Query 041675
Match_columns 71
No_of_seqs 101 out of 1018
Neff 7.0
Searched_HMMs 46136
Date Fri Mar 29 09:32:43 2013
Command hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/041675.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/041675hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 KOG0406 Glutathione S-transfer 99.2 6.1E-11 1.3E-15 80.0 5.8 64 4-68 122-187 (231)
2 PF13410 GST_C_2: Glutathione 99.1 2.6E-10 5.6E-15 62.4 4.9 49 7-56 2-50 (69)
3 cd03185 GST_C_Tau GST_C family 98.9 4.6E-09 1E-13 62.7 6.7 56 7-63 31-86 (126)
4 cd00299 GST_C_family Glutathio 98.9 6.4E-09 1.4E-13 58.8 5.8 52 6-58 31-82 (100)
5 cd03186 GST_C_SspA GST_N famil 98.9 5.9E-09 1.3E-13 61.0 5.5 48 6-54 30-77 (107)
6 PF00043 GST_C: Glutathione S- 98.8 6.7E-09 1.5E-13 59.2 4.4 50 8-58 25-74 (95)
7 TIGR00862 O-ClC intracellular 98.8 1.7E-08 3.8E-13 68.0 6.6 59 7-66 119-196 (236)
8 cd03202 GST_C_etherase_LigE GS 98.8 1.1E-08 2.3E-13 62.3 4.6 46 9-55 56-101 (124)
9 cd03187 GST_C_Phi GST_C family 98.8 2.9E-08 6.3E-13 58.4 6.0 48 7-55 41-88 (118)
10 cd03201 GST_C_DHAR GST_C famil 98.8 1.7E-08 3.6E-13 61.5 4.9 53 9-62 28-82 (121)
11 cd03190 GST_C_ECM4_like GST_C 98.8 2.5E-08 5.4E-13 61.8 5.8 49 5-54 31-79 (142)
12 cd03179 GST_C_1 GST_C family, 98.8 2E-08 4.3E-13 58.0 5.0 48 7-55 39-86 (105)
13 cd03188 GST_C_Beta GST_C famil 98.8 3E-08 6.6E-13 57.9 5.7 46 9-55 41-86 (114)
14 cd03189 GST_C_GTT1_like GST_C 98.7 2.3E-08 5E-13 59.2 5.1 45 10-55 53-97 (119)
15 cd03193 GST_C_Metaxin GST_C fa 98.7 2.4E-08 5.1E-13 56.9 5.0 46 9-55 17-62 (88)
16 cd03184 GST_C_Omega GST_C fami 98.7 9.6E-09 2.1E-13 61.9 3.3 52 7-59 28-81 (124)
17 cd03196 GST_C_5 GST_C family, 98.7 3.7E-08 8.1E-13 59.1 4.6 48 8-56 38-85 (115)
18 cd03207 GST_C_8 GST_C family, 98.7 3.6E-08 7.8E-13 57.2 4.3 47 8-55 27-73 (103)
19 cd03180 GST_C_2 GST_C family, 98.7 8.3E-08 1.8E-12 55.7 5.8 44 9-53 41-85 (110)
20 cd03182 GST_C_GTT2_like GST_C 98.7 8.2E-08 1.8E-12 56.6 5.8 46 9-55 47-92 (117)
21 cd03206 GST_C_7 GST_C family, 98.6 8.4E-08 1.8E-12 55.7 5.1 46 8-54 30-75 (100)
22 cd03177 GST_C_Delta_Epsilon GS 98.6 7.3E-08 1.6E-12 57.3 4.8 46 9-55 36-81 (118)
23 cd03209 GST_C_Mu GST_C family, 98.6 1.3E-07 2.8E-12 56.8 5.4 47 9-56 33-79 (121)
24 cd03178 GST_C_Ure2p_like GST_C 98.6 6E-08 1.3E-12 56.8 3.7 47 8-55 37-83 (113)
25 cd03192 GST_C_Sigma_like GST_C 98.6 1.5E-07 3.3E-12 54.5 4.6 49 7-56 35-85 (104)
26 cd03181 GST_C_EFB1gamma GST_C 98.5 3.5E-07 7.6E-12 54.2 5.9 47 7-54 36-82 (123)
27 cd03183 GST_C_Theta GST_C fami 98.5 4.3E-07 9.2E-12 54.4 6.0 48 7-55 41-89 (126)
28 cd03198 GST_C_CLIC GST_C famil 98.5 5E-07 1.1E-11 56.6 6.3 57 7-64 25-98 (134)
29 cd03204 GST_C_GDAP1 GST_C fami 98.5 3.5E-07 7.5E-12 55.5 4.8 48 7-55 25-82 (111)
30 cd03191 GST_C_Zeta GST_C famil 98.5 4.3E-07 9.2E-12 54.0 5.1 43 12-55 45-89 (121)
31 cd03210 GST_C_Pi GST_C family, 98.5 5E-07 1.1E-11 54.7 5.3 48 8-56 32-82 (126)
32 cd03203 GST_C_Lambda GST_C fam 98.4 3.6E-07 7.9E-12 55.1 4.5 49 15-65 34-86 (120)
33 PRK09481 sspA stringent starva 98.4 6E-07 1.3E-11 58.4 5.6 47 8-55 124-170 (211)
34 PRK10387 glutaredoxin 2; Provi 98.4 2.8E-07 6.1E-12 59.2 3.6 45 10-56 141-185 (210)
35 PRK10542 glutathionine S-trans 98.4 8.8E-07 1.9E-11 56.6 5.7 45 10-55 123-167 (201)
36 PLN02473 glutathione S-transfe 98.4 8E-07 1.7E-11 57.4 5.5 45 9-54 133-177 (214)
37 cd03211 GST_C_Metaxin2 GST_C f 98.3 1.1E-06 2.4E-11 53.8 4.7 45 9-54 55-99 (126)
38 PLN02395 glutathione S-transfe 98.3 1.5E-06 3.1E-11 56.2 5.3 44 9-53 132-175 (215)
39 cd03212 GST_C_Metaxin1_3 GST_C 98.3 1.8E-06 4E-11 53.7 4.9 45 8-53 61-105 (137)
40 cd03200 GST_C_JTV1 GST_C famil 98.3 1.2E-06 2.6E-11 51.3 3.9 39 14-53 38-76 (96)
41 COG0625 Gst Glutathione S-tran 98.3 1.9E-06 4.1E-11 55.8 5.1 49 7-56 127-175 (211)
42 PRK13972 GSH-dependent disulfi 98.2 2.6E-06 5.6E-11 55.3 5.2 44 9-53 130-174 (215)
43 PRK11752 putative S-transferas 98.2 2.5E-06 5.4E-11 57.7 5.1 44 10-54 177-220 (264)
44 cd03208 GST_C_Alpha GST_C fami 98.2 3.4E-06 7.4E-11 52.1 5.2 40 15-55 43-84 (137)
45 cd03195 GST_C_4 GST_C family, 98.2 3.1E-06 6.8E-11 50.5 4.2 47 8-56 39-86 (114)
46 PLN02378 glutathione S-transfe 98.2 3.7E-06 8E-11 54.9 4.6 44 11-55 118-163 (213)
47 cd03205 GST_C_6 GST_C family, 98.2 7.7E-06 1.7E-10 47.3 5.5 44 8-55 34-77 (98)
48 TIGR01262 maiA maleylacetoacet 98.1 6.3E-06 1.4E-10 52.9 5.2 43 12-55 130-174 (210)
49 TIGR02182 GRXB Glutaredoxin, G 98.1 1.6E-06 3.5E-11 56.6 2.1 44 10-55 140-183 (209)
50 cd03194 GST_C_3 GST_C family, 98.1 1E-05 2.3E-10 48.4 5.5 41 13-55 46-86 (114)
51 PF14497 GST_C_3: Glutathione 98.1 4.4E-06 9.5E-11 48.4 3.1 41 9-50 33-75 (99)
52 PTZ00057 glutathione s-transfe 98.0 9.8E-06 2.1E-10 52.5 4.6 43 11-54 123-167 (205)
53 PRK10357 putative glutathione 98.0 1.9E-05 4E-10 50.6 5.8 44 10-55 124-167 (202)
54 PLN02817 glutathione dehydroge 97.9 2.1E-05 4.6E-10 53.7 4.4 42 13-55 173-215 (265)
55 PRK15113 glutathione S-transfe 97.8 4.2E-05 9E-10 49.8 4.9 44 10-55 136-180 (214)
56 KOG4420 Uncharacterized conser 97.5 0.00022 4.7E-09 49.7 4.9 48 8-56 202-253 (325)
57 cd03197 GST_C_mPGES2 GST_C fam 97.3 0.00082 1.8E-08 42.9 5.7 28 29-56 97-124 (149)
58 PLN02907 glutamate-tRNA ligase 97.2 0.00049 1.1E-08 52.9 3.9 37 15-52 94-130 (722)
59 KOG0867 Glutathione S-transfer 97.1 0.00092 2E-08 44.5 4.5 46 7-53 129-174 (226)
60 KOG1422 Intracellular Cl- chan 96.8 0.0018 4E-08 43.6 3.6 55 12-67 124-182 (221)
61 COG0435 ECM4 Predicted glutath 96.7 0.00082 1.8E-08 47.1 1.6 51 3-54 197-247 (324)
62 KOG2903 Predicted glutathione 95.4 0.0032 6.9E-08 44.0 -0.6 49 4-53 196-246 (319)
63 KOG3029 Glutathione S-transfer 95.0 0.091 2E-06 37.3 5.6 29 29-57 306-334 (370)
64 KOG3027 Mitochondrial outer me 94.7 0.075 1.6E-06 36.2 4.4 40 9-49 175-214 (257)
65 KOG1695 Glutathione S-transfer 93.3 0.12 2.6E-06 34.5 3.4 42 13-55 125-168 (206)
66 KOG3028 Translocase of outer m 93.1 0.32 7E-06 34.5 5.3 43 9-52 161-203 (313)
67 KOG4244 Failed axon connection 93.0 0.073 1.6E-06 37.1 2.0 39 11-50 203-241 (281)
68 PF14834 GST_C_4: Glutathione 92.9 0.27 5.9E-06 30.3 4.2 44 10-55 42-86 (117)
69 KOG0868 Glutathione S-transfer 92.6 0.096 2.1E-06 35.0 2.1 42 13-55 134-177 (217)
70 PF11801 Tom37_C: Tom37 C-term 85.3 2.1 4.7E-05 27.5 4.3 35 15-50 112-150 (168)
71 PF04399 Glutaredoxin2_C: Glut 85.0 2.2 4.7E-05 26.7 4.0 42 10-53 58-99 (132)
72 cd03199 GST_C_GRX2 GST_C famil 76.8 4.3 9.2E-05 25.3 3.3 44 11-56 60-103 (128)
73 PF09236 AHSP: Alpha-haemoglob 57.9 11 0.00024 22.1 2.2 21 4-24 54-74 (89)
74 COG1656 Uncharacterized conser 47.4 17 0.00037 23.7 2.0 16 41-56 10-25 (165)
75 cd08200 catalase_peroxidase_2 43.5 31 0.00068 24.5 3.0 25 34-61 93-117 (297)
76 KOG1147 Glutamyl-tRNA syntheta 28.8 45 0.00096 26.1 2.0 35 15-50 92-126 (712)
77 PF15471 TMEM171: Transmembran 27.5 1.1E+02 0.0024 21.8 3.6 51 14-65 76-133 (319)
78 COG1509 KamA Lysine 2,3-aminom 25.0 73 0.0016 23.4 2.4 55 12-67 142-198 (369)
79 PF15342 FAM212: FAM212 family 23.6 86 0.0019 17.2 2.0 19 26-45 34-52 (62)
80 PF00126 HTH_1: Bacterial regu 22.2 1.1E+02 0.0024 15.7 2.3 22 48-69 29-50 (60)
81 COG3253 ywfI Predicted heme pe 21.5 1.1E+02 0.0024 21.0 2.7 34 12-45 191-226 (230)
82 PF07182 DUF1402: Protein of u 21.2 69 0.0015 22.7 1.6 33 31-63 172-204 (303)
No 1
>KOG0406 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=99.17 E-value=6.1e-11 Score=79.96 Aligned_cols=64 Identities=34% Similarity=0.495 Sum_probs=56.0
Q ss_pred cCHHHHHHHHHHHHHHHHHhhhcCCC-CCceeecCCcchhHHHHHHHH-HHHHHHHHHhccccCCcc
Q 041675 4 STGQVLENAMKAALEMLQTVEKHGPG-EKKFFNGDDIGLADLAFGAIA-YWLQVLEDVMEVNDGCRS 68 (71)
Q Consensus 4 ~~ge~~e~~~~~~~~~l~~le~~~L~-~~~ff~G~~~~~aDi~lg~~~-~~~~~~e~~~g~~~~~~~ 68 (71)
..|++++.+.+++.+.|+.|| +.|. +++||+|+++||+||+++|++ +|+...+...|+++..++
T Consensus 122 ~~~e~~~~~~~e~~e~l~~lE-~el~k~k~~fgG~~~G~vDi~~~p~~~~~~~~~~~~~~~~~~~~~ 187 (231)
T KOG0406|consen 122 KGGEEQEAAKEELREALKVLE-EELGKGKDFFGGETIGFVDIAIGPSFERWLAVLEKFGGVKFIIEE 187 (231)
T ss_pred cCchHHHHHHHHHHHHHHHHH-HHHhcCCCCCCCCCcCHhhhhHHhhHHHHHHHHHHhcCcccCCCC
Confidence 456899999999999999999 9998 789999999999999999766 899999998877766443
No 2
>PF13410 GST_C_2: Glutathione S-transferase, C-terminal domain; PDB: 4DEJ_H 3IC8_A 2JL4_A 2V6K_B 3CBU_B 1JLW_B 3F6D_B 3G7I_A 3F63_A 3G7J_B ....
Probab=99.09 E-value=2.6e-10 Score=62.37 Aligned_cols=49 Identities=24% Similarity=0.366 Sum_probs=42.9
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
...+++.+++.+.++.+| ..|.+++|+.|++||++||+++|++.|+..+
T Consensus 2 ~~~~~~~~~~~~~l~~le-~~L~~~~fl~G~~~s~aD~~l~~~l~~~~~~ 50 (69)
T PF13410_consen 2 AAVERARAQLEAALDALE-DHLADGPFLFGDRPSLADIALAPFLWRLRFV 50 (69)
T ss_dssp HHHHHHHHHHHHHHHHHH-HHHTTSSBTTBSS--HHHHHHHHHHHHHHHC
T ss_pred HHHHHHHHHHHHHHHHHH-HHHhhCCCCCCCCCCHHHHHHHHHHHHHHHh
Confidence 457888999999999999 9999999999999999999999999988876
No 3
>cd03185 GST_C_Tau GST_C family, Class Tau subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The plant-specific class Tau GST subfamily has undergone extensive gene duplication. The Arabidopsis and Oryza genomes contain 28 and 40 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Phi GSTs, showing class specificity in substrate preference. Tau enzymes are highly efficient in detoxifying diphenylether and aryloxyphenoxypropi
Probab=98.94 E-value=4.6e-09 Score=62.66 Aligned_cols=56 Identities=39% Similarity=0.651 Sum_probs=47.2
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHHHHHhccc
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVLEDVMEVN 63 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~e~~~g~~ 63 (71)
+..+...+.+.+.++.+| +.|.++||++|+++|+|||++++++.|+..+....+..
T Consensus 31 ~~~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~t~ADi~l~~~~~~~~~~~~~~~~~ 86 (126)
T cd03185 31 EEREKAKEEALEALKVLE-EELGGKPFFGGDTIGYVDIALGSFLGWFRAYEEVGGVK 86 (126)
T ss_pred HHHHHHHHHHHHHHHHHH-HHhcCCCCCCCCCcchHHHHHHHHHHHHHHHHHHcCcc
Confidence 445667888999999999 99988899999999999999999999987765554443
No 4
>cd00299 GST_C_family Glutathione S-transferase (GST) family, C-terminal alpha helical domain; a large, diverse group of cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. In addition, GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. This family, also referred to as soluble GSTs, is the largest family of GSH transferases and is only distantly related to the mitochondrial GSTs (GSTK). Soluble GSTs bear no structural similarity to microsomal GSTs (MAPEG family) and display additional activities unique to their group, such as catalyzing thiolysis, reduction and isomerization of certain compounds. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an activ
Probab=98.89 E-value=6.4e-09 Score=58.80 Aligned_cols=52 Identities=25% Similarity=0.370 Sum_probs=46.1
Q ss_pred HHHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHHHH
Q 041675 6 GQVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVLED 58 (71)
Q Consensus 6 ge~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~e~ 58 (71)
.+.++...+++...++.|+ +.|.+++||+|+++|+|||++++++.|+.....
T Consensus 31 ~~~~~~~~~~~~~~~~~l~-~~L~~~~~~~g~~~t~aDi~~~~~l~~~~~~~~ 82 (100)
T cd00299 31 EAALEEAREELAAALAALE-KLLAGRPYLAGDRFSLADIALAPVLARLDLLGP 82 (100)
T ss_pred HHHHHHHHHHHHHHHHHHH-HHHccCCCCCCCCcCHHHHHHHHHHHHHHHhhh
Confidence 4556778889999999999 999888999999999999999999999887654
No 5
>cd03186 GST_C_SspA GST_N family, Stringent starvation protein A (SspA) subfamily; SspA is a RNA polymerase (RNAP)-associated protein required for the lytic development of phage P1 and for stationary phase-induced acid tolerance of E. coli. It is implicated in survival during nutrient starvation. SspA adopts the GST fold with an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, but it does not bind glutathione (GSH) and lacks GST activity. SspA is highly conserved among gram-negative bacteria. Related proteins found in Neisseria (called RegF), Francisella and Vibrio regulate the expression of virulence factors necessary for pathogenesis.
Probab=98.88 E-value=5.9e-09 Score=60.95 Aligned_cols=48 Identities=23% Similarity=0.293 Sum_probs=41.9
Q ss_pred HHHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 6 GQVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 6 ge~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
++..+...+.+.+.+..+| +.|+++||+.|+++|++||++++++.++.
T Consensus 30 ~~~~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~t~aDi~~~~~~~~~~ 77 (107)
T cd03186 30 KKEAEKARKELRESLLALA-PVFAHKPYFMSEEFSLVDCALAPLLWRLP 77 (107)
T ss_pred HHHHHHHHHHHHHHHHHHH-HHHcCCCcccCCCCcHHHHHHHHHHHHHH
Confidence 4456778889999999999 99998999999999999999999886554
No 6
>PF00043 GST_C: Glutathione S-transferase, C-terminal domain; InterPro: IPR004046 In eukaryotes, glutathione S-transferases (GSTs) participate in the detoxification of reactive electrophillic compounds by catalysing their conjugation to glutathione. The GST domain is also found in S-crystallins from squid, and proteins with no known GST activity, such as eukaryotic elongation factors 1-gamma and the HSP26 family of stress-related proteins, which include auxin-regulated proteins in plants and stringent starvation proteins in Escherichia coli. The major lens polypeptide of cephalopods is also a GST [, , , ]. Bacterial GSTs of known function often have a specific, growth-supporting role in biodegradative metabolism: epoxide ring opening and tetrachlorohydroquinone reductive dehalogenation are two examples of the reactions catalysed by these bacterial GSTs. Some regulatory proteins, like the stringent starvation proteins, also belong to the GST family [, ]. GST seems to be absent from Archaea in which gamma-glutamylcysteine substitute to glutathione as major thiol. Glutathione S-transferases form homodimers, but in eukaryotes can also form heterodimers of the A1 and A2 or YC1 and YC2 subunits. The homodimeric enzymes display a conserved structural fold. Each monomer is composed of a distinct N-terminal sub-domain, which adopts the thioredoxin fold, and a C-terminal all-helical sub-domain. This entry is the C-terminal domain.; PDB: 3UAP_A 3UAR_A 3QAV_A 3QAW_A 1Y6E_A 1U88_B 4AI6_B 1UA5_A 4AKH_A 3QMZ_S ....
Probab=98.83 E-value=6.7e-09 Score=59.24 Aligned_cols=50 Identities=24% Similarity=0.402 Sum_probs=42.9
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVLED 58 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~e~ 58 (71)
.++....++...|..++ +.|.+++|++|+++|+|||++.+++.|+..+..
T Consensus 25 ~~~~~~~~~~~~l~~le-~~l~~~~~l~G~~~t~ADi~~~~~~~~~~~~~~ 74 (95)
T PF00043_consen 25 MVEEARAKVPRYLEVLE-KRLKGGPYLVGDKLTIADIALFPMLDWLERLGP 74 (95)
T ss_dssp HHHHHHHHHHHHHHHHH-HHHHTSSSSSBSS-CHHHHHHHHHHHHHHHHTT
T ss_pred HHHHHHHHHHHHHHHHH-HHHcCCCeeeccCCchhHHHHHHHHHHHHHhCC
Confidence 35667888999999999 999999999999999999999999988877643
No 7
>TIGR00862 O-ClC intracellular chloride channel protein. These proteins are thought to function in the regulation of the membrane potential and in transepithelial ion absorption and secretion in the kidney.
Probab=98.81 E-value=1.7e-08 Score=67.99 Aligned_cols=59 Identities=20% Similarity=0.298 Sum_probs=49.3
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCC------------------CCceeecCCcchhHHHHHHHHHHHHHH-HHHhccccCC
Q 041675 7 QVLENAMKAALEMLQTVEKHGPG------------------EKKFFNGDDIGLADLAFGAIAYWLQVL-EDVMEVNDGC 66 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~------------------~~~ff~G~~~~~aDi~lg~~~~~~~~~-e~~~g~~~~~ 66 (71)
+.+++..+++.+.++.|+ +.|. +++||+|+++|+|||+++|++.+++.+ +++.|+.+.+
T Consensus 119 ~~~~~~~~~l~~~l~~Le-~~L~~~~~~~~~~~~~~~~~~~~~~f~~Gd~~tlaD~~l~p~l~~l~~~~~~~~~~~i~~ 196 (236)
T TIGR00862 119 EANDNLEKGLLKALKKLD-DYLNSPLPEEIDEDSAEDEKVSRRKFLDGDELTLADCNLLPKLHIVKVVAKKYRNFDIPA 196 (236)
T ss_pred HHHHHHHHHHHHHHHHHH-HHHhccccccccccccccccccCCCcccCCccchhhHHHHHHHHHHHHHHHHHhCcCccc
Confidence 345556667899999999 8885 579999999999999999999999986 7888887643
No 8
>cd03202 GST_C_etherase_LigE GST_C family, Beta etherase LigE subfamily; composed of proteins similar to Sphingomonas paucimobilis beta etherase, LigE, a GST-like protein that catalyzes the cleavage of the beta-aryl ether linkages present in low-moleculer weight lignins using GSH as the hydrogen donor. This reaction is an essential step in the degradation of lignin, a complex phenolic polymer that is the most abundant aromatic material in the biosphere. The beta etherase activity of LigE is enantioselective and it complements the activity of the other GST family beta etherase, LigF. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains.
Probab=98.78 E-value=1.1e-08 Score=62.26 Aligned_cols=46 Identities=17% Similarity=0.199 Sum_probs=42.0
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+++.++.+++.++.++ +.|+++||+.|+++|+||+++++++.|...
T Consensus 56 ~~~~~~~~~~~l~~l~-~~L~~~~fl~Gd~~t~AD~~l~~~l~~~~~ 101 (124)
T cd03202 56 REAALANFRAALEPLR-ATLKGQPFLGGAAPNYADYIVFGGFQWARI 101 (124)
T ss_pred hHHHHHHHHHHHHHHH-HHHcCCCccCCCCCchhHHHHHHHHHHHHH
Confidence 4677889999999999 999989999999999999999999988865
No 9
>cd03187 GST_C_Phi GST_C family, Class Phi subfamily; composed of plant-specific class Phi GSTs and related fungal and bacterial proteins. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Phi GST subfamily has experience extensive gene duplication. The Arabidopsis and Oryza genomes contain 13 and 16 Tau GSTs, respectively. They are primarily responsible for herbicide detoxification together with class Tau GSTs, showing class specificity in substrate preference. Phi enzymes a
Probab=98.77 E-value=2.9e-08 Score=58.37 Aligned_cols=48 Identities=25% Similarity=0.347 Sum_probs=41.0
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+..+...+.+...++.|| +.|++++|+.|+++|+|||++++++.|+..
T Consensus 41 ~~~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~t~aDi~l~~~~~~~~~ 88 (118)
T cd03187 41 AVVEENEEKLKKVLDVYE-ARLSKSKYLAGDSFTLADLSHLPYLQYLMA 88 (118)
T ss_pred HHHHHHHHHHHHHHHHHH-HHcccCcccCCCCccHHHHHHHHHHHHHHH
Confidence 334556788999999999 999888999999999999999998877653
No 10
>cd03201 GST_C_DHAR GST_C family, Dehydroascorbate Reductase (DHAR) subfamily; composed of plant-specific DHARs, monomeric enzymes catalyzing the reduction of DHA into ascorbic acid (AsA) using glutathione as the reductant. DHAR allows plants to recycle oxidized AsA before it is lost. AsA serves as a cofactor of violaxanthin de-epoxidase in the xanthophyll cycle and as an antioxidant in the detoxification of reactive oxygen species. Because AsA is the major reductant in plants, DHAR serves to regulate their redox state. It has been suggested that a significant portion of DHAR activity is plastidic, acting to reduce the large amounts of ascorbate oxidized during hydrogen peroxide scavenging by ascorbate peroxidase. DHAR contains a conserved cysteine in its active site and in addition to its reductase activity, shows thiol transferase activity similar to glutaredoxins.
Probab=98.76 E-value=1.7e-08 Score=61.47 Aligned_cols=53 Identities=25% Similarity=0.376 Sum_probs=42.7
Q ss_pred HHHHHHHHHHHHHHhhhcCCCC-CceeecCCcchhHHHHHHHHHHHHHH-HHHhcc
Q 041675 9 LENAMKAALEMLQTVEKHGPGE-KKFFNGDDIGLADLAFGAIAYWLQVL-EDVMEV 62 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~-~~ff~G~~~~~aDi~lg~~~~~~~~~-e~~~g~ 62 (71)
.++..+++.+.+..|| ..|.+ ++||+|+++|+|||+++|++.++... ..+.|+
T Consensus 28 ~~~~~~~l~~~l~~Le-~~L~~~~~fl~Gd~~TlADi~l~~~l~~l~~~~~~~~~~ 82 (121)
T cd03201 28 NDGTEQALLDELEALE-DHLKENGPFINGEKISAVDLSLAPKLYHLEIALGHYKNW 82 (121)
T ss_pred HHHHHHHHHHHHHHHH-HHHhcCCCccCCCCCCHHhHHHHHHHHHHHHHHHHhcCC
Confidence 4667788999999999 99974 79999999999999999988776643 333344
No 11
>cd03190 GST_C_ECM4_like GST_C family, ECM4-like subfamily; composed of predominantly uncharacterized and taxonomically diverse proteins with similarity to the translation product of the Saccharomyces cerevisiae gene ECM4. ECM4, a gene of unknown function, is involved in cell surface biosynthesis and architecture. S. cerevisiae ECM4 mutants show increased amounts of the cell wall hexose, N-acetylglucosamine. More recently, global gene expression analysis shows that ECM4 is upregulated during genotoxic conditions and together with the expression profiles of 18 other genes could potentially differentiate between genotoxic and cytotoxic insults in yeast.
Probab=98.76 E-value=2.5e-08 Score=61.80 Aligned_cols=49 Identities=18% Similarity=0.321 Sum_probs=42.4
Q ss_pred CHHHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 5 TGQVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 5 ~ge~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
+++..+...+.+.+.|+.+| +.|.+++|++|+++|+|||++++++.++.
T Consensus 31 ~~~~~~~~~~~l~~~l~~LE-~~L~~~~yl~Gd~~TlADi~l~~~l~~~~ 79 (142)
T cd03190 31 TQEAYDEAVDELFEALDRLE-ELLSDRRYLLGDRLTEADIRLFTTLIRFD 79 (142)
T ss_pred CHHHHHHHHHHHHHHHHHHH-HHHccCCeeeCCCccHHHHHHHHHHHHHH
Confidence 45566778889999999999 99988899999999999999999876553
No 12
>cd03179 GST_C_1 GST_C family, unknown subfamily 1; composed of uncharacterized bacterial proteins, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.76 E-value=2e-08 Score=57.99 Aligned_cols=48 Identities=23% Similarity=0.290 Sum_probs=41.9
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+..+...++++..++.+| ..|.++||+.|+++|+|||++++++.|+..
T Consensus 39 ~~~~~~~~~~~~~l~~le-~~L~~~~~l~g~~~slaDi~~~~~~~~~~~ 86 (105)
T cd03179 39 EVLAFLRERGHAALAVLE-AHLAGRDFLVGDALTIADIALAAYTHVADE 86 (105)
T ss_pred HHHHHHHHHHHHHHHHHH-HHHccCccccCCCCCHHHHHHHHHHHhccc
Confidence 345677888999999999 999888999999999999999999988753
No 13
>cd03188 GST_C_Beta GST_C family, Class Beta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Unlike mammalian GSTs which detoxify a broad range of compounds, the bacterial class Beta GSTs exhibit limited GSH conjugating activity with a narrow range of substrates. In addition to GSH conjugation, they also bind antibiotics and reduce the antimicrobial activity of beta-lactam drugs. The structure of the Proteus mirabilis enzyme reveals that the cysteine in the active site for
Probab=98.75 E-value=3e-08 Score=57.87 Aligned_cols=46 Identities=15% Similarity=0.173 Sum_probs=40.2
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
.+...+.+...++.+| +.|.+++|+.|+++|+|||.+++++.|+..
T Consensus 41 ~~~~~~~~~~~l~~le-~~l~~~~~l~G~~~t~aDi~~~~~~~~~~~ 86 (114)
T cd03188 41 KAAARERLAARLAYLD-AQLAGGPYLLGDRFSVADAYLFVVLRWAPG 86 (114)
T ss_pred HHHHHHHHHHHHHHHH-HHhcCCCeeeCCCcchHHHHHHHHHHHHhh
Confidence 4556778999999999 999888999999999999999998887654
No 14
>cd03189 GST_C_GTT1_like GST_C family, Saccharomyces cerevisiae GTT1-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT1, and the Schizosaccharomyces pombe GST-III. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT1, a homodimer, exhibits GST activity with standard substrates and associates with the endopl
Probab=98.75 E-value=2.3e-08 Score=59.20 Aligned_cols=45 Identities=18% Similarity=0.124 Sum_probs=39.8
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+.....+...++.+| +.|.+++|+.|+++|+|||.+++.+.|+..
T Consensus 53 ~~~~~~~~~~l~~le-~~L~~~~~l~Gd~~t~ADi~l~~~~~~~~~ 97 (119)
T cd03189 53 GFINPELKKHLDFLE-DRLAKKGYFVGDKLTAADIMMSFPLEAALA 97 (119)
T ss_pred HHHhHHHHHHHHHHH-HHHccCCCCCCCCCCHHHHHHHHHHHHHHH
Confidence 345667999999999 999988999999999999999999988764
No 15
>cd03193 GST_C_Metaxin GST_C family, Metaxin subfamily; composed of metaxins and related proteins. Metaxin 1 is a component of a preprotein import complex of the mitochondrial outer membrane. It extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. In humans, alterations in the metaxin gene may be associated with Gaucher disease. Metaxin 2 binds to metaxin 1 and may also play a role in protein translocation into the mitochondria. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken, and mammals. Sequence analysis suggests that all three metaxins share a common ancestry and that they possess similarity to GSTs. Also included in the subfamily are uncharacterized proteins with similarity to metaxins, including a novel GST from Rhodococcus with toluene o-monooxygenase and glutamylcysteine synthetase activities. Other members are the cadmium-inducible
Probab=98.75 E-value=2.4e-08 Score=56.89 Aligned_cols=46 Identities=22% Similarity=0.149 Sum_probs=40.5
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+.+..+++.+.++.+| +.|++++|+.|+++|+|||++++++.|+..
T Consensus 17 ~~~~~~~~~~~l~~le-~~L~~~~yl~Gd~~t~aDi~l~~~l~~~~~ 62 (88)
T cd03193 17 TREIYSLAKKDLKALS-DLLGDKKFFFGDKPTSLDATVFGHLASILY 62 (88)
T ss_pred HHHHHHHHHHHHHHHH-HHhCCCCccCCCCCCHHHHHHHHHHHHHHh
Confidence 4466778999999999 999989999999999999999999877753
No 16
>cd03184 GST_C_Omega GST_C family, Class Omega subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Omega GSTs show little or no GSH-conjugating activity towards standard GST substrates. Instead, they catalyze the GSH dependent reduction of protein disulfides, dehydroascorbate and monomethylarsonate, activities which are more characteristic of glutaredoxins. They contain a conserved cysteine equivalent to the first cysteine in the CXXC motif of glutaredoxins, which is a re
Probab=98.74 E-value=9.6e-09 Score=61.90 Aligned_cols=52 Identities=21% Similarity=0.238 Sum_probs=44.6
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCC--CceeecCCcchhHHHHHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGE--KKFFNGDDIGLADLAFGAIAYWLQVLEDV 59 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~--~~ff~G~~~~~aDi~lg~~~~~~~~~e~~ 59 (71)
++.++..+.+.+.++.+| +.|.+ +||++|+++|+|||+++|++.|+..+...
T Consensus 28 ~~~~~~~~~~~~~l~~le-~~L~~~~~~yl~G~~~t~aDi~~~~~~~~~~~~~~~ 81 (124)
T cd03184 28 SDREEKKAELRSALENLE-EELTKRGTPFFGGDSPGMVDYMIWPWFERLEALKLL 81 (124)
T ss_pred ccchhhHHHHHHHHHHHH-HHHHhcCCCCcCCCCccHHHHHhhHHHHHHHHHHhh
Confidence 456678889999999999 88874 79999999999999999999888776543
No 17
>cd03196 GST_C_5 GST_C family, unknown subfamily 5; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.68 E-value=3.7e-08 Score=59.12 Aligned_cols=48 Identities=21% Similarity=0.198 Sum_probs=41.9
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
+.+...+.+...+..+| +.|++++|+.|+++|+|||++++++.|+...
T Consensus 38 ~~~~~~~~i~~~l~~le-~~L~~~~yl~Gd~~tlADi~l~~~l~~~~~~ 85 (115)
T cd03196 38 SEEEYRQQAEAFLKDLE-ARLQQHSYLLGDKPSLADWAIFPFVRQFAHV 85 (115)
T ss_pred cHHHHHHHHHHHHHHHH-HHHccCCccCCCCccHHHHHHHHHHHHHHHh
Confidence 46677889999999999 9998889999999999999999988776543
No 18
>cd03207 GST_C_8 GST_C family, unknown subfamily 8; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.68 E-value=3.6e-08 Score=57.22 Aligned_cols=47 Identities=15% Similarity=0.223 Sum_probs=41.5
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..+.....+.+.++.+| +.|.+++|+.|+++|+|||++++++.|...
T Consensus 27 ~~~~~~~~~~~~l~~le-~~l~~~~~l~g~~~t~aDi~~~~~~~~~~~ 73 (103)
T cd03207 27 ARMAGFGSYDDVLAALE-QALAKGPYLLGERFTAADVLVGSPLGWGLQ 73 (103)
T ss_pred hhhhhhhhHHHHHHHHH-HHHccCCcccCCccCHHHHHHHHHHHHHHH
Confidence 34556788999999999 999888999999999999999999988764
No 19
>cd03180 GST_C_2 GST_C family, unknown subfamily 2; composed of uncharacterized bacterial proteins, with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.67 E-value=8.3e-08 Score=55.68 Aligned_cols=44 Identities=20% Similarity=0.514 Sum_probs=38.5
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHH-HHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIA-YWL 53 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~-~~~ 53 (71)
.+...+.+.+.|+.+| +.|.+++|+.|+++|+|||.+++++ .|.
T Consensus 41 ~~~~~~~~~~~l~~lE-~~L~~~~~l~g~~~t~aDi~~~~~~~~~~ 85 (110)
T cd03180 41 IAASLAAWAKLMAILD-AQLAGRPYLAGDRFTLADIPLGCSAYRWF 85 (110)
T ss_pred HHHHHHHHHHHHHHHH-HHhCCCCcccCCCCCHHHHHHHHHHHHHH
Confidence 4556788999999999 9998889999999999999999877 453
No 20
>cd03182 GST_C_GTT2_like GST_C family, Saccharomyces cerevisiae GTT2-like subfamily; composed of predominantly uncharacterized proteins with similarity to the S. cerevisiae GST protein, GTT2. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. GTT2, a homodimer, exhibits GST activity with standard substrates. Strains with deleted GTT2 genes are viable but exhibit increased sensiti
Probab=98.67 E-value=8.2e-08 Score=56.55 Aligned_cols=46 Identities=17% Similarity=0.192 Sum_probs=41.1
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
.++..+.+...++.+| +.|.+++|+.|+++|++||++++++.|+..
T Consensus 47 ~~~~~~~l~~~l~~le-~~L~~~~~l~gd~~t~aDi~l~~~~~~~~~ 92 (117)
T cd03182 47 GERSKARAADFLAYLD-TRLAGSPYVAGDRFTIADITAFVGLDFAKV 92 (117)
T ss_pred HHHHHHHHHHHHHHHH-HHhcCCCcccCCCCCHHHHHHHHHhHHHHh
Confidence 4667788999999999 999888999999999999999999988754
No 21
>cd03206 GST_C_7 GST_C family, unknown subfamily 7; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.63 E-value=8.4e-08 Score=55.66 Aligned_cols=46 Identities=22% Similarity=0.249 Sum_probs=40.4
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
..++...++.+.++.+| +.|+++||+.|+++|+|||.+++++.|..
T Consensus 30 ~~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~t~aDi~~~~~~~~~~ 75 (100)
T cd03206 30 DKETAIARAHRLLRLLE-EHLAGRDWLAGDRPTIADVAVYPYVALAP 75 (100)
T ss_pred HHHHHHHHHHHHHHHHH-HHHccCCccCCCCCCHHHHHHHHHHHHHh
Confidence 45667888999999999 99998899999999999999988887643
No 22
>cd03177 GST_C_Delta_Epsilon GST_C family, Class Delta and Epsilon subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Delta and Epsilon subfamily is made up primarily of insect GSTs, which play major roles in insecticide resistance by facilitating reductive dehydrochlorination of insecticides or conjugating them with GSH to produce water-soluble metabolites th
Probab=98.63 E-value=7.3e-08 Score=57.32 Aligned_cols=46 Identities=24% Similarity=0.275 Sum_probs=40.5
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
.+...+++.+.++.+| +.|++++|+.|+++|+|||.+++++.|+..
T Consensus 36 ~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~s~aDi~l~~~~~~~~~ 81 (118)
T cd03177 36 PEEKLDKLEEALDFLE-TFLEGSDYVAGDQLTIADLSLVATVSTLEA 81 (118)
T ss_pred CHHHHHHHHHHHHHHH-HHHccCCeeCCCCcCHHHHHHHHHHHHHHH
Confidence 3556778999999999 999888999999999999999999988764
No 23
>cd03209 GST_C_Mu GST_C family, Class Mu subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Mu subfamily is composed of eukaryotic GSTs. In rats, at least six distinct class Mu subunits have been identified, with homologous genes in humans for five of these subunits. Class Mu GSTs can form homodimers and heterodimers, giving a large number of possible isoenzymes that can be formed, all with overlapping activities but different substrate specificities. They are the m
Probab=98.61 E-value=1.3e-07 Score=56.76 Aligned_cols=47 Identities=15% Similarity=0.227 Sum_probs=41.3
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
++...+.+...+..|| +.|.+++|+.|+++|+||+.+++++.|+...
T Consensus 33 ~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~T~aDi~l~~~~~~~~~~ 79 (121)
T cd03209 33 KPDYLAKLPDKLKLFS-DFLGDRPWFAGDKITYVDFLLYEALDQHRIF 79 (121)
T ss_pred HHHHHHHHHHHHHHHH-HHhCCCCCcCCCCccHHHHHHHHHHHHHHHh
Confidence 4556778889999999 9998889999999999999999999888764
No 24
>cd03178 GST_C_Ure2p_like GST_C family, Ure2p-like subfamily; composed of the Saccharomyces cerevisiae Ure2p and related GSTs. Ure2p is a regulator for nitrogen catabolism in yeast. It represses the expression of several gene products involved in the use of poor nitrogen sources when rich sources are available. A transmissible conformational change of Ure2p results in a prion called [Ure3], an inactive, self-propagating and infectious amyloid. Ure2p displays a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The N-terminal thioredoxin-fold domain is sufficient to induce the [Ure3] phenotype and is also called the prion domain of Ure2p. In addition to its role in nitrogen regulation, Ure2p confers protection to cells against heavy metal ion and oxidant toxicity, and shows glutathione (GSH) peroxidase activity. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of GSH with a wide range of en
Probab=98.60 E-value=6e-08 Score=56.83 Aligned_cols=47 Identities=17% Similarity=0.297 Sum_probs=40.8
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..++..+.+...++.+| +.|.+++|+.|+++|++||++++++.|...
T Consensus 37 ~~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~t~aDi~l~~~~~~~~~ 83 (113)
T cd03178 37 AIERYTNEAKRLYGVLD-KRLAGRDYLAGDEYSIADIAIFPWVRRLEW 83 (113)
T ss_pred HHHHHHHHHHHHHHHHH-HHHccCCcccCCCCCeeeeeHHHHHHHHHh
Confidence 35567788999999999 999888999999999999999988877654
No 25
>cd03192 GST_C_Sigma_like GST_C family, Class Sigma_like; composed of GSTs belonging to class Sigma and similar proteins, including GSTs from class Mu, Pi, and Alpha. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Vertebrate class Sigma GSTs are characterized as GSH-dependent hematopoietic prostaglandin (PG) D synthases and are responsible for the production of PGD2 by catalyzing the isomerization of PGH2. The functions of PGD2 include the maintenance of body temperature, inhibition
Probab=98.55 E-value=1.5e-07 Score=54.54 Aligned_cols=49 Identities=24% Similarity=0.234 Sum_probs=41.7
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCC--CceeecCCcchhHHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGE--KKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~--~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
+.+....+.+...+..++ +.|.+ ++|+.|+++|+|||++++++.|+...
T Consensus 35 ~~~~~~~~~~~~~l~~le-~~l~~~~~~~~~G~~~s~aDi~l~~~~~~~~~~ 85 (104)
T cd03192 35 KKKEFLKEAIPKYLKKLE-KILKENGGGYLVGDKLTWADLVVFDVLDYLLYL 85 (104)
T ss_pred HHHHHHHHhhHHHHHHHH-HHHHHcCCCeeeCCCccHHHHHHHHHHHHHHhh
Confidence 345566778899999999 98876 89999999999999999999888654
No 26
>cd03181 GST_C_EFB1gamma GST_C family, Gamma subunit of Elongation Factor 1B (EFB1gamma) subfamily; EF1Bgamma is part of the eukaryotic translation elongation factor-1 (EF1) complex which plays a central role in the elongation cycle during protein biosynthesis. EF1 consists of two functionally distinct units, EF1A and EF1B. EF1A catalyzes the GTP-dependent binding of aminoacyl-tRNA to the ribosomal A site concomitant with the hydrolysis of GTP. The resulting inactive EF1A:GDP complex is recycled to the active GTP form by the guanine-nucleotide exchange factor EF1B, a complex composed of at least two subunits, alpha and gamma. Metazoan EFB1 contain a third subunit, beta. The EF1B gamma subunit contains a GST fold consisting of an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST-like domain of EF1Bgamma is believed to mediate the dimerization of the EF1 complex, which in yeast is a dimer of the heterotrimer EF1A:EF1Balpha:EF1Bgamma. In addition to its role
Probab=98.53 E-value=3.5e-07 Score=54.25 Aligned_cols=47 Identities=17% Similarity=0.232 Sum_probs=41.1
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
+..+...+.+.+.++.+| +.|..++|+.|+++|+|||++++++.|..
T Consensus 36 ~~~~~~~~~~~~~l~~le-~~l~~~~~l~G~~~siaDi~l~~~~~~~~ 82 (123)
T cd03181 36 KSVEAALEELDRVLGVLE-ERLLKRTYLVGERLTLADIFVAGALLLGF 82 (123)
T ss_pred HHHHHHHHHHHHHHHHHH-HHHccCceeccCCccHHHHHHHHHHHHHH
Confidence 345667888999999999 99988899999999999999999887764
No 27
>cd03183 GST_C_Theta GST_C family, Class Theta subfamily; composed of eukaryotic class Theta GSTs and bacterial dichloromethane (DCM) dehalogenase. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Mammalian class Theta GSTs show poor GSH conjugating activity towards the standard substrates, CDNB and ethacrynic acid, differentiating them from other mammalian GSTs. GSTT1-1 shows similar cataytic activity as bacterial DCM dehalogenase, catalyzing the GSH-dependent hydrolytic dehalogenatio
Probab=98.51 E-value=4.3e-07 Score=54.37 Aligned_cols=48 Identities=25% Similarity=0.290 Sum_probs=39.5
Q ss_pred HHHHHHHHHHHHHHHHhhhcC-CCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHG-PGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~-L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+..+...+.+.+.++.+| +. +++++|+.|+++|+|||++++++.|...
T Consensus 41 ~~~~~~~~~~~~~l~~le-~~l~~~~~~l~Gd~~t~ADi~l~~~~~~~~~ 89 (126)
T cd03183 41 EKVKKAEENLEESLDLLE-NYFLKDKPFLAGDEISIADLSAVCEIMQPEA 89 (126)
T ss_pred HHHHHHHHHHHHHHHHHH-HHHhcCCCcccCCCCCHHHHHHHHHHHHHHh
Confidence 445667788999999999 86 4557999999999999999988877653
No 28
>cd03198 GST_C_CLIC GST_C family, Chloride Intracellular Channel (CLIC) subfamily; composed of CLIC1-5, p64, parchorin, and similar proteins. They are auto-inserting, self-assembling intracellular anion channels involved in a wide variety of functions including regulated secretion, cell division, and apoptosis. They can exist in both water-soluble and membrane-bound states and are found in various vesicles and membranes. Biochemical studies of the C. elegans homolog, EXC-4, show that the membrane localization domain is present in the N-terminal part of the protein. The structure of soluble human CLIC1 reveals that it is monomeric and adopts a fold similar to GSTs, containing an N-terminal domain with a thioredoxin fold and a C-terminal alpha helical domain. Upon oxidation, the N-terminal domain of CLIC1 undergoes a structural change to form a non-covalent dimer stabilized by the formation of an intramolecular disulfide bond between two cysteines that are far apart in the reduced form. T
Probab=98.51 E-value=5e-07 Score=56.55 Aligned_cols=57 Identities=23% Similarity=0.310 Sum_probs=44.6
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCC----------------CceeecCCcchhHHHHHHHHHHHHHH-HHHhcccc
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGE----------------KKFFNGDDIGLADLAFGAIAYWLQVL-EDVMEVND 64 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~----------------~~ff~G~~~~~aDi~lg~~~~~~~~~-e~~~g~~~ 64 (71)
+..+...+.+.+.|+.|| ..|.+ ++|++|+++|+|||.++|.+.++..+ ....|+.+
T Consensus 25 ~~~e~~~~~l~~~L~~ld-~~L~~~~~~~~~~~~~~~~~~~~fL~Gd~fTlADi~l~p~L~~~~~~~~~~~g~~i 98 (134)
T cd03198 25 ALNENLEKGLLKALKKLD-DYLNSPLPDEIDSAEDEGVSQRKFLDGDELTLADCNLLPKLHIVKVVAKKYRNFEI 98 (134)
T ss_pred hhhHHHHHHHHHHHHHHH-HHHccCccccccccccccccCCCCCCCCCCCHHHHHHHHHHHHHHHHHHhhcCCCc
Confidence 345666778999999999 88875 78999999999999999998777654 22345554
No 29
>cd03204 GST_C_GDAP1 GST_C family, Ganglioside-induced differentiation-associated protein 1 (GDAP1) subfamily; GDAP1 was originally identified as a highly expressed gene at the differentiated stage of GD3 synthase-transfected cells. More recently, mutations in GDAP1 have been reported to cause both axonal and demyelinating autosomal-recessive Charcot-Marie-Tooth (CMT) type 4A neuropathy. CMT is characterized by slow and progressive weakness and atrophy of muscles. Sequence analysis of GDAP1 shows similarities and differences with GSTs; it appears to contain both N-terminal thioredoxin-fold and C-terminal alpha helical domains of GSTs, however, it also contains additional C-terminal transmembrane domains unlike GSTs. GDAP1 is mainly expressed in neuronal cells and is localized in the mitochondria through its transmembrane domains. It does not exhibit GST activity using standard substrates.
Probab=98.47 E-value=3.5e-07 Score=55.53 Aligned_cols=48 Identities=23% Similarity=0.372 Sum_probs=40.9
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCC----------ceeecCCcchhHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEK----------KFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~----------~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+..++..+++...++.+| +.|.++ +|++|+++|+|||++++++.|+..
T Consensus 25 ~~i~~~~~~l~~~l~~LE-~~L~~~~~~~~~~~~~~yL~Gd~~TlADi~l~~~l~~~~~ 82 (111)
T cd03204 25 EYLKKILDELEMVLDQVE-QELQRRKEETEEQKCQLWLCGDTFTLADISLGVTLHRLKF 82 (111)
T ss_pred HHHHHHHHHHHHHHHHHH-HHHHcCCcccccccCCCccCCCCCCHHHHHHHHHHHHHHH
Confidence 345677888999999999 888643 699999999999999999988765
No 30
>cd03191 GST_C_Zeta GST_C family, Class Zeta subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Zeta GSTs, also known as maleylacetoacetate (MAA) isomerases, catalyze the isomerization of MAA to fumarylacetoacetate, the penultimate step in tyrosine/phenylalanine catabolism, using GSH as a cofactor. They show little GSH-conjugating activity towards traditional GST substrates, but display modest GSH peroxidase activity. They are also implicated in the detoxification of th
Probab=98.47 E-value=4.3e-07 Score=54.02 Aligned_cols=43 Identities=21% Similarity=0.156 Sum_probs=36.7
Q ss_pred HHHHHHHHHHHhhhcCCC--CCceeecCCcchhHHHHHHHHHHHHH
Q 041675 12 AMKAALEMLQTVEKHGPG--EKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 12 ~~~~~~~~l~~le~~~L~--~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..+.+...+..+| +.|. .++|++|+++|+|||++++++.|...
T Consensus 45 ~~~~~~~~l~~le-~~L~~~~~~~l~G~~~t~ADi~~~~~~~~~~~ 89 (121)
T cd03191 45 YRHWIARGFAALE-KLLAQTAGKFCFGDEPTLADICLVPQVYNARR 89 (121)
T ss_pred HHHHHHHHHHHHH-HHHHhcCCCeecCCcCCHHHHHHHHHHHHHHH
Confidence 4466889999999 9997 45799999999999999999887764
No 31
>cd03210 GST_C_Pi GST_C family, Class Pi subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. Class Pi GST is a homodimeric eukaryotic protein. The human GSTP1 is mainly found in erythrocytes, kidney, placenta and fetal liver. It is involved in stress responses and in cellular proliferation pathways as an inhibitor of JNK (c-Jun N-terminal kinase). Following oxidative stress, monomeric GSTP1 dissociates from JNK and dimerizes, losing its ability to bind JNK and causing an incre
Probab=98.46 E-value=5e-07 Score=54.67 Aligned_cols=48 Identities=27% Similarity=0.244 Sum_probs=40.3
Q ss_pred HHHHHHHHHHHHHHHhhhcCCC---CCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPG---EKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~---~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
.++...+.+...+..+| +.|. +++|++|+++|+|||.+++++.|+...
T Consensus 32 ~~~~~~~~~~~~l~~le-~~L~~~~~~~~l~G~~~T~ADi~l~~~~~~~~~~ 82 (126)
T cd03210 32 GKDDYIKDLPEQLKPFE-KLLSKNNGKGFIVGDKISFADYNLFDLLDIHLVL 82 (126)
T ss_pred HHHHHHHHHHHHHHHHH-HHHHhCCCCCeeeCCCccHHHHHHHHHHHHHHHh
Confidence 45566777889999999 8886 358999999999999999999888643
No 32
>cd03203 GST_C_Lambda GST_C family, Class Lambda subfamily; composed of plant-specific class Lambda GSTs. GSTs are cytosolic, usually dimeric, proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Lambda subfamily was recently discovered, together with dehydroascorbate reductases (DHARs), as two outlying groups of the GST superfamily in Arabidopsis thaliana, which contain conserved active site cysteines. Characterization of recombinant A. thaliana proteins show that Lambda class GSTs are monomeric, similar
Probab=98.45 E-value=3.6e-07 Score=55.07 Aligned_cols=49 Identities=22% Similarity=0.397 Sum_probs=37.7
Q ss_pred HHHHHHHHhhhcCCC---CCceeecCCcchhHHHHHHHHHHHHH-HHHHhccccC
Q 041675 15 AALEMLQTVEKHGPG---EKKFFNGDDIGLADLAFGAIAYWLQV-LEDVMEVNDG 65 (71)
Q Consensus 15 ~~~~~l~~le~~~L~---~~~ff~G~~~~~aDi~lg~~~~~~~~-~e~~~g~~~~ 65 (71)
++.+.++.|| +.|. +++|++| ++|+|||+++|++.++.. +++..|+.+.
T Consensus 34 ~~~~~l~~Le-~~L~~~~~~~fl~G-~~tlADi~l~~~~~~~~~~~~~~~~~~~~ 86 (120)
T cd03203 34 EAAAALDYIE-NALSKFDDGPFFLG-QFSLVDIAYVPFIERFQIFLSELFNYDIT 86 (120)
T ss_pred HHHHHHHHHH-HHHHhcCCCCCcCC-CccHHHHHHHHHHHHHHHHHHHhcCcccc
Confidence 4566777777 7775 4799999 999999999999977765 4566676653
No 33
>PRK09481 sspA stringent starvation protein A; Provisional
Probab=98.43 E-value=6e-07 Score=58.35 Aligned_cols=47 Identities=26% Similarity=0.343 Sum_probs=39.8
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..+...+.+...+..+| +.|.+++|+.|+++|+|||++++++.++..
T Consensus 124 ~~~~~~~~l~~~l~~le-~~L~~~~~l~G~~~t~AD~~l~~~~~~~~~ 170 (211)
T PRK09481 124 EADAARKQLREELLAIA-PVFGEKPYFMSEEFSLVDCYLAPLLWRLPV 170 (211)
T ss_pred HHHHHHHHHHHHHHHHH-HHhccCCcccCCCccHHHHHHHHHHHHHHh
Confidence 44556677888999999 999888999999999999999988866653
No 34
>PRK10387 glutaredoxin 2; Provisional
Probab=98.42 E-value=2.8e-07 Score=59.22 Aligned_cols=45 Identities=11% Similarity=0.028 Sum_probs=39.9
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
++.++.+++.|+.+| ..|++ +|+.|+++|+|||++++++.|+...
T Consensus 141 ~~~~~~~~~~l~~le-~~L~~-~~l~G~~~s~ADi~l~~~l~~~~~~ 185 (210)
T PRK10387 141 PGLIKEINADLRALD-PLIVK-PNAVNGELSTDDIHLFPILRNLTLV 185 (210)
T ss_pred HHHHHHHHHHHHHHH-HHhcC-ccccCCCCCHHHHHHHHHHhcceee
Confidence 456788999999999 99976 9999999999999999999888753
No 35
>PRK10542 glutathionine S-transferase; Provisional
Probab=98.40 E-value=8.8e-07 Score=56.56 Aligned_cols=45 Identities=13% Similarity=0.241 Sum_probs=39.0
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+...+.+.+.++.+| +.|.+++|++|+++|+|||++++++.|...
T Consensus 123 ~~~~~~~~~~l~~le-~~L~~~~~l~G~~~s~ADi~l~~~~~~~~~ 167 (201)
T PRK10542 123 PTVRAQLEKKFQYVD-EALADEQWICGQRFTIADAYLFTVLRWAYA 167 (201)
T ss_pred HHHHHHHHHHHHHHH-HHhcCCCeeeCCCCcHHhHHHHHHHHHhhc
Confidence 445677889999999 999888999999999999999998877643
No 36
>PLN02473 glutathione S-transferase
Probab=98.40 E-value=8e-07 Score=57.43 Aligned_cols=45 Identities=20% Similarity=0.298 Sum_probs=38.4
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
.+.....+...++.+| +.|++++|+.|+++|+|||++++.+.|..
T Consensus 133 ~~~~~~~~~~~l~~le-~~L~~~~~l~Gd~~t~ADi~~~~~~~~~~ 177 (214)
T PLN02473 133 VEELKVKFDKVLDVYE-NRLATNRYLGGDEFTLADLTHMPGMRYIM 177 (214)
T ss_pred HHHHHHHHHHHHHHHH-HHhccCCcccCCCCCHHHHHHHHHHHHHH
Confidence 3445567888999999 99988899999999999999999887754
No 37
>cd03211 GST_C_Metaxin2 GST_C family, Metaxin subfamily, Metaxin 2; a metaxin 1 binding protein identified through a yeast two-hybrid system using metaxin 1 as the bait. Metaxin 2 shares sequence similarity with metaxin 1 but does not contain a C-terminal mitochondrial outer membrane signal-anchor domain. It associates with mitochondrial membranes through its interaction with metaxin 1, which is a component of the mitochondrial preprotein import complex of the outer membrane. The biological function of metaxin 2 is unknown. It is likely that it also plays a role in protein translocation into the mitochondria. However, this has not been experimentally validated. In a recent proteomics study, it has been shown that metaxin 2 is overexpressed in response to lipopolysaccharide-induced liver injury.
Probab=98.33 E-value=1.1e-06 Score=53.76 Aligned_cols=45 Identities=16% Similarity=0.208 Sum_probs=38.8
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
.++..+.+.+.++.|+ ..|+++|||.|++||.+|+.+++++.++.
T Consensus 55 ~ee~~~~~~~~l~aLs-~~Lg~~~~l~Gd~pT~~Da~vf~~la~~~ 99 (126)
T cd03211 55 LDQVIEEVDQCCQALS-QRLGTQPYFFGDQPTELDALVFGHLFTIL 99 (126)
T ss_pred HHHHHHHHHHHHHHHH-HHHCCCCCCCCCCCcHHHHHHHHHHHHHH
Confidence 3566777889999999 99999999999999999999999875554
No 38
>PLN02395 glutathione S-transferase
Probab=98.32 E-value=1.5e-06 Score=56.16 Aligned_cols=44 Identities=25% Similarity=0.386 Sum_probs=37.6
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWL 53 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~ 53 (71)
.+...+.+...++.|| +.|.+++|+.|+++|+|||++++++.|+
T Consensus 132 ~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~s~ADi~l~~~~~~~ 175 (215)
T PLN02395 132 IKESEEKLAKVLDVYE-ARLSKSKYLAGDFVSLADLAHLPFTEYL 175 (215)
T ss_pred HHHHHHHHHHHHHHHH-HHhcCCccccCCCcCHHHHHHHHHHHHH
Confidence 3455677888999999 9998889999999999999998877665
No 39
>cd03212 GST_C_Metaxin1_3 GST_C family, Metaxin subfamily, Metaxin 1-like proteins; composed of metaxins 1 and 3, and similar proteins. Mammalian metaxin (or metaxin 1) is a component of the preprotein import complex of the mitochondrial outer membrane. Metaxin extends to the cytosol and is anchored to the mitochondrial membrane through its C-terminal domain. In mice, metaxin is required for embryonic development. Like the murine gene, the human metaxin gene is located downstream to the glucocerebrosidase (GBA) pseudogene and is convergently transcribed. Inherited deficiency of GBA results in Gaucher disease, which presents many diverse clinical phenotypes. Alterations in the metaxin gene, in addition to GBA mutations, may be associated with Gaucher disease. Genome sequencing shows that a third metaxin gene also exists in zebrafish, Xenopus, chicken, and mammals.
Probab=98.28 E-value=1.8e-06 Score=53.67 Aligned_cols=45 Identities=27% Similarity=0.215 Sum_probs=38.8
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWL 53 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~ 53 (71)
..++..+++.+.++.|+ +.|++++||.|+++|++|+.+++++.++
T Consensus 61 ~~~~~~~~a~~~l~~l~-~~L~~~~~~~Gd~~t~~D~~~~~~l~~~ 105 (137)
T cd03212 61 VEAEIYRDAKECLNLLS-QRLGESQFFFGDTPTSLDALVFGYLAPL 105 (137)
T ss_pred hHHHHHHHHHHHHHHHH-HHHCCCCcCCCCCCcHHHHHHHHHHHHH
Confidence 35667788899999999 9999999999999999999998876444
No 40
>cd03200 GST_C_JTV1 GST_C family, JTV-1 subfamily; composed of uncharacterized proteins with similarity to the translation product of the human JTV-1 gene. Human JTV-1, a gene of unknown function, initiates within the human PMS2 gene promoter, but is transcribed from the opposite strand. PMS2 encodes a protein involved in DNA mismatch repair and is mutated in a subset of patients with hereditary nonpolyposis colon cancer. It is unknown whether the expression of JTV-1 affects that of PMS2, or vice versa, as a result of their juxtaposition. JTV-1 is up-regulated while PMS2 is down-regulated in tumor cell spheroids that show increased resistance to anticancer cytotoxic drugs compared with tumor cell monolayers indicating that suppressed DNA mismatch repair may be a mechanism for multicellular resistance to alkylating agents.
Probab=98.28 E-value=1.2e-06 Score=51.31 Aligned_cols=39 Identities=15% Similarity=0.250 Sum_probs=33.4
Q ss_pred HHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHH
Q 041675 14 KAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWL 53 (71)
Q Consensus 14 ~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~ 53 (71)
+++.+.++.+| +.|.+++|++|+++|+|||++++.+.|.
T Consensus 38 ~~~~~~l~~le-~~L~~~~fl~Gd~~tiADi~l~~~l~~~ 76 (96)
T cd03200 38 KEKAAVLRALN-SALGRSPWLVGSEFTVADIVSWCALLQT 76 (96)
T ss_pred HHHHHHHHHHH-HHHcCCCccCCCCCCHHHHHHHHHHHHc
Confidence 35567888999 9998889999999999999999887653
No 41
>COG0625 Gst Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=98.28 E-value=1.9e-06 Score=55.77 Aligned_cols=49 Identities=24% Similarity=0.399 Sum_probs=42.3
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
...+...+.+...+..++ ..|.+++|+.|+++|+||+.+++++.|+...
T Consensus 127 ~~~~~~~~~~~~~l~~le-~~L~~~~~l~G~~~tiAD~~~~~~~~~~~~~ 175 (211)
T COG0625 127 AALEAARAEIRALLALLE-ALLADGPYLAGDRFTIADIALAPLLWRLALL 175 (211)
T ss_pred HHHHHHHHHHHHHHHHHH-HHhccCCcccCCCCCHHHHHHHHHHHHhhhc
Confidence 345667888999999999 9999999999999999999999988875543
No 42
>PRK13972 GSH-dependent disulfide bond oxidoreductase; Provisional
Probab=98.24 E-value=2.6e-06 Score=55.33 Aligned_cols=44 Identities=14% Similarity=0.317 Sum_probs=36.7
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHH-HHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIA-YWL 53 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~-~~~ 53 (71)
.+...+.+...+..+| +.|.+++|++|+++|+|||++++++ .|.
T Consensus 130 ~~~~~~~~~~~l~~le-~~L~~~~~l~Gd~~t~ADi~l~~~~~~~~ 174 (215)
T PRK13972 130 IERYQVETQRLYHVLN-KRLENSPWLGGENYSIADIACWPWVNAWT 174 (215)
T ss_pred HHHHHHHHHHHHHHHH-HHhccCccccCCCCCHHHHHHHHHHHHHh
Confidence 3445567888999999 9998889999999999999988866 454
No 43
>PRK11752 putative S-transferase; Provisional
Probab=98.23 E-value=2.5e-06 Score=57.74 Aligned_cols=44 Identities=20% Similarity=0.233 Sum_probs=37.4
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
++..+++.+.|+.+| +.|.+++||.|+++|+|||++++++.++.
T Consensus 177 ~~~~~~~~~~L~~le-~~L~~~~fl~Gd~~TlADi~l~~~l~~l~ 220 (264)
T PRK11752 177 NRFTMEAKRQLDVLD-KQLAEHEYIAGDEYTIADIAIWPWYGNLV 220 (264)
T ss_pred HHHHHHHHHHHHHHH-HHhccCCCCCCCccCHHHHHHHHHHHHHh
Confidence 444567888999999 99988899999999999999988876664
No 44
>cd03208 GST_C_Alpha GST_C family, Class Alpha subfamily; GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain. The class Alpha subfamily is composed of vertebrate GSTs which can form homodimer and heterodimers. There are at least six types of class Alpha GST subunits in rats, four of which have human counterparts, resulting in many possible isoenzymes with different activities, tissue distribution and substrate specificities. Human GSTA1-1 and GSTA2-2 show high GSH peroxidase activity. GS
Probab=98.23 E-value=3.4e-06 Score=52.12 Aligned_cols=40 Identities=15% Similarity=0.190 Sum_probs=34.9
Q ss_pred HHHHHHHHhhhcCCC--CCceeecCCcchhHHHHHHHHHHHHH
Q 041675 15 AALEMLQTVEKHGPG--EKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 15 ~~~~~l~~le~~~L~--~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
.+...+..|| +.|. +++|+.|+++|+||+.+++++.|+..
T Consensus 43 ~~~~~l~~lE-~~L~~~~~~~l~G~~~T~ADi~l~~~l~~~~~ 84 (137)
T cd03208 43 AKNRYFPVFE-KVLKSHGQDFLVGNKLSRADIHLLEAILMVEE 84 (137)
T ss_pred HHHHHHHHHH-HHHHhCCCCeeeCCCCCHHHHHHHHHHHHHHH
Confidence 4468899999 9887 67899999999999999999988764
No 45
>cd03195 GST_C_4 GST_C family, unknown subfamily 4; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.17 E-value=3.1e-06 Score=50.54 Aligned_cols=47 Identities=19% Similarity=0.116 Sum_probs=39.6
Q ss_pred HHHHHHHHHHHHHHHhhhcCCC-CCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPG-EKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~-~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
..+...+.+.+.+.++| ..|. +++|+.| .+|+||+.+++++.|+...
T Consensus 39 ~~~~~~~~~~~~~~~le-~~l~~~~~~l~G-~fSiAD~~l~~~~~~~~~~ 86 (114)
T cd03195 39 LSEAAQAAAEKLIAVAE-ALLPPGAANLFG-EWCIADTDLALMLNRLVLN 86 (114)
T ss_pred CCHHHHHHHHHHHHHHH-HHHhcCCCcccC-CccHHHHHHHHHHHHHHHc
Confidence 34667788899999999 8885 5589999 5999999999999998764
No 46
>PLN02378 glutathione S-transferase DHAR1
Probab=98.16 E-value=3.7e-06 Score=54.93 Aligned_cols=44 Identities=27% Similarity=0.425 Sum_probs=36.8
Q ss_pred HHHHHHHHHHHHhhhcCCC--CCceeecCCcchhHHHHHHHHHHHHH
Q 041675 11 NAMKAALEMLQTVEKHGPG--EKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 11 ~~~~~~~~~l~~le~~~L~--~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
...+.+.+.+..+| +.|. +++|++|+++|+|||+++|++.|+..
T Consensus 118 ~~~~~~~~~l~~le-~~L~~~~~~fl~Gd~~T~ADi~l~~~~~~l~~ 163 (213)
T PLN02378 118 GSEHALLVELEALE-NHLKSHDGPFIAGERVSAVDLSLAPKLYHLQV 163 (213)
T ss_pred HHHHHHHHHHHHHH-HHHhcCCCCCcCCCCCchhhHHHHHHHHHHHH
Confidence 34467788899999 8886 47999999999999999999877654
No 47
>cd03205 GST_C_6 GST_C family, unknown subfamily 6; composed of uncharacterized bacterial proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.16 E-value=7.7e-06 Score=47.30 Aligned_cols=44 Identities=23% Similarity=0.255 Sum_probs=38.3
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..+.....+...++.+| +.|.+++| +++|+|||.+++.+.|...
T Consensus 34 ~~~~~~~~~~~~l~~le-~~L~~~~~---d~~TlADi~l~~~l~~~~~ 77 (98)
T cd03205 34 WLERQRGKIERALDALE-AELAKLPL---DPLDLADIAVACALGYLDF 77 (98)
T ss_pred HHHHHHHHHHHHHHHHH-HhhhhCCC---CCCCHHHHHHHHHHHHHHh
Confidence 35667788999999999 99988888 9999999999999988864
No 48
>TIGR01262 maiA maleylacetoacetate isomerase. Maleylacetoacetate isomerase is an enzyme of tyrosine and phenylalanine catabolism. It requires glutathione and belongs by homology to the zeta family of glutathione S-transferases. The enzyme (EC 5.2.1.2) is described as active also on maleylpyruvate, and the example from a Ralstonia sp. catabolic plasmid is described as a maleylpyruvate isomerase involved in gentisate catabolism.
Probab=98.13 E-value=6.3e-06 Score=52.92 Aligned_cols=43 Identities=21% Similarity=0.103 Sum_probs=36.5
Q ss_pred HHHHHHHHHHHhhhcCCCC--CceeecCCcchhHHHHHHHHHHHHH
Q 041675 12 AMKAALEMLQTVEKHGPGE--KKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 12 ~~~~~~~~l~~le~~~L~~--~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..+.+.+.++.+| +.|.+ ++|+.|+++|+|||.+++++.|+..
T Consensus 130 ~~~~~~~~l~~le-~~L~~~~~~~l~G~~~T~ADi~~~~~l~~~~~ 174 (210)
T TIGR01262 130 YQHWISKGFAALE-ALLQPHAGAFCVGDTPTLADLCLVPQVYNAER 174 (210)
T ss_pred HHHHHHHHHHHHH-HHHhcCCCCEeeCCCCCHHHHHHHHHHHHHHH
Confidence 4556889999999 98874 5799999999999999999877654
No 49
>TIGR02182 GRXB Glutaredoxin, GrxB family. This model includes the highly abundant E. coli GrxB (Grx2) glutaredoxin which is notably longer than either GrxA or GrxC. Unlike the other two E. coli glutaredoxins, GrxB appears to be unable to reduce ribonucleotide reductase, and may have more to do with resistance to redox stress.
Probab=98.11 E-value=1.6e-06 Score=56.55 Aligned_cols=44 Identities=11% Similarity=0.105 Sum_probs=37.9
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
++..+.+++.++.+| +.|++++|++| ++|+|||++++++.|+..
T Consensus 140 ~~~~~~~~~~l~~le-~~L~~~~~l~g-~~TiADi~l~~~l~~~~~ 183 (209)
T TIGR02182 140 PGLLEEINADLEELD-KLIDGPNAVNG-ELSEDDILVFPLLRNLTL 183 (209)
T ss_pred HHHHHHHHHHHHHHH-HHHhCccccCC-CCCHHHHHHHHHhcCeee
Confidence 456778999999999 99999999966 599999999998888764
No 50
>cd03194 GST_C_3 GST_C family, unknown subfamily 3; composed of uncharacterized proteins with similarity to GSTs. GSTs are cytosolic dimeric proteins involved in cellular detoxification by catalyzing the conjugation of glutathione (GSH) with a wide range of endogenous and xenobiotic alkylating agents, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTs also show GSH peroxidase activity and are involved in the synthesis of prostaglandins and leukotrienes. The GST fold contains an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain, with an active site located in a cleft between the two domains. GSH binds to the N-terminal domain while the hydrophobic substrate occupies a pocket in the C-terminal domain.
Probab=98.11 E-value=1e-05 Score=48.40 Aligned_cols=41 Identities=15% Similarity=0.193 Sum_probs=29.6
Q ss_pred HHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 13 MKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 13 ~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..++...++.+. ..+.+++|+.|+ +|+|||.+++++.|...
T Consensus 46 ~~~~~~~le~~l-~~~~~~~yl~Gd-~T~ADi~l~~~~~~~~~ 86 (114)
T cd03194 46 IARIEAIWAECL-ARFQGGPFLFGD-FSIADAFFAPVVTRFRT 86 (114)
T ss_pred HHHHHHHHHHHH-HHcCCCCCCCCC-CcHHHHHHHHHHHHHHH
Confidence 344444444444 444567899999 99999999999988864
No 51
>PF14497 GST_C_3: Glutathione S-transferase, C-terminal domain; PDB: 3AY8_A 2UZ8_B 1V2A_C 2HNL_A 2YV9_B 3H1N_A 3FR6_A 1Q4J_B 1PA3_B 1OKT_B ....
Probab=98.06 E-value=4.4e-06 Score=48.41 Aligned_cols=41 Identities=24% Similarity=0.263 Sum_probs=31.7
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCc--eeecCCcchhHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKK--FFNGDDIGLADLAFGAIA 50 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~--ff~G~~~~~aDi~lg~~~ 50 (71)
.+...+++.+.+..++ +.|...+ |+.|++||+||+++.+++
T Consensus 33 ~~~~~~~~~~~l~~l~-~~L~~~~~~~l~G~~~T~AD~~v~~~l 75 (99)
T PF14497_consen 33 GDFSREELPKALKILE-KHLAERGGDFLVGDKPTLADIAVFGFL 75 (99)
T ss_dssp HHHHHHHHHHHHHHHH-HHHHHTSSSSSSSSS--HHHHHHHHHH
T ss_pred HHhhHHHHHHHHHHHH-HHHHcCCCeeecCCCCCHHHHHHHHHH
Confidence 3556778888999999 8887554 999999999999977765
No 52
>PTZ00057 glutathione s-transferase; Provisional
Probab=98.03 E-value=9.8e-06 Score=52.48 Aligned_cols=43 Identities=19% Similarity=0.102 Sum_probs=35.8
Q ss_pred HHHHHHHHHHHHhhhcCCCC--CceeecCCcchhHHHHHHHHHHHH
Q 041675 11 NAMKAALEMLQTVEKHGPGE--KKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 11 ~~~~~~~~~l~~le~~~L~~--~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
...+.+.+.+..+| +.|.+ ++|+.|+++|+||+.+++++.|+.
T Consensus 123 ~~~~~~~~~l~~le-~~L~~~~~~~l~Gd~~T~AD~~l~~~~~~~~ 167 (205)
T PTZ00057 123 FLNEELPKWSGYFE-NILKKNHCNYFVGDNLTYADLAVFNLYDDIE 167 (205)
T ss_pred HHHHHHHHHHHHHH-HHHHhCCCCeeeCCcccHHHHHHHHHHHHHH
Confidence 34567888899999 88864 489999999999999999887765
No 53
>PRK10357 putative glutathione S-transferase; Provisional
Probab=98.03 E-value=1.9e-05 Score=50.61 Aligned_cols=44 Identities=16% Similarity=0.160 Sum_probs=37.9
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+...+.+...|+.|| +.|.+++ +.|+++|+|||.+++.+.|+..
T Consensus 124 ~~~~~~l~~~l~~le-~~L~~~~-l~Gd~~t~ADi~l~~~l~~~~~ 167 (202)
T PRK10357 124 LRQREKINRSLDALE-GYLVDGT-LKTDTVNLATIAIACAVGYLNF 167 (202)
T ss_pred HHHHHHHHHHHHHHH-HhhccCc-ccCCCcCHHHHHHHHHHHHHHh
Confidence 455678899999999 9998777 9999999999999998887744
No 54
>PLN02817 glutathione dehydrogenase (ascorbate)
Probab=97.88 E-value=2.1e-05 Score=53.67 Aligned_cols=42 Identities=31% Similarity=0.509 Sum_probs=35.3
Q ss_pred HHHHHHHHHHhhhcCCC-CCceeecCCcchhHHHHHHHHHHHHH
Q 041675 13 MKAALEMLQTVEKHGPG-EKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 13 ~~~~~~~l~~le~~~L~-~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
.+++.+.+..+| +.|. +++|+.|+++|+|||+++|++.++..
T Consensus 173 ~~~l~~~l~~LE-~~L~~~g~yl~Gd~~SlADi~l~p~L~~l~~ 215 (265)
T PLN02817 173 EQALLDELTSFD-DYIKENGPFINGEKISAADLSLGPKLYHLEI 215 (265)
T ss_pred HHHHHHHHHHHH-HHHhcCCCeeCCCCCCHHHHHHHHHHHHHHH
Confidence 356778899999 8886 46999999999999999998877654
No 55
>PRK15113 glutathione S-transferase; Provisional
Probab=97.83 E-value=4.2e-05 Score=49.77 Aligned_cols=44 Identities=18% Similarity=0.167 Sum_probs=36.4
Q ss_pred HHHHHHHHHHHHHhhhcCCCC-CceeecCCcchhHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGE-KKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~-~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+...+.+...+..+| +.|.+ ++|++|+ +|+|||++++++.|+..
T Consensus 136 ~~~~~~~~~~l~~le-~~L~~~~~~l~G~-~TlADi~l~~~l~~~~~ 180 (214)
T PRK15113 136 EAGKAAAEKLFAVAE-RLLAPGQPNLFGE-WCIADTDLALMLNRLVL 180 (214)
T ss_pred HHHHHHHHHHHHHHH-HHHhcCCCEeeCC-ccHHHHHHHHHHHHHHH
Confidence 455677889999999 89864 5799996 99999999999877753
No 56
>KOG4420 consensus Uncharacterized conserved protein (Ganglioside-induced differentiation associated protein 1, GDAP1) [Function unknown]
Probab=97.51 E-value=0.00022 Score=49.72 Aligned_cols=48 Identities=25% Similarity=0.369 Sum_probs=39.4
Q ss_pred HHHHHHHHHHHHHHHhhhcCCCC----CceeecCCcchhHHHHHHHHHHHHHH
Q 041675 8 VLENAMKAALEMLQTVEKHGPGE----KKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 8 ~~e~~~~~~~~~l~~le~~~L~~----~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
.-.+..+++...|+.+| .+|.+ .+|++|+.+|+||+.+|+.++++.-+
T Consensus 202 ~lkkild~l~~~Ld~VE-teLe~r~~~~~wL~G~efslADVsLg~~LhRL~~L 253 (325)
T KOG4420|consen 202 YLKKILDELAMVLDQVE-TELEKRKLCELWLCGCEFSLADVSLGATLHRLKFL 253 (325)
T ss_pred HHHHHHHHHHHHHHHHH-HHHhhccccceeeccccchHHHHHHHHHHHHHHHc
Confidence 34556677777788888 78865 68999999999999999999888766
No 57
>cd03197 GST_C_mPGES2 GST_C family; microsomal Prostaglandin E synthase Type 2 (mPGES2) subfamily; mPGES2 is a membrane-anchored dimeric protein containing a CXXC motif which catalyzes the isomerization of PGH2 to PGE2. Unlike cytosolic PGE synthase (cPGES) and microsomal PGES Type 1 (mPGES1), mPGES2 does not require glutathione (GSH) for its activity, although its catalytic rate is increased two- to four-fold in the presence of DTT, GSH, or other thiol compounds. PGE2 is widely distributed in various tissues and is implicated in the sleep/wake cycle, relaxation/contraction of smooth muscle, excretion of sodium ions, maintenance of body temperature, and mediation of inflammation. mPGES2 contains an N-terminal hydrophobic domain which is membrane associated and a C-terminal soluble domain with a GST-like structure. The C-terminus contains two structural domains a N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. The GST active site is located in a cleft between t
Probab=97.34 E-value=0.00082 Score=42.89 Aligned_cols=28 Identities=25% Similarity=0.331 Sum_probs=22.0
Q ss_pred CCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 29 GEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 29 ~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
.+++|++|++||+|||++.+++..++.+
T Consensus 97 ~~~~FlaGd~ptIADisvyg~l~s~e~~ 124 (149)
T cd03197 97 KDRQFHGGSKPNLADLAVYGVLRSVEGH 124 (149)
T ss_pred CCCCccCCCCCCHHHHHHHHHHHHHHHh
Confidence 4578999999999999977776555443
No 58
>PLN02907 glutamate-tRNA ligase
Probab=97.17 E-value=0.00049 Score=52.90 Aligned_cols=37 Identities=16% Similarity=0.087 Sum_probs=31.4
Q ss_pred HHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHH
Q 041675 15 AALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYW 52 (71)
Q Consensus 15 ~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~ 52 (71)
.+...++.|| +.|..++|++|+++|+|||++++.+.+
T Consensus 94 ~l~~~L~~LE-~~L~~rtYLvGd~lTLADIaL~~~L~~ 130 (722)
T PLN02907 94 EFENACEYVD-GYLASRTFLVGYSLTIADIAIWSGLAG 130 (722)
T ss_pred HHHHHHHHHH-HHhccCCeecCCCCCHHHHHHHHHHHh
Confidence 4566789999 999888999999999999998876533
No 59
>KOG0867 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=97.13 E-value=0.00092 Score=44.46 Aligned_cols=46 Identities=17% Similarity=0.260 Sum_probs=40.1
Q ss_pred HHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHH
Q 041675 7 QVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWL 53 (71)
Q Consensus 7 e~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~ 53 (71)
...+...++++..++.+| ++|.+++|+.|+++|+||+.+++.+..+
T Consensus 129 ~~~~~~~~~~~~~~~~~e-~~l~~~~yl~g~~~tlADl~~~~~~~~~ 174 (226)
T KOG0867|consen 129 TAVKELEAKLRKALDNLE-RFLKTQVYLAGDQLTLADLSLASTLSQF 174 (226)
T ss_pred hhhHHHHHHHHHHHHHHH-HHHccCCcccCCcccHHHHHHhhHHHHH
Confidence 345667788999999999 9999999999999999999998877666
No 60
>KOG1422 consensus Intracellular Cl- channel CLIC, contains GST domain [Inorganic ion transport and metabolism]
Probab=96.80 E-value=0.0018 Score=43.61 Aligned_cols=55 Identities=22% Similarity=0.263 Sum_probs=44.1
Q ss_pred HHHHHHHHHHHhhhcCCCC---CceeecCCcchhHHHHHHHHHHHHHH-HHHhccccCCc
Q 041675 12 AMKAALEMLQTVEKHGPGE---KKFFNGDDIGLADLAFGAIAYWLQVL-EDVMEVNDGCR 67 (71)
Q Consensus 12 ~~~~~~~~l~~le~~~L~~---~~ff~G~~~~~aDi~lg~~~~~~~~~-e~~~g~~~~~~ 67 (71)
.-+.+-..|..|+ ..|.. ++|+.||++|.+|.-+.|=++.++.. ..+.++.++.+
T Consensus 124 ~e~~Ll~~L~~Ld-~yL~sp~~~~Fl~Gd~lt~aDcsLlPKL~~i~va~k~yk~~~IP~~ 182 (221)
T KOG1422|consen 124 LEKALLKELEKLD-DYLKSPSRRKFLDGDKLTLADCSLLPKLHHIKVAAKHYKNFEIPAS 182 (221)
T ss_pred HHHHHHHHHHHHH-HHhcCccCCccccCCeeeeehhhhchhHHHHHHHHHHhcCCCCchh
Confidence 3456677778899 99973 89999999999999999988777776 67777777653
No 61
>COG0435 ECM4 Predicted glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=96.72 E-value=0.00082 Score=47.14 Aligned_cols=51 Identities=24% Similarity=0.364 Sum_probs=43.5
Q ss_pred ccCHHHHHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHH
Q 041675 3 FSTGQVLENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQ 54 (71)
Q Consensus 3 ~~~ge~~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~ 54 (71)
+..++.-+++.+.+-+.|+.|| ..|.++.|+.|+.+|-||+-+.+.+.+|.
T Consensus 197 A~tq~aYeea~~~lF~~Ld~lE-~~L~~~ryl~Gd~lTEAD~RLftTlvRFD 247 (324)
T COG0435 197 ATTQEAYEEAVKKLFEALDKLE-QILSERRYLTGDQLTEADIRLFTTLVRFD 247 (324)
T ss_pred cchHHHHHHHHHHHHHHHHHHH-HHhhcCeeeccccchHhhhhhhheeEeec
Confidence 3456777889999999999999 99999999999999999999888664443
No 62
>KOG2903 consensus Predicted glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=95.38 E-value=0.0032 Score=43.99 Aligned_cols=49 Identities=20% Similarity=0.306 Sum_probs=39.0
Q ss_pred cCHHHHHHHHHHHHHHHHHhhhcCCCCC--ceeecCCcchhHHHHHHHHHHH
Q 041675 4 STGQVLENAMKAALEMLQTVEKHGPGEK--KFFNGDDIGLADLAFGAIAYWL 53 (71)
Q Consensus 4 ~~ge~~e~~~~~~~~~l~~le~~~L~~~--~ff~G~~~~~aDi~lg~~~~~~ 53 (71)
..+|.=+.+...+-+.|+.+| ..|+++ +|+.|+++|-|||-+.+.+.+|
T Consensus 196 ~~~e~Ye~~V~~lfe~LDr~E-~vL~~~~~~f~~G~~LTeaDirLy~TiIRF 246 (319)
T KOG2903|consen 196 EKQEAYEEEVNQLFEALDRCE-DVLGKNRKYFLCGDTLTEADIRLYTTIIRF 246 (319)
T ss_pred cccchHHHHHHHHHHHHHHHH-HHHhcccceEeeccccchhheeeeeeEEee
Confidence 445666778888889999999 999864 5999999999999987755333
No 63
>KOG3029 consensus Glutathione S-transferase-related protein [General function prediction only]
Probab=94.99 E-value=0.091 Score=37.35 Aligned_cols=29 Identities=21% Similarity=0.306 Sum_probs=23.7
Q ss_pred CCCceeecCCcchhHHHHHHHHHHHHHHH
Q 041675 29 GEKKFFNGDDIGLADLAFGAIAYWLQVLE 57 (71)
Q Consensus 29 ~~~~ff~G~~~~~aDi~lg~~~~~~~~~e 57 (71)
.++||++|+.|+++|..+..+++-++.+.
T Consensus 306 knr~flGG~kPnLaDLsvfGvl~sm~gc~ 334 (370)
T KOG3029|consen 306 KNRPFLGGKKPNLADLSVFGVLRSMEGCQ 334 (370)
T ss_pred CCCCccCCCCCchhhhhhhhhhhHhhhhh
Confidence 35899999999999999988876655553
No 64
>KOG3027 consensus Mitochondrial outer membrane protein Metaxin 2, Metaxin 1-binding protein [Cell wall/membrane/envelope biogenesis; Intracellular trafficking, secretion, and vesicular transport]
Probab=94.67 E-value=0.075 Score=36.23 Aligned_cols=40 Identities=13% Similarity=0.210 Sum_probs=34.2
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAI 49 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~ 49 (71)
-++..+++...++.|+ ..|+..|||.|+.|+=+|..+.+.
T Consensus 175 ~DqVie~vdkc~~aLs-a~L~~q~yf~g~~P~elDAlvFGH 214 (257)
T KOG3027|consen 175 MDQVIEQVDKCCRALS-AQLGSQPYFTGDQPTELDALVFGH 214 (257)
T ss_pred HHHHHHHHHHHHHHHH-HHhcCCCccCCCCccHHHHHHHhh
Confidence 3566788889999999 999999999999999999886553
No 65
>KOG1695 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=93.32 E-value=0.12 Score=34.51 Aligned_cols=42 Identities=21% Similarity=0.244 Sum_probs=29.8
Q ss_pred HHHHHHHHHHhhhcCCC--CCceeecCCcchhHHHHHHHHHHHHH
Q 041675 13 MKAALEMLQTVEKHGPG--EKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 13 ~~~~~~~l~~le~~~L~--~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..+....+..++ +.|. +..|+.|+++|+||+++.-.+..+..
T Consensus 125 ~Pa~~~~~~~~~-~~L~~~~sgflvGd~lT~aDl~i~e~l~~l~~ 168 (206)
T KOG1695|consen 125 LPAKPKYFKILE-KILKKNKSGFLVGDKLTWADLVIAEHLDTLEE 168 (206)
T ss_pred ccchHHHHHHHH-HHHHhCCCCeeecCcccHHHHHHHHHHHHHHH
Confidence 335566777777 7775 34799999999999996665544333
No 66
>KOG3028 consensus Translocase of outer mitochondrial membrane complex, subunit TOM37/Metaxin 1 [Intracellular trafficking, secretion, and vesicular transport]
Probab=93.07 E-value=0.32 Score=34.51 Aligned_cols=43 Identities=26% Similarity=0.207 Sum_probs=36.6
Q ss_pred HHHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHH
Q 041675 9 LENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYW 52 (71)
Q Consensus 9 ~e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~ 52 (71)
..+......+.+..|+ +.|++..||-||+++-.|..+.+++..
T Consensus 161 e~~i~~~Aska~~~LS-~~Lgs~kffFgd~psslDa~lfs~la~ 203 (313)
T KOG3028|consen 161 EDQIYKDASKALNLLS-TLLGSKKFFFGDKPSSLDALLFSYLAI 203 (313)
T ss_pred HHHHHHHHHHHHHHHH-HHhcCceEeeCCCCchHHHHHHHHHHH
Confidence 4556677889999999 999999999999999999998776654
No 67
>KOG4244 consensus Failed axon connections (fax) protein/glutathione S-transferase-like protein [Signal transduction mechanisms]
Probab=92.97 E-value=0.073 Score=37.13 Aligned_cols=39 Identities=26% Similarity=0.238 Sum_probs=32.8
Q ss_pred HHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHH
Q 041675 11 NAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIA 50 (71)
Q Consensus 11 ~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~ 50 (71)
+.-+-++.-|+.++ ..|++++|+.|++++-+|..+.+-+
T Consensus 203 Ei~ell~rDlr~i~-~~Lg~KkflfGdkit~~DatvFgqL 241 (281)
T KOG4244|consen 203 EIDELLHRDLRAIS-DYLGDKKFLFGDKITPADATVFGQL 241 (281)
T ss_pred HHHHHHHHHHHHHH-HHhCCCccccCCCCCcceeeehhhh
Confidence 35566788899999 9999999999999999999876633
No 68
>PF14834 GST_C_4: Glutathione S-transferase, C-terminal domain; PDB: 3BBY_A.
Probab=92.87 E-value=0.27 Score=30.32 Aligned_cols=44 Identities=20% Similarity=0.210 Sum_probs=31.6
Q ss_pred HHHHHHHHHHHHHhhhcCCCC-CceeecCCcchhHHHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGE-KKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~-~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
+.+.+++...+.+.+ ..|.+ ++|+-|+ .|+||.-+++++..+..
T Consensus 42 ~~a~~~a~kL~~~a~-~ll~~g~~~LFGe-wsIAD~dlA~ml~Rl~~ 86 (117)
T PF14834_consen 42 EAAQAAAQKLIAVAE-RLLADGGPNLFGE-WSIADADLALMLNRLVT 86 (117)
T ss_dssp HHHHHHHHHHHHHHH-HHTTT--SSTTSS---HHHHHHHHHHHHHHT
T ss_pred HHHHHHHHHHHHHHH-HHhccCCCCcccc-chHHHHHHHHHHHHHHH
Confidence 455566666777777 77764 6899888 99999999999988764
No 69
>KOG0868 consensus Glutathione S-transferase [Posttranslational modification, protein turnover, chaperones]
Probab=92.64 E-value=0.096 Score=35.00 Aligned_cols=42 Identities=19% Similarity=0.231 Sum_probs=33.0
Q ss_pred HHHHHHHHHHhhhcCCC--CCceeecCCcchhHHHHHHHHHHHHH
Q 041675 13 MKAALEMLQTVEKHGPG--EKKFFNGDDIGLADLAFGAIAYWLQV 55 (71)
Q Consensus 13 ~~~~~~~l~~le~~~L~--~~~ff~G~~~~~aDi~lg~~~~~~~~ 55 (71)
..-+..+|.-|| +.|. .+.|-.||.+++||+.+.|.++-.++
T Consensus 134 q~~ItkGF~ALE-klL~~~aGkycvGDevtiADl~L~pqv~nA~r 177 (217)
T KOG0868|consen 134 QHFITKGFTALE-KLLKSHAGKYCVGDEVTIADLCLPPQVYNANR 177 (217)
T ss_pred HHHHHHhHHHHH-HHHHHccCCcccCceeehhhhccchhhhhhhh
Confidence 345677888888 7775 46899999999999999997754444
No 70
>PF11801 Tom37_C: Tom37 C-terminal domain; InterPro: IPR019564 Tom37 is one of the outer membrane proteins that make up the TOM complex for guiding cytosolic mitochondrial beta-barrel proteins from the cytosol across the outer mitochondrial membrane into the intramembrane space. In conjunction with Tom70, it guides peptides without an mitochondrial targeting sequence (MTS) into Tom40, the protein that forms the passage through the outer membrane []. It has homology with metaxin, also part of the outer mitochondrial membrane beta-barrel protein transport complex []. This entry represents outer mitochondrial membrane transport complex proteins Tom37 and metaxin.; GO: 0006626 protein targeting to mitochondrion, 0005741 mitochondrial outer membrane
Probab=85.31 E-value=2.1 Score=27.45 Aligned_cols=35 Identities=31% Similarity=0.272 Sum_probs=26.7
Q ss_pred HHHHHHHHhhhcCCCCC---ceeecCC-cchhHHHHHHHH
Q 041675 15 AALEMLQTVEKHGPGEK---KFFNGDD-IGLADLAFGAIA 50 (71)
Q Consensus 15 ~~~~~l~~le~~~L~~~---~ff~G~~-~~~aDi~lg~~~ 50 (71)
...+.+..|+ +.|++. .|+-|+. +|-+|+.+.+.+
T Consensus 112 ~a~~~l~~L~-~~L~~~~~~~~~f~~~~psslD~L~~ayL 150 (168)
T PF11801_consen 112 LAMECLSLLE-ELLGEWEEARYFFGDSKPSSLDCLAFAYL 150 (168)
T ss_pred HHHHHHHHHH-HHHhhccccccccCCCCCCHHHHHHHHHH
Confidence 3667788888 888765 7777766 999999976655
No 71
>PF04399 Glutaredoxin2_C: Glutaredoxin 2, C terminal domain; InterPro: IPR007494 Glutaredoxins [, , ], also known as thioltransferases (disulphide reductases, are small proteins of approximately one hundred amino-acid residues which utilise glutathione and NADPH as cofactors. Oxidized glutathione is regenerated by glutathione reductase. Together these components compose the glutathione system []. Glutaredoxin functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. Like thioredoxin, which functions in a similar way, glutaredoxin possesses an active centre disulphide bond []. It exists in either a reduced or an oxidized form where the two cysteine residues are linked in an intramolecular disulphide bond. Glutaredoxin has been sequenced in a variety of species. On the basis of extensive sequence similarity, it has been proposed [] that Vaccinia virus protein O2L is most probably a glutaredoxin. Finally, it must be noted that Bacteriophage T4 thioredoxin seems also to be evolutionary related. In position 5 of the pattern T4 thioredoxin has Val instead of Pro. Unlike other glutaredoxins, glutaredoxin 2 (Grx2) cannot reduce ribonucleotide reductase. Grx2 has significantly higher catalytic activity in the reduction of mixed disulphides with glutathione (GSH) compared with other glutaredoxins. The active site residues (Cys9-Pro10-Tyr11-Cys12, in Escherichia coli Grx2, P39811 from SWISSPROT), which are found at the interface between the N- and C-terminal domains are identical to other glutaredoxins, but there is no other similarity between glutaredoxin 2 and other glutaredoxins. Grx2 is structurally similar to glutathione-S-transferases (GST), but there is no obvious sequence similarity. The inter-domain contacts are mainly hydrophobic, suggesting that the two domains are unlikely to be stable on their own. Both domains are needed for correct folding and activity of Grx2. It is thought that the primary function of Grx2 is to catalyse reversible glutathionylation of proteins with GSH in cellular redox regulation including the response to oxidative stress. The N-terminal domain is IPR004045 from INTERPRO.; PDB: 1G7O_A 3IR4_A.
Probab=84.97 E-value=2.2 Score=26.65 Aligned_cols=42 Identities=17% Similarity=0.163 Sum_probs=27.9
Q ss_pred HHHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHH
Q 041675 10 ENAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWL 53 (71)
Q Consensus 10 e~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~ 53 (71)
.+..+++...|..|+ ..+......+| ++|+-||.+.|+++-+
T Consensus 58 ~~~i~~l~~~L~~Le-~ll~~~~~~n~-~LS~dDi~lFp~LR~L 99 (132)
T PF04399_consen 58 PELIAELNADLEELE-PLLASPNAVNG-ELSIDDIILFPILRSL 99 (132)
T ss_dssp HHHHHHHHHHHHHHH-HH-SCTTBTTS-S--HHHHHHHHHHHHH
T ss_pred HHHHHHHHHHHHHHH-HHhccccccCC-CCCHHHHHHHHHHhhh
Confidence 456778888888888 77764333344 8999999988876543
No 72
>cd03199 GST_C_GRX2 GST_C family, Glutaredoxin 2 (GRX2) subfamily; composed of bacterial proteins similar to E. coli GRX2, an atypical GRX with a molecular mass of about 24kD (most GRXs range from 9-12kD). GRX2 adopts a GST fold containing an N-terminal thioredoxin-fold domain and a C-terminal alpha helical domain. It contains a redox active CXXC motif located in the N-terminal domain, but is not able to reduce ribonucleotide reductase like other GRXs. However, it catalyzes GSH-dependent protein disulfide reduction of other substrates efficiently. GRX2 is thought to function primarily in catalyzing the reversible glutathionylation of proteins in cellular redox regulation including stress responses.
Probab=76.77 E-value=4.3 Score=25.30 Aligned_cols=44 Identities=11% Similarity=0.063 Sum_probs=29.6
Q ss_pred HHHHHHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHHHHHHHH
Q 041675 11 NAMKAALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIAYWLQVL 56 (71)
Q Consensus 11 ~~~~~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~~~~~~~ 56 (71)
+..+++...|..++ ..+.... ..+..+|+-||.+.|+++=+..+
T Consensus 60 ~~i~~l~~~L~~l~-~ll~~~~-~~n~~ls~DDi~lFp~LR~Lt~v 103 (128)
T cd03199 60 QYIAALNALLEELD-PLILSSE-AVNGQLSTDDIILFPILRNLTLV 103 (128)
T ss_pred HHHHHHHHHHHHHH-HHHcCcc-ccCCcCCHHHHHHHHHHhhhhhh
Confidence 44566777777777 6664322 34557999999988877655553
No 73
>PF09236 AHSP: Alpha-haemoglobin stabilising protein; InterPro: IPR015317 Alpha-haemoglobin stabilising protein (AHSP) acts a molecular chaperone for free alpha-haemoglobin, preventing the harmful aggregation of alpha-haemoglobin during normal erythroid cell development: it specifically protects free alpha-haemoglobin from precipitation. AHSP adopts a helical secondary structure consisting of an elongated antiparallel three alpha-helix bundle []. ; GO: 0030492 hemoglobin binding, 0006457 protein folding, 0020027 hemoglobin metabolic process, 0030097 hemopoiesis, 0050821 protein stabilization; PDB: 1Y01_A 1XZY_A 3OVU_A 1W0A_A 3IA3_C 1Z8U_A 1W0B_A 1W09_A.
Probab=57.93 E-value=11 Score=22.10 Aligned_cols=21 Identities=19% Similarity=0.226 Sum_probs=18.4
Q ss_pred cCHHHHHHHHHHHHHHHHHhh
Q 041675 4 STGQVLENAMKAALEMLQTVE 24 (71)
Q Consensus 4 ~~ge~~e~~~~~~~~~l~~le 24 (71)
++.++++++.+++++.|..+.
T Consensus 54 GeqqeqdrAlqel~qeL~tla 74 (89)
T PF09236_consen 54 GEQQEQDRALQELQQELNTLA 74 (89)
T ss_dssp SSHHHHHHHHHHHHHHHHHHH
T ss_pred CChHHHHHHHHHHHHHHHHHH
Confidence 467889999999999999887
No 74
>COG1656 Uncharacterized conserved protein [Function unknown]
Probab=47.37 E-value=17 Score=23.69 Aligned_cols=16 Identities=38% Similarity=0.870 Sum_probs=14.8
Q ss_pred hhHHHHHHHHHHHHHH
Q 041675 41 LADLAFGAIAYWLQVL 56 (71)
Q Consensus 41 ~aDi~lg~~~~~~~~~ 56 (71)
++|.++|.+++|++.+
T Consensus 10 ~vD~mLG~LARwLRll 25 (165)
T COG1656 10 VVDAMLGKLARWLRLL 25 (165)
T ss_pred eHHHhHHHHHHHHHHc
Confidence 7899999999999985
No 75
>cd08200 catalase_peroxidase_2 C-terminal non-catalytic domain of catalase-peroxidases. This is a subgroup of heme-dependent peroxidases of the plant superfamily that share a heme prosthetic group and catalyze a multistep oxidative reaction involving hydrogen peroxide as the electron acceptor. Catalase-peroxidases can exhibit both catalase and broad-spectrum peroxidase activities depending on the steady-state concentration of hydrogen peroxide. These enzymes are found in many archaeal and bacterial organisms where they neutralize potentially lethal hydrogen peroxide molecules generated during photosynthesis or stationary phase. Along with related intracellular fungal and plant peroxidases, catalase-peroxidases belong to plant peroxidase superfamily. Unlike the eukaryotic enzymes, they are typically comprised of two homologous domains that probably arose via a single gene duplication event. The heme binding motif is present only in the N-terminal domain; the function of the C-terminal do
Probab=43.54 E-value=31 Score=24.47 Aligned_cols=25 Identities=24% Similarity=0.292 Sum_probs=18.7
Q ss_pred eecCCcchhHHHHHHHHHHHHHHHHHhc
Q 041675 34 FNGDDIGLADLAFGAIAYWLQVLEDVME 61 (71)
Q Consensus 34 f~G~~~~~aDi~lg~~~~~~~~~e~~~g 61 (71)
.+|..+|+||.. .+.....+|+..|
T Consensus 93 ~~~~~vS~ADLi---vLaG~vAiE~agg 117 (297)
T cd08200 93 SGGKKVSLADLI---VLGGCAAVEKAAK 117 (297)
T ss_pred cCCccccHHHHH---HHHhHHHHHHHHh
Confidence 356689999998 5666667777766
No 76
>KOG1147 consensus Glutamyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]
Probab=28.79 E-value=45 Score=26.14 Aligned_cols=35 Identities=17% Similarity=0.225 Sum_probs=25.5
Q ss_pred HHHHHHHHhhhcCCCCCceeecCCcchhHHHHHHHH
Q 041675 15 AALEMLQTVEKHGPGEKKFFNGDDIGLADLAFGAIA 50 (71)
Q Consensus 15 ~~~~~l~~le~~~L~~~~ff~G~~~~~aDi~lg~~~ 50 (71)
++...+..++ ..|.-..|+.|.++|.||+++-+.+
T Consensus 92 ~~s~~~~~ld-~~l~~~t~lvg~sls~Ad~aiw~~l 126 (712)
T KOG1147|consen 92 EISSSLSELD-KFLVLRTFLVGNSLSIADFAIWGAL 126 (712)
T ss_pred HHHHHHHHHH-hhhhHHHHhhccchhHHHHHHHHHH
Confidence 3445566666 6665567999999999999966655
No 77
>PF15471 TMEM171: Transmembrane protein family 171
Probab=27.49 E-value=1.1e+02 Score=21.84 Aligned_cols=51 Identities=16% Similarity=0.157 Sum_probs=34.3
Q ss_pred HHHHHHHHHhhhcCCC------CCceeecCCcchhHHHHHHHHHHHHHH-HHHhccccC
Q 041675 14 KAALEMLQTVEKHGPG------EKKFFNGDDIGLADLAFGAIAYWLQVL-EDVMEVNDG 65 (71)
Q Consensus 14 ~~~~~~l~~le~~~L~------~~~ff~G~~~~~aDi~lg~~~~~~~~~-e~~~g~~~~ 65 (71)
+.-+..|.+.+ +.+. ++.|++|++=-+|-+.+..++--...+ -.+.|++++
T Consensus 76 ARSrArL~lr~-~q~~g~Q~d~d~~f~CgesrQFaQ~LIFGFLFLTSGmLISvLGiWVP 133 (319)
T PF15471_consen 76 ARSRARLQLRE-RQLQGEQVDPDTAFFCGESRQFAQFLIFGFLFLTSGMLISVLGIWVP 133 (319)
T ss_pred hhhHHHHHHHH-HHhhcccCCCCceEEecCCcchhHHHHHHHHHHhhhhhhhhheeeec
Confidence 33455555555 5553 468999999999999877766444433 677788775
No 78
>COG1509 KamA Lysine 2,3-aminomutase [Amino acid transport and metabolism]
Probab=25.05 E-value=73 Score=23.38 Aligned_cols=55 Identities=20% Similarity=0.225 Sum_probs=41.0
Q ss_pred HHHHHHHHHHHhhhcCC--CCCceeecCCcchhHHHHHHHHHHHHHHHHHhccccCCc
Q 041675 12 AMKAALEMLQTVEKHGP--GEKKFFNGDDIGLADLAFGAIAYWLQVLEDVMEVNDGCR 67 (71)
Q Consensus 12 ~~~~~~~~l~~le~~~L--~~~~ff~G~~~~~aDi~lg~~~~~~~~~e~~~g~~~~~~ 67 (71)
.++++...++-+. +.- .+--+-|||-+++.|-.+..++..++.+.++..+.+.+|
T Consensus 142 ~~~~~~~al~YIa-~hPeI~eVllSGGDPL~ls~~~L~~ll~~L~~IpHv~iiRi~TR 198 (369)
T COG1509 142 NKEEWDKALDYIA-AHPEIREVLLSGGDPLSLSDKKLEWLLKRLRAIPHVKIIRIGTR 198 (369)
T ss_pred CHHHHHHHHHHHH-cCchhheEEecCCCccccCHHHHHHHHHHHhcCCceeEEEeecc
Confidence 4556666666665 332 244567999999999999999999999888877777665
No 79
>PF15342 FAM212: FAM212 family
Probab=23.58 E-value=86 Score=17.18 Aligned_cols=19 Identities=32% Similarity=0.648 Sum_probs=13.9
Q ss_pred cCCCCCceeecCCcchhHHH
Q 041675 26 HGPGEKKFFNGDDIGLADLA 45 (71)
Q Consensus 26 ~~L~~~~ff~G~~~~~aDi~ 45 (71)
+.....|.+.||+. +||.+
T Consensus 34 r~RnRQPLVLGDN~-FADLV 52 (62)
T PF15342_consen 34 RGRNRQPLVLGDNV-FADLV 52 (62)
T ss_pred ccccCCCeeecccH-HHHHH
Confidence 33345699999975 89976
No 80
>PF00126 HTH_1: Bacterial regulatory helix-turn-helix protein, lysR family; InterPro: IPR000847 Numerous bacterial transcription regulatory proteins bind DNA via a helix-turn-helix (HTH) motif. These proteins are very diverse, but for convenience may be grouped into subfamilies on the basis of sequence similarity. One such family, the lysR family, groups together a range of proteins, including ampR, catM, catR, cynR, cysB, gltC, iciA, ilvY, irgB, lysR, metR, mkaC, mleR, nahR, nhaR, nodD, nolR, oxyR, pssR, rbcR, syrM, tcbR, tfdS and trpI [, , , , ]. The majority of these proteins appear to be transcription activators and most are known to negatively regulate their own expression. All possess a potential HTH DNA-binding motif towards their N-termini.; GO: 0003700 sequence-specific DNA binding transcription factor activity, 0006355 regulation of transcription, DNA-dependent; PDB: 3T1B_D 3SZP_A 1O7L_C 1B9N_A 1B9M_A 3FZJ_J 3FXR_B 3FXQ_A 3FXU_A 2IJL_B ....
Probab=22.17 E-value=1.1e+02 Score=15.65 Aligned_cols=22 Identities=27% Similarity=0.176 Sum_probs=16.8
Q ss_pred HHHHHHHHHHHHhccccCCccc
Q 041675 48 AIAYWLQVLEDVMEVNDGCRSQ 69 (71)
Q Consensus 48 ~~~~~~~~~e~~~g~~~~~~~~ 69 (71)
.+...+..+|+..|.+++.++.
T Consensus 29 ~vs~~i~~LE~~lg~~Lf~r~~ 50 (60)
T PF00126_consen 29 AVSRQIKQLEEELGVPLFERSG 50 (60)
T ss_dssp HHHHHHHHHHHHHTS-SEEECS
T ss_pred HHHHHHHHHHHHhCCeEEEECC
Confidence 3568888899999999888764
No 81
>COG3253 ywfI Predicted heme peroxidase involved in anaerobic stress response [General function prediction only]
Probab=21.46 E-value=1.1e+02 Score=20.96 Aligned_cols=34 Identities=32% Similarity=0.361 Sum_probs=22.3
Q ss_pred HHHHHHHHHHHhhh-cCC-CCCceeecCCcchhHHH
Q 041675 12 AMKAALEMLQTVEK-HGP-GEKKFFNGDDIGLADLA 45 (71)
Q Consensus 12 ~~~~~~~~l~~le~-~~L-~~~~ff~G~~~~~aDi~ 45 (71)
.|.++-+.|..-|+ ++. ..+|||.|..+.+.|+.
T Consensus 191 ~~v~lv~elR~~EAr~~~~~e~pff~G~~~~~~~l~ 226 (230)
T COG3253 191 AWVDLVEELRFTEARKWIGEETPFFVGRRVPLEDLP 226 (230)
T ss_pred HHHHHHHHHHHHHHHHHHhccCCeeeecccCHHHhh
Confidence 34555555555542 222 36899999999998876
No 82
>PF07182 DUF1402: Protein of unknown function (DUF1402); InterPro: IPR009842 This family consists of several hypothetical bacterial proteins of around 310 residues in length. Members of this family seem to be found exclusively in Agrobacterium, Rhizobium and Brucella species. The function of this family is unknown.
Probab=21.20 E-value=69 Score=22.69 Aligned_cols=33 Identities=15% Similarity=0.274 Sum_probs=23.2
Q ss_pred CceeecCCcchhHHHHHHHHHHHHHHHHHhccc
Q 041675 31 KKFFNGDDIGLADLAFGAIAYWLQVLEDVMEVN 63 (71)
Q Consensus 31 ~~ff~G~~~~~aDi~lg~~~~~~~~~e~~~g~~ 63 (71)
.|||.|.+||+.-|-=...+.-...+..++|..
T Consensus 172 QPfyAGQTFGLGQinPLTAL~~tD~V~~~Sg~~ 204 (303)
T PF07182_consen 172 QPFYAGQTFGLGQINPLTALMMTDMVSRVSGYP 204 (303)
T ss_pred ccccccccccccccChhHHHHHHHHHHhccCCc
Confidence 499999999998776555555555556666654
Done!