BLASTP 2.2.26 [Sep-21-2011]
Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.
Reference for compositional score matrix adjustment: Altschul, Stephen F.,
John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr Morgulis,
Alejandro A. Schaffer, and Yi-Kuo Yu (2005) "Protein database searches
using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109.
Query= 042773
(91 letters)
Database: pdbaa
62,578 sequences; 14,973,337 total letters
Searching..................................................done
>pdb|2RH8|A Chain A, Structure Of Apo Anthocyanidin Reductase From Vitis
Vinifera
pdb|3HFS|A Chain A, Structure Of Apo Anthocyanidin Reductase From Vitis
Vinifera
pdb|3HFS|B Chain B, Structure Of Apo Anthocyanidin Reductase From Vitis
Vinifera
Length = 338
Score = 37.0 bits (84), Expect = 0.003, Method: Composition-based stats.
Identities = 20/45 (44%), Positives = 27/45 (60%), Gaps = 5/45 (11%)
Query: 47 VEGCKGVFCVATPRTL--EDPVGLEKELALPAVQGTLNVLEAAKR 89
+ GC VF VATP EDP E ++ PA+QG +NV++A R
Sbjct: 78 IAGCDFVFHVATPVHFASEDP---ENDMIKPAIQGVVNVMKACTR 119
>pdb|2C29|D Chain D, Structure Of Dihydroflavonol Reductase From Vitis Vinifera
At 1.8 A.
pdb|2C29|F Chain F, Structure Of Dihydroflavonol Reductase From Vitis Vinifera
At 1.8 A.
pdb|2IOD|A Chain A, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol-4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|2IOD|B Chain B, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol-4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|2IOD|C Chain C, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol-4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|2IOD|D Chain D, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol-4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|2NNL|D Chain D, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol-4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|2NNL|F Chain F, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol-4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3C1T|A Chain A, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3C1T|B Chain B, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3C1T|C Chain C, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3C1T|D Chain D, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3BXX|A Chain A, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3BXX|B Chain B, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3BXX|C Chain C, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3BXX|D Chain D, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3BXX|E Chain E, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
pdb|3BXX|F Chain F, Binding Of Two Substrate Analogue Molecules To
Dihydroflavonol 4-Reductase Alters The Functional
Geometry Of The Catalytic Site
Length = 337
Score = 35.0 bits (79), Expect = 0.012, Method: Composition-based stats.
Identities = 22/61 (36%), Positives = 33/61 (54%), Gaps = 8/61 (13%)
Query: 31 SRLAYWTPTLFN-GRF--TVEGCKGVFCVATPRTLE--DPVGLEKELALPAVQGTLNVLE 85
+ L W L + G F ++GC GVF VATP E DP E E+ P ++G L +++
Sbjct: 56 THLTLWKADLADEGSFDEAIKGCTGVFHVATPMDFESKDP---ENEVIKPTIEGMLGIMK 112
Query: 86 A 86
+
Sbjct: 113 S 113
Database: pdbaa
Posted date: Mar 3, 2013 10:34 PM
Number of letters in database: 14,973,337
Number of sequences in database: 62,578
Lambda K H
0.323 0.138 0.452
Lambda K H
0.267 0.0410 0.140
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 2,789,375
Number of Sequences: 62578
Number of extensions: 97788
Number of successful extensions: 198
Number of sequences better than 100.0: 2
Number of HSP's better than 100.0 without gapping: 1
Number of HSP's successfully gapped in prelim test: 1
Number of HSP's that attempted gapping in prelim test: 197
Number of HSP's gapped (non-prelim): 2
length of query: 91
length of database: 14,973,337
effective HSP length: 58
effective length of query: 33
effective length of database: 11,343,813
effective search space: 374345829
effective search space used: 374345829
T: 11
A: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 45 (21.9 bits)