BLASTP 2.2.26 [Sep-21-2011]
Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.
Reference for compositional score matrix adjustment: Altschul, Stephen F.,
John C. Wootton, E. Michael Gertz, Richa Agarwala, Aleksandr Morgulis,
Alejandro A. Schaffer, and Yi-Kuo Yu (2005) "Protein database searches
using compositionally adjusted substitution matrices", FEBS J. 272:5101-5109.
Query= 044197
(202 letters)
Database: pdbaa
62,578 sequences; 14,973,337 total letters
Searching..................................................done
>pdb|1GME|A Chain A, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
pdb|1GME|B Chain B, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
pdb|1GME|C Chain C, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
pdb|1GME|D Chain D, Crystal Structure And Assembly Of An Eukaryotic Small Heat
Shock Protein
Length = 151
Score = 88.2 bits (217), Expect = 3e-18, Method: Compositional matrix adjust.
Identities = 63/149 (42%), Positives = 82/149 (55%), Gaps = 5/149 (3%)
Query: 35 QSPFFDMMFPMTEEPLRVLEQTPLTIAKGADHHQTLALARADLMETPTAHVITLDILGMK 94
+S FD + +P I+ G A AR D ETP AHV D+ G+K
Sbjct: 6 RSNVFDPFADLWADPFDTFRSIVPAISGGGSETAAFANARMDWKETPEAHVFKADLPGVK 65
Query: 95 KDNVKIEVEENRVLRVSGERKSNDYYKEGVEGEKWHRAERTFGKFWRQFRMPMSADLDHI 154
K+ VK+EVE+ VL VSGER K +KWHR ER+ GKF R+FR+ A ++ +
Sbjct: 66 KEEVKVEVEDGNVLVVSGERTKEKEDKN----DKWHRVERSSGKFVRRFRLLEDAKVEEV 121
Query: 155 KAHMENGILRVTEPKLAEEKKRQPKVINI 183
KA +ENG+L VT PK AE KK + K I I
Sbjct: 122 KAGLENGVLTVTVPK-AEVKKPEVKAIQI 149
>pdb|2BYU|A Chain A, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|B Chain B, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|C Chain C, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|D Chain D, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|E Chain E, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|F Chain F, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|G Chain G, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|H Chain H, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|I Chain I, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|J Chain J, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|K Chain K, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
pdb|2BYU|L Chain L, Negative Stain Em Reconstruction Of M.Tuberculosis
Acr1(Hsp 16.3) Fitted With Wheat Shsp Dimer
Length = 101
Score = 75.9 bits (185), Expect = 1e-14, Method: Compositional matrix adjust.
Identities = 50/99 (50%), Positives = 64/99 (64%), Gaps = 4/99 (4%)
Query: 73 ARADLMETPTAHVITLDILGMKKDNVKIEVEENRVLRVSGERKSNDYYKEGVEGEKWHRA 132
AR D ETP AHV D+ G+KK+ VK+EVE+ VL VSGER K +KWHR
Sbjct: 2 ARMDWKETPEAHVFKADLPGVKKEEVKVEVEDGNVLVVSGERTKEKEDKN----DKWHRV 57
Query: 133 ERTFGKFWRQFRMPMSADLDHIKAHMENGILRVTEPKLA 171
ER+ GKF R+FR+ A ++ +KA +ENG+L VT PK A
Sbjct: 58 ERSSGKFVRRFRLLEDAKVEEVKAGLENGVLTVTVPKAA 96
>pdb|2H50|A Chain A, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|B Chain B, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|C Chain C, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|D Chain D, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|E Chain E, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|F Chain F, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|G Chain G, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|H Chain H, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|I Chain I, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|J Chain J, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|K Chain K, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|L Chain L, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|M Chain M, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|N Chain N, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|O Chain O, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|P Chain P, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|Q Chain Q, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|R Chain R, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|S Chain S, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|T Chain T, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|U Chain U, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|V Chain V, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|W Chain W, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H50|X Chain X, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|A Chain A, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|B Chain B, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|C Chain C, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|D Chain D, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|E Chain E, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|F Chain F, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|G Chain G, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|H Chain H, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|I Chain I, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|J Chain J, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|K Chain K, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|L Chain L, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|M Chain M, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|N Chain N, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|O Chain O, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|P Chain P, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|Q Chain Q, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|R Chain R, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|S Chain S, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|T Chain T, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|U Chain U, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|V Chain V, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|W Chain W, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
pdb|2H53|X Chain X, Multiple Distinct Assemblies Reveal Conformational
Flexibility In The Small Heat Shock Protein Hsp26
Length = 93
Score = 73.9 bits (180), Expect = 5e-14, Method: Compositional matrix adjust.
Identities = 49/97 (50%), Positives = 63/97 (64%), Gaps = 4/97 (4%)
Query: 73 ARADLMETPTAHVITLDILGMKKDNVKIEVEENRVLRVSGERKSNDYYKEGVEGEKWHRA 132
AR D ETP AHV D+ G+KK+ VK+EVE+ VL VSGER K +KWHR
Sbjct: 1 ARMDWKETPEAHVFKADLPGVKKEEVKVEVEDGNVLVVSGERTKEKEDK----NDKWHRV 56
Query: 133 ERTFGKFWRQFRMPMSADLDHIKAHMENGILRVTEPK 169
ER+ GKF R+FR+ A ++ +KA +ENG+L VT PK
Sbjct: 57 ERSSGKFVRRFRLLEDAKVEEVKAGLENGVLTVTVPK 93
>pdb|3GT6|A Chain A, Crystal Structure Of The Hspa From Xanthomonas Axonopodis
pdb|3GT6|B Chain B, Crystal Structure Of The Hspa From Xanthomonas Axonopodis
pdb|3GUF|A Chain A, Crystal Structure Of The Hspa From Xanthomonas Axonopodis
pdb|3GUF|B Chain B, Crystal Structure Of The Hspa From Xanthomonas Axonopodis
Length = 103
Score = 60.1 bits (144), Expect = 7e-10, Method: Compositional matrix adjust.
Identities = 33/98 (33%), Positives = 55/98 (56%), Gaps = 5/98 (5%)
Query: 72 LARADLMETPTAHVITLDILGMKKDNVKIEVEENRVLRVSGERKSNDYYKEGVEGEKWHR 131
+ R D+ E V+ D+ G+ +++++++ +L + GERKS + E E++ R
Sbjct: 7 VPRVDIKEEVNHFVLYADLPGIDPSQIEVQMDKG-ILSIRGERKS----ESSTETERFSR 61
Query: 132 AERTFGKFWRQFRMPMSADLDHIKAHMENGILRVTEPK 169
ER +G F R+F +P SAD D I A NG+L + PK
Sbjct: 62 IERRYGSFHRRFALPDSADADGITAAGRNGVLEIRIPK 99
>pdb|3GLA|A Chain A, Crystal Structure Of The Hspa From Xanthomonas Axonopodis
pdb|3GLA|B Chain B, Crystal Structure Of The Hspa From Xanthomonas Axonopodis
Length = 100
Score = 60.1 bits (144), Expect = 7e-10, Method: Compositional matrix adjust.
Identities = 33/98 (33%), Positives = 55/98 (56%), Gaps = 5/98 (5%)
Query: 72 LARADLMETPTAHVITLDILGMKKDNVKIEVEENRVLRVSGERKSNDYYKEGVEGEKWHR 131
+ R D+ E V+ D+ G+ +++++++ +L + GERKS + E E++ R
Sbjct: 4 VPRVDIKEEVNHFVLYADLPGIDPSQIEVQMDKG-ILSIRGERKS----ESSTETERFSR 58
Query: 132 AERTFGKFWRQFRMPMSADLDHIKAHMENGILRVTEPK 169
ER +G F R+F +P SAD D I A NG+L + PK
Sbjct: 59 IERRYGSFHRRFALPDSADADGITAAGRNGVLEIRIPK 96
>pdb|1EER|B Chain B, Crystal Structure Of Human Erythropoietin Complexed To Its
Receptor At 1.9 Angstroms
pdb|1EER|C Chain C, Crystal Structure Of Human Erythropoietin Complexed To Its
Receptor At 1.9 Angstroms
Length = 227
Score = 29.3 bits (64), Expect = 1.5, Method: Compositional matrix adjust.
Identities = 29/101 (28%), Positives = 46/101 (45%), Gaps = 11/101 (10%)
Query: 60 IAKGADHHQTLALARADLMETP-TAHV-ITLDI-LGMKKDNV-KIEVEENRVLRVSGERK 115
+A+ AD + L ETP T+H+ +D+ G +V ++E+ E R V +
Sbjct: 129 VARLADESGHVVLRWLPPPETPMTSHIRYEVDVSAGQGAGSVQRVEILEGRTECVLSNLR 188
Query: 116 SNDYYKEGVEGEKWHRAERTFGKFWRQFRMPMS----ADLD 152
Y V AE +FG FW ++ P+S +DLD
Sbjct: 189 GRTRYTFAVRARM---AEPSFGGFWSEWSEPVSLLTPSDLD 226
>pdb|1CN4|A Chain A, Erythropoietin Complexed With Extracellular Domains Of
Erythropoietin Receptor
pdb|1CN4|B Chain B, Erythropoietin Complexed With Extracellular Domains Of
Erythropoietin Receptor
Length = 228
Score = 29.3 bits (64), Expect = 1.6, Method: Compositional matrix adjust.
Identities = 29/101 (28%), Positives = 46/101 (45%), Gaps = 11/101 (10%)
Query: 60 IAKGADHHQTLALARADLMETP-TAHV-ITLDI-LGMKKDNV-KIEVEENRVLRVSGERK 115
+A+ AD + L ETP T+H+ +D+ G +V ++E+ E R V +
Sbjct: 131 VARLADESGHVVLRWLPPPETPMTSHIRYEVDVSAGQGAGSVQRVEILEGRTECVLSNLR 190
Query: 116 SNDYYKEGVEGEKWHRAERTFGKFWRQFRMPMS----ADLD 152
Y V AE +FG FW ++ P+S +DLD
Sbjct: 191 GRTRYTFAVRARM---AEPSFGGFWSEWSEPVSLLTPSDLD 228
>pdb|3ACT|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Histidine Mutant
pdb|3ACT|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Histidine Mutant
Length = 842
Score = 27.7 bits (60), Expect = 4.1, Method: Composition-based stats.
Identities = 12/30 (40%), Positives = 16/30 (53%)
Query: 137 GKFWRQFRMPMSADLDHIKAHMENGILRVT 166
G W +P+ ADLDH +A G R+T
Sbjct: 98 GDVWTPSWLPVKADLDHFEARHGLGYSRIT 127
>pdb|3AFJ|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Triple Mutant
pdb|3AFJ|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Triple Mutant
Length = 842
Score = 27.7 bits (60), Expect = 4.2, Method: Composition-based stats.
Identities = 12/30 (40%), Positives = 16/30 (53%)
Query: 137 GKFWRQFRMPMSADLDHIKAHMENGILRVT 166
G W +P+ ADLDH +A G R+T
Sbjct: 98 GDVWTPSWLPVKADLDHFEARHGLGYSRIT 127
>pdb|3ACS|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase W488f Mutant
pdb|3ACS|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase W488f Mutant
Length = 842
Score = 27.7 bits (60), Expect = 4.2, Method: Composition-based stats.
Identities = 12/30 (40%), Positives = 16/30 (53%)
Query: 137 GKFWRQFRMPMSADLDHIKAHMENGILRVT 166
G W +P+ ADLDH +A G R+T
Sbjct: 98 GDVWTPSWLPVKADLDHFEARHGLGYSRIT 127
>pdb|2CQS|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Crystallized From Ammonium Sulfate
pdb|2CQS|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Crystallized From Ammonium Sulfate
pdb|2CQT|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Crystallized From SodiumPOTASSIUM
PHOSPHATE
pdb|2CQT|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Crystallized From SodiumPOTASSIUM
PHOSPHATE
pdb|3QFY|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Complexed With Sulfate And Isofagomine
pdb|3QFY|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Complexed With Sulfate And Isofagomine
pdb|3QFZ|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Complexed With Sulfate And
1-Deoxynojirimycin
pdb|3QFZ|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Complexed With Sulfate And
1-Deoxynojirimycin
pdb|3QG0|A Chain A, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Complexed With Phosphate And
1-Deoxynojirimycin
pdb|3QG0|B Chain B, Crystal Structure Of Cellvibrio Gilvus Cellobiose
Phosphorylase Complexed With Phosphate And
1-Deoxynojirimycin
Length = 842
Score = 27.7 bits (60), Expect = 4.2, Method: Composition-based stats.
Identities = 12/30 (40%), Positives = 16/30 (53%)
Query: 137 GKFWRQFRMPMSADLDHIKAHMENGILRVT 166
G W +P+ ADLDH +A G R+T
Sbjct: 98 GDVWTPSWLPVKADLDHFEARHGLGYSRIT 127
>pdb|4ELD|A Chain A, Crystal Structure Of An Activated Variant Of Small Heat
Shock Protein Hsp16.5
pdb|4ELD|B Chain B, Crystal Structure Of An Activated Variant Of Small Heat
Shock Protein Hsp16.5
Length = 161
Score = 27.7 bits (60), Expect = 4.6, Method: Compositional matrix adjust.
Identities = 15/47 (31%), Positives = 24/47 (51%), Gaps = 3/47 (6%)
Query: 138 KFWRQFRMPMSADLDHIKAHMENGILRVTEPKLAEEKKRQPKVINID 184
+ +R ++P + ++ A ENG+L V PK K K INI+
Sbjct: 118 EIYRTIKLPATVKEENASAKFENGVLSVILPKAESSIK---KGINIE 161
>pdb|1SHS|A Chain A, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|B Chain B, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|C Chain C, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|D Chain D, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|E Chain E, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|F Chain F, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|G Chain G, Small Heat Shock Protein From Methanococcus Jannaschii
pdb|1SHS|H Chain H, Small Heat Shock Protein From Methanococcus Jannaschii
Length = 147
Score = 27.3 bits (59), Expect = 5.8, Method: Compositional matrix adjust.
Identities = 15/47 (31%), Positives = 24/47 (51%), Gaps = 3/47 (6%)
Query: 138 KFWRQFRMPMSADLDHIKAHMENGILRVTEPKLAEEKKRQPKVINID 184
+ +R ++P + ++ A ENG+L V PK K K INI+
Sbjct: 104 EIYRTIKLPATVKEENASAKFENGVLSVILPKAESSIK---KGINIE 147
Database: pdbaa
Posted date: Mar 3, 2013 10:34 PM
Number of letters in database: 14,973,337
Number of sequences in database: 62,578
Lambda K H
0.317 0.130 0.371
Lambda K H
0.267 0.0410 0.140
Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Hits to DB: 5,742,286
Number of Sequences: 62578
Number of extensions: 228250
Number of successful extensions: 521
Number of sequences better than 100.0: 45
Number of HSP's better than 100.0 without gapping: 11
Number of HSP's successfully gapped in prelim test: 34
Number of HSP's that attempted gapping in prelim test: 507
Number of HSP's gapped (non-prelim): 45
length of query: 202
length of database: 14,973,337
effective HSP length: 94
effective length of query: 108
effective length of database: 9,091,005
effective search space: 981828540
effective search space used: 981828540
T: 11
A: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 49 (23.5 bits)