Query         040313
Match_columns 123
No_of_seqs    124 out of 197
Neff          4.7 
Searched_HMMs 46136
Date          Fri Mar 29 07:12:31 2013
Command       hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/040313.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/040313hhsearch_cdd -cpu 12 -v 0 

 No Hit                             Prob E-value P-value  Score    SS Cols Query HMM  Template HMM
  1 KOG4103 Mitochondrial F1F0-ATP 100.0 1.8E-35   4E-40  210.7   6.9   97   25-123     3-103 (103)
  2 PF04718 ATP-synt_G:  Mitochond 100.0 3.4E-31 7.3E-36  189.2   6.5   90   32-123     2-103 (103)
  3 PF04718 ATP-synt_G:  Mitochond  91.1    0.69 1.5E-05   33.0   5.3   57   19-75      7-67  (103)
  4 PF10958 DUF2759:  Protein of u  28.7      74  0.0016   20.5   2.7   22   92-113    24-45  (52)
  5 TIGR01470 cysG_Nterm siroheme   26.5 1.8E+02  0.0039   22.5   5.2   57   46-102   128-184 (205)
  6 PRK06718 precorrin-2 dehydroge  26.1 1.7E+02  0.0037   22.6   4.9   40   45-84    127-166 (202)
  7 PHA01757 hypothetical protein   24.4      99  0.0021   22.0   3.0   26   87-112     3-30  (98)
  8 PF04719 TAFII28:  hTAFII28-lik  21.6 2.4E+02  0.0052   19.7   4.5   36   75-113    28-63  (90)
  9 smart00648 SWAP Suppressor-of-  21.2 1.4E+02  0.0031   18.1   3.0   23   12-34      4-26  (54)
 10 KOG4103 Mitochondrial F1F0-ATP  21.0 3.4E+02  0.0073   19.8   5.4   50    1-54      1-53  (103)

No 1  
>KOG4103 consensus Mitochondrial F1F0-ATP synthase, subunit g/ATP20 [Energy production and conversion]
Probab=100.00  E-value=1.8e-35  Score=210.69  Aligned_cols=97  Identities=26%  Similarity=0.364  Sum_probs=92.1

Q ss_pred             HHHHHHHHhcchhccCCCchhHHHHHHHHHHHHHhhcCCCChHHHHHHHHhHHHHHH----hhhhcCcHHHHHHHHHHHH
Q 040313           25 AYIKQLLEDNKQHIKDPPNTETCQLLAKQLFYTRLASIPNRVDAFWKELDGLKQFMK----NRELEMNLDNAGLAALFGV  100 (123)
Q Consensus        25 ~~~~~l~~k~~~lv~~~~~~~k~~~L~k~~~Y~k~~l~PP~~~~~~~~~~~~k~~~~----~~~~~ltv~ea~~~~l~~~  100 (123)
                      .|+.++++|.+.+++...+.++ |+|..+|.|+|+||+||+++|||++++++.++.+    +.++|+|++|+++|++|++
T Consensus         3 ~~~~~l~~K~~~L~~~~~~~~~-p~l~~~~~y~K~eL~PPt~Ad~pai~q~l~~~~~~~~t~~~Knltv~Eall~~~v~~   81 (103)
T KOG4103|consen    3 NYMSGLVEKAANLVNAALTYAK-PRLAIFWKYAKVELAPPTPADIPAIKQDLAKLKKFAQTGCYKNLTVKEALLNGLVTL   81 (103)
T ss_pred             hHHHHHHHHHHHHHHHHHHhcC-chHHHHHHHHhcccCCCChhhHHHHHHHHHHhHHHHhhhhhhhhhHHHHHHHHHHHH
Confidence            4788999999999999999999 9999999999999999999999999999876555    7789999999999999999


Q ss_pred             HHHHHHHhhhhcccCCccccccC
Q 040313          101 ECFAWFCGGEIIGRGFTITGYHV  123 (123)
Q Consensus       101 Ev~~wF~vGEiIGRr~~lvGY~V  123 (123)
                      |+++||+|||||||| +||||+|
T Consensus        82 Evi~wf~vGEiIGrR-~ivGY~v  103 (103)
T KOG4103|consen   82 EVIFWFYVGEIIGRR-HIVGYKV  103 (103)
T ss_pred             HHHHHHHHHHHhccc-ccccccC
Confidence            999999999999999 9999997


No 2  
>PF04718 ATP-synt_G:  Mitochondrial ATP synthase g subunit;  InterPro: IPR006808 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include:   F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.   F-ATPases (also known as F1F0-ATPase, or H(+)-transporting two-sector ATPase) (3.6.3.14 from EC) are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits (alpha, beta, gamma, delta, epsilon), while the F0 ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), nine in mitochondria (A-G, F6, F8). Both the F1 and F0 complexes are rotary motors that are coupled back-to-back. In the F1 complex, the central gamma subunit forms the rotor inside the cylinder made of the alpha(3)beta(3) subunits, while in the F0 complex, the ring-shaped C subunits forms the rotor. The two rotors rotate in opposite directions, but the F0 rotor is usually stronger, using the force from the proton gradient to push the F1 rotor in reverse in order to drive ATP synthesis []. These ATPases can also work in reverse to hydrolyse ATP to create a proton gradient. This entry represents the G subunit found in the F0 complex of F-ATPases in mitochondria. The function of subunit G is currently unknown. There is no counterpart in chloroplast or bacterial F-ATPases identified so far []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0015078 hydrogen ion transmembrane transporter activity, 0015986 ATP synthesis coupled proton transport, 0000276 mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)
Probab=99.97  E-value=3.4e-31  Score=189.21  Aligned_cols=90  Identities=23%  Similarity=0.313  Sum_probs=80.0

Q ss_pred             HhcchhccCCCchhHHHHHHHHHHHHHhhcCCCChHHHHHHHHhHHHHHH------------hhhhcCcHHHHHHHHHHH
Q 040313           32 EDNKQHIKDPPNTETCQLLAKQLFYTRLASIPNRVDAFWKELDGLKQFMK------------NRELEMNLDNAGLAALFG   99 (123)
Q Consensus        32 ~k~~~lv~~~~~~~k~~~L~k~~~Y~k~~l~PP~~~~~~~~~~~~k~~~~------------~~~~~ltv~ea~~~~l~~   99 (123)
                      ++.+.++++.++++| +.+.++..|.+.||.||+++||++.++++.+.++            ++++|+|++|++++|++|
T Consensus         2 ~~~~~l~~~~v~~~k-v~le~~k~v~k~El~PPt~~~~~~~~~~l~~~~~~~~~~~~~~~~~~~~~~l~~~e~~~~~l~~   80 (103)
T PF04718_consen    2 AKVTSLVNPAVYYSK-VGLELFKQVYKKELAPPTPAEFQSVYQQLFKTVKSAKSGSSPKSKLKQWKNLTVKEAAKNGLVG   80 (103)
T ss_pred             chHHHHHHHHHHHhH-HHHHHHhHHHhhccCCcCHHHHHHHHHHHHHHHHHhhhhhhHHHHHHHhhcCCHHHHHHHHHHH
Confidence            456777888889999 8888888888999999999999999988776655            225799999999999999


Q ss_pred             HHHHHHHHhhhhcccCCccccccC
Q 040313          100 VECFAWFCGGEIIGRGFTITGYHV  123 (123)
Q Consensus       100 ~Ev~~wF~vGEiIGRr~~lvGY~V  123 (123)
                      +||+|||||||||||| |||||+|
T Consensus        81 ~Ev~~wF~vGEiIGRr-~ivGY~V  103 (103)
T PF04718_consen   81 AEVYGWFFVGEIIGRR-SIVGYKV  103 (103)
T ss_pred             HHHHHHHhhheeeccC-ceeCccC
Confidence            9999999999999999 9999998


No 3  
>PF04718 ATP-synt_G:  Mitochondrial ATP synthase g subunit;  InterPro: IPR006808 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include:   F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.   F-ATPases (also known as F1F0-ATPase, or H(+)-transporting two-sector ATPase) (3.6.3.14 from EC) are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits (alpha, beta, gamma, delta, epsilon), while the F0 ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), nine in mitochondria (A-G, F6, F8). Both the F1 and F0 complexes are rotary motors that are coupled back-to-back. In the F1 complex, the central gamma subunit forms the rotor inside the cylinder made of the alpha(3)beta(3) subunits, while in the F0 complex, the ring-shaped C subunits forms the rotor. The two rotors rotate in opposite directions, but the F0 rotor is usually stronger, using the force from the proton gradient to push the F1 rotor in reverse in order to drive ATP synthesis []. These ATPases can also work in reverse to hydrolyse ATP to create a proton gradient. This entry represents the G subunit found in the F0 complex of F-ATPases in mitochondria. The function of subunit G is currently unknown. There is no counterpart in chloroplast or bacterial F-ATPases identified so far []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0015078 hydrogen ion transmembrane transporter activity, 0015986 ATP synthesis coupled proton transport, 0000276 mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)
Probab=91.11  E-value=0.69  Score=32.98  Aligned_cols=57  Identities=25%  Similarity=0.207  Sum_probs=39.8

Q ss_pred             HhhhhHHHHHHHHHhcchhc---cCCCchhHHHHHHHHHHHHHhhcCCC-ChHHHHHHHHh
Q 040313           19 FIKNGSAYIKQLLEDNKQHI---KDPPNTETCQLLAKQLFYTRLASIPN-RVDAFWKELDG   75 (123)
Q Consensus        19 ~~k~~~~~~~~l~~k~~~lv---~~~~~~~k~~~L~k~~~Y~k~~l~PP-~~~~~~~~~~~   75 (123)
                      ..+|+..|.+-.+|.++++.   ..||+.++||++.+++.+.......+ .++++++..++
T Consensus         7 l~~~~v~~~kv~le~~k~v~k~El~PPt~~~~~~~~~~l~~~~~~~~~~~~~~~~~~~~~~   67 (103)
T PF04718_consen    7 LVNPAVYYSKVGLELFKQVYKKELAPPTPAEFQSVYQQLFKTVKSAKSGSSPKSKLKQWKN   67 (103)
T ss_pred             HHHHHHHHhHHHHHHHhHHHhhccCCcCHHHHHHHHHHHHHHHHHhhhhhhHHHHHHHhhc
Confidence            45556777777789999988   88999999999999997665522222 34455544433


No 4  
>PF10958 DUF2759:  Protein of unknown function (DUF2759);  InterPro: IPR024490 This family of proteins with unknown function appear to be restricted to Bacillales.
Probab=28.75  E-value=74  Score=20.49  Aligned_cols=22  Identities=36%  Similarity=0.377  Sum_probs=18.5

Q ss_pred             HHHHHHHHHHHHHHHHhhhhcc
Q 040313           92 AGLAALFGVECFAWFCGGEIIG  113 (123)
Q Consensus        92 a~~~~l~~~Ev~~wF~vGEiIG  113 (123)
                      +...++..+=+.|||+|--+|=
T Consensus        24 ~i~F~~~t~~VFGwFtimTii~   45 (52)
T PF10958_consen   24 GIGFALVTVAVFGWFTIMTIIH   45 (52)
T ss_pred             HHHHHHHHHHHHHHHHHHHHHH
Confidence            5778889999999999987763


No 5  
>TIGR01470 cysG_Nterm siroheme synthase, N-terminal domain. This model represents a subfamily of CysG N-terminal region-related sequences. All sequences in the seed alignment for this model are N-terminal regions of known or predicted siroheme synthases. The C-terminal region of each is uroporphyrin-III C-methyltransferase (EC 2.1.1.107), which catalyzes the first step committed to the biosynthesis of either siroheme or cobalamin (vitamin B12) rather than protoheme (heme). The region represented by this model completes the process of oxidation and iron insertion to yield siroheme. Siroheme is a cofactor for nitrite and sulfite reductases, so siroheme synthase is CysG of cysteine biosynthesis in some organisms.
Probab=26.49  E-value=1.8e+02  Score=22.49  Aligned_cols=57  Identities=12%  Similarity=0.033  Sum_probs=36.0

Q ss_pred             HHHHHHHHHHHHHhhcCCCChHHHHHHHHhHHHHHHhhhhcCcHHHHHHHHHHHHHH
Q 040313           46 TCQLLAKQLFYTRLASIPNRVDAFWKELDGLKQFMKNRELEMNLDNAGLAALFGVEC  102 (123)
Q Consensus        46 k~~~L~k~~~Y~k~~l~PP~~~~~~~~~~~~k~~~~~~~~~ltv~ea~~~~l~~~Ev  102 (123)
                      +.|.+++.+.-.=+++.|+.++++-+....+.+.++....+.+.+......++.-++
T Consensus       128 ~sP~la~~lr~~ie~~l~~~~~~~~~~~~~~R~~~k~~~~~~~~r~~~~~~~~~~~~  184 (205)
T TIGR01470       128 AAPVLARLLRERIETLLPPSLGDLATLAATWRDAVKKRLPNGAARRRFWEKFFDGAF  184 (205)
T ss_pred             CCcHHHHHHHHHHHHhcchhHHHHHHHHHHHHHHHHhhCCCHHHHHHHHHHHhccHH
Confidence            447888877666677889999998888888877777543333333333333443333


No 6  
>PRK06718 precorrin-2 dehydrogenase; Reviewed
Probab=26.14  E-value=1.7e+02  Score=22.55  Aligned_cols=40  Identities=18%  Similarity=0.083  Sum_probs=29.6

Q ss_pred             hHHHHHHHHHHHHHhhcCCCChHHHHHHHHhHHHHHHhhh
Q 040313           45 ETCQLLAKQLFYTRLASIPNRVDAFWKELDGLKQFMKNRE   84 (123)
Q Consensus        45 ~k~~~L~k~~~Y~k~~l~PP~~~~~~~~~~~~k~~~~~~~   84 (123)
                      .+.|.|++.+.-.=+++.||.++++-+....+.+.++.+.
T Consensus       127 G~sP~la~~lr~~ie~~~~~~~~~~~~~~~~~R~~~k~~~  166 (202)
T PRK06718        127 GASPKLAKKIRDELEALYDESYESYIDFLYECRQKIKELQ  166 (202)
T ss_pred             CCChHHHHHHHHHHHHHcchhHHHHHHHHHHHHHHHHHhC
Confidence            3458888887554455689999999888888887777543


No 7  
>PHA01757 hypothetical protein
Probab=24.41  E-value=99  Score=21.98  Aligned_cols=26  Identities=35%  Similarity=0.432  Sum_probs=19.1

Q ss_pred             CcHHHHHHHHHHHH--HHHHHHHhhhhc
Q 040313           87 MNLDNAGLAALFGV--ECFAWFCGGEII  112 (123)
Q Consensus        87 ltv~ea~~~~l~~~--Ev~~wF~vGEiI  112 (123)
                      ++.-|..++|.+++  -+.+-|.||||+
T Consensus         3 i~l~e~al~gf~a~~g~l~~~fii~e~~   30 (98)
T PHA01757          3 ITLLEGALYGFFAVTGALSASFIIGEIV   30 (98)
T ss_pred             hhHHHHHHHHHHHHHHHHHHHHHHHHHH
Confidence            45567777777765  367889999986


No 8  
>PF04719 TAFII28:  hTAFII28-like protein conserved region;  InterPro: IPR006809 The general transcription factor, TFIID, consists of the TATA-binding protein (TBP) associated with a series of TBP-associated factors (TAFs) that together participate in the assembly of the transcription preinitiation complex. The conserved region is found at the C terminus of most member proteins. The crystal structure of hTAFII28 with hTAFII18 shows that this region is involved in the binding of these two subunits. The conserved region contains four alpha helices and three loops arranged as in histone H3 [, ].; GO: 0006367 transcription initiation from RNA polymerase II promoter, 0005634 nucleus; PDB: 1BH9_B 1BH8_B.
Probab=21.65  E-value=2.4e+02  Score=19.70  Aligned_cols=36  Identities=17%  Similarity=0.238  Sum_probs=20.4

Q ss_pred             hHHHHHHhhhhcCcHHHHHHHHHHHHHHHHHHHhhhhcc
Q 040313           75 GLKQFMKNRELEMNLDNAGLAALFGVECFAWFCGGEIIG  113 (123)
Q Consensus        75 ~~k~~~~~~~~~ltv~ea~~~~l~~~Ev~~wF~vGEiIG  113 (123)
                      .+++++++-..|-++.+   +.+.++--++=.||||||=
T Consensus        28 ~ikkli~~~~~~qsv~~---~v~i~v~g~aKvFVGEiVE   63 (90)
T PF04719_consen   28 AIKKLINQVLGNQSVSQ---NVVIAVAGIAKVFVGEIVE   63 (90)
T ss_dssp             HHHHHHHHHHS-S---H---HHHHHHHHHHHHHHHHHHH
T ss_pred             HHHHHHHHHcCCCCCCh---hHHHHHHHHHHHHHHHHHH
Confidence            44555554433355554   4446677788889999983


No 9  
>smart00648 SWAP Suppressor-of-White-APricot splicing regulator. domain present in regulators which are responsible for pre-mRNA splicing processes
Probab=21.20  E-value=1.4e+02  Score=18.12  Aligned_cols=23  Identities=22%  Similarity=0.564  Sum_probs=18.7

Q ss_pred             HHHHHHHHhhhhHHHHHHHHHhc
Q 040313           12 ASQASEFFIKNGSAYIKQLLEDN   34 (123)
Q Consensus        12 ~~~a~~~~~k~~~~~~~~l~~k~   34 (123)
                      ....|++++++|..+-..++++.
T Consensus         4 I~~tA~~Va~~G~~fe~~l~~~~   26 (54)
T smart00648        4 IDKTAQFVARNGPEFEAKLMERE   26 (54)
T ss_pred             HHHHHHHHHHhhHHHHHHHHHhc
Confidence            34567899999999999999765


No 10 
>KOG4103 consensus Mitochondrial F1F0-ATP synthase, subunit g/ATP20 [Energy production and conversion]
Probab=20.96  E-value=3.4e+02  Score=19.75  Aligned_cols=50  Identities=20%  Similarity=0.183  Sum_probs=28.9

Q ss_pred             CccchhhHHhHHHHHHHHH---hhhhHHHHHHHHHhcchhccCCCchhHHHHHHHHH
Q 040313            1 MASKLPQLQSKASQASEFF---IKNGSAYIKQLLEDNKQHIKDPPNTETCQLLAKQL   54 (123)
Q Consensus         1 mas~~~~~~~~~~~a~~~~---~k~~~~~~~~l~~k~~~lv~~~~~~~k~~~L~k~~   54 (123)
                      ||.-..+|.+|+..-++.+   ++|-..-....    ...=..||+.+++|.+-..+
T Consensus         1 ma~~~~~l~~K~~~L~~~~~~~~~p~l~~~~~y----~K~eL~PPt~Ad~pai~q~l   53 (103)
T KOG4103|consen    1 MANYMSGLVEKAANLVNAALTYAKPRLAIFWKY----AKVELAPPTPADIPAIKQDL   53 (103)
T ss_pred             CchHHHHHHHHHHHHHHHHHHhcCchHHHHHHH----HhcccCCCChhhHHHHHHHH
Confidence            6666777777777655522   23221111111    11227899999999777666


Done!