Query 038684
Match_columns 104
No_of_seqs 118 out of 684
Neff 7.4
Searched_HMMs 46136
Date Fri Mar 29 13:35:05 2013
Command hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/038684.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/038684hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 KOG1515 Arylacetamide deacetyl 99.8 1.2E-18 2.7E-23 132.1 9.7 101 1-103 204-334 (336)
2 PRK10162 acetyl esterase; Prov 99.3 8.5E-12 1.8E-16 93.5 8.1 82 19-103 214-314 (318)
3 COG0657 Aes Esterase/lipase [L 98.9 1.7E-08 3.7E-13 74.9 8.4 81 19-103 210-309 (312)
4 PF07859 Abhydrolase_3: alpha/ 98.4 9.2E-08 2E-12 66.6 1.8 60 19-81 133-210 (211)
5 KOG4388 Hormone-sensitive lipa 97.2 0.00035 7.7E-09 57.2 3.5 60 37-98 769-848 (880)
6 PF01738 DLH: Dienelactone hyd 96.5 0.0012 2.6E-08 46.3 1.5 44 58-103 170-216 (218)
7 PF00326 Peptidase_S9: Prolyl 95.1 0.023 5E-07 39.5 3.0 40 58-103 169-208 (213)
8 COG0412 Dienelactone hydrolase 94.9 0.05 1.1E-06 39.5 4.3 44 58-103 183-232 (236)
9 TIGR02821 fghA_ester_D S-formy 94.6 0.025 5.4E-07 41.4 2.2 33 58-92 237-269 (275)
10 COG1506 DAP2 Dipeptidyl aminop 93.4 0.096 2.1E-06 42.9 3.7 40 58-103 576-615 (620)
11 PRK11460 putative hydrolase; P 92.2 0.16 3.4E-06 36.4 3.0 21 58-80 173-193 (232)
12 PF02230 Abhydrolase_2: Phosph 89.3 0.47 1E-05 33.3 3.3 35 58-103 180-214 (216)
13 PRK10566 esterase; Provisional 88.3 0.63 1.4E-05 32.7 3.4 37 58-103 211-247 (249)
14 PLN02442 S-formylglutathione h 84.4 1.1 2.5E-05 32.9 3.0 35 58-101 243-277 (283)
15 KOG3043 Predicted hydrolase re 78.4 3 6.6E-05 30.7 3.4 36 68-103 198-239 (242)
16 smart00877 BMC Bacterial micro 73.5 11 0.00024 22.5 4.5 43 57-101 19-61 (75)
17 cd06169 BMC Bacterial Micro-Co 72.8 9.6 0.00021 21.8 4.0 41 58-100 20-61 (62)
18 PHA02857 monoglyceride lipase; 72.2 7.5 0.00016 27.6 4.1 36 66-103 237-272 (276)
19 PRK10749 lysophospholipase L2; 69.4 7 0.00015 29.1 3.6 44 58-103 284-328 (330)
20 KOG2100 Dipeptidyl aminopeptid 68.1 7.5 0.00016 33.0 3.8 39 58-102 707-745 (755)
21 PF08840 BAAT_C: BAAT / Acyl-C 67.4 3.8 8.2E-05 29.0 1.7 24 58-81 141-164 (213)
22 TIGR03695 menH_SHCHC 2-succiny 67.2 7.5 0.00016 25.9 3.1 38 58-102 214-251 (251)
23 KOG2112 Lysophospholipase [Lip 63.7 10 0.00022 27.4 3.3 35 58-103 169-203 (206)
24 PRK11126 2-succinyl-6-hydroxy- 58.4 13 0.00029 25.5 3.2 33 67-104 210-242 (242)
25 COG2993 CcoO Cbb3-type cytochr 58.3 4.6 9.9E-05 29.2 0.7 14 1-14 95-108 (227)
26 COG4050 Uncharacterized protei 57.3 23 0.0005 23.8 3.9 40 53-104 101-147 (152)
27 PF00936 BMC: BMC domain; Int 57.3 23 0.00049 21.1 3.6 44 58-103 21-64 (75)
28 PLN02385 hydrolase; alpha/beta 54.5 26 0.00056 26.2 4.3 35 67-103 309-344 (349)
29 PLN02965 Probable pheophorbida 54.1 19 0.00042 25.3 3.4 41 58-102 214-254 (255)
30 PRK10673 acyl-CoA esterase; Pr 53.5 37 0.00079 23.4 4.7 39 58-103 216-254 (255)
31 PF09885 DUF2112: Uncharacteri 53.4 37 0.0008 23.1 4.4 41 52-104 96-143 (143)
32 cd07056 BMC_PduK 1,2-propanedi 51.7 51 0.0011 19.8 4.5 43 58-102 20-63 (77)
33 cd07046 BMC_PduU-EutS 1,2-prop 50.9 44 0.00095 21.7 4.4 41 58-103 58-98 (110)
34 PLN02298 hydrolase, alpha/beta 50.5 29 0.00064 25.5 4.0 36 67-103 281-316 (330)
35 cd07045 BMC_CcmK_like Carbon d 50.4 47 0.001 20.3 4.3 45 56-102 18-62 (84)
36 PF01106 NifU: NifU-like domai 50.2 13 0.00028 21.8 1.7 36 56-94 9-47 (68)
37 cd07049 BMC_EutL_repeat1 ethan 49.5 45 0.00098 21.5 4.2 44 58-103 45-99 (103)
38 TIGR01738 bioH putative pimelo 48.0 32 0.00069 22.9 3.6 37 58-101 209-245 (245)
39 TIGR03611 RutD pyrimidine util 47.8 29 0.00064 23.4 3.5 39 58-103 219-257 (257)
40 TIGR03271 methan_mark_5 putati 47.2 53 0.0012 22.3 4.4 41 52-104 95-142 (142)
41 cd07047 BMC_PduB_repeat1 1,2-p 46.6 68 0.0015 21.6 4.9 42 58-101 55-103 (134)
42 PF02433 FixO: Cytochrome C ox 45.6 11 0.00023 27.7 0.9 30 1-30 93-122 (226)
43 TIGR03056 bchO_mg_che_rel puta 44.7 45 0.00098 23.1 4.1 38 58-102 241-278 (278)
44 PRK00019 rpmE 50S ribosomal pr 43.1 8.8 0.00019 23.1 0.2 10 1-10 42-51 (72)
45 COG0400 Predicted esterase [Ge 43.1 29 0.00063 24.8 2.9 20 58-80 171-190 (207)
46 PLN02679 hydrolase, alpha/beta 42.8 40 0.00086 25.5 3.8 34 66-104 324-357 (360)
47 PLN02824 hydrolase, alpha/beta 42.1 32 0.00069 24.7 3.0 39 58-103 255-293 (294)
48 COG4810 EutS Ethanolamine util 41.4 52 0.0011 21.4 3.5 76 24-104 13-110 (121)
49 TIGR03100 hydr1_PEP hydrolase, 40.4 45 0.00098 24.1 3.6 33 67-103 242-274 (274)
50 PRK10115 protease 2; Provision 39.4 48 0.001 27.8 4.0 20 58-79 631-653 (686)
51 PRK11071 esterase YqiA; Provis 39.3 26 0.00057 24.1 2.2 27 69-102 163-189 (190)
52 PLN02652 hydrolase; alpha/beta 39.1 55 0.0012 25.5 4.1 34 66-103 353-386 (395)
53 PRK11190 Fe/S biogenesis prote 37.3 88 0.0019 22.2 4.6 39 55-95 119-160 (192)
54 TIGR03341 YhgI_GntY IscR-regul 36.9 90 0.0019 22.0 4.6 39 55-95 118-159 (190)
55 CHL00136 rpl31 ribosomal prote 36.7 13 0.00029 22.1 0.3 10 1-10 42-51 (68)
56 TIGR03343 biphenyl_bphD 2-hydr 36.7 66 0.0014 22.6 3.9 38 58-102 244-281 (282)
57 COG0254 RpmE Ribosomal protein 35.9 15 0.00033 22.3 0.4 10 1-10 44-53 (75)
58 COG2267 PldB Lysophospholipase 35.6 57 0.0012 24.3 3.6 42 58-103 251-293 (298)
59 PRK15415 propanediol utilizati 34.9 86 0.0019 23.6 4.3 42 58-101 96-144 (266)
60 PRK01678 rpmE2 50S ribosomal p 34.5 14 0.00031 23.0 0.2 10 1-10 55-64 (87)
61 PF15226 HPIP: HCF-1 beta-prop 33.5 25 0.00054 22.9 1.2 20 23-46 49-68 (118)
62 PRK15405 ethanolamine utilizat 33.3 92 0.002 22.7 4.2 44 58-103 54-108 (217)
63 PRK14487 cbb3-type cytochrome 32.9 22 0.00048 25.9 0.9 30 1-30 94-123 (217)
64 PRK15468 carboxysome structura 32.5 85 0.0018 20.5 3.5 68 29-103 9-99 (111)
65 PF08777 RRM_3: RNA binding mo 31.2 1.1E+02 0.0025 19.2 4.0 33 67-100 27-60 (105)
66 PF01197 Ribosomal_L31: Riboso 30.5 29 0.00064 20.5 1.1 10 1-10 43-52 (69)
67 TIGR02427 protocat_pcaD 3-oxoa 30.0 1.1E+02 0.0023 20.3 4.0 32 66-102 220-251 (251)
68 TIGR01250 pro_imino_pep_2 prol 30.0 94 0.002 21.2 3.8 38 58-102 251-288 (288)
69 cd07053 BMC_PduT_repeat1 1,2-p 29.8 1.3E+02 0.0028 18.0 3.9 40 58-101 20-61 (76)
70 PRK01397 50S ribosomal protein 29.7 23 0.0005 21.6 0.5 9 1-9 41-49 (78)
71 TIGR00781 ccoO cytochrome c ox 27.7 39 0.00084 24.9 1.5 30 1-30 93-122 (232)
72 PF11349 DUF3151: Protein of u 27.6 30 0.00066 23.1 0.8 27 51-77 59-90 (129)
73 PF06525 SoxE: Sulfocyanin (So 27.5 46 0.001 23.9 1.8 25 61-85 91-115 (196)
74 TIGR01607 PST-A Plasmodium sub 27.5 88 0.0019 23.4 3.5 32 67-102 300-331 (332)
75 TIGR00105 L31 ribosomal protei 26.4 23 0.0005 20.9 0.1 9 1-9 42-50 (68)
76 PF14433 SUKH-3: SUKH-3 immuni 26.4 13 0.00028 24.5 -1.1 7 58-64 7-13 (142)
77 KOG1455 Lysophospholipase [Lip 26.2 53 0.0011 25.3 2.0 37 66-103 275-311 (313)
78 KOG3027 Mitochondrial outer me 25.4 32 0.0007 25.3 0.7 13 1-13 196-208 (257)
79 KOG4827 Uncharacterized conser 24.8 59 0.0013 23.7 1.9 29 6-34 225-253 (279)
80 PF14417 MEDS: MEDS: MEthanoge 24.7 1E+02 0.0022 21.2 3.2 38 59-103 5-42 (191)
81 KOG3101 Esterase D [General fu 24.5 2.8E+02 0.006 20.8 5.4 23 63-85 245-267 (283)
82 PRK10439 enterobactin/ferric e 23.6 27 0.00059 27.4 0.1 23 58-83 373-395 (411)
83 PF06200 tify: tify domain; I 23.5 86 0.0019 16.2 1.9 24 71-96 10-33 (36)
84 COG4077 Uncharacterized protei 23.4 75 0.0016 21.7 2.1 22 83-104 68-89 (156)
85 PF12122 DUF3582: Protein of u 22.7 2.1E+02 0.0046 18.1 4.2 41 58-102 19-59 (101)
86 TIGR01894 cas_TM1795_cmr1 CRIS 22.2 1.1E+02 0.0024 20.9 2.8 30 2-31 6-37 (153)
87 TIGR02578 cas_TM1811_Csm1 CRIS 22.1 1.4E+02 0.003 25.2 3.9 39 58-101 289-327 (648)
88 PF01343 Peptidase_S49: Peptid 21.4 1.8E+02 0.0039 19.3 3.8 39 58-101 54-95 (154)
89 COG0627 Predicted esterase [Ge 21.1 33 0.00071 26.2 0.1 26 58-85 274-299 (316)
90 PRK00175 metX homoserine O-ace 21.0 1.1E+02 0.0023 23.4 2.9 39 58-103 334-373 (379)
91 PHA02447 hypothetical protein 21.0 30 0.00066 20.7 -0.1 17 27-45 22-38 (86)
92 PF08386 Abhydrolase_4: TAP-li 21.0 2.2E+02 0.0047 17.6 4.2 30 68-102 63-92 (103)
93 COG4737 Uncharacterized protei 20.1 1.1E+02 0.0025 20.2 2.4 19 66-84 57-75 (123)
No 1
>KOG1515 consensus Arylacetamide deacetylase [Defense mechanisms]
Probab=99.78 E-value=1.2e-18 Score=132.14 Aligned_cols=101 Identities=31% Similarity=0.532 Sum_probs=88.3
Q ss_pred CCcccCCCCCCcccC--C---hh-hHHHHHHHHHHhcCCCC-CCCCCCCCCCC-C--CcccccCCch-------------
Q 038684 1 HTYFWGKEHVGDETT--D---AE-KRASIEKIWRAACPSIS-GCDDPLINPFV-G--SSLASLGCKR------------- 57 (104)
Q Consensus 1 ~P~F~g~~r~~se~~--~---~~-~~~~~~~~w~~~lp~~~-~~ddp~~nPl~-~--~~l~~~~~~p------------- 57 (104)
||||+|+++|.+|.+ . +. ++...+++|+.++|.+. ++|||+|||+. . .++.+.+|++
T Consensus 204 ~P~~~~~~~~~~e~~~~~~~~~~~~~~~~~~~w~~~lP~~~~~~~~p~~np~~~~~~~d~~~~~lp~tlv~~ag~D~L~D 283 (336)
T KOG1515|consen 204 YPFFQGTDRTESEKQQNLNGSPELARPKIDKWWRLLLPNGKTDLDHPFINPVGNSLAKDLSGLGLPPTLVVVAGYDVLRD 283 (336)
T ss_pred ecccCCCCCCCHHHHHhhcCCcchhHHHHHHHHHHhCCCCCCCcCCccccccccccccCccccCCCceEEEEeCchhhhh
Confidence 799999999999876 1 22 78899999999999998 89999999997 2 3555544544
Q ss_pred -------HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 -------KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 -------~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
+||++| ++|++.+|++..|||+++.+.++.+.++++++..||.+
T Consensus 284 ~~~~Y~~~Lkk~G--v~v~~~~~e~~~H~~~~~~~~~~~a~~~~~~i~~fi~~ 334 (336)
T KOG1515|consen 284 EGLAYAEKLKKAG--VEVTLIHYEDGFHGFHILDPSSKEAHALMDAIVEFIKS 334 (336)
T ss_pred hhHHHHHHHHHcC--CeEEEEEECCCeeEEEecCCchhhHHHHHHHHHHHHhh
Confidence 999999 88999999999999999999899999999999999976
No 2
>PRK10162 acetyl esterase; Provisional
Probab=99.31 E-value=8.5e-12 Score=93.45 Aligned_cols=82 Identities=18% Similarity=0.186 Sum_probs=70.8
Q ss_pred hHHHHHHHHHHhcCCCCCCCCCCCCCCCCCcc-cc--------cCCch----------HHHhhCCCCccEEEEeCCCeeE
Q 038684 19 KRASIEKIWRAACPSISGCDDPLINPFVGSSL-AS--------LGCKR----------KLKESGWGGEAEIVESKGELHI 79 (104)
Q Consensus 19 ~~~~~~~~w~~~lp~~~~~ddp~~nPl~~~~l-~~--------~~~~p----------~L~~aG~~~~Ve~~~~~g~~H~ 79 (104)
+...++|+|+.|++...++++|+++|+. .++ ++ .++|+ +|+++| ++|++++|+|+.||
T Consensus 214 ~~~~~~~~~~~y~~~~~~~~~p~~~p~~-~~l~~~lPp~~i~~g~~D~L~de~~~~~~~L~~aG--v~v~~~~~~g~~H~ 290 (318)
T PRK10162 214 TQQDLQMYEEAYLSNDADRESPYYCLFN-NDLTRDVPPCFIAGAEFDPLLDDSRLLYQTLAAHQ--QPCEFKLYPGTLHA 290 (318)
T ss_pred CHHHHHHHHHHhCCCccccCCcccCcch-hhhhcCCCCeEEEecCCCcCcChHHHHHHHHHHcC--CCEEEEEECCCcee
Confidence 6778999999999988788899999974 244 33 23555 999999 99999999999999
Q ss_pred EEecCCCCHHHHHHHHHHHHHHhc
Q 038684 80 FYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 80 F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
|..+.+.+++++++++++++|+++
T Consensus 291 f~~~~~~~~~a~~~~~~~~~~l~~ 314 (318)
T PRK10162 291 FLHYSRMMDTADDALRDGAQFFTA 314 (318)
T ss_pred hhhccCchHHHHHHHHHHHHHHHH
Confidence 999988899999999999999975
No 3
>COG0657 Aes Esterase/lipase [Lipid metabolism]
Probab=98.85 E-value=1.7e-08 Score=74.86 Aligned_cols=81 Identities=23% Similarity=0.305 Sum_probs=66.6
Q ss_pred hHHHHH-HHHHHhcCCCCCCCCCCCCCCCCCccccc--------CCch----------HHHhhCCCCccEEEEeCCCeeE
Q 038684 19 KRASIE-KIWRAACPSISGCDDPLINPFVGSSLASL--------GCKR----------KLKESGWGGEAEIVESKGELHI 79 (104)
Q Consensus 19 ~~~~~~-~~w~~~lp~~~~~ddp~~nPl~~~~l~~~--------~~~p----------~L~~aG~~~~Ve~~~~~g~~H~ 79 (104)
+...+. |++..|++...+..+|+++|+..+++.++ ++|+ +|+++| ++|++++++|+.|+
T Consensus 210 ~~~~~~~~~~~~~~~~~~~~~~p~~spl~~~~~~~lPP~~i~~a~~D~l~~~~~~~a~~L~~ag--v~~~~~~~~g~~H~ 287 (312)
T COG0657 210 DAAAILAWFADLYLGAAPDREDPEASPLASDDLSGLPPTLIQTAEFDPLRDEGEAYAERLRAAG--VPVELRVYPGMIHG 287 (312)
T ss_pred CHHHHHHHHHHHhCcCccccCCCccCccccccccCCCCEEEEecCCCcchhHHHHHHHHHHHcC--CeEEEEEeCCccee
Confidence 445545 99999998877888899999984345542 2444 999999 99999999999999
Q ss_pred EEecCCCCHHHHHHHHHHHHHHhc
Q 038684 80 FYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 80 F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
|..+.. +++++.+.++++|+++
T Consensus 288 f~~~~~--~~a~~~~~~~~~~l~~ 309 (312)
T COG0657 288 FDLLTG--PEARSALRQIAAFLRA 309 (312)
T ss_pred ccccCc--HHHHHHHHHHHHHHHH
Confidence 998876 9999999999999874
No 4
>PF07859 Abhydrolase_3: alpha/beta hydrolase fold A web page of Esterases and alpha/beta hydrolases.; InterPro: IPR013094 The alpha/beta hydrolase fold [] is common to a number of hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is an alpha/beta-sheet (rather than a barrel), containing 8 strands connected by helices []. The enzymes are believed to have diverged from a common ancestor, preserving the arrangement of the catalytic residues. All have a catalytic triad, the elements of which are borne on loops, which are the best conserved structural features of the fold. Esterase (EST) from Pseudomonas putida is a member of the alpha/beta hydrolase fold superfamily of enzymes []. In most of the family members the beta-strands are parallels, but some have an inversion of the first strands, which gives it an antiparallel orientation. The catalytic triad residues are presented on loops. One of these is the nucleophile elbow and is the most conserved feature of the fold. Some other members lack one or all of the catalytic residues. Some members are therefore inactive but others are involved in surface recognition. The ESTHER database [] gathers and annotates all the published information related to gene and protein sequences of this superfamily []. This entry represents the catalytic domain fold-3 of alpha/beta hydrolase. ; GO: 0016787 hydrolase activity, 0008152 metabolic process; PDB: 3D7R_B 2C7B_B 3ZWQ_B 2YH2_B 3BXP_A 3D3N_A 1LZK_A 1LZL_A 2O7V_A 2O7R_A ....
Probab=98.43 E-value=9.2e-08 Score=66.56 Aligned_cols=60 Identities=33% Similarity=0.487 Sum_probs=47.1
Q ss_pred hHHHHHHHHHHhcCCCCCCCCCCCCCCCCCccccc--------CCch----------HHHhhCCCCccEEEEeCCCeeEE
Q 038684 19 KRASIEKIWRAACPSISGCDDPLINPFVGSSLASL--------GCKR----------KLKESGWGGEAEIVESKGELHIF 80 (104)
Q Consensus 19 ~~~~~~~~w~~~lp~~~~~ddp~~nPl~~~~l~~~--------~~~p----------~L~~aG~~~~Ve~~~~~g~~H~F 80 (104)
+...++++|+.|++ +.++++|++||+...+++++ +.|+ +|+++| ++|+++.++|+.|+|
T Consensus 133 ~~~~~~~~~~~~~~-~~~~~~~~~sp~~~~~~~~~Pp~~i~~g~~D~l~~~~~~~~~~L~~~g--v~v~~~~~~g~~H~f 209 (211)
T PF07859_consen 133 PAPKIDWFWKLYLP-GSDRDDPLASPLNASDLKGLPPTLIIHGEDDVLVDDSLRFAEKLKKAG--VDVELHVYPGMPHGF 209 (211)
T ss_dssp BHHHHHHHHHHHHS-TGGTTSTTTSGGGSSCCTTCHEEEEEEETTSTTHHHHHHHHHHHHHTT---EEEEEEETTEETTG
T ss_pred cccccccccccccc-cccccccccccccccccccCCCeeeeccccccchHHHHHHHHHHHHCC--CCEEEEEECCCeEEe
Confidence 57888999999997 77889999999863234331 1222 999999 999999999999998
Q ss_pred E
Q 038684 81 Y 81 (104)
Q Consensus 81 ~ 81 (104)
+
T Consensus 210 ~ 210 (211)
T PF07859_consen 210 F 210 (211)
T ss_dssp G
T ss_pred e
Confidence 5
No 5
>KOG4388 consensus Hormone-sensitive lipase HSL [Lipid transport and metabolism]
Probab=97.19 E-value=0.00035 Score=57.20 Aligned_cols=60 Identities=17% Similarity=0.229 Sum_probs=48.0
Q ss_pred CCCCCCCCCCC--Cccccc--------CCch----------HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHH
Q 038684 37 CDDPLINPFVG--SSLASL--------GCKR----------KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKK 96 (104)
Q Consensus 37 ~ddp~~nPl~~--~~l~~~--------~~~p----------~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~ 96 (104)
..||++||+.+ ..|.++ .+|| +||..| ..|.+...++..|||..|.-.++++++.=+.
T Consensus 769 pkdPf~SP~~A~de~l~qLPp~~i~ac~mDP~LDD~vmfA~kLr~lG--~~v~l~vle~lPHGFLnft~ls~E~~~~~~~ 846 (880)
T KOG4388|consen 769 PKDPFMSPLLAPDEMLKQLPPVHIVACAMDPMLDDSVMFARKLRNLG--QPVTLRVLEDLPHGFLNFTALSRETRQAAEL 846 (880)
T ss_pred CCCcccCcccCChHHHhcCCCceEEEeccCcchhHHHHHHHHHHhcC--CceeehhhhcCCccceeHHhhCHHHHHHHHH
Confidence 46999999984 345653 3566 999999 9999999999999999998888887765544
Q ss_pred HH
Q 038684 97 IA 98 (104)
Q Consensus 97 i~ 98 (104)
-.
T Consensus 847 CI 848 (880)
T KOG4388|consen 847 CI 848 (880)
T ss_pred HH
Confidence 33
No 6
>PF01738 DLH: Dienelactone hydrolase family; InterPro: IPR002925 Dienelactone hydrolases play a crucial role in chlorocatechol degradation via the modified ortho cleavage pathway. Enzymes induced in 4-fluorobenzoate-utilizing bacteria have been classified into three groups on the basis of their specificity towards cis- and trans-dienelactone []. Some proteins contain repeated small fragments of this domain (for example rat kan-1 protein).; GO: 0016787 hydrolase activity; PDB: 1GGV_A 1ZIY_A 1ZI6_A 1ZIC_A 1ZJ5_A 1ZI8_A 1ZJ4_A 1ZI9_A 1ZIX_A 3F67_A.
Probab=96.53 E-value=0.0012 Score=46.35 Aligned_cols=44 Identities=23% Similarity=0.243 Sum_probs=35.7
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCC---CCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNP---TCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~---~~~~a~~~l~~i~~fi~~ 103 (104)
.|+++| ++++++.|+|+.|||..-.. .-..+.+.++++.+|+++
T Consensus 170 ~l~~~~--~~~~~~~y~ga~HgF~~~~~~~~~~~aa~~a~~~~~~ff~~ 216 (218)
T PF01738_consen 170 ALKAAG--VDVEVHVYPGAGHGFANPSRPPYDPAAAEDAWQRTLAFFKR 216 (218)
T ss_dssp HHHCTT--TTEEEEEETT--TTTTSTTSTT--HHHHHHHHHHHHHHHCC
T ss_pred HHHhcC--CcEEEEECCCCcccccCCCCcccCHHHHHHHHHHHHHHHHh
Confidence 788899 99999999999999976654 235789999999999986
No 7
>PF00326 Peptidase_S9: Prolyl oligopeptidase family This family belongs to family S9 of the peptidase classification.; InterPro: IPR001375 In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold: Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins. Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases. In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes []. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Over 20 families (denoted S1 - S66) of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence []. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases []. Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base []. The geometric orientations of the catalytic residues are similar between families, despite different protein folds []. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [, ]. This domain covers the active site serine of the serine peptidases belonging to MEROPS peptidase family S9 (prolyl oligopeptidase family, clan SC). The protein fold of the peptidase domain for members of this family resembles that of serine carboxypeptidase D, the type example of clan SC. Examples of protein families containing this domain are: Prolyl endopeptidase (3.4.21.26 from EC) (PE) (also called post-proline cleaving enzyme). PE is an enzyme that cleaves peptide bonds on the C-terminal side of prolyl residues. The sequence of PE has been obtained from a mammalian species (pig) and from bacteria (Flavobacterium meningosepticum and Aeromonas hydrophila); there is a high degree of sequence conservation between these sequences. Escherichia coli protease II (3.4.21.83 from EC) (oligopeptidase B) (gene prtB) which cleaves peptide bonds on the C-terminal side of lysyl and argininyl residues. Dipeptidyl peptidase IV (3.4.14.5 from EC) (DPP IV). DPP IV is an enzyme that removes N-terminal dipeptides sequentially from polypeptides having unsubstituted N-termini provided that the penultimate residue is proline. Saccharomyces cerevisiae (Baker's yeast) vacuolar dipeptidyl aminopeptidases A and B (DPAP A and DPAP B), encoded by the STE13 and DAP2 genes respectively. DPAP A is responsible for the proteolytic maturation of the alpha-factor precursor. Acylamino-acid-releasing enzyme (3.4.19.1 from EC) (acyl-peptide hydrolase). This enzyme catalyses the hydrolysis of the amino-terminal peptide bond of an N-acetylated protein to generate a N-acetylated amino acid and a protein with a free amino-terminus. These proteins belong to MEROPS peptidase families S9A, S9B and S9C.; GO: 0008236 serine-type peptidase activity, 0006508 proteolysis; PDB: 2AJ8_D 1ORV_D 2AJB_C 2BUC_D 1ORW_D 2AJC_D 2AJD_C 2BUA_A 2HU8_B 3O4J_B ....
Probab=95.08 E-value=0.023 Score=39.52 Aligned_cols=40 Identities=25% Similarity=0.385 Sum_probs=31.8
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
+|+++| ++++++.+++++|+|. ......+.++++.+|+.+
T Consensus 169 ~L~~~g--~~~~~~~~p~~gH~~~----~~~~~~~~~~~~~~f~~~ 208 (213)
T PF00326_consen 169 ALRKAG--KPVELLIFPGEGHGFG----NPENRRDWYERILDFFDK 208 (213)
T ss_dssp HHHHTT--SSEEEEEETT-SSSTT----SHHHHHHHHHHHHHHHHH
T ss_pred HHHhcC--CCEEEEEcCcCCCCCC----CchhHHHHHHHHHHHHHH
Confidence 999999 9999999999999653 224455888999999864
No 8
>COG0412 Dienelactone hydrolase and related enzymes [Secondary metabolites biosynthesis, transport, and catabolism]
Probab=94.86 E-value=0.05 Score=39.47 Aligned_cols=44 Identities=18% Similarity=0.244 Sum_probs=38.5
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEec------CCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLL------NPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~------~~~~~~a~~~l~~i~~fi~~ 103 (104)
+|+++| +++++..|.|+.|+|..- .-....++...+++.+|+++
T Consensus 183 ~~~~~~--~~~~~~~y~ga~H~F~~~~~~~~~~y~~~aa~~a~~~~~~ff~~ 232 (236)
T COG0412 183 ALEDAG--VKVDLEIYPGAGHGFANDRADYHPGYDAAAAEDAWQRVLAFFKR 232 (236)
T ss_pred HHHhcC--CCeeEEEeCCCccccccCCCcccccCCHHHHHHHHHHHHHHHHH
Confidence 888999 899999999999999954 44778899999999999875
No 9
>TIGR02821 fghA_ester_D S-formylglutathione hydrolase. This model describes a protein family from bacteria, yeast, and human, with a conserved critical role in formaldehyde detoxification as S-formylglutathione hydrolase (EC 3.1.2.12). Members in eukaryotes such as the human protein are better known as esterase D (EC 3.1.1.1), an enzyme with broad specificity, although S-formylglutathione hydrolase has now been demonstrated as well.
Probab=94.60 E-value=0.025 Score=41.36 Aligned_cols=33 Identities=12% Similarity=0.268 Sum_probs=27.1
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHH
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVA 92 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~ 92 (104)
+|+++| ++|++++++|+.|+|........+..+
T Consensus 237 ~l~~~g--~~v~~~~~~g~~H~f~~~~~~~~~~~~ 269 (275)
T TIGR02821 237 ACRAAG--QALTLRRQAGYDHSYYFIASFIADHLR 269 (275)
T ss_pred HHHHcC--CCeEEEEeCCCCccchhHHHhHHHHHH
Confidence 899999 999999999999999988654444333
No 10
>COG1506 DAP2 Dipeptidyl aminopeptidases/acylaminoacyl-peptidases [Amino acid transport and metabolism]
Probab=93.42 E-value=0.096 Score=42.91 Aligned_cols=40 Identities=30% Similarity=0.355 Sum_probs=33.8
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
+|++.| ++|+++.||++.|+|.. -....+.+.++.+|+.+
T Consensus 576 aL~~~g--~~~~~~~~p~e~H~~~~----~~~~~~~~~~~~~~~~~ 615 (620)
T COG1506 576 ALKRKG--KPVELVVFPDEGHGFSR----PENRVKVLKEILDWFKR 615 (620)
T ss_pred HHHHcC--ceEEEEEeCCCCcCCCC----chhHHHHHHHHHHHHHH
Confidence 999999 99999999999999965 25567788888888753
No 11
>PRK11460 putative hydrolase; Provisional
Probab=92.19 E-value=0.16 Score=36.42 Aligned_cols=21 Identities=19% Similarity=0.192 Sum_probs=20.0
Q ss_pred HHHhhCCCCccEEEEeCCCeeEE
Q 038684 58 KLKESGWGGEAEIVESKGELHIF 80 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F 80 (104)
+|+++| .+|+++.|+|++|+|
T Consensus 173 ~L~~~g--~~~~~~~~~~~gH~i 193 (232)
T PRK11460 173 ALISLG--GDVTLDIVEDLGHAI 193 (232)
T ss_pred HHHHCC--CCeEEEEECCCCCCC
Confidence 899999 999999999999998
No 12
>PF02230 Abhydrolase_2: Phospholipase/Carboxylesterase; InterPro: IPR003140 This entry represents the alpha/beta hydrolase domain found in phospholipases [], carboxylesterases [] and thioesterases.; GO: 0016787 hydrolase activity; PDB: 3U0V_A 1AUR_A 1AUO_B 1FJ2_B 3CN9_A 3CN7_A.
Probab=89.34 E-value=0.47 Score=33.25 Aligned_cols=35 Identities=23% Similarity=0.328 Sum_probs=26.8
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.|+++| .+|++++|+|++|.. ..+.++.+.+||++
T Consensus 180 ~L~~~~--~~v~~~~~~g~gH~i---------~~~~~~~~~~~l~~ 214 (216)
T PF02230_consen 180 FLKAAG--ANVEFHEYPGGGHEI---------SPEELRDLREFLEK 214 (216)
T ss_dssp HHHCTT---GEEEEEETT-SSS-----------HHHHHHHHHHHHH
T ss_pred HHHhcC--CCEEEEEcCCCCCCC---------CHHHHHHHHHHHhh
Confidence 999999 899999999999954 35777888888864
No 13
>PRK10566 esterase; Provisional
Probab=88.33 E-value=0.63 Score=32.70 Aligned_cols=37 Identities=19% Similarity=0.214 Sum_probs=28.7
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.|+++|...+++++.|+|..|++. ...++++.+||++
T Consensus 211 ~l~~~g~~~~~~~~~~~~~~H~~~---------~~~~~~~~~fl~~ 247 (249)
T PRK10566 211 ALRERGLDKNLTCLWEPGVRHRIT---------PEALDAGVAFFRQ 247 (249)
T ss_pred HHHhcCCCcceEEEecCCCCCccC---------HHHHHHHHHHHHh
Confidence 788888333589999999999862 2568888888864
No 14
>PLN02442 S-formylglutathione hydrolase
Probab=84.35 E-value=1.1 Score=32.89 Aligned_cols=35 Identities=14% Similarity=0.188 Sum_probs=26.6
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi 101 (104)
.|+++| .++++++++|+.|+|+ ....+|++...|.
T Consensus 243 ~l~~~g--~~~~~~~~pg~~H~~~-------~~~~~i~~~~~~~ 277 (283)
T PLN02442 243 ACKEAG--APVTLRLQPGYDHSYF-------FIATFIDDHINHH 277 (283)
T ss_pred HHHHcC--CCeEEEEeCCCCccHH-------HHHHHHHHHHHHH
Confidence 889999 9999999999999987 3344454444443
No 15
>KOG3043 consensus Predicted hydrolase related to dienelactone hydrolase [General function prediction only]
Probab=78.37 E-value=3 Score=30.73 Aligned_cols=36 Identities=17% Similarity=0.214 Sum_probs=24.9
Q ss_pred cEEEEeCCCeeEEEe--cCCCCHHHH----HHHHHHHHHHhc
Q 038684 68 AEIVESKGELHIFYL--LNPTCDSAV----AMRKKIASFFNE 103 (104)
Q Consensus 68 Ve~~~~~g~~H~F~~--~~~~~~~a~----~~l~~i~~fi~~ 103 (104)
-++..|+|+.|||.. .+..+|+.+ ++.+.+.+|+++
T Consensus 198 ~~v~~f~g~~HGf~~~r~~~~~Ped~~~~eea~~~~~~Wf~~ 239 (242)
T KOG3043|consen 198 SQVKTFSGVGHGFVARRANISSPEDKKAAEEAYQRFISWFKH 239 (242)
T ss_pred eeEEEcCCccchhhhhccCCCChhHHHHHHHHHHHHHHHHHH
Confidence 358999999999995 555666644 455556666653
No 16
>smart00877 BMC Bacterial microcompartments are primitive organelles composed entirely of protein subunits. The prototypical bacterial microcompartment is the carboxysome, a protein shell for sequestering carbon fixation reactions. These proteins for hexameric structure.
Probab=73.46 E-value=11 Score=22.46 Aligned_cols=43 Identities=16% Similarity=-0.008 Sum_probs=33.3
Q ss_pred hHHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHH
Q 038684 57 RKLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFF 101 (104)
Q Consensus 57 p~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi 101 (104)
-.||++. +++...+..+-+|++..+.+.....+.+++...+..
T Consensus 19 ~a~KaA~--V~l~~~~~~~~g~~~~~v~Gdvs~V~~Av~a~~~~~ 61 (75)
T smart00877 19 AALKAAN--VELVGYESIGGGKVTVIITGDVAAVRAAVEAGLEAA 61 (75)
T ss_pred HHhhhcC--cEEEEEEecCCCEEEEEEEEcHHHHHHHHHHHHHHH
Confidence 3888888 776666666668999889888888888888776654
No 17
>cd06169 BMC Bacterial Micro-Compartment (BMC) domain. Bacterial micro-compartments are primitive protein-based organelles that sequester specific metabolic pathways in bacterial cells. The prototypical bacterial microcompartment is the carboxysome shell, a bacterial polyhedral organelle which increase the efficiency of CO2 fixation by encapsulating RuBisCO and carbonic anhydrase. They can be divided into two types: alpha-type carboxysomes (alpha-cyanobacteria and proteobacteria) and beta-type carboxysomes (beta-cyanobacteria). In addition to these proteins there are several homologous shell proteins including those found in pdu organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol and eut organelles involved in the cobalamin-dependent degradation of ethanolamine. Structure evidence shows that several carboxysome shell proteins and their homologs (Csos1A, CcmK1,2,4, and PduU) exist as hexamers which might further assemble into extended, tightly packed layers hypo
Probab=72.80 E-value=9.6 Score=21.82 Aligned_cols=41 Identities=12% Similarity=0.058 Sum_probs=32.0
Q ss_pred HHHhhCCCCccEEEEeCC-CeeEEEecCCCCHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVESKG-ELHIFYLLNPTCDSAVAMRKKIASF 100 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g-~~H~F~~~~~~~~~a~~~l~~i~~f 100 (104)
.||++. +++...+..+ ..+++..+.+.....+..++...++
T Consensus 20 a~KaA~--V~l~~~~~~~~~g~~~~~i~G~~s~V~~A~~a~~~~ 61 (62)
T cd06169 20 AVKAAD--VELVGIERAGGGGLVTLIIRGDVSAVKAAVEAAEQA 61 (62)
T ss_pred HhhhcC--eEEEEEEecCCCcEEEEEEEECHHHHHHHHHHHHhh
Confidence 788888 7766666665 7899999988888888888877654
No 18
>PHA02857 monoglyceride lipase; Provisional
Probab=72.16 E-value=7.5 Score=27.62 Aligned_cols=36 Identities=17% Similarity=0.157 Sum_probs=28.5
Q ss_pred CccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 66 GEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 66 ~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.+++++.+++++|..+.-.+ +..++++++|.+||.+
T Consensus 237 ~~~~~~~~~~~gH~~~~e~~--~~~~~~~~~~~~~l~~ 272 (276)
T PHA02857 237 CNREIKIYEGAKHHLHKETD--EVKKSVMKEIETWIFN 272 (276)
T ss_pred CCceEEEeCCCcccccCCch--hHHHHHHHHHHHHHHH
Confidence 56899999999998874322 4477899999999864
No 19
>PRK10749 lysophospholipase L2; Provisional
Probab=69.39 E-value=7 Score=29.08 Aligned_cols=44 Identities=18% Similarity=0.186 Sum_probs=30.6
Q ss_pred HHHhhC-CCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESG-WGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG-~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.++++| ...+++++.++|..|..+.-.+ ....++++.|.+||.+
T Consensus 284 ~l~~~~~~~~~~~l~~~~gagH~~~~E~~--~~r~~v~~~i~~fl~~ 328 (330)
T PRK10749 284 ARTAAGHPCEGGKPLVIKGAYHEILFEKD--AMRSVALNAIVDFFNR 328 (330)
T ss_pred HHhhcCCCCCCceEEEeCCCcchhhhCCc--HHHHHHHHHHHHHHhh
Confidence 455555 1124689999999998764322 3467899999999975
No 20
>KOG2100 consensus Dipeptidyl aminopeptidase [Posttranslational modification, protein turnover, chaperones]
Probab=68.11 E-value=7.5 Score=33.00 Aligned_cols=39 Identities=15% Similarity=0.236 Sum_probs=31.0
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.|+.+| +...+++|+++.|+|.-- ..-..+...+..|++
T Consensus 707 aL~~~g--v~~~~~vypde~H~is~~----~~~~~~~~~~~~~~~ 745 (755)
T KOG2100|consen 707 ALQNAG--VPFRLLVYPDENHGISYV----EVISHLYEKLDRFLR 745 (755)
T ss_pred HHHHCC--CceEEEEeCCCCcccccc----cchHHHHHHHHHHHH
Confidence 999999 999999999999999543 334566677777764
No 21
>PF08840 BAAT_C: BAAT / Acyl-CoA thioester hydrolase C terminal; InterPro: IPR014940 Acyl-CoA thioesterases are a group of enzymes that catalyse the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Bile acid-CoA:amino acid N-acetyltransferase (BAAT) is involved in bile acid metabolism and may also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids []. This entry represents a catalytic domain is found at the C terminus of acyl-CoA thioester hydrolases and bile acid-CoA:amino acid N-acetyltransferases. ; PDB: 3K2I_B 3HLK_B.
Probab=67.37 E-value=3.8 Score=29.03 Aligned_cols=24 Identities=25% Similarity=0.409 Sum_probs=14.4
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEE
Q 038684 58 KLKESGWGGEAEIVESKGELHIFY 81 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~ 81 (104)
+|+++|-...++++.|++++|-+.
T Consensus 141 rL~~~~~~~~~~~l~Y~~aGH~i~ 164 (213)
T PF08840_consen 141 RLKAAGFPHNVEHLSYPGAGHLIE 164 (213)
T ss_dssp HHHCTT-----EEEEETTB-S---
T ss_pred HHHHhCCCCcceEEEcCCCCceec
Confidence 899999555699999999999874
No 22
>TIGR03695 menH_SHCHC 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase. This protein catalyzes the formation of SHCHC, or (1 R,6 R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate, by elmination of pyruvate from 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC). Note that SHCHC synthase activity previously was attributed to MenD, which in fact is SEPHCHC synthase.
Probab=67.16 E-value=7.5 Score=25.92 Aligned_cols=38 Identities=18% Similarity=0.160 Sum_probs=28.1
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.+++.. ..++++.+++.+|.++.-. ..++.+.|.+||+
T Consensus 214 ~~~~~~--~~~~~~~~~~~gH~~~~e~-----~~~~~~~i~~~l~ 251 (251)
T TIGR03695 214 EMQKLL--PNLTLVIIANAGHNIHLEN-----PEAFAKILLAFLE 251 (251)
T ss_pred HHHhcC--CCCcEEEEcCCCCCcCccC-----hHHHHHHHHHHhC
Confidence 566666 6789999999999776543 3567777888774
No 23
>KOG2112 consensus Lysophospholipase [Lipid transport and metabolism]
Probab=63.72 E-value=10 Score=27.39 Aligned_cols=35 Identities=17% Similarity=0.125 Sum_probs=28.3
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.|+.+| +.++..-|+|+.|. ...+-|+.+..||..
T Consensus 169 ~l~~~~--~~~~f~~y~g~~h~---------~~~~e~~~~~~~~~~ 203 (206)
T KOG2112|consen 169 FLKSLG--VRVTFKPYPGLGHS---------TSPQELDDLKSWIKT 203 (206)
T ss_pred HHHHcC--CceeeeecCCcccc---------ccHHHHHHHHHHHHH
Confidence 999999 88999999999993 244667777777753
No 24
>PRK11126 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase; Provisional
Probab=58.43 E-value=13 Score=25.51 Aligned_cols=33 Identities=12% Similarity=0.046 Sum_probs=26.0
Q ss_pred ccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhcC
Q 038684 67 EAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 67 ~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
.++++.++|.+|-++. +..+++.+.|.+|++.|
T Consensus 210 ~~~~~~i~~~gH~~~~-----e~p~~~~~~i~~fl~~~ 242 (242)
T PRK11126 210 ALPLHVIPNAGHNAHR-----ENPAAFAASLAQILRLI 242 (242)
T ss_pred cCeEEEeCCCCCchhh-----hChHHHHHHHHHHHhhC
Confidence 4788999999996653 44677888888999876
No 25
>COG2993 CcoO Cbb3-type cytochrome oxidase, cytochrome c subunit [Energy production and conversion]
Probab=58.33 E-value=4.6 Score=29.21 Aligned_cols=14 Identities=29% Similarity=1.028 Sum_probs=12.3
Q ss_pred CCcccCCCCCCccc
Q 038684 1 HTYFWGKEHVGDET 14 (104)
Q Consensus 1 ~P~F~g~~r~~se~ 14 (104)
|||-||+.||+-..
T Consensus 95 hPflWGSKRTGPDL 108 (227)
T COG2993 95 HPFLWGSKRTGPDL 108 (227)
T ss_pred CchhhcCCccCcch
Confidence 89999999998654
No 26
>COG4050 Uncharacterized protein conserved in archaea [Function unknown]
Probab=57.34 E-value=23 Score=23.77 Aligned_cols=40 Identities=23% Similarity=0.444 Sum_probs=31.5
Q ss_pred cCCch-------HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhcC
Q 038684 53 LGCKR-------KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 53 ~~~~p-------~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
+||.+ .+|+.| ..+--+.|+. ..++|+.+..+|+.|+..+
T Consensus 101 iGC~RTNEl~~ylvR~k~--iPiLelkYP~----------s~Eea~~~VnkI~~FL~sL 147 (152)
T COG4050 101 IGCARTNELCVYLVRRKG--IPILELKYPR----------SEEEAIDFVNKIANFLKSL 147 (152)
T ss_pred ecccccchHHHHHhhhcC--CceEEEeCCC----------cHHHHHHHHHHHHHHHHhh
Confidence 56777 778889 8877677753 4478999999999999753
No 27
>PF00936 BMC: BMC domain; InterPro: IPR000249 This domain is found in a variety of polyhedral organelle shell proteins, including CsoS1A, CsoS1B and CsoS1C of Thiobacillus neapolitanus (Halothiobacillus neapolitanus) and their orthologs from other bacteria. Some autotrophic and non-autotrophic organisms form polyhedral organelles, carboxysomes/enterosomes []. The best studied is the carboxysome of Halothiobacillus neapolitanus, which is composed of at least 9 proteins: six shell proteins, CsoS1A, CsoS1B, CsoS1C, Cso2A, Cso2B and CsoS3 (carbonic anhydrase) [], one protein of unknown function and the large and small subunits of RuBisCo (CbbL and Cbbs). Carboxysomes appear to be approximately 120 nm in diameter, most often observed as regular hexagons, with a solid interior bounded by a unilamellar protein shell. The interior is filled with type I RuBisCo, which is composed of 8 large subunits and 8 small subunits; it accounts for 60% of the carboxysomal protein, which amounts to approximately 300 molecules of enzyme per carboxysome. Carboxysomes are required for autotrophic growth at low CO2 concentrations and are thought to function as part of a CO2-concentrating mechanism [, ]. Polyhedral organelles, enterosomes, from non-autotrophic organisms are involved in coenzyme B12-dependent 1,2-propanediol utilisation (e.g., in Salmonella enterica []) and ethanolamine utilisation (e.g., in Salmonella typhimurium []). Genes needed for enterosome formation are located in the 1,2-propanediol utilisation pdu [, ] or ethanolamine utilisation eut [, ] operons, respectively. Although enterosomes of non-autotrophic organisms are apparently related to carboxysomes structurally, a functional relationship is uncertain. A role in CO2 concentration, similar to that of the carboxysome, is unlikely since there is no known association between CO2 and coenzyme B12-dependent 1,2-propanediol or ethanolamine utilisation []. It seems probable that entrosomes help protect the cells from reactive aldehyde species in the degradation pathways of 1,2-propanediol and ethanolamine [].; PDB: 3F56_C 3FCH_A 3I87_A 3GFH_B 3I82_A 3MPV_A 3IO0_A 4AXJ_B 3N79_A 2G13_A ....
Probab=57.31 E-value=23 Score=21.07 Aligned_cols=44 Identities=11% Similarity=-0.003 Sum_probs=34.2
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.||++. +++...+....++.+..+.+.....+.+++...+...+
T Consensus 21 alKaa~--V~l~~~~~~~~g~~~~~i~G~vs~V~~Av~a~~~~~~~ 64 (75)
T PF00936_consen 21 ALKAAN--VELVEIELICGGKVTVIITGDVSAVKAAVDAAEEAAGK 64 (75)
T ss_dssp HHHHSS--EEEEEEEEESTTEEEEEEEESHHHHHHHHHHHHHHHHH
T ss_pred HhhcCC--EEEEEEEecCCCeEEEEEEECHHHHHHHHHHHHHHHhh
Confidence 889988 77655665566788888888888899999888776653
No 28
>PLN02385 hydrolase; alpha/beta fold family protein
Probab=54.51 E-value=26 Score=26.18 Aligned_cols=35 Identities=14% Similarity=0.245 Sum_probs=25.3
Q ss_pred ccEEEEeCCCeeEEEecCCCCHH-HHHHHHHHHHHHhc
Q 038684 67 EAEIVESKGELHIFYLLNPTCDS-AVAMRKKIASFFNE 103 (104)
Q Consensus 67 ~Ve~~~~~g~~H~F~~~~~~~~~-a~~~l~~i~~fi~~ 103 (104)
++++++++|++|..+.-.+ ++ ..+.++.|.+|+++
T Consensus 309 ~~~l~~i~~~gH~l~~e~p--~~~~~~v~~~i~~wL~~ 344 (349)
T PLN02385 309 DKKLKLYEDAYHSILEGEP--DEMIFQVLDDIISWLDS 344 (349)
T ss_pred CceEEEeCCCeeecccCCC--hhhHHHHHHHHHHHHHH
Confidence 5789999999997654332 22 45688888888864
No 29
>PLN02965 Probable pheophorbidase
Probab=54.10 E-value=19 Score=25.33 Aligned_cols=41 Identities=12% Similarity=0.040 Sum_probs=27.5
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.+.+.- ..+++++++|.+|.++.-.| ++..+++.++++++.
T Consensus 214 ~~~~~~--~~a~~~~i~~~GH~~~~e~p--~~v~~~l~~~~~~~~ 254 (255)
T PLN02965 214 VMVENW--PPAQTYVLEDSDHSAFFSVP--TTLFQYLLQAVSSLQ 254 (255)
T ss_pred HHHHhC--CcceEEEecCCCCchhhcCH--HHHHHHHHHHHHHhc
Confidence 555554 55788999999999887554 555555555555543
No 30
>PRK10673 acyl-CoA esterase; Provisional
Probab=53.52 E-value=37 Score=23.43 Aligned_cols=39 Identities=18% Similarity=0.152 Sum_probs=29.5
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.+++.- .+++++.++|.+|.+.. +..++..+.|.+||..
T Consensus 216 ~~~~~~--~~~~~~~~~~~gH~~~~-----~~p~~~~~~l~~fl~~ 254 (255)
T PRK10673 216 DLLAQF--PQARAHVIAGAGHWVHA-----EKPDAVLRAIRRYLND 254 (255)
T ss_pred HHHHhC--CCcEEEEeCCCCCeeec-----cCHHHHHHHHHHHHhc
Confidence 667766 67899999999996543 3356788888888864
No 31
>PF09885 DUF2112: Uncharacterized protein conserved in archaea (DUF2112); InterPro: IPR012356 The exact function of this protein is unknown, but likely is linked to methanogenesis or a process closely connected to it.
Probab=53.41 E-value=37 Score=23.06 Aligned_cols=41 Identities=20% Similarity=0.419 Sum_probs=32.3
Q ss_pred ccCCch-------HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhcC
Q 038684 52 SLGCKR-------KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 52 ~~~~~p-------~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
.+||.+ -+|+.| +++--+.||. .-+++..++.+|.+|+..+
T Consensus 96 C~GCartnEL~~~lir~k~--iPiLel~YP~----------~~ee~~~~V~~I~~FL~~L 143 (143)
T PF09885_consen 96 CMGCARTNELTKYLIRQKG--IPILELKYPT----------NEEEAIDFVNKINDFLKSL 143 (143)
T ss_pred ccccccHHHHHHHHHhhcC--CceEEeeCCC----------ChHHHHHHHHHHHHHHhcC
Confidence 367777 778889 8887777764 4588999999999999764
No 32
>cd07056 BMC_PduK 1,2-propanediol utilization protein K (PduK), Bacterial Micro-Compartment (BMC) domain repeat 1l. PduK proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles which are involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduK might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles at present no experimental evidence directly supports this view.
Probab=51.71 E-value=51 Score=19.80 Aligned_cols=43 Identities=12% Similarity=-0.063 Sum_probs=31.2
Q ss_pred HHHhhCCCCccEEEE-eCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVE-SKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~-~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.||++. ++....+ ..|.++.+..+.+...+.+.+++...+...
T Consensus 20 ~lKaA~--V~l~~~~~~~g~G~~~viv~GdvsaV~~Av~a~~~~~~ 63 (77)
T cd07056 20 MAKTAN--VRLLGLENTKGSGWMTVKISGDVAAVNAAIEAGKQTAG 63 (77)
T ss_pred HHhhCc--eEEEEEEeccCceEEEEEEEeeHHHHHHHHHHHHHHHh
Confidence 788877 5544333 347799999999988888888887766543
No 33
>cd07046 BMC_PduU-EutS 1,2-propanediol utilization protein U (PduU)/ethanolamine utilization protein S (EutS), Bacterial Micro-Compartment (BMC) domain. PduU encapsulates several related enzymes within a shell composed of a few thousand protein subunits. PduU exists as a hexamer which might further assemble into the flat facets of the polyhedral outer shell of the pdu organelle. This proteinaceous noncarboxysome microcompartment is involved in coenzyme B12-dependent degradation of 1,2-propanediol. The core of PduU is related to the typical BMC domain and its natural oligomeric state is a cyclic hexamer. Unlike other typical BMC domain proteins, the 3D topology of PduU reveals a circular permuted variation on the typical BMC fold which leads to several unique features. The exact functions related to those unique features are still not clear. Another difference is the presence of a deep cavity on one side of the hexamer as well as an intermolecular six-stranded beta barrel that seems to
Probab=50.87 E-value=44 Score=21.71 Aligned_cols=41 Identities=7% Similarity=0.042 Sum_probs=31.0
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
++|++. +++ ...+ ..+|+..+.+...+.+..++...++++.
T Consensus 58 A~KaA~--Vel--~~~~-~~~g~vii~GdvsaV~aAl~a~~~~~~~ 98 (110)
T cd07046 58 ATKAAD--VEI--GFLD-RFSGALVITGDVSEVESALEAVVDYLRE 98 (110)
T ss_pred HHhhcC--eEE--EEEe-CCeEEEEEEECHHHHHHHHHHHHHHHhh
Confidence 888888 554 4443 3488888888888999999999888754
No 34
>PLN02298 hydrolase, alpha/beta fold family protein
Probab=50.50 E-value=29 Score=25.45 Aligned_cols=36 Identities=25% Similarity=0.443 Sum_probs=27.0
Q ss_pred ccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 67 EAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 67 ~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
..+++.++|..|..+.-.+. ...+++++.|.+||.+
T Consensus 281 ~~~l~~~~~a~H~~~~e~pd-~~~~~~~~~i~~fl~~ 316 (330)
T PLN02298 281 DKTIKIYDGMMHSLLFGEPD-ENIEIVRRDILSWLNE 316 (330)
T ss_pred CceEEEcCCcEeeeecCCCH-HHHHHHHHHHHHHHHH
Confidence 47899999999988765541 2346788889999864
No 35
>cd07045 BMC_CcmK_like Carbon dioxide concentrating mechanism K (CcmK)-like proteins, Bacterial Micro-Compartment (BMC) domain. Bacterial micro-compartments are primitive protein-based organelles that sequester specific metabolic pathways in bacterial cells. The prototypical bacterial microcompartment is the carboxysome shell, a bacterial polyhedral organelle which increase the efficiency of CO2 fixation by encapsulating RuBisCO and carbonic anhydrase. They can be divided into two types: alpha-type carboxysomes (alpha-cyanobacteria and proteobacteria) and beta-type carboxysomes (beta-cyanobacteria). Potential functional differences between the two types are not yet fully understood. In addition to these proteins there are several homologous shell proteins including those found in pdu organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol and eut organelles involved in the cobalamin-dependent degradation of ethanolamine. Structure evidence shows that several carbox
Probab=50.43 E-value=47 Score=20.29 Aligned_cols=45 Identities=13% Similarity=-0.056 Sum_probs=33.2
Q ss_pred chHHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 56 KRKLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 56 ~p~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
|-.||++. +++...+..+.++.+..+.+.....+.+++...+..+
T Consensus 18 D~~lKaA~--V~l~~~~~~~~gk~~vii~GdvsaV~~Av~a~~~~~~ 62 (84)
T cd07045 18 DAALKAAN--VTLVGYEKVGGGLVTVKITGDVAAVKAAVEAGAAAAE 62 (84)
T ss_pred HHHhhhCC--eEEEEEEecCCcEEEEEEEEcHHHHHHHHHHHHHHHh
Confidence 33788888 7666566666677888888888888888877766543
No 36
>PF01106 NifU: NifU-like domain; InterPro: IPR001075 Iron-sulphur (FeS) clusters are important cofactors for numerous proteins involved in electron transfer, in redox and non-redox catalysis, in gene regulation, and as sensors of oxygen and iron. These functions depend on the various FeS cluster prosthetic groups, the most common being [2Fe-2S] and [4Fe-4S] []. FeS cluster assembly is a complex process involving the mobilisation of Fe and S atoms from storage sources, their assembly into [Fe-S] form, their transport to specific cellular locations, and their transfer to recipient apoproteins. So far, three FeS assembly machineries have been identified, which are capable of synthesising all types of [Fe-S] clusters: ISC (iron-sulphur cluster), SUF (sulphur assimilation), and NIF (nitrogen fixation) systems. The ISC system is conserved in eubacteria and eukaryotes (mitochondria), and has broad specificity, targeting general FeS proteins [, ]. It is encoded by the isc operon (iscRSUA-hscBA-fdx-iscX). IscS is a cysteine desulphurase, which obtains S from cysteine (converting it to alanine) and serves as a S donor for FeS cluster assembly. IscU and IscA act as scaffolds to accept S and Fe atoms, assembling clusters and transfering them to recipient apoproteins. HscA is a molecular chaperone and HscB is a co-chaperone. Fdx is a [2Fe-2S]-type ferredoxin. IscR is a transcription factor that regulates expression of the isc operon. IscX (also known as YfhJ) appears to interact with IscS and may function as an Fe donor during cluster assembly []. The SUF system is an alternative pathway to the ISC system that operates under iron starvation and oxidative stress. It is found in eubacteria, archaea and eukaryotes (plastids). The SUF system is encoded by the suf operon (sufABCDSE), and the six encoded proteins are arranged into two complexes (SufSE and SufBCD) and one protein (SufA). SufS is a pyridoxal-phosphate (PLP) protein displaying cysteine desulphurase activity. SufE acts as a scaffold protein that accepts S from SufS and donates it to SufA []. SufC is an ATPase with an unorthodox ATP-binding cassette (ABC)-like component. No specific functions have been assigned to SufB and SufD. SufA is homologous to IscA [], acting as a scaffold protein in which Fe and S atoms are assembled into [FeS] cluster forms, which can then easily be transferred to apoproteins targets. In the NIF system, NifS and NifU are required for the formation of metalloclusters of nitrogenase in Azotobacter vinelandii, and other organisms, as well as in the maturation of other FeS proteins. Nitrogenase catalyses the fixation of nitrogen. It contains a complex cluster, the FeMo cofactor, which contains molybdenum, Fe and S. NifS is a cysteine desulphurase. NifU binds one Fe atom at its N-terminal, assembling an FeS cluster that is transferred to nitrogenase apoproteins []. Nif proteins involved in the formation of FeS clusters can also be found in organisms that do not fix nitrogen []. This entry represents the C-terminal of NifU and homologous proteins. NifU contains two domains: an N-terminal (IPR002871 from INTERPRO) and a C-terminal domain []. These domains exist either together or on different polypeptides, both domains being found in organisms that do not fix nitrogen (e.g. yeast), so they have a broader significance in the cell than nitrogen fixation. ; GO: 0005506 iron ion binding, 0051536 iron-sulfur cluster binding, 0016226 iron-sulfur cluster assembly; PDB: 2JNV_A 2Z51_A 1TH5_A 1VEH_A 1XHJ_A.
Probab=50.17 E-value=13 Score=21.81 Aligned_cols=36 Identities=22% Similarity=0.423 Sum_probs=26.6
Q ss_pred chHHHhhCCCCccEEEEeCCCeeEEEecCC---CCHHHHHHH
Q 038684 56 KRKLKESGWGGEAEIVESKGELHIFYLLNP---TCDSAVAMR 94 (104)
Q Consensus 56 ~p~L~~aG~~~~Ve~~~~~g~~H~F~~~~~---~~~~a~~~l 94 (104)
.|.|+..| ++++++.+++. ..+..+.+ .++.+..-+
T Consensus 9 rP~L~~dG--Gdv~lv~v~~~-~V~V~l~GaC~gC~~s~~Tl 47 (68)
T PF01106_consen 9 RPYLQSDG--GDVELVDVDDG-VVYVRLTGACSGCPSSDMTL 47 (68)
T ss_dssp HHHHHHTT--EEEEEEEEETT-EEEEEEESSCCSSCCHHHHH
T ss_pred ChHHHhcC--CcEEEEEecCC-EEEEEEEeCCCCCCCHHHHH
Confidence 35789999 99999999988 77777764 444444444
No 37
>cd07049 BMC_EutL_repeat1 ethanolamine utilization protein S (EutS), Bacterial Micro-Compartment (BMC) domain repeat 1. EutL proteins are homologs of the carboxysome shell protein. They are encoded within the eut operon and might be required for the formation of the outer shell of the bacterial eut polyhedral organelles which are involved in the cobalamin-dependent degradation of ethanolamine. Although it has been suggested that EutL might form hexamers and further assemble into the flat facets of the polyhedral outer shell of the eut organelles at present no experimental evidence directly supports this view. EutL proteins contain two tandem BMC domains. This CD includes domain 1 (the first BMC domain of EutL).
Probab=49.52 E-value=45 Score=21.50 Aligned_cols=44 Identities=16% Similarity=0.128 Sum_probs=34.1
Q ss_pred HHHhhCCCCccEEEE--eCCCeeEE-------E--ecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVE--SKGELHIF-------Y--LLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~--~~g~~H~F-------~--~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
+.|++. ++|.+.. |-|..|+. . +-++...+++..++.+.+|+.+
T Consensus 45 AtKaa~--vev~~~~~f~gGa~h~~~~~sG~vi~ii~G~dvsdV~sal~~~l~~l~~ 99 (103)
T cd07049 45 ATKAAE--VEVVYARSFYAGAAHASTPLAGEVIGILAGPSPAEVRSGLNAAIDFIEN 99 (103)
T ss_pred hhhhcC--eEEEEEeecccccccCccCCCccEEEEEeCCCHHHHHHHHHHHHHHHhc
Confidence 888999 7776543 34778987 4 4555889999999999999864
No 38
>TIGR01738 bioH putative pimeloyl-BioC--CoA transferase BioH. This CoA-binding enzyme is required for the production of pimeloyl-coenzyme A, the substrate of the BioF protein early in the biosynthesis of biotin. Its exact function is unknown, but is proposed in ref 2. This enzyme belongs to the alpha/beta hydrolase fold family (pfam model pfam00561). Members of this family are restricted to the Proteobacteria.
Probab=47.99 E-value=32 Score=22.88 Aligned_cols=37 Identities=19% Similarity=0.158 Sum_probs=27.0
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi 101 (104)
.+.+.- ..++++.+++.+|.++. ++.+++.+.|.+||
T Consensus 209 ~~~~~~--~~~~~~~~~~~gH~~~~-----e~p~~~~~~i~~fi 245 (245)
T TIGR01738 209 YLDKLA--PHSELYIFAKAAHAPFL-----SHAEAFCALLVAFK 245 (245)
T ss_pred HHHHhC--CCCeEEEeCCCCCCccc-----cCHHHHHHHHHhhC
Confidence 455555 67899999999998654 34677777777775
No 39
>TIGR03611 RutD pyrimidine utilization protein D. This protein is observed in operons extremely similar to that characterized in E. coli K-12 responsible for the import and catabolism of pyrimidines, primarily uracil. This protein is a member of the hydrolase, alpha/beta fold family defined by pfam00067.
Probab=47.75 E-value=29 Score=23.44 Aligned_cols=39 Identities=10% Similarity=0.097 Sum_probs=28.5
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
++.+.- ..++++..++.+|.+.. +..+++.+.|.+||.+
T Consensus 219 ~~~~~~--~~~~~~~~~~~gH~~~~-----~~~~~~~~~i~~fl~~ 257 (257)
T TIGR03611 219 RLAAAL--PNAQLKLLPYGGHASNV-----TDPETFNRALLDFLKT 257 (257)
T ss_pred HHHHhc--CCceEEEECCCCCCccc-----cCHHHHHHHHHHHhcC
Confidence 555554 56788889999998754 3456788888888853
No 40
>TIGR03271 methan_mark_5 putative methanogenesis marker protein 5. Members of this protein family, to date, are found in a completed prokaryotic genome if and only if the species is one of the archaeal methanogens. The exact function is unknown, but likely is linked to methanogenesis or a process closely connected to it.
Probab=47.19 E-value=53 Score=22.26 Aligned_cols=41 Identities=15% Similarity=0.375 Sum_probs=32.0
Q ss_pred ccCCch-------HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhcC
Q 038684 52 SLGCKR-------KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 52 ~~~~~p-------~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
.+||.+ .+|+.| +++--+.||. .-+++..++.+|.+|+.++
T Consensus 95 C~GCartnEL~~~lir~k~--iPiLEl~YP~----------~~e~~~~~V~~i~~FL~~l 142 (142)
T TIGR03271 95 CMGCARTNELTVFLVRRKD--IPILELDYPT----------SEEEGIIFVRKINDFLDSL 142 (142)
T ss_pred ccccccHHHHHHHHHhhcC--CceEEeeCCC----------ChhHHHHHHHHHHHHHhcC
Confidence 367777 778899 8876677753 4478999999999999764
No 41
>cd07047 BMC_PduB_repeat1 1,2-propanediol utilization protein B (PduB), Bacterial Micro-Compartment (BMC) domain repeat 1. PduB proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduB might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles at present no experimental evidence directly supports this view. PduB proteins contain two tandem BMC domains repeats. This CD contains repeat 1 (the first BMC domain of PduB).
Probab=46.56 E-value=68 Score=21.58 Aligned_cols=42 Identities=17% Similarity=0.007 Sum_probs=28.8
Q ss_pred HHHhhCCCCccEEEEe-----CCCeeEEEecCC--CCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVES-----KGELHIFYLLNP--TCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~-----~g~~H~F~~~~~--~~~~a~~~l~~i~~fi 101 (104)
.+|++. +++-.++. -+.+|||..+.+ .....+..++...+.+
T Consensus 55 A~KaA~--Veli~i~l~r~~~G~gGkg~vvitGg~dVs~V~~aVeaa~~~v 103 (134)
T cd07047 55 AVKATN--TEVISIELPRDTKGGAGHGSLILFGAEDVSDVRRAVEVALSET 103 (134)
T ss_pred HHhhcC--cEEEEEEccccccCCCceEEEEEEcCCCHHHHHHHHHHHHHHH
Confidence 888888 65433222 345899999988 8888777776665554
No 42
>PF02433 FixO: Cytochrome C oxidase, mono-heme subunit/FixO; InterPro: IPR003468 Cytochrome cbb3 oxidases are found almost exclusively in Proteobacteria, and represent a distinctive class of proton-pumping respiratory haem-copper oxidases (HCO) that lack many of the key structural features that contribute to the reaction cycle of the intensely studied mitochondrial cytochrome c oxidase (CcO) []. Cytochrome cbb3 oxidases are required both to support symbiotic nitrogen fixation, whilst ensuring that the oxygen-labile nitrogenase is not compromised. Cytochrome cbb3 oxidases consist of four subunits: FixN (or CcoN), FixO (or CcoO), FixP (or CcoP) and FixQ (or CcoQ). The catalytic core is comprised of subunits FixN, FixO and FixP, where FixN acts as the catalytic subunit, and Fix O and FixP are membrane-bound mono- and di-haem cytochromes c, respectively. The FixQ subunit protects the core complex in the presence of oxygen from proteolytic degradation []. This entry represents the mono-haem FixO subunit.
Probab=45.64 E-value=11 Score=27.71 Aligned_cols=30 Identities=20% Similarity=0.405 Sum_probs=19.0
Q ss_pred CCcccCCCCCCcccCChhhHHHHHHHHHHh
Q 038684 1 HTYFWGKEHVGDETTDAEKRASIEKIWRAA 30 (104)
Q Consensus 1 ~P~F~g~~r~~se~~~~~~~~~~~~~w~~~ 30 (104)
|||.||++||+-....-..+..-+|.....
T Consensus 93 ~P~lwGSkRtGPDLarvG~r~s~~Wh~~Hl 122 (226)
T PF02433_consen 93 HPFLWGSKRTGPDLARVGGRYSDDWHLAHL 122 (226)
T ss_pred CccccCCCCcCccHHHHhccCChHHHHHHh
Confidence 799999999997654211222336666554
No 43
>TIGR03056 bchO_mg_che_rel putative magnesium chelatase accessory protein. Members of this family belong to the alpha/beta fold family hydrolases (PFAM model pfam00561). Members are found in bacterial genomes if and only if they encoded for anoxygenic photosynthetic systems similar to that of Rhodobacter capsulatus and other alpha-Proteobacteria. Members often are encoded in the same operon as subunits of the protoporphyrin IX magnesium chelatase, and were once designated BchO. No literature supports a role as an actual subunit of magnesium chelatase, but an accessory role is possible, as suggested by placement by its probable hydrolase activity.
Probab=44.69 E-value=45 Score=23.07 Aligned_cols=38 Identities=13% Similarity=-0.004 Sum_probs=27.2
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.+.+.- ..++++.++|.+|.++. +..+++.+.|.+|++
T Consensus 241 ~~~~~~--~~~~~~~~~~~gH~~~~-----e~p~~~~~~i~~f~~ 278 (278)
T TIGR03056 241 RAATRV--PTATLHVVPGGGHLVHE-----EQADGVVGLILQAAE 278 (278)
T ss_pred HHHHhc--cCCeEEEECCCCCcccc-----cCHHHHHHHHHHHhC
Confidence 555443 45788999999997653 345778888888874
No 44
>PRK00019 rpmE 50S ribosomal protein L31; Reviewed
Probab=43.13 E-value=8.8 Score=23.11 Aligned_cols=10 Identities=30% Similarity=0.933 Sum_probs=8.6
Q ss_pred CCcccCCCCC
Q 038684 1 HTYFWGKEHV 10 (104)
Q Consensus 1 ~P~F~g~~r~ 10 (104)
||||-|+++.
T Consensus 42 HPFyTG~q~~ 51 (72)
T PRK00019 42 HPFYTGKQKI 51 (72)
T ss_pred CCcCcCCEeE
Confidence 9999998774
No 45
>COG0400 Predicted esterase [General function prediction only]
Probab=43.11 E-value=29 Score=24.81 Aligned_cols=20 Identities=25% Similarity=0.245 Sum_probs=17.7
Q ss_pred HHHhhCCCCccEEEEeCCCeeEE
Q 038684 58 KLKESGWGGEAEIVESKGELHIF 80 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F 80 (104)
.|+++| .+|+...++ ++|..
T Consensus 171 ~l~~~g--~~v~~~~~~-~GH~i 190 (207)
T COG0400 171 YLTASG--ADVEVRWHE-GGHEI 190 (207)
T ss_pred HHHHcC--CCEEEEEec-CCCcC
Confidence 889999 999999999 88853
No 46
>PLN02679 hydrolase, alpha/beta fold family protein
Probab=42.85 E-value=40 Score=25.47 Aligned_cols=34 Identities=12% Similarity=0.132 Sum_probs=26.6
Q ss_pred CccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhcC
Q 038684 66 GEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 66 ~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
.++++++++|.+|..+ .+...++.+.|.+|++++
T Consensus 324 p~~~l~~i~~aGH~~~-----~E~Pe~~~~~I~~FL~~~ 357 (360)
T PLN02679 324 PNVTLYVLEGVGHCPH-----DDRPDLVHEKLLPWLAQL 357 (360)
T ss_pred CceEEEEcCCCCCCcc-----ccCHHHHHHHHHHHHHhc
Confidence 4689999999999643 355778888899998763
No 47
>PLN02824 hydrolase, alpha/beta fold family protein
Probab=42.08 E-value=32 Score=24.69 Aligned_cols=39 Identities=13% Similarity=0.066 Sum_probs=29.5
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
++++.- ...+++++++.+|..+. +..+++.+.|.+|+.+
T Consensus 255 ~~~~~~--~~~~~~~i~~~gH~~~~-----e~p~~~~~~i~~fl~~ 293 (294)
T PLN02824 255 AYANFD--AVEDFIVLPGVGHCPQD-----EAPELVNPLIESFVAR 293 (294)
T ss_pred HHHhcC--CccceEEeCCCCCChhh-----hCHHHHHHHHHHHHhc
Confidence 555544 55789999999996543 5677888999999875
No 48
>COG4810 EutS Ethanolamine utilization protein [Amino acid transport and metabolism]
Probab=41.42 E-value=52 Score=21.38 Aligned_cols=76 Identities=18% Similarity=0.215 Sum_probs=45.8
Q ss_pred HHHHHHhcCCCC-CCCCCCCCCCCCCcc-cccCCch--------------------HHHhhCCCCccEEEEeCCCeeEEE
Q 038684 24 EKIWRAACPSIS-GCDDPLINPFVGSSL-ASLGCKR--------------------KLKESGWGGEAEIVESKGELHIFY 81 (104)
Q Consensus 24 ~~~w~~~lp~~~-~~ddp~~nPl~~~~l-~~~~~~p--------------------~L~~aG~~~~Ve~~~~~g~~H~F~ 81 (104)
++.-.-|.|+.. ..-|-.+||= .++ ..+|+++ -+.-.. ++|+.=. -+-.-|-.
T Consensus 13 eR~IQEyVPGKQVTLAHLIAnP~--~dl~~KlGl~~~~~AIGIlTiTP~EaaiIa~DiA~Ks--g~v~iGF-lDRFsGal 87 (121)
T COG4810 13 ERIIQEYVPGKQVTLAHLIANPG--EDLAKKLGLDPDAGAIGILTITPGEAAIIAGDIATKS--GDVHIGF-LDRFSGAL 87 (121)
T ss_pred hHHHHHhCCcceeeHHHHHcCCC--HHHHHHhCCCCCCCceEEEEecCchhhhhhhhhhccc--CceEEee-eecccceE
Confidence 455677888764 5778888883 333 3455544 111112 2455322 23333445
Q ss_pred ecCCCCHHHHHHHHHHHHHHhcC
Q 038684 82 LLNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 82 ~~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
.+.+.......++.++..++.++
T Consensus 88 vltGdv~aVE~aLkqv~~~L~e~ 110 (121)
T COG4810 88 VLTGDVGAVEEALKQVVSGLGEL 110 (121)
T ss_pred EEEcchHHHHHHHHHHHHHHHHH
Confidence 56678888999999999988653
No 49
>TIGR03100 hydr1_PEP hydrolase, ortholog 1, exosortase system type 1 associated. This group of proteins are members of the alpha/beta hydrolase superfamily. These proteins are generally found in genomes containing the exosortase/PEP-CTERM protein expoert system, specifically the type 1 variant of this system described by the Genome Property GenProp0652. When found in this context they are invariably present in the vicinity of a second, relatively unrelated enzyme (ortholog 2, TIGR03101) of the same superfamily.
Probab=40.36 E-value=45 Score=24.09 Aligned_cols=33 Identities=18% Similarity=0.164 Sum_probs=23.9
Q ss_pred ccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 67 EAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 67 ~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.|+++.+++..|.. ..-+.-.++.+.|.+|+++
T Consensus 242 ~v~~~~~~~~~H~l----~~e~~~~~v~~~i~~wL~~ 274 (274)
T TIGR03100 242 GIERVEIDGADHTF----SDRVWREWVAARTTEWLRR 274 (274)
T ss_pred CeEEEecCCCCccc----ccHHHHHHHHHHHHHHHhC
Confidence 58899999999932 1223346788899999864
No 50
>PRK10115 protease 2; Provisional
Probab=39.39 E-value=48 Score=27.84 Aligned_cols=20 Identities=20% Similarity=0.130 Sum_probs=18.6
Q ss_pred HHHhhCCCCccEEEEe---CCCeeE
Q 038684 58 KLKESGWGGEAEIVES---KGELHI 79 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~---~g~~H~ 79 (104)
+|++.| ++++++.+ ++.+||
T Consensus 631 ~Lr~~~--~~~~~vl~~~~~~~GHg 653 (686)
T PRK10115 631 KLRELK--TDDHLLLLCTDMDSGHG 653 (686)
T ss_pred HHHhcC--CCCceEEEEecCCCCCC
Confidence 999999 99888888 999999
No 51
>PRK11071 esterase YqiA; Provisional
Probab=39.29 E-value=26 Score=24.10 Aligned_cols=27 Identities=19% Similarity=0.247 Sum_probs=20.7
Q ss_pred EEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 69 EIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 69 e~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
..+..+|..|+|-.+ ++.++.|.+|++
T Consensus 163 ~~~~~~ggdH~f~~~-------~~~~~~i~~fl~ 189 (190)
T PRK11071 163 RQTVEEGGNHAFVGF-------ERYFNQIVDFLG 189 (190)
T ss_pred ceEEECCCCcchhhH-------HHhHHHHHHHhc
Confidence 455669999999333 778888988875
No 52
>PLN02652 hydrolase; alpha/beta fold family protein
Probab=39.09 E-value=55 Score=25.47 Aligned_cols=34 Identities=15% Similarity=0.215 Sum_probs=26.5
Q ss_pred CccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 66 GEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 66 ~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
..++++.++|..|.-+.- +...++++.|.+||++
T Consensus 353 ~~k~l~~~~ga~H~l~~e----~~~e~v~~~I~~FL~~ 386 (395)
T PLN02652 353 RHKDIKLYDGFLHDLLFE----PEREEVGRDIIDWMEK 386 (395)
T ss_pred CCceEEEECCCeEEeccC----CCHHHHHHHHHHHHHH
Confidence 457889999999986542 3467889999999864
No 53
>PRK11190 Fe/S biogenesis protein NfuA; Provisional
Probab=37.31 E-value=88 Score=22.16 Aligned_cols=39 Identities=15% Similarity=0.216 Sum_probs=29.2
Q ss_pred CchHHHhhCCCCccEEEEeCCCeeEEEecCC---CCHHHHHHHH
Q 038684 55 CKRKLKESGWGGEAEIVESKGELHIFYLLNP---TCDSAVAMRK 95 (104)
Q Consensus 55 ~~p~L~~aG~~~~Ve~~~~~g~~H~F~~~~~---~~~~a~~~l~ 95 (104)
..|.|+.-| ++|+++.+.+....+..|.+ .|+.+..-|.
T Consensus 119 irP~l~~dG--Gdielv~v~~~~~v~v~l~GaC~gC~~s~~Tl~ 160 (192)
T PRK11190 119 INPQLAGHG--GRVSLMEITEDGYAILQFGGGCNGCSMVDVTLK 160 (192)
T ss_pred cChhHHhcC--CcEEEEEEcCCCEEEEEEeecCCCCcchHHHHH
Confidence 446999999 99999999876667777764 5666655554
No 54
>TIGR03341 YhgI_GntY IscR-regulated protein YhgI. IscR (TIGR02010) is an iron-sulfur cluster-binding transcriptional regulator (see Genome Property GenProp0138). Members of this protein family include YhgI, whose expression is under control of IscR, and show sequence similarity to IscA, a known protein of iron-sulfur cluster biosynthesis. These two lines of evidence strongly suggest a role as an iron-sulfur cluster biosynthesis protein. An older study designated this protein GntY and suggested a role for it and for the product of an adjacent gene, based on complementation studies, in gluconate utilization.
Probab=36.94 E-value=90 Score=22.01 Aligned_cols=39 Identities=18% Similarity=0.245 Sum_probs=29.5
Q ss_pred CchHHHhhCCCCccEEEEeCCCeeEEEecCC---CCHHHHHHHH
Q 038684 55 CKRKLKESGWGGEAEIVESKGELHIFYLLNP---TCDSAVAMRK 95 (104)
Q Consensus 55 ~~p~L~~aG~~~~Ve~~~~~g~~H~F~~~~~---~~~~a~~~l~ 95 (104)
..|.|+.-| ++|+++.+.+....+..|.+ .|+.+..-|.
T Consensus 118 irP~l~~dG--Gdielv~v~~~~~v~v~l~GaC~gC~~s~~Tl~ 159 (190)
T TIGR03341 118 INPQLASHG--GKVTLVEITDDGVAVLQFGGGCNGCSMVDVTLK 159 (190)
T ss_pred cCHHHHhcC--CceEEEEEcCCCEEEEEEeecCCCCcchHHHHH
Confidence 446999999 99999999876677777765 6666655554
No 55
>CHL00136 rpl31 ribosomal protein L31; Validated
Probab=36.69 E-value=13 Score=22.06 Aligned_cols=10 Identities=20% Similarity=0.830 Sum_probs=8.5
Q ss_pred CCcccCCCCC
Q 038684 1 HTYFWGKEHV 10 (104)
Q Consensus 1 ~P~F~g~~r~ 10 (104)
||||-|+++.
T Consensus 42 HPfyTG~~~~ 51 (68)
T CHL00136 42 HPFYTGSQKI 51 (68)
T ss_pred CccCcCCeeE
Confidence 9999998774
No 56
>TIGR03343 biphenyl_bphD 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. Members of this family are 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase, or HOPD hydrolase, the BphD protein of biphenyl degradation. BphD acts on the product of ring meta-cleavage by BphC. Many species carrying bphC and bphD are capable of degrading polychlorinated biphenyls as well as biphenyl itself.
Probab=36.67 E-value=66 Score=22.57 Aligned_cols=38 Identities=18% Similarity=0.087 Sum_probs=28.3
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.+.+.= ..++++..++.+|..+. +...++.+.|.+||+
T Consensus 244 ~~~~~~--~~~~~~~i~~agH~~~~-----e~p~~~~~~i~~fl~ 281 (282)
T TIGR03343 244 KLLWNM--PDAQLHVFSRCGHWAQW-----EHADAFNRLVIDFLR 281 (282)
T ss_pred HHHHhC--CCCEEEEeCCCCcCCcc-----cCHHHHHHHHHHHhh
Confidence 555554 57899999999998644 445777888888885
No 57
>COG0254 RpmE Ribosomal protein L31 [Translation, ribosomal structure and biogenesis]
Probab=35.90 E-value=15 Score=22.35 Aligned_cols=10 Identities=30% Similarity=0.933 Sum_probs=8.7
Q ss_pred CCcccCCCCC
Q 038684 1 HTYFWGKEHV 10 (104)
Q Consensus 1 ~P~F~g~~r~ 10 (104)
||||-|+++.
T Consensus 44 HPFyTG~qk~ 53 (75)
T COG0254 44 HPFYTGKQKI 53 (75)
T ss_pred CCcCcCceeE
Confidence 8999999883
No 58
>COG2267 PldB Lysophospholipase [Lipid metabolism]
Probab=35.57 E-value=57 Score=24.32 Aligned_cols=42 Identities=19% Similarity=0.263 Sum_probs=30.7
Q ss_pred HHHhhCCCCc-cEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGE-AEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~-Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
..+++| .+ +++++++|..|--+.- +.... .++++.+.+|+.+
T Consensus 251 ~~~~~~--~~~~~~~~~~g~~He~~~E-~~~~r-~~~~~~~~~~l~~ 293 (298)
T COG2267 251 FFERAG--SPDKELKVIPGAYHELLNE-PDRAR-EEVLKDILAWLAE 293 (298)
T ss_pred HHHhcC--CCCceEEecCCcchhhhcC-cchHH-HHHHHHHHHHHHh
Confidence 556677 54 8999999999976543 22222 8899999999864
No 59
>PRK15415 propanediol utilization protein PduB; Provisional
Probab=34.90 E-value=86 Score=23.58 Aligned_cols=42 Identities=12% Similarity=0.024 Sum_probs=28.8
Q ss_pred HHHhhCCCCccEEEEeC-----CCeeEEEecCC--CCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVESK-----GELHIFYLLNP--TCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~-----g~~H~F~~~~~--~~~~a~~~l~~i~~fi 101 (104)
.+|++. +++...+.. +.+||++.+-. .....+..++...+.+
T Consensus 96 AvKAAn--Veli~i~l~r~~~G~~g~G~~ii~g~gDVs~Vr~AVeaa~~~~ 144 (266)
T PRK15415 96 AVKATN--TEVVSIELPRDTKGGAGHGSLIIFGAEDVSDVRRAVEVALKEL 144 (266)
T ss_pred HHhhcC--cEEEEEEccccccCCCCceEEEEEeCCCHHHHHHHHHHHHHHH
Confidence 888888 665554333 55899988876 7778877776555443
No 60
>PRK01678 rpmE2 50S ribosomal protein L31 type B; Reviewed
Probab=34.53 E-value=14 Score=23.03 Aligned_cols=10 Identities=30% Similarity=0.833 Sum_probs=8.6
Q ss_pred CCcccCCCCC
Q 038684 1 HTYFWGKEHV 10 (104)
Q Consensus 1 ~P~F~g~~r~ 10 (104)
||||-|+++.
T Consensus 55 HPFyTGkq~~ 64 (87)
T PRK01678 55 HPFYTGKQKF 64 (87)
T ss_pred CCcCcCCeeE
Confidence 9999998873
No 61
>PF15226 HPIP: HCF-1 beta-propeller-interacting protein family
Probab=33.50 E-value=25 Score=22.90 Aligned_cols=20 Identities=25% Similarity=0.285 Sum_probs=13.3
Q ss_pred HHHHHHHhcCCCCCCCCCCCCCCC
Q 038684 23 IEKIWRAACPSISGCDDPLINPFV 46 (104)
Q Consensus 23 ~~~~w~~~lp~~~~~ddp~~nPl~ 46 (104)
...|-++.+ +.|||||+|..
T Consensus 49 athfsrLsL----~NDHpYcs~p~ 68 (118)
T PF15226_consen 49 ATHFSRLSL----HNDHPYCSPPV 68 (118)
T ss_pred HHHHHhhee----cCCCCCcCCCc
Confidence 334445554 46999999865
No 62
>PRK15405 ethanolamine utilization protein EutL; Provisional
Probab=33.34 E-value=92 Score=22.75 Aligned_cols=44 Identities=18% Similarity=0.157 Sum_probs=32.7
Q ss_pred HHHhhCCCCccEEEE--eCCCeeEE---------EecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVE--SKGELHIF---------YLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~--~~g~~H~F---------~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
++|++. ++|.+.. |-|..||. .+-++...+.+..++...++|.+
T Consensus 54 A~KAAn--Vevv~a~~~~gGaghg~~~~~G~viiIi~G~dvsdVrsAveaa~~~i~~ 108 (217)
T PRK15405 54 ATKQAM--VEVVYARSFYAGAAHASTPLAGEVIGILAGPNPAEVRAGLDAMVAFIEN 108 (217)
T ss_pred HHhhcc--eEEEEEEeeccccccCCCCCCccEEEEEeCCCHHHHHHHHHHHHHHHHh
Confidence 889988 7765433 33778986 44444889999999999998864
No 63
>PRK14487 cbb3-type cytochrome c oxidase subunit II; Provisional
Probab=32.88 E-value=22 Score=25.91 Aligned_cols=30 Identities=23% Similarity=0.415 Sum_probs=18.2
Q ss_pred CCcccCCCCCCcccCChhhHHHHHHHHHHh
Q 038684 1 HTYFWGKEHVGDETTDAEKRASIEKIWRAA 30 (104)
Q Consensus 1 ~P~F~g~~r~~se~~~~~~~~~~~~~w~~~ 30 (104)
|||.||+.||+=....-..+.+.+|.....
T Consensus 94 ~P~lwGs~RtGPDLt~vG~R~s~~w~~~hl 123 (217)
T PRK14487 94 HPFLWGSKRTGPDLARVGGRYSDEWHRNHL 123 (217)
T ss_pred cccccCCCCCCcchhhhhccCCHHHHHHHH
Confidence 799999999986543211222335555444
No 64
>PRK15468 carboxysome structural protein EutS; Provisional
Probab=32.53 E-value=85 Score=20.49 Aligned_cols=68 Identities=10% Similarity=0.079 Sum_probs=44.0
Q ss_pred HhcCCCC-CCCCCCCCCCCCCcc-cccCC-----------ch----------HHHhhCCCCccEEEEeCCCeeEEEecCC
Q 038684 29 AACPSIS-GCDDPLINPFVGSSL-ASLGC-----------KR----------KLKESGWGGEAEIVESKGELHIFYLLNP 85 (104)
Q Consensus 29 ~~lp~~~-~~ddp~~nPl~~~~l-~~~~~-----------~p----------~L~~aG~~~~Ve~~~~~g~~H~F~~~~~ 85 (104)
-|.|+.+ ..-|-.+||- +++ ..+|+ .| +.|+++ +++.. -+-.-|-..+.+
T Consensus 9 E~VPGKQvTlAHiIa~P~--~~iy~klGl~~~~AIGIlTiTP~E~aIIAaDIA~Kaa~--V~igF---~DRFsGslvitG 81 (111)
T PRK15468 9 EFVPGKQVTLAHLIAHPG--EELAKKIGVPDAGAIGIMTLTPGETAMIAGDLALKAAD--VHIGF---LDRFSGALVIYG 81 (111)
T ss_pred eecCCceeeeeeeecCCc--HHHHHHhCCCccCceEEEEeCcchHHHHHHHhhhhccC--cEEee---eeccceeEEEEc
Confidence 4566653 5667777874 232 22333 33 777777 55543 334455666778
Q ss_pred CCHHHHHHHHHHHHHHhc
Q 038684 86 TCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 86 ~~~~a~~~l~~i~~fi~~ 103 (104)
...+...+|+.+.+++++
T Consensus 82 dvs~Ve~Al~~V~~~l~~ 99 (111)
T PRK15468 82 SVGAVEEALSQTVSGLGR 99 (111)
T ss_pred cHHHHHHHHHHHHHHHHh
Confidence 889999999999999875
No 65
>PF08777 RRM_3: RNA binding motif; InterPro: IPR014886 This domain is found in protein La which functions as an RNA chaperone during RNA polymerase III transcription, and can also stimulate translation initiation. It contains a five stranded beta sheet which forms an atypical RNA recognition motif []. ; PDB: 1OWX_A.
Probab=31.25 E-value=1.1e+02 Score=19.25 Aligned_cols=33 Identities=18% Similarity=0.208 Sum_probs=21.7
Q ss_pred ccEEEEeC-CCeeEEEecCCCCHHHHHHHHHHHHH
Q 038684 67 EAEIVESK-GELHIFYLLNPTCDSAVAMRKKIASF 100 (104)
Q Consensus 67 ~Ve~~~~~-g~~H~F~~~~~~~~~a~~~l~~i~~f 100 (104)
+|.++.|. |..-|+..|. ....|+.+++.+...
T Consensus 27 ~V~yVD~~~G~~~g~VRf~-~~~~A~~a~~~~~~~ 60 (105)
T PF08777_consen 27 EVAYVDFSRGDTEGYVRFK-TPEAAQKALEKLKEA 60 (105)
T ss_dssp -EEEEE--TT-SEEEEEES-S---HHHHHHHHHHT
T ss_pred CcceEEecCCCCEEEEEEC-CcchHHHHHHHHHhc
Confidence 78888776 8899999997 445588898888765
No 66
>PF01197 Ribosomal_L31: Ribosomal protein L31; InterPro: IPR002150 Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ]. Ribosomal protein L31 is one of the proteins from the large ribosomal subunit. L31 is a protein of 66 to 97 amino-acid residues which has only been found so far in bacteria and in some plant and algal chloroplasts.; GO: 0003735 structural constituent of ribosome, 0006412 translation, 0005622 intracellular, 0005840 ribosome; PDB: 3D5D_4 3PYO_1 3D5B_4 3PYV_1 3PYT_1 3MRZ_1 3MS1_1 3PYR_1 3F1F_4 3F1H_4 ....
Probab=30.54 E-value=29 Score=20.48 Aligned_cols=10 Identities=40% Similarity=0.943 Sum_probs=8.1
Q ss_pred CCcccCCCCC
Q 038684 1 HTYFWGKEHV 10 (104)
Q Consensus 1 ~P~F~g~~r~ 10 (104)
||||-|..+.
T Consensus 43 HPfytG~~~~ 52 (69)
T PF01197_consen 43 HPFYTGKQKV 52 (69)
T ss_dssp SCTTCSCSSC
T ss_pred CEEEcCcEEE
Confidence 8999997664
No 67
>TIGR02427 protocat_pcaD 3-oxoadipate enol-lactonase. Members of this family are 3-oxoadipate enol-lactonase. Note that the substrate is known as 3-oxoadipate enol-lactone, 2-oxo-2,3-dihydrofuran-5-acetate, 4,5-Dihydro-5-oxofuran-2-acetate, and 5-oxo-4,5-dihydrofuran-2-acetate. The enzyme the catalyzes the fourth step in the protocatechuate degradation to beta-ketoadipate and then to succinyl-CoA and acetyl-CoA. 4-hydroxybenzoate, 3-hydroxybenzoate, and vanillate all can be converted in one step to protocatechuate. This enzyme also acts in catechol degradation. In genomes that catabolize both catechol and protocatechuate, two forms of this enzyme may be found. All members of the seed alignment for this model were chosen from within protocatechuate degradation operons of at least three genes of the pathway, from genomes with the complete pathway through beta-ketoadipate.
Probab=30.04 E-value=1.1e+02 Score=20.28 Aligned_cols=32 Identities=22% Similarity=0.283 Sum_probs=22.8
Q ss_pred CccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 66 GEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 66 ~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
..++++.+++.+|..+.- ..+++.+.|.+|++
T Consensus 220 ~~~~~~~~~~~gH~~~~~-----~p~~~~~~i~~fl~ 251 (251)
T TIGR02427 220 PGARFAEIRGAGHIPCVE-----QPEAFNAALRDFLR 251 (251)
T ss_pred CCceEEEECCCCCccccc-----ChHHHHHHHHHHhC
Confidence 457889999999977543 24666777777764
No 68
>TIGR01250 pro_imino_pep_2 proline-specific peptidases, Bacillus coagulans-type subfamily. This model describes a subfamily of the alpha/beta fold family of hydrolases. Characterized members include prolinases (Pro-Xaa dipeptidase, EC 3.4.13.8), prolyl aminopeptidases (EC 3.4.11.5), and a leucyl aminopeptidase
Probab=30.01 E-value=94 Score=21.18 Aligned_cols=38 Identities=13% Similarity=0.154 Sum_probs=25.6
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
.+.+.- ..++++++++.+|..+.- ...++.+.|.+|++
T Consensus 251 ~~~~~~--~~~~~~~~~~~gH~~~~e-----~p~~~~~~i~~fl~ 288 (288)
T TIGR01250 251 EMQELI--AGSRLVVFPDGSHMTMIE-----DPEVYFKLLSDFIR 288 (288)
T ss_pred HHHHhc--cCCeEEEeCCCCCCcccC-----CHHHHHHHHHHHhC
Confidence 444444 457889999999976543 34566677777763
No 69
>cd07053 BMC_PduT_repeat1 1,2-propanediol utilization protein T (PduT), Bacterial Micro-Compartment (BMC) domain repeat 1. PduT proteins are homologs of the carboxysome shell protein. They are encoded within the pdu operon and might be required for the formation of the outer shell of the bacterial pdu polyhedral organelles which are involved in coenzyme B12-dependent degradation of 1,2-propanediol. Although it has been suggested that PduT might form hexamers and further assemble into the flat facets of the polyhedral outer shell of pdu organelles at present no experimental evidence directly supports this view. PduT proteins contain two tandem BMC domains repeats. This CD contains repeat 1 (the first BMC domain of PduT) as well as carboxysome shell protein sequence homolog, EutM protein, are also included in this CD. They too might exist as hexamers and might play similar functional roles in the construction of the eut organelle outer shell which still remains poorly understood.
Probab=29.82 E-value=1.3e+02 Score=18.00 Aligned_cols=40 Identities=15% Similarity=0.057 Sum_probs=28.6
Q ss_pred HHHhhCCCCccEEEEeC--CCeeEEEecCCCCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVESK--GELHIFYLLNPTCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~--g~~H~F~~~~~~~~~a~~~l~~i~~fi 101 (104)
.||++. |+++.++ +.++.+..+.+.....+.+++...+..
T Consensus 20 ~lKaa~----V~l~~~~~~~~Gk~~vii~GdvsaV~~Av~a~~~~~ 61 (76)
T cd07053 20 MLKAAN----VELVLAKTICPGKYIIIVSGDVGAVQAAVDAGKEIG 61 (76)
T ss_pred HhhcCc----eEEEEEEeecCCEEEEEEEEcHHHHHHHHHHHHHHh
Confidence 677776 5555565 446778888888888888887766543
No 70
>PRK01397 50S ribosomal protein L31; Provisional
Probab=29.68 E-value=23 Score=21.64 Aligned_cols=9 Identities=11% Similarity=0.080 Sum_probs=8.2
Q ss_pred CCcccCCCC
Q 038684 1 HTYFWGKEH 9 (104)
Q Consensus 1 ~P~F~g~~r 9 (104)
||||-|+++
T Consensus 41 HPFyTG~q~ 49 (78)
T PRK01397 41 HPAWNKDSG 49 (78)
T ss_pred CCcCcCCee
Confidence 999999987
No 71
>TIGR00781 ccoO cytochrome c oxidase, cbb3-type, subunit II. This model describes the monoheme subunit of the cbb3-type cytochrome oxidase, found in a subset of Proteobacterial species. Species having this protein also have CcoN (subunit I, containing copper and two heme groups), CcoP (subunit III, containing two hemes), and CcoQ (essential for incorporation of the prosthetic groups).
Probab=27.65 E-value=39 Score=24.91 Aligned_cols=30 Identities=23% Similarity=0.379 Sum_probs=18.3
Q ss_pred CCcccCCCCCCcccCChhhHHHHHHHHHHh
Q 038684 1 HTYFWGKEHVGDETTDAEKRASIEKIWRAA 30 (104)
Q Consensus 1 ~P~F~g~~r~~se~~~~~~~~~~~~~w~~~ 30 (104)
|||+||+.||+-....-..+...+|.....
T Consensus 93 ~p~lwGs~RtGPDLt~vG~R~s~~wh~~hl 122 (232)
T TIGR00781 93 HPFQWGSKRTGPDLARVGGRYSDEWHVKHL 122 (232)
T ss_pred cccccCCCCcCcCcccccccCCHHHHHHHH
Confidence 799999999986654211222235555444
No 72
>PF11349 DUF3151: Protein of unknown function (DUF3151); InterPro: IPR014487 This group represents an uncharacterised conserved protein.
Probab=27.58 E-value=30 Score=23.13 Aligned_cols=27 Identities=26% Similarity=0.505 Sum_probs=19.5
Q ss_pred cccCCch---HHHhhCCCC--ccEEEEeCCCe
Q 038684 51 ASLGCKR---KLKESGWGG--EAEIVESKGEL 77 (104)
Q Consensus 51 ~~~~~~p---~L~~aG~~~--~Ve~~~~~g~~ 77 (104)
++.|+.+ .||++||++ +|-+-+.++.+
T Consensus 59 ARTGYHRGLD~LRr~GWkG~GPVPw~HePNrG 90 (129)
T PF11349_consen 59 ARTGYHRGLDQLRRNGWKGHGPVPWSHEPNRG 90 (129)
T ss_pred hhccccccHHHHHHCCCCCCCCCCCccCCccH
Confidence 3456666 999999976 67777766653
No 73
>PF06525 SoxE: Sulfocyanin (SoxE); InterPro: IPR010532 Members of this family are blue-copper redox proteins designated sulfocyanin, from the archaeal genera Sulfolobus, Ferroplasma, and Picrophilus. The most closely related proteins characterised as functionally different are the rusticyanins.
Probab=27.53 E-value=46 Score=23.89 Aligned_cols=25 Identities=12% Similarity=0.353 Sum_probs=22.2
Q ss_pred hhCCCCccEEEEeCCCeeEEEecCC
Q 038684 61 ESGWGGEAEIVESKGELHIFYLLNP 85 (104)
Q Consensus 61 ~aG~~~~Ve~~~~~g~~H~F~~~~~ 85 (104)
=|||.|.+++.-.+.+.|.|.....
T Consensus 91 PAGw~V~i~f~N~~~l~Hnl~iv~~ 115 (196)
T PF06525_consen 91 PAGWNVQITFTNQESLPHNLVIVQN 115 (196)
T ss_pred cCCCEEEEEEEcCCCCCeeEEEEeC
Confidence 5799999999999999999998864
No 74
>TIGR01607 PST-A Plasmodium subtelomeric family (PST-A). These genes are preferentially located in the subtelomeric regions of the chromosomes of both P. falciparum and P. yoelii.
Probab=27.47 E-value=88 Score=23.40 Aligned_cols=32 Identities=16% Similarity=0.194 Sum_probs=25.6
Q ss_pred ccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 67 EAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 67 ~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
++++++++|+.|..+.- ....+.++.|.+||+
T Consensus 300 ~~~l~~~~g~~H~i~~E----~~~~~v~~~i~~wL~ 331 (332)
T TIGR01607 300 NKELHTLEDMDHVITIE----PGNEEVLKKIIEWIS 331 (332)
T ss_pred CcEEEEECCCCCCCccC----CCHHHHHHHHHHHhh
Confidence 58899999999987643 225788999999986
No 75
>TIGR00105 L31 ribosomal protein L31. This family consists exclusively of bacterial (and organellar) 50S ribosomal protein L31. In some species, such as Bacillus subtilis, this protein exists in two forms (RpmE and YtiA), one of which (RpmE) contains a pair of motifs, CXC and CXXC, for binding zinc.
Probab=26.43 E-value=23 Score=20.92 Aligned_cols=9 Identities=33% Similarity=0.922 Sum_probs=7.6
Q ss_pred CCcccCCCC
Q 038684 1 HTYFWGKEH 9 (104)
Q Consensus 1 ~P~F~g~~r 9 (104)
||||-|+++
T Consensus 42 HPfyTG~~~ 50 (68)
T TIGR00105 42 HPFYTGKQK 50 (68)
T ss_pred cccCCCceE
Confidence 899999766
No 76
>PF14433 SUKH-3: SUKH-3 immunity protein
Probab=26.39 E-value=13 Score=24.53 Aligned_cols=7 Identities=43% Similarity=1.260 Sum_probs=4.0
Q ss_pred HHHhhCC
Q 038684 58 KLKESGW 64 (104)
Q Consensus 58 ~L~~aG~ 64 (104)
.|++|||
T Consensus 7 ~L~~aGW 13 (142)
T PF14433_consen 7 LLRAAGW 13 (142)
T ss_pred HHHHcCC
Confidence 4556665
No 77
>KOG1455 consensus Lysophospholipase [Lipid transport and metabolism]
Probab=26.23 E-value=53 Score=25.27 Aligned_cols=37 Identities=14% Similarity=0.141 Sum_probs=28.9
Q ss_pred CccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 66 GEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 66 ~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.+=++..||||.|+-+.-. .-+.....+..|.+||.+
T Consensus 275 ~DKTlKlYpGm~H~Ll~gE-~~en~e~Vf~DI~~Wl~~ 311 (313)
T KOG1455|consen 275 SDKTLKLYPGMWHSLLSGE-PDENVEIVFGDIISWLDE 311 (313)
T ss_pred CCCceeccccHHHHhhcCC-CchhHHHHHHHHHHHHHh
Confidence 5679999999999977533 336677888999999853
No 78
>KOG3027 consensus Mitochondrial outer membrane protein Metaxin 2, Metaxin 1-binding protein [Cell wall/membrane/envelope biogenesis; Intracellular trafficking, secretion, and vesicular transport]
Probab=25.40 E-value=32 Score=25.30 Aligned_cols=13 Identities=23% Similarity=0.468 Sum_probs=11.1
Q ss_pred CCcccCCCCCCcc
Q 038684 1 HTYFWGKEHVGDE 13 (104)
Q Consensus 1 ~P~F~g~~r~~se 13 (104)
||||+|..+|+-.
T Consensus 196 q~yf~g~~P~elD 208 (257)
T KOG3027|consen 196 QPYFTGDQPTELD 208 (257)
T ss_pred CCccCCCCccHHH
Confidence 7999999998754
No 79
>KOG4827 consensus Uncharacterized conserved protein [Function unknown]
Probab=24.75 E-value=59 Score=23.72 Aligned_cols=29 Identities=31% Similarity=0.504 Sum_probs=21.9
Q ss_pred CCCCCCcccCChhhHHHHHHHHHHhcCCC
Q 038684 6 GKEHVGDETTDAEKRASIEKIWRAACPSI 34 (104)
Q Consensus 6 g~~r~~se~~~~~~~~~~~~~w~~~lp~~ 34 (104)
|+++.+.|..++..+..+..||.+..|-|
T Consensus 225 g~en~ege~~~~~eRSF~AKYWMYiiPlg 253 (279)
T KOG4827|consen 225 GEENAEGEGADADERSFLAKYWMYIIPLG 253 (279)
T ss_pred ccccccccCCCCcchhHHHHHHHhhccch
Confidence 56666666666667788889999988865
No 80
>PF14417 MEDS: MEDS: MEthanogen/methylotroph, DcmR Sensory domain
Probab=24.75 E-value=1e+02 Score=21.21 Aligned_cols=38 Identities=21% Similarity=0.225 Sum_probs=27.0
Q ss_pred HHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 59 LKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 59 L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
++.+| .++.- ..+-..|..+++.. ..++++.++.||+.
T Consensus 5 ~r~s~--~~~~~-~~~~g~H~c~~Y~~----~~e~~~~~~~Fi~~ 42 (191)
T PF14417_consen 5 LRKSG--IDAIG-DIPWGDHICAFYDD----EEELLEVLVPFIRE 42 (191)
T ss_pred ccccc--Ccccc-CCCCCceEEEEECC----HHHHHHHHHHHHHH
Confidence 45667 55544 44555899888864 57899999999863
No 81
>KOG3101 consensus Esterase D [General function prediction only]
Probab=24.47 E-value=2.8e+02 Score=20.76 Aligned_cols=23 Identities=17% Similarity=0.429 Sum_probs=18.1
Q ss_pred CCCCccEEEEeCCCeeEEEecCC
Q 038684 63 GWGGEAEIVESKGELHIFYLLNP 85 (104)
Q Consensus 63 G~~~~Ve~~~~~g~~H~F~~~~~ 85 (104)
-|..+|++..-+|-.|.+|+...
T Consensus 245 ~~~~~v~~r~~~gyDHSYyfIaT 267 (283)
T KOG3101|consen 245 TWQAPVVFRLQEGYDHSYYFIAT 267 (283)
T ss_pred cccccEEEEeecCCCcceeeehh
Confidence 35567888888899999998763
No 82
>PRK10439 enterobactin/ferric enterobactin esterase; Provisional
Probab=23.59 E-value=27 Score=27.42 Aligned_cols=23 Identities=17% Similarity=0.083 Sum_probs=19.4
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEec
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLL 83 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~ 83 (104)
.|+++| .+|++.+++| +|.+..-
T Consensus 373 ~L~~~G--~~~~~~~~~G-GHd~~~W 395 (411)
T PRK10439 373 QLHPAG--HSVFWRQVDG-GHDALCW 395 (411)
T ss_pred HHHHCC--CcEEEEECCC-CcCHHHH
Confidence 899999 9999999998 5976444
No 83
>PF06200 tify: tify domain; InterPro: IPR010399 The tify domain is a 36-amino acid domain only found among Embryophyta (land plants). It has been named after the most conserved amino acid pattern (TIF[F/Y]XG) it contains, but was previously known as the Zim domain. As the use of uppercase characters (TIFY) might imply that the domain is fully conserved across proteins, a lowercase lettering has been chosen in an attempt to highlight the reality of its natural variability. Based on the domain architecture, tify domain containing proteins can be classified into two groups. Group I is formed by proteins possessing a CCT (CONSTANS, CO-like, and TOC1) domain and a GATA-type zinc finger in addition to the tify domain. Group II contains proteins characterised by the tify domain but lacking a GATA-type zinc finger. Tify domain containing proteins might be involved in developmental processes and some of them have features that are characteristic for transcription factors: a nuclear localisation and the presence of a putative DNA-binding domain []. Some proteins known to contain a tify domain include: Arabidopsis thaliana Zinc-finger protein expressed in Inflorescence Meristem (ZIM), a putative transcription factor involved in inflorescence and flower development [, ]. A. thaliana ZIM-like proteins (ZML) []. A. thaliana PEAPOD1 and PEAPOD2 (PPD1 and PPD2) [].
Probab=23.49 E-value=86 Score=16.24 Aligned_cols=24 Identities=21% Similarity=0.267 Sum_probs=17.8
Q ss_pred EEeCCCeeEEEecCCCCHHHHHHHHH
Q 038684 71 VESKGELHIFYLLNPTCDSAVAMRKK 96 (104)
Q Consensus 71 ~~~~g~~H~F~~~~~~~~~a~~~l~~ 96 (104)
..|.|..+.|--+.+ ++|+++|.-
T Consensus 10 IfY~G~V~Vfd~v~~--~Ka~~im~l 33 (36)
T PF06200_consen 10 IFYGGQVCVFDDVPP--DKAQEIMLL 33 (36)
T ss_pred EEECCEEEEeCCCCH--HHHHHHHHH
Confidence 678899999976655 667776654
No 84
>COG4077 Uncharacterized protein conserved in archaea [Function unknown]
Probab=23.41 E-value=75 Score=21.65 Aligned_cols=22 Identities=27% Similarity=0.391 Sum_probs=18.4
Q ss_pred cCCCCHHHHHHHHHHHHHHhcC
Q 038684 83 LNPTCDSAVAMRKKIASFFNEI 104 (104)
Q Consensus 83 ~~~~~~~a~~~l~~i~~fi~~~ 104 (104)
+.+.+++..++|..|-.|||+|
T Consensus 68 ld~es~Eg~elI~e~De~vr~~ 89 (156)
T COG4077 68 LDKESFEGVELIKEIDEFVRRI 89 (156)
T ss_pred hCccCHHHHHHHHHHHHHHHHH
Confidence 3467889999999999999875
No 85
>PF12122 DUF3582: Protein of unknown function (DUF3582); InterPro: IPR022732 In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold: Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins. Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases. In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes []. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Over 20 families (denoted S1 - S66) of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence []. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases []. Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base []. The geometric orientations of the catalytic residues are similar between families, despite different protein folds []. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [, ]. This entry represents the N-terminal domain of membrane-bound serine endopeptidases belonging to MEROPS peptidase family S54 (rhomboid-1, clan ST). This domain contains a conserved ASW sequence motif and a single completely conserved residue F that may be functionally important. The tertiary structure of the GlpG protein from Escherichia coli has been determined []. The GlpG protein has six transmembrane domains (other members of the family are predicted to have seven), with the N- and C-terminal ends anchored in the cytoplasm. One transmembrane domain is shorter than the rest, creating an internal, aqueous cavity just below the membrane surface and it is here were proteolysis occurs. There is also a membrane-embedded loop between the first and second transmembrane domains which is postulated to act as a gate controlling substrate access to the active site. No other family of serine peptidases is known to have active site residues within transmembrane domains (although transmembrane active sites are known for aspartic peptidase and metallopeptidases), and the GlpG protein has the type structure for clan ST.; GO: 0004252 serine-type endopeptidase activity, 0016021 integral to membrane; PDB: 3UBB_A 3B45_A 3B44_A 2NRF_A 3TXT_A 2O7L_A 2XTU_A 2IRV_A 2XOW_A 2XTV_A ....
Probab=22.73 E-value=2.1e+02 Score=18.07 Aligned_cols=41 Identities=15% Similarity=0.197 Sum_probs=21.0
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
-|+..| +++++....+....-.+. ..+...++..++..|++
T Consensus 19 Yl~sqg--I~~~i~~~~~~~~~lwl~--de~~~~~a~~el~~Fl~ 59 (101)
T PF12122_consen 19 YLASQG--IELQIEPEGQGQFALWLH--DEEHLEQAEQELEEFLQ 59 (101)
T ss_dssp HHHHTT----EEEE-SSSE--EEEES---GGGHHHHHHHHHHHHH
T ss_pred HHHHCC--CeEEEEECCCCceEEEEe--CHHHHHHHHHHHHHHHH
Confidence 578889 888877644442333333 44555566666666664
No 86
>TIGR01894 cas_TM1795_cmr1 CRISPR-associated RAMP protein, Cmr1 family. CRISPR is a term for Clustered, Regularly Interspaced Short Palidromic Repeats. A number of protein families appear only in association with these repeats and are designated Cas (CRISPR-Associated) proteins. This model represents the region of stongest conservation, the N-terminal half, of one such family, represented by TM1795 from Thermotoga maritima. This protein is the first of a set of six genes, mostly from the RAMP superfamily, that we designated the CRISPR-associated RAMP module.
Probab=22.20 E-value=1.1e+02 Score=20.89 Aligned_cols=30 Identities=17% Similarity=0.165 Sum_probs=20.1
Q ss_pred CcccCCCCCCc--ccCChhhHHHHHHHHHHhc
Q 038684 2 TYFWGKEHVGD--ETTDAEKRASIEKIWRAAC 31 (104)
Q Consensus 2 P~F~g~~r~~s--e~~~~~~~~~~~~~w~~~l 31 (104)
|.|+|.-.... |...+.-...|.|.|+.+.
T Consensus 6 P~~~gg~~~~~~~~ir~~~ikG~lR~W~Ra~~ 37 (153)
T TIGR01894 6 PIFGGGARGRKEEEVRSTSIKGLLRWWFRALI 37 (153)
T ss_pred cccccCCCCCCCccccchhhhhHHHHHHHHHh
Confidence 66766444443 3444457889999999986
No 87
>TIGR02578 cas_TM1811_Csm1 CRISPR-associated protein, Csm1 family. The family is designated Csm2, for CRISPR/Cas Subtype Mtube Protein 2. A typical example is TM1811 from Thermotoga maritima. CRISPR are Clustered Regularly Interspaced Short Palindromic Repeats. This protein family belongs to a conserved gene cluster regularly found near CRISPR repeats.
Probab=22.08 E-value=1.4e+02 Score=25.16 Aligned_cols=39 Identities=23% Similarity=0.256 Sum_probs=27.7
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNPTCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi 101 (104)
-|++.| -....+.|.|.+|-+.++ |..+.++ ++++..-|
T Consensus 289 IL~~l~--L~~~nil~~gGG~F~lLl-Pnt~~~~--l~~~~~~i 327 (648)
T TIGR02578 289 ILEELN--LTRTNILFDGGGHFYLLL-PNTEEAR--LEKLRERI 327 (648)
T ss_pred HHHHcC--CChhheEEecCCeEEEEe-cCChHHH--HHHHHHHH
Confidence 678888 888889999999955555 6666654 55554433
No 88
>PF01343 Peptidase_S49: Peptidase family S49 peptidase classification.; InterPro: IPR002142 In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold: Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins. Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases. In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes []. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Over 20 families (denoted S1 - S66) of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence []. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases []. Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base []. The geometric orientations of the catalytic residues are similar between families, despite different protein folds []. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [, ]. This group of serine peptidases belong to MEROPS peptidase family S49 (protease IV family, clan S-). The predicted active site serine for members of this family occurs in a transmembrane domain. The domain defines sequences in viruses, archaea, bacteria and plants. These sequences are variously annotated in the different taxonomic groups, examples are: Viruses: capsid protein Archaea: proteinase IV homolog Bacteria: proteinase IV, sohB, SppA, pfaP, putative protease Plants: SppA, protease IV This group also contains proteins classified as non-peptidase homologues that either have been found experimentally to be without peptidase activity, or lack amino acid residues that are believed to be essential for the catalytic activity of peptidases. Related proteins, non-peptidase homologs and unclassified S49 members are also to be found in IPR002810 from INTERPRO.; GO: 0008233 peptidase activity, 0006508 proteolysis; PDB: 3RST_B 3BEZ_D 3BF0_A.
Probab=21.42 E-value=1.8e+02 Score=19.27 Aligned_cols=39 Identities=18% Similarity=0.241 Sum_probs=26.9
Q ss_pred HHHhhCCCCccEEEEe---CCCeeEEEecCCCCHHHHHHHHHHHHHH
Q 038684 58 KLKESGWGGEAEIVES---KGELHIFYLLNPTCDSAVAMRKKIASFF 101 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~---~g~~H~F~~~~~~~~~a~~~l~~i~~fi 101 (104)
.|++.| ++++.+.. +.+. +...+.+++.++.++++.+-+
T Consensus 54 ~l~k~G--V~~~~~~~g~~K~~~---~~~~~~s~~~r~~~~~~l~~~ 95 (154)
T PF01343_consen 54 LLEKLG--VKVEVVRSGEYKSAG---FPRDPMSEEERENLQELLDEL 95 (154)
T ss_dssp HHHHTT---EEEEEESSTTCCCC---CTTSS--HHHHHHHHHHHHHH
T ss_pred HHHHCC--CeEEEEecCcccccc---CcCCCCCHHHHHHHHHHHHHH
Confidence 899999 88886653 4444 667789999999998876544
No 89
>COG0627 Predicted esterase [General function prediction only]
Probab=21.09 E-value=33 Score=26.18 Aligned_cols=26 Identities=19% Similarity=0.387 Sum_probs=22.4
Q ss_pred HHHhhCCCCccEEEEeCCCeeEEEecCC
Q 038684 58 KLKESGWGGEAEIVESKGELHIFYLLNP 85 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~g~~H~F~~~~~ 85 (104)
+|+++| .+.++...++-.|+++....
T Consensus 274 a~~~~g--~~~~~~~~~~G~Hsw~~w~~ 299 (316)
T COG0627 274 ALRAAG--IPNGVRDQPGGDHSWYFWAS 299 (316)
T ss_pred HHHhcC--CCceeeeCCCCCcCHHHHHH
Confidence 899999 88888888999999987763
No 90
>PRK00175 metX homoserine O-acetyltransferase; Provisional
Probab=21.05 E-value=1.1e+02 Score=23.35 Aligned_cols=39 Identities=18% Similarity=0.271 Sum_probs=27.3
Q ss_pred HHHhhCCCCccEEEEeC-CCeeEEEecCCCCHHHHHHHHHHHHHHhc
Q 038684 58 KLKESGWGGEAEIVESK-GELHIFYLLNPTCDSAVAMRKKIASFFNE 103 (104)
Q Consensus 58 ~L~~aG~~~~Ve~~~~~-g~~H~F~~~~~~~~~a~~~l~~i~~fi~~ 103 (104)
.+..++ ..+++++.+ +.+|...+.. ..++-+.|.+|+++
T Consensus 334 ~i~~a~--~~~~l~~i~~~~GH~~~le~-----p~~~~~~L~~FL~~ 373 (379)
T PRK00175 334 ALLAAG--ADVSYAEIDSPYGHDAFLLD-----DPRYGRLVRAFLER 373 (379)
T ss_pred HHHhcC--CCeEEEEeCCCCCchhHhcC-----HHHHHHHHHHHHHh
Confidence 445556 677888885 9999866543 44677778888865
No 91
>PHA02447 hypothetical protein
Probab=21.04 E-value=30 Score=20.72 Aligned_cols=17 Identities=41% Similarity=0.782 Sum_probs=12.9
Q ss_pred HHHhcCCCCCCCCCCCCCC
Q 038684 27 WRAACPSISGCDDPLINPF 45 (104)
Q Consensus 27 w~~~lp~~~~~ddp~~nPl 45 (104)
|+..||+ ++.+-++||-
T Consensus 22 wravlpg--drrnawinps 38 (86)
T PHA02447 22 WRAVLPG--DRRNAWINPS 38 (86)
T ss_pred eeeecCC--cccccccChh
Confidence 6667776 6778899995
No 92
>PF08386 Abhydrolase_4: TAP-like protein; InterPro: IPR013595 In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold: Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins. Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases. In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding. Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes []. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Over 20 families (denoted S1 - S66) of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence []. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases []. Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base []. The geometric orientations of the catalytic residues are similar between families, despite different protein folds []. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [, ]. This entry represents a C-terminal domain associated with putative hydrolases and bacterial peptidases that belong to MEROPS peptidase family S33 (clan SC). They are related to a tripeptidyl aminopeptidase from Streptomyces lividans (Q54410 from SWISSPROT). A member of this family (Q6E3K7 from SWISSPROT) is thought to be involved in the C-terminal processing of propionicin F, a bacteriocidin characterised from Propionibacterium freudenreichii []. ; GO: 0008233 peptidase activity
Probab=21.03 E-value=2.2e+02 Score=17.56 Aligned_cols=30 Identities=17% Similarity=0.277 Sum_probs=19.8
Q ss_pred cEEEEeCCCeeEEEecCCCCHHHHHHHHHHHHHHh
Q 038684 68 AEIVESKGELHIFYLLNPTCDSAVAMRKKIASFFN 102 (104)
Q Consensus 68 Ve~~~~~g~~H~F~~~~~~~~~a~~~l~~i~~fi~ 102 (104)
..++..+|.+||.+... ....-+.+.+|+.
T Consensus 63 s~lvt~~g~gHg~~~~~-----s~C~~~~v~~yl~ 92 (103)
T PF08386_consen 63 SRLVTVDGAGHGVYAGG-----SPCVDKAVDDYLL 92 (103)
T ss_pred ceEEEEeccCcceecCC-----ChHHHHHHHHHHH
Confidence 68899999999998632 2334445555553
No 93
>COG4737 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=20.11 E-value=1.1e+02 Score=20.18 Aligned_cols=19 Identities=32% Similarity=0.485 Sum_probs=16.5
Q ss_pred CccEEEEeCCCeeEEEecC
Q 038684 66 GEAEIVESKGELHIFYLLN 84 (104)
Q Consensus 66 ~~Ve~~~~~g~~H~F~~~~ 84 (104)
+-=.++.+++..|+|+.+.
T Consensus 57 g~RtiIl~k~~~~~Ff~f~ 75 (123)
T COG4737 57 GYRTIILFKGADHWFFVFL 75 (123)
T ss_pred CceEEEEecCCceEEEEEE
Confidence 4478999999999999885
Done!