~~~~~~~nP~----g~vP~L~~~--~-~~l~ES~aI~~YL~~~~~~----~~~~l~p~~~~~~~~~~~~~~~~~~~~~ 107 (215)
T PLN02395 39 HKQPEYLALQPF----GVVPVIVDG--D-YKIFESRAIMRYYAEKYRS----QGPDLLGKTIEERGQVEQWLDVEATSYH 107 (215)
T ss_pred cCCHHHHhhCCC----CCCCEEEEC--C-EEEEcHHHHHHHHHHHcCC----CCcCcCCCChhHHHHHHHHHHHHHHhcC
Confidence 344556665554 579999974 3 5677899999999988863 12358885 456678888887655443
No 5
>PRK15113 glutathione S-transferase; Provisional
Probab=96.31 E-value=0.0086 Score=45.25 Aligned_cols=66 Identities=21% Similarity=0.278 Sum_probs=44.5
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcc--cHHHHHHHHHHHhhcch
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD--QRDQIDGTNEWIYNGIN 105 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~--l~~~Id~~~~~i~~~in 105 (122)
.+-|.+-+| .-.||||.|. + .+=.||..|+++|+..|... ....|+|.+ .++.+.+|..|+...+.
T Consensus 47 ~~~~~~~nP----~g~VP~L~~~--~-~~l~ES~aI~~YL~~~~~~~---~~~~l~p~~~~~ra~~~~~~~~~~~~~~ 114 (214)
T PRK15113 47 QPTYQGYSL----TRRVPTLQHD--D-FELSESSAIAEYLEERFAPP---AWERIYPADLQARARARQIQAWLRSDLM 114 (214)
T ss_pred CHHHHhcCC----CCCCCEEEEC--C-EEEecHHHHHHHHHHHcCCC---CccccCCCCHHHHHHHHHHHHHHHhhhH
Confidence 456666544 4579999984 4 45566999999999887521 001399954 45678888877765554
No 6
>PLN02473 glutathione S-transferase
Probab=96.12 E-value=0.014 Score=43.69 Aligned_cols=56 Identities=27% Similarity=0.201 Sum_probs=39.6
Q ss_pred ceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcc--cHHHHHHHHHHHhhcch
Q 036836 43 KFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD--QRDQIDGTNEWIYNGIN 105 (122)
Q Consensus 43 r~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~--l~~~Id~~~~~i~~~in 105 (122)
.-+||+|+| .+.++. ||..|+++|++.|+. ....|+|.. .+..++.|..++...+.
T Consensus 51 ~g~vP~L~~--~g~~l~-ES~aI~~YL~~~~~~----~~~~l~p~~~~~ra~~~~~~~~~~~~~~ 108 (214)
T PLN02473 51 FGQVPAIED--GDLKLF-ESRAIARYYATKYAD----QGTDLLGKTLEHRAIVDQWVEVENNYFY 108 (214)
T ss_pred CCCCCeEEE--CCEEEE-ehHHHHHHHHHHcCC----cCCCCCCCCHHHHHHHHHHHHHHHhccc
Confidence 357999998 344554 899999999988752 112588864 45678888877766554
No 7
>PF13417 GST_N_3: Glutathione S-transferase, N-terminal domain; PDB: 3ERG_B 3IBH_A 3ERF_A 3UBL_A 3UBK_A 3IR4_A 3M8N_B 2R4V_A 2PER_A 2R5G_A ....
Probab=96.02 E-value=0.0095 Score=38.07 Aligned_cols=38 Identities=26% Similarity=0.350 Sum_probs=28.6
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
++-|.+.. +..+||||.+. |+++. ||.+|+++|+..|.
T Consensus 35 ~~~~~~~~----p~~~vPvL~~~--g~~l~-dS~~I~~yL~~~~~ 72 (75)
T PF13417_consen 35 RPEFLKLN----PKGKVPVLVDD--GEVLT-DSAAIIEYLEERYP 72 (75)
T ss_dssp SHHHHHHS----TTSBSSEEEET--TEEEE-SHHHHHHHHHHHST
T ss_pred hhHHHhhc----ccccceEEEEC--CEEEe-CHHHHHHHHHHHcC
Confidence 44444443 55699999965 77666 59999999998876
No 8
>cd03041 GST_N_2GST_N GST_N family, 2 repeats of the N-terminal domain of soluble GSTs (2 GST_N) subfamily; composed of uncharacterized proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains.
Probab=95.99 E-value=0.01 Score=38.22 Aligned_cols=31 Identities=29% Similarity=0.398 Sum_probs=23.8
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
+.-+||+|.|...+ ++--||.+|+++|+..|
T Consensus 47 p~~~vP~l~~~~~~-~~l~es~~I~~yL~~~~ 77 (77)
T cd03041 47 GKVQVPYLVDPNTG-VQMFESADIVKYLFKTY 77 (77)
T ss_pred CCCcccEEEeCCCC-eEEEcHHHHHHHHHHhC
Confidence 45799999986445 44556999999999754
No 9
>TIGR01262 maiA maleylacetoacetate isomerase. Maleylacetoacetate isomerase is an enzyme of tyrosine and phenylalanine catabolism. It requires glutathione and belongs by homology to the zeta family of glutathione S-transferases. The enzyme (EC 5.2.1.2) is described as active also on maleylpyruvate, and the example from a Ralstonia sp. catabolic plasmid is described as a maleylpyruvate isomerase involved in gentisate catabolism.
Probab=95.94 E-value=0.021 Score=42.38 Aligned_cols=52 Identities=21% Similarity=0.196 Sum_probs=36.4
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCc--ccHHHHHHHHHHHh
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPS--DQRDQIDGTNEWIY 101 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~--~l~~~Id~~~~~i~ 101 (122)
...-+||+|.| .|.+ -.||..|+++|+..|.. .+|+|. ..+..+++|..++.
T Consensus 47 nP~g~vP~L~~--~g~~-l~ES~aI~~yl~~~~~~------~~l~p~~~~~~a~~~~~~~~~~ 100 (210)
T TIGR01262 47 NPQGLVPTLDI--DGEV-LTQSLAIIEYLEETYPD------PPLLPADPIKRARVRALALLIA 100 (210)
T ss_pred CCCCcCCEEEE--CCEE-eecHHHHHHHHHHhCCC------CCCCCCCHHHHHHHHHHHHHHh
Confidence 35678999998 4554 45699999999988752 358885 34445666655543
No 10
>KOG0867 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=95.69 E-value=0.023 Score=44.13 Aligned_cols=62 Identities=18% Similarity=0.200 Sum_probs=41.5
Q ss_pred chHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccHHHHHHHHHHH
Q 036836 27 KTIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQRDQIDGTNEWI 100 (122)
Q Consensus 27 ~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id~~~~~i 100 (122)
.++.+=|.+-+|. =+||+|.|. +-.+.+ |.+|+++|.+.|. . .+ -.|+|.+. .+...+++|+
T Consensus 39 e~~~pefl~~nP~----~kVP~l~d~--~~~l~e-S~AI~~Yl~~ky~--~-~~-~~l~p~~~-~~ra~v~~~l 100 (226)
T KOG0867|consen 39 EQKSPEFLKLNPL----GKVPALEDG--GLTLWE-SHAILRYLAEKYG--P-LG-GILLPKDL-KERAIVDQWL 100 (226)
T ss_pred ccCCHHHHhcCcC----CCCCeEecC--CeEEee-HHHHHHHHHHHcC--C-CC-cccCCcCH-HHHHHHHHHH
Confidence 4445555555544 489999998 666666 9999999998776 2 22 23999876 4444444444
No 11
>PRK10387 glutaredoxin 2; Provisional
Probab=95.65 E-value=0.029 Score=41.68 Aligned_cols=59 Identities=19% Similarity=0.182 Sum_probs=39.0
Q ss_pred CCceeeceEe-eCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccHHHHHHHHHHHhhcchhhhh
Q 036836 41 SRKFTVPVLW-DKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQRDQIDGTNEWIYNGINNGVY 109 (122)
Q Consensus 41 ~gr~TVPvL~-D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id~~~~~i~~~inngVY 109 (122)
.+.-+||||+ | .|.+ -.||.+|+++|...|+. ..|. ...+..+++|..++...+...+|
T Consensus 43 ~p~~~VPvL~~~--~g~~-l~eS~aI~~yL~~~~~~------~~l~-~~~~~~~~~~~~~~~~~~~~~~~ 102 (210)
T PRK10387 43 IGQKQVPILQKD--DGSY-MPESLDIVHYIDELDGK------PLLT-GKRSPAIEEWLRKVFGYLNKLLY 102 (210)
T ss_pred cCCcccceEEec--CCeE-ecCHHHHHHHHHHhCCC------ccCC-CcccHHHHHHHHHHHHHhhcchh
Confidence 3467999995 5 3544 55699999999988752 2233 23567788887777655544433
No 12
>PRK11752 putative S-transferase; Provisional
Probab=95.59 E-value=0.025 Score=44.71 Aligned_cols=52 Identities=23% Similarity=0.296 Sum_probs=36.3
Q ss_pred CceeeceEeeCCC-CceecCChHHHHHHHHhhcchhhccCCCCCCCcc--cHHHHHHHHHHHh
Q 036836 42 RKFTVPVLWDKKL-KTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD--QRDQIDGTNEWIY 101 (122)
Q Consensus 42 gr~TVPvL~D~~t-~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~--l~~~Id~~~~~i~ 101 (122)
..-+||+|+|... +.++-.||..|+++|+..|+ .|+|.+ .+++++.|..++.
T Consensus 97 P~GkVP~Lv~~dg~~~~~L~ES~AIl~YL~~~~~--------~L~P~~~~era~v~~wl~~~~ 151 (264)
T PRK11752 97 PNSKIPALLDRSGNPPIRVFESGAILLYLAEKFG--------AFLPKDLAARTETLNWLFWQQ 151 (264)
T ss_pred CCCCCCEEEeCCCCCCeEEEcHHHHHHHHHHhcC--------CcCCCCHHHHHHHHHHHHHHh
Confidence 3468999998653 24667779999999998764 277753 4555666655543
No 13
>COG0625 Gst Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=95.45 E-value=0.041 Score=41.20 Aligned_cols=70 Identities=16% Similarity=0.114 Sum_probs=46.5
Q ss_pred hHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcc-----cHHHHHHHHHHHhh
Q 036836 28 TIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD-----QRDQIDGTNEWIYN 102 (122)
Q Consensus 28 ~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~-----l~~~Id~~~~~i~~ 102 (122)
...+-|.+-+|. -.||||.|.... ++. ||..|+++|+..|+. ..|+|.+ .|..+..|..++..
T Consensus 37 ~~~~~~~~~nP~----gkVPvL~~~~~~-~l~-ES~AI~~YL~~~~~~------~~l~p~~~~~r~~r~~~~~~~~~~~~ 104 (211)
T COG0625 37 QKPPDFLALNPL----GKVPALVDDDGE-VLT-ESGAILEYLAERYPG------PPLLPADPLARRARALLLWWLFFAAS 104 (211)
T ss_pred cCCHHHHhcCCC----CCCCEEeeCCCC-eee-cHHHHHHHHHhhCCC------CCcCCCCchhHHHHHHHHHHHHHHHh
Confidence 445566665554 479999987644 444 599999999988762 2288865 45566677766655
Q ss_pred cchhhhh
Q 036836 103 GINNGVY 109 (122)
Q Consensus 103 ~inngVY 109 (122)
.+...+-
T Consensus 105 ~~~~~~~ 111 (211)
T COG0625 105 DLHPVIG 111 (211)
T ss_pred cccHHHH
Confidence 5544433
No 14
>PRK09481 sspA stringent starvation protein A; Provisional
Probab=95.23 E-value=0.048 Score=41.09 Aligned_cols=46 Identities=22% Similarity=0.164 Sum_probs=32.2
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcc
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD 88 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~ 88 (122)
.+=|.+-+|. -+||||+| .+.++ -||..|+++|+..|+. ..|+|.+
T Consensus 47 ~~~~~~~nP~----g~VPvL~~--~g~~l-~ES~AIl~YL~~~~~~------~~l~p~~ 92 (211)
T PRK09481 47 PQDLIDLNPY----QSVPTLVD--RELTL-YESRIIMEYLDERFPH------PPLMPVY 92 (211)
T ss_pred CHHHHHhCCC----CCCCEEEE--CCEEe-eCHHHHHHHHHHhCCC------CCCCCCC
Confidence 3446655544 47899998 34444 5699999999998862 3577764
No 15
>PRK10542 glutathionine S-transferase; Provisional
Probab=95.22 E-value=0.057 Score=39.80 Aligned_cols=65 Identities=20% Similarity=0.205 Sum_probs=40.5
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCC-Cc--ccHHHHHHHHHHHhhcchhh
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLH-PS--DQRDQIDGTNEWIYNGINNG 107 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~-P~--~l~~~Id~~~~~i~~~inng 107 (122)
+-|.+-+|. -.||||.+. .|.++ .||..|+++|+..++. ..|+ |. ..+..+.+|..++...+..+
T Consensus 41 ~~~~~~nP~----g~vPvL~~~-~g~~l-~eS~aI~~YL~~~~~~------~~l~~p~~~~~ra~~~~~~~~~~~~~~~~ 108 (201)
T PRK10542 41 DDYLAINPK----GQVPALLLD-DGTLL-TEGVAIMQYLADSVPD------RQLLAPVGSLSRYHTIEWLNYIATELHKG 108 (201)
T ss_pred hHHHHhCcC----CCCCeEEeC-CCcEe-ecHHHHHHHHHHhCcc------cccCCCCCcHHHHHHHHHHHHHHhhhhhh
Confidence 445555544 679999842 34455 5699999999987752 2344 53 24555666666665555443
No 16
>TIGR02182 GRXB Glutaredoxin, GrxB family. This model includes the highly abundant E. coli GrxB (Grx2) glutaredoxin which is notably longer than either GrxA or GrxC. Unlike the other two E. coli glutaredoxins, GrxB appears to be unable to reduce ribonucleotide reductase, and may have more to do with resistance to redox stress.
Probab=95.15 E-value=0.06 Score=40.77 Aligned_cols=53 Identities=21% Similarity=0.156 Sum_probs=35.2
Q ss_pred ceeeceEe-eCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccHHHHHHHHHHHhhcch
Q 036836 43 KFTVPVLW-DKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQRDQIDGTNEWIYNGIN 105 (122)
Q Consensus 43 r~TVPvL~-D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id~~~~~i~~~in 105 (122)
.-+||+|. | .+ .+-.||.+|+++|...|+. .+++...+.++.+|..++...+.
T Consensus 44 ~g~vP~l~~~--~g-~~l~es~~I~~yL~~~~~~-------~~~~~~~~~~~~~~~~~~~~~~~ 97 (209)
T TIGR02182 44 AKQVPILQKD--DG-RAMPESLDIVAYFDKLDGE-------PLLTGKVSPEIEAWLRKVTGYAN 97 (209)
T ss_pred CCCcceEEee--CC-eEeccHHHHHHHHHHhCCC-------ccCCCCChHHHHHHHHHHHHHhh
Confidence 56899997 5 34 4566799999999988742 23344455666666665544443
No 17
>cd03058 GST_N_Tau GST_N family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropionate herbicides. In addition, Tau GSTs play important roles in intracellular signalling, biosynthesis of anthocyanin,
Probab=94.95 E-value=0.029 Score=35.39 Aligned_cols=37 Identities=19% Similarity=0.260 Sum_probs=25.9
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
+.|.+-.|. .-+||+|.|. +.++ -||.+|+++|++.|
T Consensus 38 ~~~~~~~p~---~~~vP~l~~~--~~~l-~eS~aI~~yL~~~~ 74 (74)
T cd03058 38 ELLLASNPV---HKKIPVLLHN--GKPI-CESLIIVEYIDEAW 74 (74)
T ss_pred HHHHHhCCC---CCCCCEEEEC--CEEe-ehHHHHHHHHHhhC
Confidence 345554443 3588999984 5544 66999999999765
No 18
>PRK13972 GSH-dependent disulfide bond oxidoreductase; Provisional
Probab=94.80 E-value=0.067 Score=40.24 Aligned_cols=62 Identities=16% Similarity=0.106 Sum_probs=40.2
Q ss_pred HhHHHHhcCCCCCceeeceEeeCC---CCc-eecCChHHHHHHHHhhcchhhccCCCCCCCc--ccHHHHHHHHHHHhhc
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKK---LKT-IVNNESAEIIRMFNTEFNDIAENASLDLHPS--DQRDQIDGTNEWIYNG 103 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~---t~~-IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~--~l~~~Id~~~~~i~~~ 103 (122)
.+-|.+-+|. -.||||.|.. .++ .|=-||..|+++|+..|+ .|+|. ..+..+..|..|....
T Consensus 40 ~~~~~~iNP~----gkVP~L~~~~~~d~g~~~~L~ES~AI~~YL~~~~~--------~l~p~~~~~ra~~~~~~~~~~~~ 107 (215)
T PRK13972 40 RPEFLRISPN----NKIPAIVDHSPADGGEPLSLFESGAILLYLAEKTG--------LFLSHETRERAATLQWLFWQVGG 107 (215)
T ss_pred CHHHHhhCcC----CCCCEEEeCCCCCCCCceeEEcHHHHHHHHHHhcC--------CCCCCCHHHHHHHHHHHHHHhhc
Confidence 3446665554 5799999853 454 355779999999998763 25664 3455566666655433
No 19
>cd03048 GST_N_Ure2p_like GST_N family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related GSTs. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The N-terminal TRX-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. Characterized GSTs in this subfamily include Aspergillus fumigatus GSTs 1 and 2, and
Probab=94.76 E-value=0.042 Score=35.24 Aligned_cols=40 Identities=13% Similarity=0.158 Sum_probs=28.0
Q ss_pred HhHHHHhcCCCCCceeeceEeeCC-CCceecCChHHHHHHHHhhcc
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKK-LKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~-t~~IVnNeS~~I~r~L~~~f~ 74 (122)
++-|.+-. ..-+||+|.|.. ++. +-.||.+|+++|+..|+
T Consensus 40 ~~~~~~~~----p~~~vP~l~~~~~~g~-~l~eS~aI~~yL~~~~~ 80 (81)
T cd03048 40 KPEFLKIN----PNGRIPAIVDHNGTPL-TVFESGAILLYLAEKYD 80 (81)
T ss_pred CHHHHHhC----cCCCCCEEEeCCCCce-EEEcHHHHHHHHHHHhC
Confidence 34455444 346799999864 244 44679999999998774
No 20
>cd03075 GST_N_Mu GST_N family, Class Mu subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Mu subfamily is composed of eukaryotic GSTs. In rats, at least six distinct class Mu subunits have been identified, with homologous genes in humans for five of these subunits. Class Mu GSTs can form homodimers and heterodimers, giving a large number of possible isoenzymes that can be formed, all with overlapping activities but different substrate specificities. They are the most abundant GSTs in human liver, skeletal muscle and brain, and are believed to provide protection against diseases inc
Probab=94.69 E-value=0.029 Score=36.76 Aligned_cols=28 Identities=18% Similarity=0.230 Sum_probs=22.0
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHHhh
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFNTE 72 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~ 72 (122)
..-+||+|.|. + .+-.||.+|+++|...
T Consensus 54 P~g~vP~L~~~--g-~~l~ES~AIl~YLa~~ 81 (82)
T cd03075 54 DFPNLPYYIDG--D-VKLTQSNAILRYIARK 81 (82)
T ss_pred cCCCCCEEEEC--C-EEEeehHHHHHHHhhc
Confidence 34589999983 3 5677899999999864
No 21
>PRK10357 putative glutathione S-transferase; Provisional
Probab=94.27 E-value=0.12 Score=38.20 Aligned_cols=53 Identities=15% Similarity=0.065 Sum_probs=35.5
Q ss_pred CCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCccc--HHHHHHHHHHH
Q 036836 40 YSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQ--RDQIDGTNEWI 100 (122)
Q Consensus 40 y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l--~~~Id~~~~~i 100 (122)
+...-+||||++. .|.++ -||..|+++|+..|. ...|+|.+. +..++++..++
T Consensus 43 ~nP~g~vP~L~~~-~g~~l-~eS~aI~~yL~~~~~------~~~l~p~~~~~~a~~~~~~~~~ 97 (202)
T PRK10357 43 YNPLGKVPALVTE-EGECW-FDSPIIAEYIELLNV------APAMLPRDPLAALRVRQLEALA 97 (202)
T ss_pred cCCccCCCeEEeC-CCCee-ecHHHHHHHHHHhCC------CCCCCCCCHHHHHHHHHHHHHH
Confidence 4566889999842 34555 569999999997764 135888653 34566665443
No 22
>cd03038 GST_N_etherase_LigE GST_N family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas paucimobilis beta etherase, LigE, a GST-like protein that catalyzes the cleavage of the beta-aryl ether linkages present in low-moleculer weight lignins using GSH as the hydrogen donor. This reaction is an essential step in the degradation of lignin, a complex phenolic polymer that is the most abundant aromatic material in the biosphere. The beta etherase activity of LigE is enantioselective and it complements the activity of the other GST family beta etherase, LigF.
Probab=94.11 E-value=0.084 Score=34.15 Aligned_cols=31 Identities=23% Similarity=0.422 Sum_probs=24.3
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
.+.-.||+|.|. .++++ -||.+|+++|+..|
T Consensus 53 ~p~~~vP~L~~~-~~~~l-~eS~aI~~yL~~~~ 83 (84)
T cd03038 53 GGFYTVPVIVDG-SGEVI-GDSFAIAEYLEEAY 83 (84)
T ss_pred CCCceeCeEEEC-CCCEE-eCHHHHHHHHHHhC
Confidence 457799999984 25555 57999999999766
No 23
>cd03057 GST_N_Beta GST_N family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit limited GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they also bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site forms a covalent bond with GSH.
Probab=94.08 E-value=0.077 Score=33.54 Aligned_cols=39 Identities=26% Similarity=0.243 Sum_probs=26.7
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
.+-|.+-+| .-.||+|.+.. +.+ -.||..|+++|++.|+
T Consensus 39 ~~~~~~~np----~~~vP~l~~~~-g~~-l~eS~aI~~yL~~~~p 77 (77)
T cd03057 39 GADYLAINP----KGQVPALVLDD-GEV-LTESAAILQYLADLHP 77 (77)
T ss_pred CHhHHHhCC----CCCCCEEEECC-CcE-EEcHHHHHHHHHHhCc
Confidence 344444443 46889998742 444 4569999999998763
No 24
>cd03080 GST_N_Metaxin_like GST_N family, Metaxin subfamily, Metaxin-like proteins; a heterogenous group of proteins, predominantly uncharacterized, with similarity to metaxins and GSTs. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. One characterized member of this subgroup is a novel GST from Rhodococcus with toluene o-monooxygenase and gamma-glutamylcysteine synthetase activities. Also members are the cadmium-inducible lysosomal protein CDR-1 and its homologs from C. elegans, and the failed axon connections (fax) protein from Drosophila. CDR-1 is an integral membrane protein that functions to protect against cadmium toxicity and may also have a role in osmoregulation to maintain salt balance in C. ele
Probab=93.87 E-value=0.088 Score=33.48 Aligned_cols=32 Identities=19% Similarity=0.152 Sum_probs=24.9
Q ss_pred CCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 40 YSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 40 y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
-++.-.||+|.|. ++ +-.||..|+++|+..|+
T Consensus 44 ~~p~g~vPvl~~~--g~-~l~eS~~I~~yL~~~~~ 75 (75)
T cd03080 44 RSPKGKLPFIELN--GE-KIADSELIIDHLEEKYG 75 (75)
T ss_pred CCCCCCCCEEEEC--CE-EEcCHHHHHHHHHHHcC
Confidence 3567789999983 44 56679999999998763
No 25
>PLN02378 glutathione S-transferase DHAR1
Probab=93.67 E-value=0.13 Score=39.06 Aligned_cols=36 Identities=22% Similarity=0.273 Sum_probs=27.0
Q ss_pred HHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 32 LYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 32 lY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
-|.+-+| .-+||+|.|. +.++. ||..|+++|+..|+
T Consensus 50 ~~l~inP----~G~VPvL~~~--~~~l~-ES~aI~~YL~~~~~ 85 (213)
T PLN02378 50 WFLDISP----QGKVPVLKID--DKWVT-DSDVIVGILEEKYP 85 (213)
T ss_pred HHHHhCC----CCCCCEEEEC--CEEec-CHHHHHHHHHHhCC
Confidence 4555554 3589999873 45555 89999999998876
No 26
>KOG0868 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=93.64 E-value=0.17 Score=39.62 Aligned_cols=60 Identities=23% Similarity=0.221 Sum_probs=42.7
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcc--cHHHHHHHHHHHh----hcchhhhhc
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD--QRDQIDGTNEWIY----NGINNGVYR 110 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~--l~~~Id~~~~~i~----~~inngVYk 110 (122)
.--+||.|++ +.++=+||-+|+.+|+..++ .+-|.|.+ .|+...+....|- +.=|-.|++
T Consensus 54 Pm~kVP~L~i---~g~tl~eS~AII~YLeEt~P------~ppLLP~d~~KRA~~r~i~~~i~sgIQPlQNl~vl~ 119 (217)
T KOG0868|consen 54 PMEKVPTLVI---DGLTLTESLAIIEYLEETYP------DPPLLPKDPHKRAKARAISLLIASGIQPLQNLSVLK 119 (217)
T ss_pred chhhCCeEEE---CCEEeehHHHHHHHHHhcCC------CCCCCCcCHHHHHHHHHHHHHHHhCCCcchhhHHHH
Confidence 4568999986 56788889999999998775 46799985 4555555555544 334566665
No 27
>cd03059 GST_N_SspA GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP)-associated protein required for the lytic development of phage P1 and for stationary phase-induced acid tolerance of E. coli. It is implicated in survival during nutrient starvation. SspA adopts the GST fold with an N-terminal TRX-fold domain and a C-terminal alpha helical domain, but it does not bind glutathione (GSH) and lacks GST activity. SspA is highly conserved among gram-negative bacteria. Related proteins found in Neisseria (called RegF), Francisella and Vibrio regulate the expression of virulence factors necessary for pathogenesis.
Probab=93.54 E-value=0.081 Score=32.79 Aligned_cols=36 Identities=28% Similarity=0.288 Sum_probs=25.9
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
+-|.+..|. -+||+|.+.. .+-.||..|+++|+..|
T Consensus 38 ~~~~~~~p~----~~vP~l~~~~---~~l~es~aI~~yL~~~~ 73 (73)
T cd03059 38 EDLAELNPY----GTVPTLVDRD---LVLYESRIIMEYLDERF 73 (73)
T ss_pred HHHHhhCCC----CCCCEEEECC---EEEEcHHHHHHHHHhhC
Confidence 455555543 3899998743 45677999999999754
No 28
>cd03077 GST_N_Alpha GST_N family, Class Alpha subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Alpha subfamily is composed of eukaryotic GSTs which can form homodimer and heterodimers. There are at least six types of class Alpha GST subunits in rats, four of which have human counterparts, resulting in many possible isoenzymes with different activities, tissue distribution and substrate specificities. Human GSTA1-1 and GSTA2-2 show high GSH peroxidase activity. GSTA3-3 catalyzes the isomerization of intermediates in steroid hormone biosynthesis. GSTA4-4 preferentially catalyzes the
Probab=93.31 E-value=0.093 Score=33.98 Aligned_cols=32 Identities=13% Similarity=0.048 Sum_probs=24.1
Q ss_pred CCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 40 YSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 40 y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
+...-.||+|.| .+ .+-.||..|+++|...|+
T Consensus 46 ~~~~g~vP~L~~--~g-~~l~ES~AI~~YL~~~~~ 77 (79)
T cd03077 46 SLMFQQVPMVEI--DG-MKLVQTRAILNYIAGKYN 77 (79)
T ss_pred CCCCCCCCEEEE--CC-EEEeeHHHHHHHHHHHcC
Confidence 333559999987 33 567789999999997664
No 29
>cd03040 GST_N_mPGES2 GST_N family; microsomal Prostaglandin E synthase Type 2 (mPGES2) subfamily; mPGES2 is a membrane-anchored dimeric protein containing a CXXC motif which catalyzes the isomerization of PGH2 to PGE2. Unlike cytosolic PGE synthase (cPGES) and microsomal PGES Type 1 (mPGES1), mPGES2 does not require glutathione (GSH) for its activity, although its catalytic rate is increased two- to four-fold in the presence of DTT, GSH or other thiol compounds. PGE2 is widely distributed in various tissues and is implicated in the sleep/wake cycle, relaxation/contraction of smooth muscle, excretion of sodium ions, maintenance of body temperature and mediation of inflammation. mPGES2 contains an N-terminal hydrophobic domain which is membrane associated, and a C-terminal soluble domain with a GST-like structure.
Probab=93.15 E-value=0.13 Score=32.41 Aligned_cols=30 Identities=23% Similarity=0.130 Sum_probs=22.7
Q ss_pred CceeeceEeeCC--CCceecCChHHHHHHHHhh
Q 036836 42 RKFTVPVLWDKK--LKTIVNNESAEIIRMFNTE 72 (122)
Q Consensus 42 gr~TVPvL~D~~--t~~IVnNeS~~I~r~L~~~ 72 (122)
+.-+||+|.+.. .++ +-.||..|+++|++.
T Consensus 44 ~~~~vP~l~~~~~~~~~-~l~eS~~I~~yL~~~ 75 (77)
T cd03040 44 SYKKVPILRVESGGDGQ-QLVDSSVIISTLKTY 75 (77)
T ss_pred CCCccCEEEECCCCCcc-EEEcHHHHHHHHHHH
Confidence 457899999763 244 555699999999864
No 30
>cd03046 GST_N_GTT1_like GST_N family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endoplasmic reticulum. Its expression is induced after diauxic shift and remains high throughout the stationary phase. S. pomb
Probab=93.07 E-value=0.13 Score=32.05 Aligned_cols=29 Identities=38% Similarity=0.382 Sum_probs=22.4
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
..-+||+|.|. +. +-.||.+|+++|+..|
T Consensus 47 p~~~vP~l~~~--g~-~l~es~aI~~yL~~~~ 75 (76)
T cd03046 47 PLGKVPVLVDG--DL-VLTESAAIILYLAEKY 75 (76)
T ss_pred CCCCCCEEEEC--CE-EEEcHHHHHHHHHHhC
Confidence 34579999874 44 4566999999999766
No 31
>cd03050 GST_N_Theta GST_N family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial dichloromethane (DCM) dehalogenase. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Mammalian class Theta GSTs show poor GSH conjugating activity towards the standard substrates, CDNB and ethacrynic acid, differentiating them from other mammalian GSTs. GSTT1-1 shows similar cataytic activity as bacterial DCM dehalogenase, catalyzing the GSH-dependent hydrolytic dehalogenation of dihalomethanes. This is an essential process in methylotrophic bacteria to enable them to use chloromethane and DC
Probab=93.04 E-value=0.1 Score=32.96 Aligned_cols=35 Identities=23% Similarity=0.287 Sum_probs=24.7
Q ss_pred HHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 32 LYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 32 lY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
-|.+-.| .-.||+|.|. +. +-.||..|+++|++.|
T Consensus 42 ~~~~~~p----~~~vP~L~~~--~~-~l~eS~aI~~Yl~~~~ 76 (76)
T cd03050 42 EFKKINP----FGKVPAIVDG--DF-TLAESVAILRYLARKF 76 (76)
T ss_pred HHHHhCc----CCCCCEEEEC--CE-EEEcHHHHHHHHHhhC
Confidence 3444444 4678999873 44 4577999999998754
No 32
>cd00570 GST_N_family Glutathione S-transferase (GST) family, N-terminal domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK subfamily, a member of the DsbA family). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical doma
Probab=92.98 E-value=0.11 Score=30.66 Aligned_cols=27 Identities=30% Similarity=0.332 Sum_probs=21.6
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
++..+||+|.+. +..+ .||..|+++|.
T Consensus 45 ~~~~~~P~l~~~--~~~~-~es~~I~~yl~ 71 (71)
T cd00570 45 NPLGKVPVLEDG--GLVL-TESLAILEYLA 71 (71)
T ss_pred CCCCCCCEEEEC--CEEE-EcHHHHHHHhC
Confidence 467899999987 6655 45999999984
No 33
>cd03037 GST_N_GRX2 GST_N family, Glutaredoxin 2 (GRX2) subfamily; composed of bacterial proteins similar to E. coli GRX2, an atypical GRX with a molecular mass of about 24kD, compared with other GRXs which are 9-12kD in size. GRX2 adopts a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. It contains a redox active CXXC motif located in the N-terminal domain but is not able to reduce ribonucleotide reductase like other GRXs. However, it catalyzes GSH-dependent protein disulfide reduction of other substrates efficiently. GRX2 is thought to function primarily in catalyzing the reversible glutathionylation of proteins in cellular redox regulation including stress responses.
Probab=92.96 E-value=0.12 Score=32.25 Aligned_cols=27 Identities=22% Similarity=0.337 Sum_probs=20.1
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+.-+||+|.|.. ++ +-.||.+|+++|+
T Consensus 44 ~~~~vP~L~~~~-~~-~l~es~aI~~yL~ 70 (71)
T cd03037 44 GAKQVPILEKDD-GS-FMAESLDIVAFID 70 (71)
T ss_pred CCCccCEEEeCC-Ce-EeehHHHHHHHHh
Confidence 345899998742 44 4556999999996
No 34
>cd03061 GST_N_CLIC GST_N family, Chloride Intracellular Channel (CLIC) subfamily; composed of CLIC1-5, p64, parchorin and similar proteins. They are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division and apoptosis. They can exist in both water-soluble and membrane-bound states, and are found in various vesicles and membranes. Biochemical studies of the C. elegans homolog, EXC-4, show that the membrane localization domain is present in the N-terminal part of the protein. The structure of soluble human CLIC1 reveals that it is monomeric and it adopts a fold similar to GSTs, containing an N-terminal domain with a TRX fold and a C-terminal alpha helical domain. Upon oxidation, the N-terminal domain of CLIC1 undergoes a structural change to form a non-covalent dimer stabilized by the formation of an intramolecular disulfide bond between two cysteines that are far apart in the reduced form. The CLI
Probab=92.93 E-value=0.12 Score=35.39 Aligned_cols=37 Identities=8% Similarity=0.099 Sum_probs=27.2
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
+-|.+-.|. | .||||+|. +.++.+ |..|+++|+..|.
T Consensus 51 ~~~~~~nP~--g--~vPvL~~~--~~~i~e-S~~I~eYLde~~~ 87 (91)
T cd03061 51 EDLKDLAPG--T--QPPFLLYN--GEVKTD-NNKIEEFLEETLC 87 (91)
T ss_pred HHHHHhCCC--C--CCCEEEEC--CEEecC-HHHHHHHHHHHcc
Confidence 446665655 3 49999983 555555 9999999998765
No 35
>TIGR00862 O-ClC intracellular chloride channel protein. These proteins are thought to function in the regulation of the membrane potential and in transepithelial ion absorption and secretion in the kidney.
Probab=92.45 E-value=0.16 Score=40.06 Aligned_cols=38 Identities=11% Similarity=0.040 Sum_probs=28.3
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
.+-|.+-+|. -+||||+| .+. +-.||..|+++|...|.
T Consensus 47 ~~~fl~inP~----g~vPvL~~--~g~-~l~ES~aI~eYL~e~~~ 84 (236)
T TIGR00862 47 PEDLQNLAPG----THPPFLTY--NTE-VKTDVNKIEEFLEETLC 84 (236)
T ss_pred CHHHHHHCcC----CCCCEEEE--CCE-EeecHHHHHHHHHHHcC
Confidence 4556666655 46899998 354 45669999999998885
No 36
>cd03042 GST_N_Zeta GST_N family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates but display modest GSH peroxidase activity. They are also implicated in the detoxification of the carcinogen dichloroacetic acid by catalyzing its dechlorination to glyoxylic acid.
Probab=92.17 E-value=0.15 Score=31.48 Aligned_cols=26 Identities=27% Similarity=0.217 Sum_probs=20.4
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+.-+||+|.|. ++ +-.||.+|+++|+
T Consensus 48 p~~~vP~l~~~--~~-~l~es~aI~~yL~ 73 (73)
T cd03042 48 PQGLVPTLVID--GL-VLTQSLAIIEYLD 73 (73)
T ss_pred CCCCCCEEEEC--CE-EEEcHHHHHHHhC
Confidence 35699999986 44 4477999999984
No 37
>cd03076 GST_N_Pi GST_N family, Class Pi subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Pi GST is a homodimeric eukaryotic protein. The human GSTP1 is mainly found in erythrocytes, kidney, placenta and fetal liver. It is involved in stress responses and in cellular proliferation pathways as an inhibitor of JNK (c-Jun N-terminal kinase). Following oxidative stress, monomeric GSTP1 dissociates from JNK and dimerizes, losing its ability to bind JNK and causing an increase in JNK activity, thereby promoting apoptosis. GSTP1 is expressed in various tumors and is the predominant GST in a w
Probab=92.08 E-value=0.14 Score=32.46 Aligned_cols=28 Identities=18% Similarity=0.163 Sum_probs=21.5
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
...-+||+|.|. + .+-.||..|+++|..
T Consensus 45 ~p~~~vP~l~~~--~-~~l~es~aI~~yL~~ 72 (73)
T cd03076 45 MLFGQLPCFKDG--D-LTLVQSNAILRHLGR 72 (73)
T ss_pred CCCCCCCEEEEC--C-EEEEcHHHHHHHHhc
Confidence 445689999983 4 456679999999974
No 38
>cd03053 GST_N_Phi GST_N family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Phi GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes are highly reactive toward chloroacetanilide and thiocarbamate herbicides. Some Phi GSTs have other functions including t
Probab=91.74 E-value=0.19 Score=31.46 Aligned_cols=35 Identities=20% Similarity=0.017 Sum_probs=24.5
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
.+-|.+-.| .-+||+|.|. +.+ -.||..|+++|++
T Consensus 41 ~~~~~~~~P----~~~vP~l~~~--g~~-l~es~aI~~yL~~ 75 (76)
T cd03053 41 SPEHLARNP----FGQIPALEDG--DLK-LFESRAITRYLAE 75 (76)
T ss_pred CHHHHhhCC----CCCCCEEEEC--CEE-EEcHHHHHHHHhh
Confidence 344555444 4569999985 554 4669999999974
No 39
>cd03052 GST_N_GDAP1 GST_N family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal TRX-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates.
Probab=91.66 E-value=0.18 Score=32.21 Aligned_cols=25 Identities=28% Similarity=0.316 Sum_probs=19.2
Q ss_pred ceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 43 KFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 43 r~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
.-+||+|.| .+.+ =.||.+|+++|+
T Consensus 49 ~g~vP~L~~--~g~~-l~Es~aI~~yLe 73 (73)
T cd03052 49 TGEVPVLIH--GDNI-ICDPTQIIDYLE 73 (73)
T ss_pred CCCCCEEEE--CCEE-EEcHHHHHHHhC
Confidence 467899997 4554 556999999984
No 40
>cd03039 GST_N_Sigma_like GST_N family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition of platelet aggregation, bronchoconstriction, vasodilation and mediation of allergy and inflammation. Other class Sigma
Probab=90.48 E-value=0.24 Score=30.91 Aligned_cols=27 Identities=22% Similarity=0.115 Sum_probs=21.0
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
...-+||+|.|. +. +-.||.+|+++|+
T Consensus 45 ~p~~~vP~L~~~--~~-~l~es~aI~~yL~ 71 (72)
T cd03039 45 LPFGQLPVLEID--GK-KLTQSNAILRYLA 71 (72)
T ss_pred CcCCCCCEEEEC--CE-EEEecHHHHHHhh
Confidence 345689999984 54 5566999999986
No 41
>cd03056 GST_N_4 GST_N family, unknown subfamily 4; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains.
Probab=90.41 E-value=0.33 Score=29.78 Aligned_cols=34 Identities=21% Similarity=0.165 Sum_probs=23.8
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
.+-|.+-.| .-+||+|.|. ++++ .||.+|+++|.
T Consensus 40 ~~~~~~~~p----~~~vP~l~~~--~~~i-~es~aI~~yl~ 73 (73)
T cd03056 40 TPEFLALNP----NGEVPVLELD--GRVL-AESNAILVYLA 73 (73)
T ss_pred CHHHHHhCC----CCCCCEEEEC--CEEE-EcHHHHHHHhC
Confidence 344555444 4579999985 5555 66999999983
No 42
>cd03045 GST_N_Delta_Epsilon GST_N family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites that are easily excreted. They are also implicated in protection against cellular damage by oxidative stress.
Probab=89.77 E-value=0.4 Score=29.74 Aligned_cols=34 Identities=26% Similarity=0.186 Sum_probs=23.6
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
++-|.+-.| .-+||+|.|. +. +-.||.+|+++|.
T Consensus 40 ~~~~~~~~p----~~~vP~l~~~--~~-~l~es~aI~~yL~ 73 (74)
T cd03045 40 KPEFLKLNP----QHTVPTLVDN--GF-VLWESHAILIYLV 73 (74)
T ss_pred CHHHHhhCc----CCCCCEEEEC--CE-EEEcHHHHHHHHh
Confidence 345555444 3489999985 44 4556999999986
No 43
>PF02798 GST_N: Glutathione S-transferase, N-terminal domain; InterPro: IPR004045 In eukaryotes, glutathione S-transferases (GSTs) participate in the detoxification of reactive electrophillic compounds by catalysing their conjugation to glutathione. The GST domain is also found in S-crystallins from squid, and proteins with no known GST activity, such as eukaryotic elongation factors 1-gamma and the HSP26 family of stress-related proteins, which include auxin-regulated proteins in plants and stringent starvation proteins in Escherichia coli. The major lens polypeptide of Cephalopoda is also a GST [, , , ]. Bacterial GSTs of known function often have a specific, growth-supporting role in biodegradative metabolism: epoxide ring opening and tetrachlorohydroquinone reductive dehalogenation are two examples of the reactions catalysed by these bacterial GSTs. Some regulatory proteins, like the stringent starvation proteins, also belong to the GST family [, ]. GST seems to be absent from Archaea in which gamma-glutamylcysteine substitute to glutathione as major thiol. Soluble GSTs activate glutathione (GSH) to GS-. In many GSTs, this is accomplished by a Tyr at H-bonding distance from the sulphur of GSH. These enzymes catalyse nucleophilic attack by reduced glutathione (GSH) on nonpolar compounds that contain an electrophillic carbon, nitrogen, or sulphur atom []. Glutathione S-transferases form homodimers, but in eukaryotes can also form heterodimers of the A1 and A2 or YC1 and YC2 subunits. The homodimeric enzymes display a conserved structural fold, with each monomer composed of two distinct domains []. The N-terminal domain forms a thioredoxin-like fold that binds the glutathione moiety, while the C-terminal domain contains several hydrophobic alpha-helices that specifically bind hydrophobic substrates. This entry represents the N-terminal domain of GST.; GO: 0005515 protein binding; PDB: 2VCT_H 2WJU_B 4ACS_A 1BYE_D 1AXD_B 2VCV_P 1TDI_A 1JLV_D 1Y6E_A 1U88_B ....
Probab=89.59 E-value=0.66 Score=29.67 Aligned_cols=35 Identities=26% Similarity=0.277 Sum_probs=26.9
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+-|.+..|.. -.||+|.|. +.++-.||.+|+++|.
T Consensus 41 ~e~~~~~p~~---g~vP~l~~~--~~~~l~es~AI~~YLa 75 (76)
T PF02798_consen 41 PEFLAINPMF---GKVPALEDG--DGFVLTESNAILRYLA 75 (76)
T ss_dssp HHHHHHTTTS---SSSSEEEET--TTEEEESHHHHHHHHH
T ss_pred hhhhhccccc---ceeeEEEEC--CCCEEEcHHHHHHHhC
Confidence 5566667664 679999998 4555566999999997
No 44
>PLN02817 glutathione dehydrogenase (ascorbate)
Probab=89.34 E-value=0.71 Score=36.83 Aligned_cols=42 Identities=17% Similarity=0.221 Sum_probs=29.3
Q ss_pred eeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccHHHHH
Q 036836 44 FTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQRDQID 94 (122)
Q Consensus 44 ~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id 94 (122)
-.||||.+. +. +=.||..|+++|+..|+. ..|.+...+..|+
T Consensus 111 GkVPvL~~d--~~-~L~ES~aI~~YL~e~~p~------~~L~~~~era~i~ 152 (265)
T PLN02817 111 GKVPVVKLD--EK-WVADSDVITQALEEKYPD------PPLATPPEKASVG 152 (265)
T ss_pred CCCCEEEEC--CE-EEecHHHHHHHHHHHCCC------CCCCCHHHHHHHH
Confidence 489999874 44 457799999999998863 2345554455544
No 45
>PLN02907 glutamate-tRNA ligase
Probab=88.46 E-value=1 Score=41.07 Aligned_cols=50 Identities=12% Similarity=0.121 Sum_probs=35.8
Q ss_pred ceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcc--cHHHHHHHHHHH
Q 036836 43 KFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSD--QRDQIDGTNEWI 100 (122)
Q Consensus 43 r~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~--l~~~Id~~~~~i 100 (122)
.-+||+|.+. .|.++. ||..|+++|...++ ...|+|.+ .+++|++|..+.
T Consensus 35 ~GkVPvLv~d-dG~~L~-ES~AIl~YLa~~~p------~~~L~p~d~~erAqV~qWL~~~ 86 (722)
T PLN02907 35 SGSAPTLLFS-SGEKLT-GTNVLLRYIARSAS------LPGFYGQDAFESSQVDEWLDYA 86 (722)
T ss_pred CCCCcEEEEC-CCCEEE-CHHHHHHHHHHhCC------CcCCCCCCHHHHHHHHHHHHHH
Confidence 4579999853 355564 79999999998774 24588865 455677776665
No 46
>cd03051 GST_N_GTT2_like GST_N family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensitivity to heat shock.
Probab=87.85 E-value=0.63 Score=28.42 Aligned_cols=27 Identities=37% Similarity=0.316 Sum_probs=19.6
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+.-+||+|.+.. +.+ -.||.+|+++|+
T Consensus 48 p~~~vP~l~~~~-~~~-l~es~aI~~yLe 74 (74)
T cd03051 48 PAGTVPVLELDD-GTV-ITESVAICRYLE 74 (74)
T ss_pred CCCCCCEEEeCC-CCE-EecHHHHHHHhC
Confidence 456899998432 444 467999999984
No 47
>cd03047 GST_N_2 GST_N family, unknown subfamily 2; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. The sequence from Burkholderia cepacia was identified as part of a gene cluster involved in the degradation of 2,4,5-trichlorophenoxyacetic acid. Some GSTs (e.g. Class Zeta and Delta) are known to catalyze dechlorination reactions.
Probab=87.60 E-value=0.56 Score=29.32 Aligned_cols=34 Identities=29% Similarity=0.255 Sum_probs=23.7
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
++-|.+-.| .-+||+|.|. + .+-.||..|+++|.
T Consensus 40 ~~~~~~~nP----~~~vP~L~~~--~-~~l~eS~aI~~YL~ 73 (73)
T cd03047 40 TPEFLAMNP----NGRVPVLEDG--D-FVLWESNAILRYLA 73 (73)
T ss_pred CHHHHhhCC----CCCCCEEEEC--C-EEEECHHHHHHHhC
Confidence 445555443 4589999884 3 34567999999983
No 48
>cd03044 GST_N_EF1Bgamma GST_N family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal TRX-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role in prot
Probab=86.78 E-value=0.75 Score=29.02 Aligned_cols=36 Identities=14% Similarity=-0.132 Sum_probs=25.3
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
.+-|.+-+| .-+||+|.+. .+.+ -.||..|+++|++
T Consensus 39 ~~~~~~~nP----~~~vP~L~~~-~g~~-l~es~aI~~yL~~ 74 (75)
T cd03044 39 TPEFLKKFP----LGKVPAFEGA-DGFC-LFESNAIAYYVAN 74 (75)
T ss_pred CHHHHHhCC----CCCCCEEEcC-CCCE-EeeHHHHHHHHhh
Confidence 345666554 4689999964 2444 4679999999973
No 49
>PTZ00057 glutathione s-transferase; Provisional
Probab=86.05 E-value=0.79 Score=34.31 Aligned_cols=31 Identities=23% Similarity=0.370 Sum_probs=24.8
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
..--.||+|.|. ..+-.||..|+++|+..|+
T Consensus 54 nP~g~vP~L~~~---~~~l~eS~AI~~YLa~~~~ 84 (205)
T PTZ00057 54 TPFEQVPILEMD---NIIFAQSQAIVRYLSKKYK 84 (205)
T ss_pred CCCCCCCEEEEC---CEEEecHHHHHHHHHHHcC
Confidence 345679999983 3577789999999998875
No 50
>cd03049 GST_N_3 GST_N family, unknown subfamily 3; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains.
Probab=85.88 E-value=0.71 Score=28.69 Aligned_cols=27 Identities=15% Similarity=-0.020 Sum_probs=19.5
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+.-+||+|.+. .+.. -.||.+|+++|+
T Consensus 47 p~~~vP~l~~~-~g~~-l~es~aI~~yLe 73 (73)
T cd03049 47 PLGKIPALVLD-DGEA-LFDSRVICEYLD 73 (73)
T ss_pred CCCCCCEEEEC-CCCE-EECHHHHHhhhC
Confidence 35679999843 2444 467999999984
No 51
>cd03054 GST_N_Metaxin GST_N family, Metaxin subfamily; composed of metaxins and related proteins. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. Metaxin 2 binds to metaxin 1 and may also play a role in protein translocation into the mitochondria. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken and mammals. Sequence analysis suggests that all three metaxins share a common ancestry and that they possess similarity to GSTs. Also included in the subfamily are uncharacterized proteins with similarity to metaxins, including a novel GST from Rhodococcus with toluene o-monooxygenase and glutamylcysteine synthetase activities.
Probab=85.35 E-value=1.3 Score=27.53 Aligned_cols=28 Identities=21% Similarity=0.228 Sum_probs=21.8
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
++.-+||+|.+. ++++ .||..|+++|+.
T Consensus 44 ~p~g~vP~l~~~--g~~l-~es~~I~~yL~~ 71 (72)
T cd03054 44 SPTGKLPFLELN--GEKI-ADSEKIIEYLKK 71 (72)
T ss_pred CCCcccCEEEEC--CEEE-cCHHHHHHHHhh
Confidence 345689999985 6666 559999999974
No 52
>cd03060 GST_N_Omega_like GST_N family, Omega-like subfamily; composed of uncharacterized proteins with similarity to class Omega GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. Like Omega enzymes, proteins in this subfamily contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a r
Probab=85.20 E-value=1.2 Score=27.75 Aligned_cols=26 Identities=42% Similarity=0.399 Sum_probs=19.5
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMF 69 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L 69 (122)
+.-+||+|.+. .|+.+ .||.+|++++
T Consensus 45 p~~~vP~L~~~-~g~~l-~eS~aI~~y~ 70 (71)
T cd03060 45 PKGTVPVLVLG-NGTVI-EESLDIMRWA 70 (71)
T ss_pred CCCCCCEEEEC-CCcEE-ecHHHHHHhh
Confidence 45699999874 35666 5699999875
No 53
>KOG0406 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=84.79 E-value=1.9 Score=34.41 Aligned_cols=65 Identities=20% Similarity=0.139 Sum_probs=46.1
Q ss_pred HhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCccc--HHHHHHHHHHHhhcch
Q 036836 30 GGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQ--RDQIDGTNEWIYNGIN 105 (122)
Q Consensus 30 ~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l--~~~Id~~~~~i~~~in 105 (122)
.++|.+.+|-+ --||||. ..|++|+- |..|+++|+..|+. ..-|+|.+- |+...-|.+.|-+.+.
T Consensus 46 s~~ll~~np~h---kKVPvL~--Hn~k~i~E-SliiveYiDe~w~~-----~~~iLP~DPy~Ra~arfwa~~id~~~~ 112 (231)
T KOG0406|consen 46 SEWLLEKNPVH---KKVPVLE--HNGKPICE-SLIIVEYIDETWPS-----GPPILPSDPYERAQARFWAEYIDKKVF 112 (231)
T ss_pred CHHHHHhcccc---ccCCEEE--ECCceehh-hHHHHHHHHhhccC-----CCCCCCCCHHHHHHHHHHHHHHHhHHH
Confidence 68888888764 3589997 46667765 99999999999983 356999854 3344556566654443
No 54
>cd03079 GST_N_Metaxin2 GST_N family, Metaxin subfamily, Metaxin 2; a metaxin 1 binding protein identified through a yeast two-hybrid system using metaxin 1 as the bait. Metaxin 2 shares sequence similarity with metaxin 1 but does not contain a C-terminal mitochondrial outer membrane signal-anchor domain. It associates with mitochondrial membranes through its interaction with metaxin 1, which is a component of the mitochondrial preprotein import complex of the outer membrane. The biological function of metaxin 2 is unknown. It is likely that it also plays a role in protein translocation into the mitochondria. However, this has not been experimentally validated. In a recent proteomics study, it has been shown that metaxin 2 is overexpressed in response to lipopolysaccharide-induced liver injury.
Probab=84.01 E-value=1.2 Score=29.27 Aligned_cols=26 Identities=23% Similarity=0.280 Sum_probs=20.8
Q ss_pred ceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 43 KFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 43 r~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
.-.||+|.| .|++| -||..|+.+|+.
T Consensus 48 ~GkVP~L~~--dg~vI-~eS~aIl~yL~~ 73 (74)
T cd03079 48 SGKVPFIRV--GNQIV-SEFGPIVQFVEA 73 (74)
T ss_pred CCcccEEEE--CCEEE-eCHHHHHHHHhc
Confidence 457999988 66666 459999999974
No 55
>cd03055 GST_N_Omega GST_N family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a redox active residue capable of reducing GSH mixed disulfides in a monothiol mechanism. Polymorphisms of the class Omega
Probab=82.85 E-value=1.4 Score=28.88 Aligned_cols=27 Identities=26% Similarity=0.153 Sum_probs=19.6
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+.-+||+|.+.. +. +-.||..|+++|+
T Consensus 63 p~~~vPvL~~~~-g~-~l~eS~aI~~yLe 89 (89)
T cd03055 63 PQGKVPALEIDE-GK-VVYESLIICEYLD 89 (89)
T ss_pred CCCCcCEEEECC-CC-EEECHHHHHHhhC
Confidence 456799999631 34 4556999999984
No 56
>PF10568 Tom37: Outer mitochondrial membrane transport complex protein; InterPro: IPR019564 Tom37 is one of the outer membrane proteins that make up the TOM complex for guiding cytosolic mitochondrial beta-barrel proteins from the cytosol across the outer mitochondrial membrane into the intramembrane space. In conjunction with Tom70, it guides peptides without an mitochondrial targeting sequence (MTS) into Tom40, the protein that forms the passage through the outer membrane []. It has homology with metaxin, also part of the outer mitochondrial membrane beta-barrel protein transport complex []. This entry represents outer mitochondrial membrane transport complex proteins Tom37 and metaxin.; GO: 0006626 protein targeting to mitochondrion, 0005741 mitochondrial outer membrane
Probab=80.81 E-value=1 Score=29.37 Aligned_cols=37 Identities=19% Similarity=0.123 Sum_probs=29.5
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHH
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMF 69 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L 69 (122)
+|...++|.-+..-.+|+|++ ..++.|+- ..+|+++|
T Consensus 35 ~vv~s~n~~~Sptg~LP~L~~-~~~~~vsg-~~~Iv~yL 71 (72)
T PF10568_consen 35 KVVPSNNPWLSPTGELPALID-SGGTWVSG-FRNIVEYL 71 (72)
T ss_pred EEEEcCCCCcCCCCCCCEEEE-CCCcEEEC-HHHHHHhh
Confidence 445556777788889999999 67777775 99999987
No 57
>cd03043 GST_N_1 GST_N family, unknown subfamily 1; composed of uncharacterized proteins, predominantly from bacteria, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal TRX-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains.
Probab=80.66 E-value=1.7 Score=27.46 Aligned_cols=33 Identities=27% Similarity=0.111 Sum_probs=23.1
Q ss_pred hHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 31 GLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 31 elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+-|.+-.| .-.||+|.|. +. +-.||..|+++|.
T Consensus 41 ~~~~~~nP----~g~vP~L~~~--g~-~l~eS~aI~~YL~ 73 (73)
T cd03043 41 ARILEFSP----TGKVPVLVDG--GI-VVWDSLAICEYLA 73 (73)
T ss_pred HHHHhhCC----CCcCCEEEEC--CE-EEEcHHHHHHHhC
Confidence 44554444 5789999873 44 5567999999983
No 58
>cd03078 GST_N_Metaxin1_like GST_N family, Metaxin subfamily, Metaxin 1-like proteins; composed of metaxins 1 and 3, and similar proteins including Tom37 from fungi. Mammalian metaxin (or metaxin 1) and the fungal protein Tom37 are components of preprotein import complexes of the mitochondrial outer membrane. Metaxin extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. Like the murine gene, the human metaxin gene is located downstream to the glucocerebrosidase (GBA) pseudogene and is convergently transcribed. Inherited deficiency of GBA results in Gaucher disease, which presents many diverse clinical phenotypes. Alterations in the metaxin gene, in addition to GBA mutations, may be associated with Gaucher disease. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken and mammals.
Probab=77.20 E-value=4.5 Score=25.95 Aligned_cols=33 Identities=18% Similarity=0.208 Sum_probs=25.4
Q ss_pred hcCCCCCceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 36 ASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 36 ~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
++|.-+.+-.+|+|.|. ++.|+. |..|+++|..
T Consensus 39 ~n~~~sp~gkLP~l~~~--~~~i~d-~~~Ii~~L~~ 71 (73)
T cd03078 39 NNPWRSPTGKLPALLTS--GTKISG-PEKIIEYLRK 71 (73)
T ss_pred CCCCCCCCCccCEEEEC--CEEecC-hHHHHHHHHH
Confidence 34455556679999985 778876 9999999975
No 59
>PF03469 XH: XH domain; InterPro: IPR005379 The XH (rice gene X Homology) domain is found in a family of plant proteins including Oryza sativa (Rice) Q9SBW2 from SWISSPROT. The molecular function of these proteins is unknown, however these proteins usually contain an XS domain (IPR005380 from INTERPRO) that is also found in the PTGS protein SGS3. As the XS and XH domains are fused in most of these proteins, these two domains may interact. The XH domain is between 124 and 145 residues in length and contains a conserved glutamate residue that may be functionally important [].
Probab=76.79 E-value=0.94 Score=33.31 Aligned_cols=31 Identities=23% Similarity=0.412 Sum_probs=22.9
Q ss_pred CCCceeeceEeeCCCCceecCChHHHHHHHHhh
Q 036836 40 YSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTE 72 (122)
Q Consensus 40 y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~ 72 (122)
-+|||.||.||+-+.||=.+ -.+.+.++-..
T Consensus 94 ~sGry~v~eLWN~ke~RkAt--l~E~v~~i~~q 124 (132)
T PF03469_consen 94 PSGRYPVPELWNFKEGRKAT--LKEVVQYILKQ 124 (132)
T ss_pred cCCCCCCccCCccccccccC--HHHHHHHHHHH
Confidence 38999999999999998766 45555544433
No 60
>cd03029 GRX_hybridPRX5 Glutaredoxin (GRX) family, PRX5 hybrid subfamily; composed of hybrid proteins containing peroxiredoxin (PRX) and GRX domains, which is found in some pathogenic bacteria and cyanobacteria. PRXs are thiol-specific antioxidant (TSA) proteins that confer a protective antioxidant role in cells through their peroxidase activity in which hydrogen peroxide, peroxynitrate, and organic hydroperoxides are reduced and detoxified using reducing equivalents derived from either thioredoxin, glutathione, trypanothione and AhpF. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins. PRX-GRX hybrid proteins from Haemophilus influenza and Neisseria meningitis exhibit GSH-dependent peroxidase activity. The flow of reducing equivalents in the catalytic cycle of the hybrid protein goes from NADPH - GSH reductase - GSH - GRX domain of hybrid - PRX domain of hybrid - peroxide substrate.
Probab=63.58 E-value=8.2 Score=23.89 Aligned_cols=27 Identities=19% Similarity=0.380 Sum_probs=20.9
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+|+.|||+|+- .++.+.. +.+|.++|.
T Consensus 46 ~g~~~vP~ifi--~g~~igg-~~~l~~~l~ 72 (72)
T cd03029 46 TGAMTVPQVFI--DGELIGG-SDDLEKYFA 72 (72)
T ss_pred hCCCCcCeEEE--CCEEEeC-HHHHHHHhC
Confidence 57899999975 3566665 999998873
No 61
>TIGR02190 GlrX-dom Glutaredoxin-family domain. This C-terminal domain with homology to glutaredoxin is fused to an N-terminal peroxiredoxin-like domain.
Probab=62.07 E-value=8.3 Score=24.60 Aligned_cols=27 Identities=19% Similarity=0.240 Sum_probs=21.1
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+|.-|||+++. .|+.+.- +.+|+++|.
T Consensus 53 ~g~~~vP~i~i--~g~~igG-~~~l~~~l~ 79 (79)
T TIGR02190 53 TGATTVPQVFI--GGKLIGG-SDELEAYLA 79 (79)
T ss_pred HCCCCcCeEEE--CCEEEcC-HHHHHHHhC
Confidence 47899999986 5666766 899988873
No 62
>TIGR02196 GlrX_YruB Glutaredoxin-like protein, YruB-family. This glutaredoxin-like protein family contains the conserved CxxC motif and includes the Clostridium pasteurianum protein YruB which has been cloned from a rubredoxin operon. Somewhat related to NrdH, it is unknown whether this protein actually interacts with glutathione/glutathione reducatase, or, like NrdH, some other reductant system.
Probab=59.99 E-value=9.7 Score=22.57 Aligned_cols=28 Identities=21% Similarity=0.291 Sum_probs=18.0
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
|..+||+|+.-. ..++..++.+|.++|+
T Consensus 47 ~~~~vP~~~~~~-~~~~g~~~~~i~~~i~ 74 (74)
T TIGR02196 47 GQRGVPVIVIGH-KIIVGFDPEKLDQLLE 74 (74)
T ss_pred CCCcccEEEECC-EEEeeCCHHHHHHHhC
Confidence 567899999862 2344555666666653
No 63
>COG2999 GrxB Glutaredoxin 2 [Posttranslational modification, protein turnover, chaperones]
Probab=59.83 E-value=16 Score=28.81 Aligned_cols=57 Identities=19% Similarity=0.167 Sum_probs=39.8
Q ss_pred CCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccHHHHHHHHHHHhhcchh
Q 036836 41 SRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQRDQIDGTNEWIYNGINN 106 (122)
Q Consensus 41 ~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id~~~~~i~~~inn 106 (122)
-|.--||+|. |..|+..- ||-||++++....+. -|.-...+.+|.+|-..+.--.|-
T Consensus 43 iG~KqVPiL~-Kedg~~m~-ESlDIV~y~d~~~~~-------~~lt~~~~pai~~wlrkv~~y~nk 99 (215)
T COG2999 43 IGQKQVPILQ-KEDGRAMP-ESLDIVHYVDELDGK-------PLLTGKVRPAIEAWLRKVNGYLNK 99 (215)
T ss_pred hcccccceEE-ccccccch-hhhHHHHHHHHhcCc-------hhhccCcCHHHHHHHHHhcchHhh
Confidence 3777899998 67777776 599999999975442 133445677888887666544443
No 64
>PF11734 TilS_C: TilS substrate C-terminal domain; InterPro: IPR012796 The aminoacyl-tRNA synthetases (6.1.1. from EC) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology []. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric []. Class II aminoacyl-tRNA synthetases share an anti-parallel beta-sheet fold flanked by alpha-helices [], and are mostly dimeric or multimeric, containing at least three conserved regions [, , ]. However, tRNA binding involves an alpha-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan and valine belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, lysine, phenylalanine, proline, serine, and threonine belong to class-II synthetases []. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c. This entry represents the C-terminal domain of lysidine-tRNA(Ile) synthetase, which ligates lysine onto the cytidine present at position 34 of the AUA codon-specific tRNA(Ile) that contains the anticodon CAU, in an ATP-dependent manner. Cytidine is converted to lysidine, thus changing the amino acid specificity of the tRNA from methionine to isoleucine. The N-terminal region contains the highly conserved SGGXDS motif, predicted to be a PP-loop motif involved in ATP binding. The only examples in which the wobble position of a tRNA must discriminate between G and A of mRNA are AUA (Ile) versus AUG (Met) and UGA (stop) versus UGG (Trp). In all bacteria, the wobble position of the tRNA(Ile) recognizing AUA is lysidine, a lysine derivative of cytidine. This domain is found, apparently, in all bacteria in a single copy. Eukaryotic sequences appear to be organellar. The domain architecture of this protein is variable; some, including characterised proteins of Escherichia coli and Bacillus subtilis known to be tRNA(Ile)-lysidine synthetase, include a conserved 50-residue domain that many other members lack. This protein belongs to the ATP-binding PP-loop family. It appears in the literature and protein databases as TilS, YacA, and putative cell cycle protein MesJ (a misnomer). The PP-loop motif appears to be a modified version of the P-loop of nucleotide binding domain that is involved in phosphate binding []. Named PP-motif, since it appears to be a part of a previously uncharacterised ATP pyrophophatase domain. ATP sulfurylases, E. coli NtrL, and B. subtilis OutB consist of this domain alone. In other proteins, the pyrophosphatase domain is associated with amidotransferase domains (type I or type II), a putative citrulline-aspartate ligase domain or a nitrilase/amidase domain. The HUP domain class (after HIGH-signature proteins, UspA, and PP-ATPase) groups together PP-loop ATPases, the nucleotide-binding domains of class I aminoacyl-tRNA synthetases, UspA protein (USPA domains), photolyases, and electron transport flavoproteins (ETFP). The HUP domain is a distinct class of alpha/beta domain[]. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0000166 nucleotide binding, 0005524 ATP binding, 0016879 ligase activity, forming carbon-nitrogen bonds, 0008033 tRNA processing, 0005737 cytoplasm; PDB: 3A2K_A 3HJ7_A 1NI5_A.
Probab=57.08 E-value=5.6 Score=25.62 Aligned_cols=34 Identities=26% Similarity=0.321 Sum_probs=26.0
Q ss_pred CCCcchHHhHHHHhcCCCCCceeeceEeeCCCCcee
Q 036836 23 LNGAKTIGGLYELASTNYSRKFTVPVLWDKKLKTIV 58 (122)
Q Consensus 23 v~g~~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IV 58 (122)
-.|.+.|++++..+.=...-|-++|||++ .++||
T Consensus 17 ~~~~k~lKk~~~e~kIP~~~R~~~Pll~~--~~~iv 50 (74)
T PF11734_consen 17 RGGSKKLKKLFQEAKIPPWQRDRLPLLCD--GGEIV 50 (74)
T ss_dssp SSSEEEHHHHHHHCT--HHHCCCSEEEEE--TTEEE
T ss_pred CCCCchHHHHHHHcCCCHHHHCcEEEEEE--CCEEE
Confidence 34579999999988766678999999999 44555
No 65
>COG0522 RpsD Ribosomal protein S4 and related proteins [Translation, ribosomal structure and biogenesis]
Probab=53.55 E-value=8.2 Score=30.18 Aligned_cols=22 Identities=32% Similarity=0.469 Sum_probs=17.9
Q ss_pred HHHHHHhhcchhhhhccCCCCC
Q 036836 95 GTNEWIYNGINNGVYRCGFATK 116 (122)
Q Consensus 95 ~~~~~i~~~inngVYk~GfA~~ 116 (122)
.+.+.+-.-+-|-|||+|||.|
T Consensus 87 ~~~~~LErRLd~vVyR~GfA~T 108 (205)
T COG0522 87 NLLALLERRLDNVVYRLGFAKT 108 (205)
T ss_pred HHHHHHHHHHHHHHHHhccccc
Confidence 4556667778899999999987
No 66
>PRK11200 grxA glutaredoxin 1; Provisional
Probab=48.36 E-value=24 Score=22.56 Aligned_cols=29 Identities=10% Similarity=0.164 Sum_probs=23.5
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHHhhc
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFNTEF 73 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f 73 (122)
+..|||+++ ..|+.|.. ..+|.++++..|
T Consensus 55 ~~~~vP~if--i~g~~igg-~~~~~~~~~~~~ 83 (85)
T PRK11200 55 PVETVPQIF--VDQKHIGG-CTDFEAYVKENL 83 (85)
T ss_pred CCCcCCEEE--ECCEEEcC-HHHHHHHHHHhc
Confidence 347999998 46888887 999999998765
No 67
>TIGR02200 GlrX_actino Glutaredoxin-like protein. This family of glutaredoxin-like proteins is limited to the Actinobacteria and contains the conserved CxxC motif.
Probab=44.35 E-value=35 Score=20.58 Aligned_cols=28 Identities=18% Similarity=0.173 Sum_probs=16.8
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMF 69 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L 69 (122)
|..+||+|.-..-..+..-++.+|+..|
T Consensus 48 ~~~~vP~i~~~~g~~l~~~~~~~~~~~l 75 (77)
T TIGR02200 48 GNMTVPTVKFADGSFLTNPSAAQVKAKL 75 (77)
T ss_pred CCceeCEEEECCCeEecCCCHHHHHHHh
Confidence 6789999963322344445556665555
No 68
>TIGR02183 GRXA Glutaredoxin, GrxA family. This model includes the E. coli glyutaredoxin GrxA which appears to have primary responsibility for the reduction of ribonucleotide reductase.
Probab=40.19 E-value=43 Score=21.69 Aligned_cols=29 Identities=17% Similarity=0.302 Sum_probs=22.5
Q ss_pred ceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 43 KFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 43 r~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
+.|||+|+- .++.+.- +.+|.+++...|+
T Consensus 55 ~~tVP~ifi--~g~~igG-~~dl~~~~~~~~~ 83 (86)
T TIGR02183 55 VETVPQIFV--DEKHVGG-CTDFEQLVKENFD 83 (86)
T ss_pred CCCcCeEEE--CCEEecC-HHHHHHHHHhccc
Confidence 479999975 4667766 8999999887654
No 69
>PF15567 Imm19: Immunity protein 19
Probab=39.31 E-value=20 Score=24.32 Aligned_cols=23 Identities=22% Similarity=0.075 Sum_probs=17.1
Q ss_pred hcCCCCCceeeceEeeCCCCcee
Q 036836 36 ASTNYSRKFTVPVLWDKKLKTIV 58 (122)
Q Consensus 36 ~~p~y~gr~TVPvL~D~~t~~IV 58 (122)
.++.+.---+-|+|+|+.++.|.
T Consensus 48 gd~~~~L~gn~pvvV~~~~g~~~ 70 (88)
T PF15567_consen 48 GDPRDMLAGNAPVVVDKDGGEIH 70 (88)
T ss_pred CCHHHhccCCccEEeeCCCCcEE
Confidence 34454444578999999999987
No 70
>PF02852 Pyr_redox_dim: Pyridine nucleotide-disulphide oxidoreductase, dimerisation domain; InterPro: IPR004099 This entry represents a dimerisation domain that is usually found at the C-terminal of both class I and class II oxidoreductases, as well as in NADH oxidases and peroxidases [, , ].; GO: 0016491 oxidoreductase activity, 0050660 flavin adenine dinucleotide binding, 0045454 cell redox homeostasis, 0055114 oxidation-reduction process, 0005737 cytoplasm; PDB: 3II4_B 2A8X_A 2BC0_B 2BC1_B 2W0H_A 2X50_B 2JK6_A 2YAU_A 2EQ9_E 2EQ6_B ....
Probab=37.24 E-value=57 Score=21.80 Aligned_cols=31 Identities=26% Similarity=0.348 Sum_probs=25.6
Q ss_pred CceeeceEeeCCCCc-----eecCChHHHHHHHHhh
Q 036836 42 RKFTVPVLWDKKLKT-----IVNNESAEIIRMFNTE 72 (122)
Q Consensus 42 gr~TVPvL~D~~t~~-----IVnNeS~~I~r~L~~~ 72 (122)
....+=+++|+++++ +|+.+.++++..|...
T Consensus 47 ~~g~~Kli~d~~t~~IlGa~~vg~~a~e~I~~~~~a 82 (110)
T PF02852_consen 47 TEGFVKLIFDKKTGRILGAQIVGPNASELINELALA 82 (110)
T ss_dssp TEEEEEEEEETTTTBEEEEEEEETTHHHHHHHHHHH
T ss_pred cceeeEEEEEeeccceeeeeeecCchHHHHHHHHHH
Confidence 456677899999996 6789999999999865
No 71
>cd02976 NrdH NrdH-redoxin (NrdH) family; NrdH is a small monomeric protein with a conserved redox active CXXC motif within a TRX fold, characterized by a glutaredoxin (GRX)-like sequence and TRX-like activity profile. In vitro, it displays protein disulfide reductase activity that is dependent on TRX reductase, not glutathione (GSH). It is part of the NrdHIEF operon, where NrdEF codes for class Ib ribonucleotide reductase (RNR-Ib), an efficient enzyme at low oxygen levels. Under these conditions when GSH is mostly conjugated to spermidine, NrdH can still function and act as a hydrogen donor for RNR-Ib. It has been suggested that the NrdHEF system may be the oldest RNR reducing system, capable of functioning in a microaerophilic environment, where GSH was not yet available. NrdH from Corynebacterium ammoniagenes can form domain-swapped dimers, although it is unknown if this happens in vivo. Domain-swapped dimerization, which results in the blocking of the TRX reductase binding site, cou
Probab=36.90 E-value=34 Score=20.06 Aligned_cols=21 Identities=14% Similarity=0.067 Sum_probs=14.0
Q ss_pred CceeeceEeeCCCCceecCChHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAE 64 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~ 64 (122)
+..+||+|++.. +.+.+-+.+
T Consensus 47 ~~~~vP~i~~~~--~~i~g~~~~ 67 (73)
T cd02976 47 GYRSVPVVVIGD--EHLSGFRPD 67 (73)
T ss_pred CCcccCEEEECC--EEEecCCHH
Confidence 678999999854 455444444
No 72
>TIGR02194 GlrX_NrdH Glutaredoxin-like protein NrdH. NrdH-redoxin is a representative of a class of small redox proteins that contain a conserved CXXC motif and are characterized by a glutaredoxin-like amino acid sequence and thioredoxin-like activity profile. Unlike other the glutaredoxins to which it is most closely related, NrdH aparrently does not interact with glutathione/glutathione reductase, but rather with thioredoxin reductase to catalyze the reduction of ribonucleotide reductase.
Probab=36.65 E-value=43 Score=20.69 Aligned_cols=24 Identities=13% Similarity=0.011 Sum_probs=15.8
Q ss_pred CceeeceEeeCCCCceecCChHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEI 65 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I 65 (122)
|+.+||+|+.-....++.-+...|
T Consensus 45 g~~~vP~v~~~g~~~~~G~~~~~~ 68 (72)
T TIGR02194 45 GFRQVPVIVADGDLSWSGFRPDKL 68 (72)
T ss_pred CCcccCEEEECCCcEEeccCHHHH
Confidence 678999998754445555555444
No 73
>KOG4420 consensus Uncharacterized conserved protein (Ganglioside-induced differentiation associated protein 1, GDAP1) [Function unknown]
Probab=35.27 E-value=52 Score=27.37 Aligned_cols=39 Identities=26% Similarity=0.331 Sum_probs=27.9
Q ss_pred ceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCccc
Q 036836 43 KFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQ 89 (122)
Q Consensus 43 r~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l 89 (122)
.--||||.|- .-|++. |-+||.++...|.+ .-.|.|+.-
T Consensus 75 ~gevPVl~~g--~~II~d-~tqIIdYvErtf~g-----er~l~pe~~ 113 (325)
T KOG4420|consen 75 GGEVPVLIHG--DNIISD-YTQIIDYVERTFTG-----ERVLMPEVG 113 (325)
T ss_pred CCCCceEecC--Ceeccc-HHHHHHHHHHhhcc-----ccccccccc
Confidence 4569999873 335555 99999999998874 233777643
No 74
>PF06823 DUF1236: Protein of unknown function (DUF1236); InterPro: IPR009642 This family contains a number of hypothetical bacterial proteins of unknown function. Some family members contain more than one copy of the region represented by this family.
Probab=34.35 E-value=25 Score=22.58 Aligned_cols=14 Identities=21% Similarity=0.340 Sum_probs=12.2
Q ss_pred eceEeeCCCCceec
Q 036836 46 VPVLWDKKLKTIVN 59 (122)
Q Consensus 46 VPvL~D~~t~~IVn 59 (122)
-+||+|..|.+||-
T Consensus 49 ~~ViVdP~Tr~VV~ 62 (65)
T PF06823_consen 49 RIVIVDPRTRRVVQ 62 (65)
T ss_pred EEEEEcCCCCEEEE
Confidence 38999999999983
No 75
>PF05402 PqqD: Coenzyme PQQ synthesis protein D (PqqD); InterPro: IPR008792 This family contains several bacterial coenzyme PQQ synthesis protein D (PqqD) sequences. This protein is required for coenzyme pyrrolo-quinoline-quinone (PQQ) biosynthesis.; PDB: 3G2B_A.
Probab=33.52 E-value=86 Score=19.01 Aligned_cols=53 Identities=21% Similarity=0.340 Sum_probs=15.9
Q ss_pred eEeeCCCCceecCChH-HHHHHHHhhc--chhhc--cCCCCCCCcccHHHHHHHHHHH
Q 036836 48 VLWDKKLKTIVNNESA-EIIRMFNTEF--NDIAE--NASLDLHPSDQRDQIDGTNEWI 100 (122)
Q Consensus 48 vL~D~~t~~IVnNeS~-~I~r~L~~~f--~~~~~--~~~~dL~P~~l~~~Id~~~~~i 100 (122)
||.|..++.+.-|+++ .|.+.|+... ..+.+ ....+.-|+.+++.+.++.+.+
T Consensus 4 vll~~~~~~~~Ln~~a~~Iw~~~~g~~t~~ei~~~l~~~y~~~~~~~~~dv~~fl~~L 61 (68)
T PF05402_consen 4 VLLDPESGEFTLNETAAFIWELLDGPRTVEEIVDALAEEYDVDPEEAEEDVEEFLEQL 61 (68)
T ss_dssp EEE----------THHHHHHHH--SSS-HHHHHHHHHHHTT--HHHHHHHHHHHHHHH
T ss_pred EEEeCCCCCccccHHHHHHHHHccCCCCHHHHHHHHHHHcCCCHHHHHHHHHHHHHHH
Confidence 5667777764444443 3444443211 11110 0012344555666666655444
No 76
>PHA02057 ADP-ribosylation superfamily-like protein
Probab=32.69 E-value=90 Score=26.05 Aligned_cols=100 Identities=15% Similarity=0.158 Sum_probs=64.8
Q ss_pred CCCCCCCCCCCcchHHhHHHHhcCCCC---------------C-ceeeceEeeCCCCceecCChHHHHHHHHhhcch-hh
Q 036836 15 EPGAEPDPLNGAKTIGGLYELASTNYS---------------R-KFTVPVLWDKKLKTIVNNESAEIIRMFNTEFND-IA 77 (122)
Q Consensus 15 ~~g~~~Dpv~g~~~L~elY~~~~p~y~---------------g-r~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~-~~ 77 (122)
..|-+.|.++.--.|.|+--++..--+ | .--|-+++|-..+.--..-|.+|+++-|.-... +.
T Consensus 36 ~s~~t~dtinapit~~e~~wa~~~~~~~~~~~ghmpwmnlelgsyeqvr~ifd~h~~~~~~~~~~~ii~~cnr~~e~ry~ 115 (319)
T PHA02057 36 YSNFTIDTINAPITLKEFIWAWSKCGSGAWLLGHMPWMNLELGSYEQVRMIFDYHSDSQYHDTCVNIIHSCNRVLEERYS 115 (319)
T ss_pred ccCceeeeccCCeeHHHHHHHHHhcCcchhhhcCCcceeccccChhhEEEEEEecCCccccccCcHHHHHHHHHHHHHhc
Confidence 345577888777777776544322111 1 224788999988888888899999998753211 11
Q ss_pred ccCCCCCCCcccHHHHHHHHHHHhhcchhhh----hccCCCC
Q 036836 78 ENASLDLHPSDQRDQIDGTNEWIYNGINNGV----YRCGFAT 115 (122)
Q Consensus 78 ~~~~~dL~P~~l~~~Id~~~~~i~~~inngV----Yk~GfA~ 115 (122)
.. .-.+-.-+....|.+...-=|.+||++. |+.|+++
T Consensus 116 ds-~~~~~~~~~d~~I~eYC~sgY~dINn~L~lG~~ds~n~~ 156 (319)
T PHA02057 116 DS-RSTVGSIEFDDHIHNYCDEGFASVAAGLRSGTFDSGSAG 156 (319)
T ss_pred cc-ccceeeeehhHHHHHHHhhhhhhHHhHHhcCCcCcccch
Confidence 11 1122223667788888888899999876 7777765
No 77
>TIGR00676 fadh2 5,10-methylenetetrahydrofolate reductase, prokaryotic form. This protein is an FAD-containing flavoprotein.
Probab=31.91 E-value=32 Score=27.36 Aligned_cols=59 Identities=19% Similarity=0.337 Sum_probs=36.6
Q ss_pred ecCChHHHHHHHHhhcchhhccCCCCCCCcccHH--HHHHHHHHHhhcchhhhhccCCCCCccCcc
Q 036836 58 VNNESAEIIRMFNTEFNDIAENASLDLHPSDQRD--QIDGTNEWIYNGINNGVYRCGFATKQGPYD 121 (122)
Q Consensus 58 VnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~--~Id~~~~~i~~~inngVYk~GfA~~Q~~Y~ 121 (122)
+-++|.++++++...+..+.= + .-.||+..-+ ..++-.+++...+..|+ -|.-||-.||
T Consensus 108 ~f~~a~~Li~~i~~~~~~f~i-g-~a~~Peghp~~~~~~~~~~~L~~K~~aGA---~f~iTQ~~fd 168 (272)
T TIGR00676 108 GFNYASELVEFIRNEFGDFDI-G-VAAYPEKHPEAPNLEEDIENLKRKVDAGA---DYAITQLFFD 168 (272)
T ss_pred CCCCHHHHHHHHHHhcCCeeE-E-EEeCCCCCCCCCCHHHHHHHHHHHHHcCC---CeEeeccccC
Confidence 344799999999775444321 1 2366663222 13444555667777776 5899999887
No 78
>PF05341 DUF708: Protein of unknown function (DUF708); InterPro: IPR008005 This entry is represented by Autographa californica nuclear polyhedrosis virus (AcMNPV), Orf68; it is a family of uncharacterised viral proteins.
Probab=31.05 E-value=45 Score=23.64 Aligned_cols=26 Identities=19% Similarity=0.462 Sum_probs=21.8
Q ss_pred eeeceEeeCCCCceecCChHHHHHHHH
Q 036836 44 FTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 44 ~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
|-=|+.+|.|++++..+ +..+.+.|+
T Consensus 53 Yk~Pi~Y~lk~k~L~i~-ne~v~~ALn 78 (105)
T PF05341_consen 53 YKQPIYYNLKNKTLLIT-NESVNKALN 78 (105)
T ss_pred CCCCeEEEecCCEEEec-cHHHHHHhC
Confidence 45699999999999998 577777777
No 79
>PF09635 MetRS-N: MetRS-N binding domain; InterPro: IPR018285 This entry represents the N-terminal domain of methionyl-tRNA synthetase (MetRS). This N-terminal appended domain mediates non-catalytic complex formation through its interaction with a domain in the tRNA aminoacylation cofactor Arc1p. The interacting domains of MetRS, GluRS (glutamyl-tRNA synthetase) and Arc1p form a ternary complex resembling a classical GST homo-dimer []. Domain-swapping between symmetrically related MetRS-N and Arc1p-N domains generates a 2:2 tetramer held together by van der Waals forces. This domain is necessary for formation of the aminoacyl-tRNA synthetase complex necessary for tRNA nuclear export and shuttling as part of the translational apparatus. ; PDB: 2HSN_A.
Probab=30.33 E-value=42 Score=24.40 Aligned_cols=31 Identities=26% Similarity=0.361 Sum_probs=16.3
Q ss_pred eeceEeeCCCCceecCChHHHHHHHHhhcchh
Q 036836 45 TVPVLWDKKLKTIVNNESAEIIRMFNTEFNDI 76 (122)
Q Consensus 45 TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~ 76 (122)
+-|.|.|+++|=-+-+ +.+|+|+|...|.+-
T Consensus 35 ~~~~L~~~~~gF~L~e-~NAIvrYl~nDF~~~ 65 (122)
T PF09635_consen 35 SGPLLKDKKSGFELFE-PNAIVRYLANDFEGQ 65 (122)
T ss_dssp -S--EEE-S--S-----HHHHHHHHTT--TTT
T ss_pred ccceeeecCCceEEec-ccHHHHHHHhhcCCc
Confidence 3499999999966666 999999999888764
No 80
>PF12663 DUF3788: Protein of unknown function (DUF3788); InterPro: IPR024265 This family of functionally uncharacterised proteins is found in bacteria and archaea. Proteins in this family are typically between 137 and 149 amino acids in length and may be distantly related to RelE proteins.
Probab=30.00 E-value=63 Score=23.27 Aligned_cols=38 Identities=16% Similarity=0.213 Sum_probs=28.6
Q ss_pred cchHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 26 AKTIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 26 ~~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
...++++|..+.|-..|| ++++|..+..++. ||.++|.
T Consensus 93 s~~~~~~~~~~~~~~~Gk---Wl~~~V~~~~~l~----Di~~Li~ 130 (133)
T PF12663_consen 93 SPYVQELYDEAKTYGDGK---WLMIEVRSEEDLE----DIKKLIA 130 (133)
T ss_pred CHHHHHHHHhCCCCCCCc---EEEEEeCChhhHH----HHHHHHh
Confidence 367899999988887777 8999877766654 5666554
No 81
>cd00537 MTHFR Methylenetetrahydrofolate reductase (MTHFR). 5,10-Methylenetetrahydrofolate is reduced to 5-methyltetrahydrofolate by methylenetetrahydrofolate reductase, a cytoplasmic, NAD(P)-dependent enzyme. 5-methyltetrahydrofolate is utilized by methionine synthase to convert homocysteine to methionine. The enzymatic mechanism is a ping-pong bi-bi mechanism, in which NAD(P)+ release precedes the binding of methylenetetrahydrofolate and the acceptor is free FAD. The family includes the 5,10-methylenetetrahydrofolate reductase EC:1.7.99.5 from prokaryotes and methylenetetrahydrofolate reductase EC: 1.5.1.20 from eukaryotes. The bacterial enzyme is a homotetramer and NADH is the preferred reductant while the eukaryotic enzyme is a homodimer and NADPH is the preferred reductant. In humans, there are several clinically significant mutations in MTHFR that result in hyperhomocysteinemia, which is a risk factor for the development of cardiovascular disease.
Probab=29.96 E-value=48 Score=26.06 Aligned_cols=60 Identities=10% Similarity=0.231 Sum_probs=34.9
Q ss_pred eecCChHHHHHHHHhhc-chhhccCCCCCCCcccHH--HHHHHHHHHhhcchhhhhccCCCCCccCcc
Q 036836 57 IVNNESAEIIRMFNTEF-NDIAENASLDLHPSDQRD--QIDGTNEWIYNGINNGVYRCGFATKQGPYD 121 (122)
Q Consensus 57 IVnNeS~~I~r~L~~~f-~~~~~~~~~dL~P~~l~~--~Id~~~~~i~~~inngVYk~GfA~~Q~~Y~ 121 (122)
.=-.+|.++++.+...+ +.+. -....||+..-. ..++-.+++...|..|+ -|.-||-.||
T Consensus 109 ~~~~~a~~Li~~i~~~~~~~~~--igva~yPe~hp~~~~~~~~~~~L~~Ki~aGA---~f~iTQ~~fd 171 (274)
T cd00537 109 VGFVYAVDLVELIRKENGGGFS--IGVAAYPEGHPEAPSLEEDIKRLKRKVDAGA---DFIITQLFFD 171 (274)
T ss_pred CCCCCHHHHHHHHHHhcCCCCc--cccccCCCcCCCCCCHHHHHHHHHHHHHCCC---CEEeeccccc
Confidence 33456999999998653 2221 123456642211 13344445555556565 7899999987
No 82
>COG1313 PflX Uncharacterized Fe-S protein PflX, homolog of pyruvate formate lyase activating proteins [General function prediction only]
Probab=28.75 E-value=87 Score=26.41 Aligned_cols=41 Identities=27% Similarity=0.458 Sum_probs=28.8
Q ss_pred CCCCCCCcchHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHH
Q 036836 19 EPDPLNGAKTIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFN 70 (122)
Q Consensus 19 ~~Dpv~g~~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~ 70 (122)
+.||.....++-+.-..+.-. +||+|.. +-- +|.|+++.|.
T Consensus 173 gg~Ptp~lp~Ile~l~~~~~~------iPvvwNS--nmY---~s~E~l~lL~ 213 (335)
T COG1313 173 GGDPTPHLPFILEALRYASEN------IPVVWNS--NMY---MSEETLKLLD 213 (335)
T ss_pred CCCCCCchHHHHHHHHHHhcC------CCEEEec--CCc---cCHHHHHHhh
Confidence 457777788888887776533 9999973 222 4677888786
No 83
>PF04674 Phi_1: Phosphate-induced protein 1 conserved region; InterPro: IPR006766 This entry represents a family of conserved plant proteins. A conserved region in these proteins was identified in a phosphate-induced protein of unknown function [].
Probab=28.46 E-value=26 Score=28.74 Aligned_cols=15 Identities=47% Similarity=1.041 Sum_probs=13.1
Q ss_pred CceeeceEeeCCCCc
Q 036836 42 RKFTVPVLWDKKLKT 56 (122)
Q Consensus 42 gr~TVPvL~D~~t~~ 56 (122)
.||-||.|||++|++
T Consensus 254 RkfLlpa~wdP~t~~ 268 (273)
T PF04674_consen 254 RKFLLPALWDPETSS 268 (273)
T ss_pred ceEEeecccCCCcCc
Confidence 479999999999875
No 84
>PF03413 PepSY: Peptidase propeptide and YPEB domain This Prosite motif covers only the active site. This is family M4 in the peptidase classification. ; InterPro: IPR005075 This signature, PepSY, is found in the propeptide of members of the MEROPS peptidase family M4 (clan MA(E)), which contains the thermostable thermolysins (3.4.24.27 from EC), and related thermolabile neutral proteases (bacillolysins) (3.4.24.28 from EC) from various species of Bacillus. It is also in many non-peptidase proteins, including Bacillus subtilis YpeB protein - a regulator of SleB spore cortex lytic enzyme - and a large number of eubacterial and archaeal cell wall-associated and secreted proteins which are mostly annotated as 'hypothetical protein'. Many extracellular bacterial proteases are produced as proenzymes. The propeptides usually have a dual function, i.e. they function as an intramolecular chaperone required for the folding of the polypeptide and as an inhibitor preventing premature activation of the enzyme. Analysis of the propeptide region of the M4 family of peptidases reveals two regions of conservation, the PepSY domain and a second domain, proximate to the N terminus, the FTP domain (IPR011096 from INTERPRO), which is also found in isolation in the propeptide of eukaryotic peptidases belong to MEROPS peptidase family M36. Propeptide domain swapping experiments, for example swapping the propeptide domain of PA protease with that of vibrolysin, both propeptides contain the FTP and PepSY domains, allows the PA protease domain to fold correctly and inhibits the C-terminal autoprocessing activity. However, swapping the propeptide of PA protease for the thermolysin propeptide, does not facilitate the correct folding nor the processing of the chimaeric protein into an active peptidase []. Mutational analysis of the Pseudomonas aeruginosa elastase gene revealed two mutations in the propeptide which resulted in the loss of inhibitory activity but not chaperone activity: A-15V and T-153I (where +1 is defined as the first residue of the mature peptidase). Both mutations resulted in peptidase activity, the T-153V mutation being much less effective than the A-15I mutation [] in activating peptidase activity. The T-153V mutation lies N-terminal to the FTP domain while the A-15I mutation is C-terminal to the PepSY domain. Given the diverse range of other proteins, both domains occur in in isolation, the exact function of each is still unclear; though it has been proposed that the PepSY domain primarily has inhibitory activity and in conjunction with the FTP domain in chaperone activity. ; GO: 0008237 metallopeptidase activity, 0008270 zinc ion binding, 0006508 proteolysis, 0005576 extracellular region; PDB: 2GU3_A 3NQZ_A 3NQY_A 2KGY_A.
Probab=28.09 E-value=40 Score=19.79 Aligned_cols=19 Identities=16% Similarity=-0.001 Sum_probs=12.9
Q ss_pred CceeeceEeeCCCCceecC
Q 036836 42 RKFTVPVLWDKKLKTIVNN 60 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnN 60 (122)
....+=|.+|..||+|++.
T Consensus 45 ~~~~~~v~VDa~tG~Il~~ 63 (64)
T PF03413_consen 45 DGGEYEVYVDAYTGEILSS 63 (64)
T ss_dssp TTEEEEEEEETTT--EEEE
T ss_pred CCCEEEEEEECCCCeEEEe
Confidence 3445778899999999874
No 85
>PF10143 PhosphMutase: 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; InterPro: IPR004456 This family represents 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM), it is a metalloenzyme found particularly in archaea and some eubacteria. It is responsble for the interconversion of 2-phosphoglycerate and 3-phosphoglycerate []. It is distantly related to the iPGAM (IPR005995 from INTERPRO) characteristic of plants and many eubacteria. The common active site and metal-binding residues of the phosphatase domain are easily identified, but the putative phosphotransferase domain is highly diverged. These proteins are unrelated to the cofactor-dependent PGAM (PIRSF001490 from PIRSF). Activity has been demonstrated for proteins from Methanocaldococcus jannaschii (Methanococcus jannaschii) [, ], Pyrococcus furiosus [], and Sulfolobus solfataricus []. These proteins were initially misidentified as phosphonopyruvate decarboxylase.; GO: 0003824 catalytic activity, 0046872 metal ion binding; PDB: 2ZKT_A 3KD8_A 3IDD_B.
Probab=27.60 E-value=30 Score=26.06 Aligned_cols=28 Identities=29% Similarity=0.528 Sum_probs=22.9
Q ss_pred eEeeCCCCceecCChHHHHHHHHhhcch
Q 036836 48 VLWDKKLKTIVNNESAEIIRMFNTEFND 75 (122)
Q Consensus 48 vL~D~~t~~IVnNeS~~I~r~L~~~f~~ 75 (122)
++.|...++|-+.|..+|++.|+..|..
T Consensus 70 ~i~d~rag~i~~ee~~~L~~~l~~~~~~ 97 (172)
T PF10143_consen 70 IIVDRRAGRISTEEAAELIEALNEELGG 97 (172)
T ss_dssp CEEETTGGG---TCCCHHHHHTHCCCCC
T ss_pred EEEeCCCCCCCHHHHHHHHHHHHHhcCC
Confidence 8999999999999999999999987764
No 86
>TIGR02433 lysidine_TilS_C tRNA(Ile)-lysidine synthetase, C-terminal domain. TIGRFAMs model TIGR02432 describes the family of the N-terminal domain of tRNA(Ile)-lysidine synthetase. This family (TIGR02433) describes a small C-terminal domain of about 50 residues present in about half the members of family TIGR02432,and in no other protein. Characterized examples of tRNA(Ile)-lysidine synthetase from E. coli and Bacillus subtilis both contain this domain.
Probab=27.09 E-value=38 Score=19.36 Aligned_cols=27 Identities=22% Similarity=0.277 Sum_probs=22.5
Q ss_pred CcchHHhHHHHhcCCCCCceeeceEee
Q 036836 25 GAKTIGGLYELASTNYSRKFTVPVLWD 51 (122)
Q Consensus 25 g~~~L~elY~~~~p~y~gr~TVPvL~D 51 (122)
|.+.|+.++..+.=...-|-.+|||++
T Consensus 19 ~~k~lkk~~~e~kiP~~~R~~~pll~~ 45 (47)
T TIGR02433 19 GSKKLKKLFIDAKVPPWLRDRIPLLFY 45 (47)
T ss_pred CCchHHHHHHHcCCCHHHHcCccEEEe
Confidence 578999999987766667899999985
No 87
>PRK10972 Z-ring-associated protein; Provisional
Probab=26.41 E-value=42 Score=23.76 Aligned_cols=54 Identities=15% Similarity=0.122 Sum_probs=41.3
Q ss_pred CCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccHHHHHHHHHHHhhcchh
Q 036836 53 KLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQRDQIDGTNEWIYNGINN 106 (122)
Q Consensus 53 ~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id~~~~~i~~~inn 106 (122)
.+++|++.|--.+|--||-++.=+.....-..+=..++..|..+++.|-..+.+
T Consensus 43 ~~~kv~~~EriavmaALNl~~ELl~~k~~~~~~~~~~~~rI~~L~~~ld~AL~~ 96 (109)
T PRK10972 43 ERTRVTNTEQLVFIAALNICYELAQEKAKTRDYAANMEQRIRMLQQTIEQALLE 96 (109)
T ss_pred HhcCCCcHHHHHHHHHHHHHHHHHHHHHhccchHHHHHHHHHHHHHHHHHHHHh
Confidence 567899999999999999887655433323344467888899999999888775
No 88
>PHA02956 hypothetical protein; Provisional
Probab=26.35 E-value=1.2e+02 Score=22.90 Aligned_cols=70 Identities=16% Similarity=0.177 Sum_probs=42.8
Q ss_pred cCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcchhhccCCCCCCCcccH----HHHHHHHHHHhhcchhhhhc
Q 036836 37 STNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFNDIAENASLDLHPSDQR----DQIDGTNEWIYNGINNGVYR 110 (122)
Q Consensus 37 ~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~----~~Id~~~~~i~~~inngVYk 110 (122)
|..|+..----+++|..+|+|++. --.|+.+|...=-+|.+. .||.++-. -..+.+-+.+..-||+-|-|
T Consensus 98 dray~dsr~nsiiidsssgkiice-gigiid~lr~~gidfi~d---klfsedeii~hl~gvq~lkdicik~i~~tv~k 171 (189)
T PHA02956 98 DRAYPDSRMNSIIIDSSSGKIICE-GIGIIDKLRLHGIDFIKD---KLFSEDEIINHLVGVQKLKDICIKMINKTVKK 171 (189)
T ss_pred cccCCccccceEEEecCCCcEEee-cchHHHHHHHcCchhhhh---hccCHHHHHHHHHccccHHHHHHHHHHhhhch
Confidence 455655445578999999999997 788999998642223322 25554211 01234445555667776654
No 89
>PF05314 Baculo_ODV-E27: Baculovirus occlusion-derived virus envelope protein EC27; InterPro: IPR007978 This family consists of several baculovirus occlusion-derived virus envelope proteins (EC27 or E27) which appear to act as a multifuntional cyclins during the host cell cycle. The ODV-E27 protein has distinct functional characteristics compared to cellular and viral cyclins. When associated with cdc2, it exhibits cyclin B-like activity; when associated with cdk6, the complex possesses cyclin D-like activity and binds PCNA (proliferating cell nuclear antigen) [].; GO: 0019031 viral envelope
Probab=25.76 E-value=1e+02 Score=25.37 Aligned_cols=30 Identities=30% Similarity=0.606 Sum_probs=25.0
Q ss_pred eeceEe----eCCCCceecC-ChHHHHHHHHhhcc
Q 036836 45 TVPVLW----DKKLKTIVNN-ESAEIIRMFNTEFN 74 (122)
Q Consensus 45 TVPvL~----D~~t~~IVnN-eS~~I~r~L~~~f~ 74 (122)
+=|+++ +-..++|||. +..-|+|||...|+
T Consensus 118 gEPIvF~~~~~~ed~~i~C~VDR~sIlr~Lek~~D 152 (279)
T PF05314_consen 118 GEPIVFKSSRDNEDQTIVCYVDRPSILRMLEKPFD 152 (279)
T ss_pred CCCEEeccccCCCCCeEEEEechHHHHHHhccccc
Confidence 347777 7778899997 78999999999887
No 90
>cd02066 GRX_family Glutaredoxin (GRX) family; composed of GRX, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH - GSH reductase - GSH - GRX - protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes are known including human GRX1 and GRX2, as well as E. coli GRX1 and GRX3, which
Probab=25.34 E-value=86 Score=18.05 Aligned_cols=24 Identities=13% Similarity=0.147 Sum_probs=17.0
Q ss_pred CceeeceEeeCCCCceecCChHHHHHH
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRM 68 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~ 68 (122)
|.-|+|+|+. .++.+.- +.+|+++
T Consensus 47 ~~~~~P~~~~--~~~~igg-~~~~~~~ 70 (72)
T cd02066 47 GWPTVPQIFI--NGEFIGG-YDDLKAL 70 (72)
T ss_pred CCCCcCEEEE--CCEEEec-HHHHHHh
Confidence 5689999986 4666665 6777654
No 91
>cd03419 GRX_GRXh_1_2_like Glutaredoxin (GRX) family, GRX human class 1 and 2 (h_1_2)-like subfamily; composed of proteins similar to human GRXs, approximately 10 kDa in size, and proteins containing a GRX or GRX-like domain. GRX is a glutathione (GSH) dependent reductase, catalyzing the disulfide reduction of target proteins such as ribonucleotide reductase. It contains a redox active CXXC motif in a TRX fold and uses a similar dithiol mechanism employed by TRXs for intramolecular disulfide bond reduction of protein substrates. Unlike TRX, GRX has preference for mixed GSH disulfide substrates, in which it uses a monothiol mechanism where only the N-terminal cysteine is required. The flow of reducing equivalents in the GRX system goes from NADPH - GSH reductase - GSH - GRX - protein substrates. By altering the redox state of target proteins, GRX is involved in many cellular functions including DNA synthesis, signal transduction and the defense against oxidative stress. Different classes
Probab=24.21 E-value=1e+02 Score=18.83 Aligned_cols=29 Identities=10% Similarity=0.271 Sum_probs=21.7
Q ss_pred CCCceeeceEeeCCCCceecCChHHHHHHHHh
Q 036836 40 YSRKFTVPVLWDKKLKTIVNNESAEIIRMFNT 71 (122)
Q Consensus 40 y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~ 71 (122)
.+|..|||+++. .++.|.- +.+|+.+..+
T Consensus 48 ~~g~~~~P~v~~--~g~~igg-~~~~~~~~~~ 76 (82)
T cd03419 48 LTGQRTVPNVFI--GGKFIGG-CDDLMALHKS 76 (82)
T ss_pred HhCCCCCCeEEE--CCEEEcC-HHHHHHHHHc
Confidence 357889999986 4666655 8888888775
No 92
>PF13076 DUF3940: Protein of unknown function (DUF3940)
Probab=23.39 E-value=41 Score=19.51 Aligned_cols=15 Identities=27% Similarity=0.341 Sum_probs=11.7
Q ss_pred HHHhhcchhhhhccC
Q 036836 98 EWIYNGINNGVYRCG 112 (122)
Q Consensus 98 ~~i~~~inngVYk~G 112 (122)
..|..-|.+||||.+
T Consensus 5 ~lI~~Li~~Giyk~~ 19 (38)
T PF13076_consen 5 FLIEKLIQSGIYKKE 19 (38)
T ss_pred HHHHHHHHcCCcCcc
Confidence 356777999999965
No 93
>PF10545 MADF_DNA_bdg: Alcohol dehydrogenase transcription factor Myb/SANT-like; InterPro: IPR006578 The MADF (myb/SANT-like domain in Adf-1) domain is an approximately 80-amino-acid module that directs sequence specific DNA binding to a site consisting of multiple tri-nucleotide repeats. The MADF domain is found in one or more copies in eukaryotic and viral proteins and is often associated with the BESS domain []. MADF is related to the Myb DNA-binding domain (IPR001005 from INTERPRO). The retroviral oncogene v-myb, and its cellular counterpart c-myb, are nuclear DNA-binding proteins that specifically recognise the sequence YAAC(G/T)G. It is likely that the MADF domain is more closely related to the myb/SANT domain than it is to other HTH domains. Some proteins known to contain a MADF domain are listed below: Drosophila Adf-1, a transcription factor first identified on the basis of its interaction with the alcohol dehydrogenase promoter but that binds the promoters of a diverse group of genes []. Drosophila Dorsal-interacting protein 3 (Dip3), which functions both as an activator to bind DNA in a sequence specific manner and a coactivator to stimulate synergistic activation by Dorsal and Twist []. Drosophila Stonewall (Stwl), a putative transcription factor required for maintenance of female germline stem cells as well as oocyte differentiation.
Probab=23.18 E-value=17 Score=22.70 Aligned_cols=24 Identities=29% Similarity=0.535 Sum_probs=13.1
Q ss_pred ceEeeCCCCc-----eecCChHHHHHHHH
Q 036836 47 PVLWDKKLKT-----IVNNESAEIIRMFN 70 (122)
Q Consensus 47 PvL~D~~t~~-----IVnNeS~~I~r~L~ 70 (122)
|+|||+.... ...+--.+|+..|+
T Consensus 9 p~Lwd~~~~~y~~~~~r~~aw~~Ia~~l~ 37 (85)
T PF10545_consen 9 PCLWDPSHPDYKNRQLREEAWQEIARELG 37 (85)
T ss_pred HHhhCCCCcccCCHHHHHHHHHHHHHHHc
Confidence 6777764432 34444455666665
No 94
>KOG1695 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=23.07 E-value=79 Score=24.63 Aligned_cols=26 Identities=31% Similarity=0.502 Sum_probs=18.5
Q ss_pred eeceE-eeCCCCceecCChHHHHHHHHhhcc
Q 036836 45 TVPVL-WDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 45 TVPvL-~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
-|||| +| |.-+.- |.+|+|+|...|+
T Consensus 51 qlP~l~vD---g~~i~Q-S~AI~RyLArk~g 77 (206)
T KOG1695|consen 51 QLPVLEVD---GKKLVQ-SRAILRYLARKFG 77 (206)
T ss_pred CCCEEeEC---CEeecc-HHHHHHHHHHHhC
Confidence 47844 55 444443 9999999999886
No 95
>PF11776 DUF3315: Domain of unknown function (DUF3315); InterPro: IPR024572 This is a bacterial family of uncharacterised proteins, which include YohN from Escherichia coli K12.; PDB: 2L1S_A.
Probab=22.40 E-value=63 Score=19.64 Aligned_cols=12 Identities=25% Similarity=0.113 Sum_probs=9.5
Q ss_pred eEeeCCCCceec
Q 036836 48 VLWDKKLKTIVN 59 (122)
Q Consensus 48 vL~D~~t~~IVn 59 (122)
||++..||+|++
T Consensus 40 vLv~~~tG~I~~ 51 (52)
T PF11776_consen 40 VLVAIATGIIAS 51 (52)
T ss_dssp EEEETTT-BEEE
T ss_pred EEEEcCCCeEEe
Confidence 899999999974
No 96
>PF14380 WAK_assoc: Wall-associated receptor kinase C-terminal
Probab=22.20 E-value=62 Score=21.50 Aligned_cols=31 Identities=19% Similarity=0.229 Sum_probs=20.9
Q ss_pred CceeeceEeeCCCCceecCChHHHHHHHHhhcc
Q 036836 42 RKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFN 74 (122)
Q Consensus 42 gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~ 74 (122)
..+.||||.+....- .. ....+.+.|...|.
T Consensus 27 ~~v~vPV~~~~~~~~-~~-~~~~~~~~L~~GF~ 57 (94)
T PF14380_consen 27 KSVVVPVLGSAVDSI-DG-SSGNYEEVLKKGFE 57 (94)
T ss_pred EEEEEEECchhhhcc-cc-chhHHHHHHhcCcE
Confidence 358999998744221 11 47778888988774
No 97
>KOG1838 consensus Alpha/beta hydrolase [General function prediction only]
Probab=21.54 E-value=62 Score=27.99 Aligned_cols=29 Identities=38% Similarity=0.681 Sum_probs=25.9
Q ss_pred CCCCcchHHhHHHHhcCC-CCCceeeceEe
Q 036836 22 PLNGAKTIGGLYELASTN-YSRKFTVPVLW 50 (122)
Q Consensus 22 pv~g~~~L~elY~~~~p~-y~gr~TVPvL~ 50 (122)
|++|++..-|-|.++.+- |-+.+.||+|.
T Consensus 298 ~~~gf~~~deYY~~aSs~~~v~~I~VP~L~ 327 (409)
T KOG1838|consen 298 PMFGFKSVDEYYKKASSSNYVDKIKVPLLC 327 (409)
T ss_pred hhcCCCcHHHHHhhcchhhhcccccccEEE
Confidence 889999999999998775 56899999996
No 98
>PF11417 Inhibitor_G39P: Loader and inhibitor of phage G40P; InterPro: IPR024424 G39P inhibits the initiation of DNA replication by blocking G40P replicative helicase. G39P has a bipartite stricture consisting of a folded N-terminal domain and an unfolded C-terminal domain. The C-terminal is essential for helicase interaction [].; PDB: 1NO1_B.
Probab=21.49 E-value=1.1e+02 Score=19.82 Aligned_cols=38 Identities=16% Similarity=0.435 Sum_probs=24.3
Q ss_pred CChHHHHHHHHhhcchhhccCCCCCCCcccHHHHHHHHHHHh
Q 036836 60 NESAEIIRMFNTEFNDIAENASLDLHPSDQRDQIDGTNEWIY 101 (122)
Q Consensus 60 NeS~~I~r~L~~~f~~~~~~~~~dL~P~~l~~~Id~~~~~i~ 101 (122)
+|-.+|+..+..+|+.+. .++.+.+.+..|+.|.+.+.
T Consensus 4 ~E~~~ll~~I~~aYP~~~----~~f~~~~~k~~v~~W~~~L~ 41 (71)
T PF11417_consen 4 EETAKLLKLIKAAYPQWA----GNFKPTDSKETVDLWYDMLK 41 (71)
T ss_dssp HHHHHHHHHHHHHST-------TT---STHHHHHHHHHHHHT
T ss_pred HHHHHHHHHHHHHCCcch----hccchhhHHHHHHHHHHHHH
Confidence 356778888888887432 24556677888999988874
No 99
>KOG0361 consensus Chaperonin complex component, TCP-1 eta subunit (CCT7) [Posttranslational modification, protein turnover, chaperones]
Probab=20.67 E-value=93 Score=27.42 Aligned_cols=50 Identities=16% Similarity=0.248 Sum_probs=36.5
Q ss_pred CCCcchHHhHHHHhcCCCCCceeeceEeeCCCCceecCChHHHHHHHHhhcch
Q 036836 23 LNGAKTIGGLYELASTNYSRKFTVPVLWDKKLKTIVNNESAEIIRMFNTEFND 75 (122)
Q Consensus 23 v~g~~~L~elY~~~~p~y~gr~TVPvL~D~~t~~IVnNeS~~I~r~L~~~f~~ 75 (122)
++-|..+.|.-..+- ..|-.=-+++|.+-.+.++|+-+.|++.|+-.++.
T Consensus 26 InaC~~v~e~~rtTL---GP~GmDkLivd~~g~~tIsNDGATIlKlldivhPa 75 (543)
T KOG0361|consen 26 INACTAVAEALRTTL---GPRGMDKLIVDSKGKTTISNDGATILKLLDIVHPA 75 (543)
T ss_pred hHHHHHHHHHHHhcc---CccccceeeecCCCcEEEecCcHHHHHHHhhcChh
Confidence 455666777665543 23344457899999999999999999999866553
No 100
>PRK09239 chorismate mutase; Provisional
Probab=20.47 E-value=1.3e+02 Score=20.82 Aligned_cols=19 Identities=16% Similarity=0.251 Sum_probs=14.9
Q ss_pred ccHHHHHHHHHHHhhcchh
Q 036836 88 DQRDQIDGTNEWIYNGINN 106 (122)
Q Consensus 88 ~l~~~Id~~~~~i~~~inn 106 (122)
++|.+||++...|-..|+.
T Consensus 14 ~lR~~ID~ID~eIv~LLa~ 32 (104)
T PRK09239 14 ALRQSIDNIDAALIHMLAE 32 (104)
T ss_pred HHHHHHHHHHHHHHHHHHH
Confidence 5789999998888776653
Done!