Query         044925
Match_columns 103
No_of_seqs    114 out of 923
Neff          5.0 
Searched_HMMs 46136
Date          Fri Mar 29 08:07:12 2013
Command       hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/044925.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/044925hhsearch_cdd -cpu 12 -v 0 

 No Hit                             Prob E-value P-value  Score    SS Cols Query HMM  Template HMM
  1 KOG3449 60S acidic ribosomal p  99.9 1.4E-26 2.9E-31  162.1   6.6   89   12-103    17-112 (112)
  2 PTZ00373 60S Acidic ribosomal   99.9 4.1E-25 8.9E-30  155.1   7.0   87   12-103    19-112 (112)
  3 PLN00138 large subunit ribosom  99.9 8.3E-25 1.8E-29  153.6   7.1   90   12-103    17-113 (113)
  4 cd05833 Ribosomal_P2 Ribosomal  99.9 1.1E-24 2.5E-29  152.0   6.9   92   10-103    14-109 (109)
  5 cd04411 Ribosomal_P1_P2_L12p R  99.9 1.7E-24 3.6E-29  150.2   6.9   89   10-102    14-105 (105)
  6 cd05831 Ribosomal_P1 Ribosomal  99.9 3.6E-23 7.8E-28  143.0   6.8   90    8-102    13-103 (103)
  7 COG2058 RPP1A Ribosomal protei  99.8 2.2E-21 4.8E-26  135.5   6.0   97    6-103    10-109 (109)
  8 PF00428 Ribosomal_60s:  60s Ac  99.8 2.8E-21 6.2E-26  129.1  -0.3   87   12-102     1-88  (88)
  9 KOG1762 60s acidic ribosomal p  99.8 6.7E-20 1.5E-24  128.9   5.4   82   21-103    15-114 (114)
 10 PRK06402 rpl12p 50S ribosomal   99.7 2.7E-17 5.7E-22  114.7   5.4   47    9-56     13-59  (106)
 11 cd05832 Ribosomal_L12p Ribosom  99.4   1E-13 2.3E-18   96.7   4.8   47    9-56     13-59  (106)
 12 TIGR03685 L21P_arch 50S riboso  99.4 1.4E-13   3E-18   95.6   5.0   47    9-56     13-59  (105)
 13 PTZ00135 60S acidic ribosomal   98.6 4.5E-08 9.7E-13   78.5   3.3   18   86-103   293-310 (310)
 14 PTZ00240 60S ribosomal protein  97.9 5.4E-06 1.2E-10   67.2   1.5   17   86-102   306-323 (323)
 15 cd04411 Ribosomal_P1_P2_L12p R  97.2 0.00027 5.8E-09   49.1   2.5   45    6-61     26-71  (105)
 16 COG2058 RPP1A Ribosomal protei  97.2 0.00029 6.2E-09   49.7   2.3   26   21-48      9-34  (109)
 17 PRK06402 rpl12p 50S ribosomal   97.1 0.00071 1.5E-08   47.3   4.0   27   21-49      9-35  (106)
 18 KOG3449 60S acidic ribosomal p  96.9 0.00072 1.6E-08   47.8   2.4   38    5-47     26-67  (112)
 19 cd05831 Ribosomal_P1 Ribosomal  96.6  0.0035 7.5E-08   43.3   4.3   27   21-49     10-36  (103)
 20 PRK04019 rplP0 acidic ribosoma  96.5   0.003 6.5E-08   50.9   4.0   38   12-55    254-292 (330)
 21 TIGR03685 L21P_arch 50S riboso  96.4   0.002 4.3E-08   44.8   2.0   26   21-48      9-34  (105)
 22 cd05832 Ribosomal_L12p Ribosom  96.1  0.0085 1.8E-07   41.9   3.9   26   21-48      9-34  (106)
 23 cd05833 Ribosomal_P2 Ribosomal  94.8   0.023 4.9E-07   39.8   2.3   13   29-41     17-29  (109)
 24 PLN00138 large subunit ribosom  91.1    0.12 2.6E-06   36.4   1.4   19   29-48     17-35  (113)
 25 PTZ00373 60S Acidic ribosomal   89.9    0.24 5.1E-06   35.0   2.0   14   29-42     19-32  (112)
 26 PTZ00240 60S ribosomal protein  84.5    0.58 1.2E-05   38.3   1.6   12   29-40    238-249 (323)
 27 PF13833 EF-hand_8:  EF-hand do  71.4     4.8  0.0001   23.1   2.5   30   12-42      4-34  (54)
 28 PF03540 TFIID_30kDa:  Transcri  68.7     4.5 9.7E-05   24.9   2.0   39   13-52      3-41  (51)
 29 KOG0031 Myosin regulatory ligh  68.5      10 0.00023   28.6   4.3   41   11-52     47-104 (171)
 30 KOG1762 60s acidic ribosomal p  68.2     3.1 6.8E-05   29.6   1.4   20   10-30     20-39  (114)
 31 PF11116 DUF2624:  Protein of u  64.1     9.7 0.00021   25.7   3.1   36   12-48     14-49  (85)
 32 PF12169 DNA_pol3_gamma3:  DNA   63.5     9.6 0.00021   26.0   3.1   32   13-49      1-32  (143)
 33 PF10281 Ish1:  Putative stress  51.1      11 0.00024   21.0   1.4   29   12-41      3-33  (38)
 34 PF03979 Sigma70_r1_1:  Sigma-7  49.1      18 0.00039   23.3   2.4   36   10-48     19-54  (82)
 35 PF07308 DUF1456:  Protein of u  45.3      23 0.00051   22.6   2.4   28   12-40     13-40  (68)
 36 PF07499 RuvA_C:  RuvA, C-termi  44.8      58  0.0013   18.8   3.9   34   16-52      4-40  (47)
 37 PF03484 B5:  tRNA synthetase B  39.0      14 0.00031   23.0   0.7   18    9-26     15-32  (70)
 38 COG5126 FRQ1 Ca2+-binding prot  38.1      52  0.0011   24.4   3.7   41   11-52     35-79  (160)
 39 PF05788 Orbi_VP1:  Orbivirus R  38.1      16 0.00035   34.8   1.1   41    1-42   1116-1166(1301)
 40 smart00874 B5 tRNA synthetase   35.2      23 0.00049   21.6   1.2   15   28-42     17-31  (71)
 41 PHA02770 hypothetical protein;  34.6      30 0.00065   22.7   1.7   19   34-52      3-21  (81)
 42 PF10815 ComZ:  ComZ;  InterPro  32.8      22 0.00047   22.4   0.8   37    3-42      4-40  (56)
 43 cd00051 EFh EF-hand, calcium b  32.8      73  0.0016   16.9   3.0   30   12-42     16-45  (63)
 44 cd05031 S-100A10_like S-100A10  32.4      50  0.0011   21.2   2.5   31   11-42     25-60  (94)
 45 smart00523 DWA Domain A in dwa  32.1      35 0.00076   23.8   1.8   26   34-59      9-34  (109)
 46 PF03575 Peptidase_S51:  Peptid  32.1      31 0.00067   24.2   1.6   50    2-53     15-64  (154)
 47 cd05027 S-100B S-100B: S-100B   32.0      60  0.0013   21.1   2.9   40   12-52     26-75  (88)
 48 COG1460 Uncharacterized protei  27.8      69  0.0015   22.8   2.7   29   13-42     80-108 (114)
 49 PRK00994 F420-dependent methyl  26.1      33 0.00071   27.7   0.9   46    2-47    124-170 (277)
 50 PRK06770 hypothetical protein;  25.9      65  0.0014   24.6   2.5   25   24-48     89-113 (180)
 51 PF00076 RRM_1:  RNA recognitio  25.8      59  0.0013   18.5   1.8   22    5-26      2-23  (70)
 52 PF03960 ArsC:  ArsC family;  I  25.7      56  0.0012   21.6   1.9   25    2-26     22-46  (110)
 53 PTZ00135 60S acidic ribosomal   25.1      36 0.00078   27.5   1.0   17   84-100   294-310 (310)
 54 PF09682 Holin_LLH:  Phage holi  25.0      79  0.0017   21.4   2.6   23   17-40     76-98  (108)
 55 PRK12402 replication factor C   24.8 1.2E+02  0.0027   23.0   3.9   37   11-51    235-271 (337)
 56 COG0317 SpoT Guanosine polypho  24.5 1.1E+02  0.0023   27.9   3.9   42   15-60    488-529 (701)
 57 PF13405 EF-hand_6:  EF-hand do  24.4      31 0.00067   17.8   0.4   16   11-26     15-31  (31)
 58 KOG0027 Calmodulin and related  24.4      97  0.0021   21.4   3.0   41   11-52     23-68  (151)
 59 PRK10853 putative reductase; P  24.1      86  0.0019   21.5   2.6   25    2-26     26-50  (118)
 60 PF13443 HTH_26:  Cro/C1-type H  23.6 1.1E+02  0.0023   17.8   2.7   38   12-51     21-58  (63)
 61 smart00803 TAF TATA box bindin  23.5 1.2E+02  0.0026   18.9   3.0   30   12-42      2-32  (65)
 62 TIGR00135 gatC glutamyl-tRNA(G  22.2      99  0.0021   20.1   2.5   30   13-43      1-30  (93)
 63 PRK00034 gatC aspartyl/glutamy  21.7   1E+02  0.0023   19.9   2.6   31   12-43      2-32  (95)
 64 PF09504 RE_Bsp6I:  Bsp6I restr  21.4      72  0.0016   24.3   1.9   32   21-52      2-48  (180)
 65 COG5126 FRQ1 Ca2+-binding prot  21.1      95   0.002   23.0   2.5   31   12-43    108-138 (160)
 66 COG1927 Mtd Coenzyme F420-depe  21.1      51  0.0011   26.4   1.1   46    2-47    124-170 (277)
 67 PF09386 ParD:  Antitoxin ParD;  21.1      93   0.002   20.8   2.2   24   28-51      6-31  (79)
 68 PF02885 Glycos_trans_3N:  Glyc  20.9 1.5E+02  0.0033   18.0   3.1   43   10-52     12-56  (66)
 69 PF04940 BLUF:  Sensors of blue  20.9      70  0.0015   21.1   1.6   24    2-25      3-26  (93)
 70 PF03165 MH1:  MH1 domain;  Int  20.4      84  0.0018   21.5   2.0   26   34-59      4-31  (103)
 71 PTZ00184 calmodulin; Provision  20.4 1.1E+02  0.0023   20.0   2.4   30   12-42    100-129 (149)
 72 PF03880 DbpA:  DbpA RNA bindin  20.1      28 0.00062   21.8  -0.4   28   21-48     38-65  (74)

No 1  
>KOG3449 consensus 60S acidic ribosomal protein P2 [Translation, ribosomal structure and biogenesis]
Probab=99.93  E-value=1.4e-26  Score=162.08  Aligned_cols=89  Identities=45%  Similarity=0.545  Sum_probs=66.2

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhh-------hcCCCCcccccccccccccCCCCccchhhhhh
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYL-------NVGSGGAHLAVAAPAVASSGLGGAALAAAVEE   84 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa-------~v~agg~a~~aaaa~aa~~~~~a~a~~~~~ee   84 (103)
                      .-+..||++||.+|| +++|.++|+.||+.|+||+|.|||+       ++++||+++++++++++  ++++++....+++
T Consensus        17 ~psa~DikkIl~sVG-~E~d~e~i~~visel~GK~i~ElIA~G~eklAsvpsGGa~~aaa~~aag--gaa~aa~~a~~~e   93 (112)
T KOG3449|consen   17 SPSASDIKKILESVG-AEIDDERINLVLSELKGKDIEELIAAGREKLASVPSGGAVAAAAAPAAG--GAAGAAPAAAKEE   93 (112)
T ss_pred             CCCHHHHHHHHHHhC-cccCHHHHHHHHHHhcCCCHHHHHHHhHHHHhcCCCCCccccccCcCCC--CCccCCccchhhh
Confidence            567899999999999 9999999999999999999999995       68877764322221111  1111222223455


Q ss_pred             hhcccccccccCCCCCCCC
Q 044925           85 KKEETKEESDDDMGLSLFD  103 (103)
Q Consensus        85 ~keeeeEE~ddDmGFgLFD  103 (103)
                      +|+||+|||||||||+|||
T Consensus        94 ~keEe~eesddDmgf~lFd  112 (112)
T KOG3449|consen   94 EKEEEKEESDDDMGFGLFD  112 (112)
T ss_pred             hhhhhcccccccccccccC
Confidence            5666669999999999998


No 2  
>PTZ00373 60S Acidic ribosomal protein P2; Provisional
Probab=99.92  E-value=4.1e-25  Score=155.09  Aligned_cols=87  Identities=31%  Similarity=0.448  Sum_probs=62.0

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhh-------hcCCCCcccccccccccccCCCCccchhhhhh
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYL-------NVGSGGAHLAVAAPAVASSGLGGAALAAAVEE   84 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa-------~v~agg~a~~aaaa~aa~~~~~a~a~~~~~ee   84 (103)
                      .+|.+||++||+++| |+++.++++.|++.|+||+|++||+       ++  ||+++++++++++  ++++++.++++++
T Consensus        19 ~pTaddI~kIL~AaG-veVd~~~~~l~~~~L~GKdI~ELIa~G~~kl~sv--gg~~~aa~a~a~~--~~~~~~~~~~~~e   93 (112)
T PTZ00373         19 NPTKKEVKNVLSAVN-ADVEDDVLDNFFKSLEGKTPHELIAAGMKKLQNI--GGGVAAAAAPAAG--AATAGAKAEAKKE   93 (112)
T ss_pred             CCCHHHHHHHHHHcC-CCccHHHHHHHHHHHcCCCHHHHHHHhHHHHhcc--cCccccccccccc--ccccccchhhhhh
Confidence            599999999999999 9999999999999999999999996       35  3322211111111  1112222233444


Q ss_pred             hhcccccccccCCCCCCCC
Q 044925           85 KKEETKEESDDDMGLSLFD  103 (103)
Q Consensus        85 ~keeeeEE~ddDmGFgLFD  103 (103)
                      +|+||+|||||||||||||
T Consensus        94 ~k~ee~ee~ddDmgf~LFd  112 (112)
T PTZ00373         94 EKKEEEEEEEDDLGFSLFG  112 (112)
T ss_pred             hcccccccccccccccccC
Confidence            4566777889999999998


No 3  
>PLN00138 large subunit ribosomal protein LP2; Provisional
Probab=99.91  E-value=8.3e-25  Score=153.60  Aligned_cols=90  Identities=37%  Similarity=0.430  Sum_probs=64.5

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhh-------hcCCCCcccccccccccccCCCCccchhhhhh
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYL-------NVGSGGAHLAVAAPAVASSGLGGAALAAAVEE   84 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa-------~v~agg~a~~aaaa~aa~~~~~a~a~~~~~ee   84 (103)
                      .+|.++|++||+++| ++++.++++.++++|+||+|++||+       ++++||+++++++++++ +++++++.++++++
T Consensus        17 ~pta~dI~~IL~AaG-vevd~~~~~~f~~~L~gK~i~eLIa~G~~kl~sv~~gg~aa~a~a~a~~-~~~~~~~~~~~~~e   94 (113)
T PLN00138         17 CPSAEDLKDILGSVG-ADADDDRIELLLSEVKGKDITELIASGREKLASVPSGGGVAVAAAAAPA-AGGAAAPAAEAKKE   94 (113)
T ss_pred             CCCHHHHHHHHHHcC-CcccHHHHHHHHHHHcCCCHHHHHHhchhccccCCCCCccccccccccc-cccccccccchhhh
Confidence            599999999999999 9999999999999999999999995       47776653332211111 00111112223334


Q ss_pred             hhcccccccccCCCCCCCC
Q 044925           85 KKEETKEESDDDMGLSLFD  103 (103)
Q Consensus        85 ~keeeeEE~ddDmGFgLFD  103 (103)
                      +|+|++||+||||||||||
T Consensus        95 ~k~e~eeE~ddDmGfgLFd  113 (113)
T PLN00138         95 EKVEEKEESDDDMGFSLFD  113 (113)
T ss_pred             hhccccccccccccccccC
Confidence            4456667889999999998


No 4  
>cd05833 Ribosomal_P2 Ribosomal protein P2. This subfamily represents the eukaryotic large ribosomal protein P2. Eukaryotic P1 and P2 are functionally equivalent to the bacterial protein L7/L12, but are not homologous to L7/L12. P2 is located in the L12 stalk, with proteins P1, P0, L11, and 28S rRNA. P1 and P2 are the only proteins in the ribosome to occur as multimers, always appearing as sets of heterodimers. Recent data indicate that eukaryotes have four copies (two heterodimers), while most archaeal species contain six copies of L12p (three homodimers). Bacteria may have four or six copies of L7/L12 (two or three homodimers) depending on the species. Experiments using S. cerevisiae P1 and P2 indicate that P1 proteins are positioned more internally with limited reactivity in the C-terminal domains, while P2 proteins seem to be more externally located and are more likely to interact with other cellular components. In lower eukaryotes, P1 and P2 are further subdivided into P1A, P1B, P2
Probab=99.91  E-value=1.1e-24  Score=151.96  Aligned_cols=92  Identities=34%  Similarity=0.351  Sum_probs=63.4

Q ss_pred             cc-cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCC--CC-cccccccccccccCCCCccchhhhhhh
Q 044925           10 QI-FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGS--GG-AHLAVAAPAVASSGLGGAALAAAVEEK   85 (103)
Q Consensus        10 ~~-~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~a--gg-~a~~aaaa~aa~~~~~a~a~~~~~ee~   85 (103)
                      ++ .+|+++|++||+++| ++|+..++..+++.|+||+|++||++...  ++ +++++++++++ +++++++..++++++
T Consensus        14 g~~~pTa~dI~~IL~AaG-veVe~~~~~lf~~~L~GKdi~eLIa~g~~kl~s~~~~~~~aa~a~-~~~a~aa~~~~~e~k   91 (109)
T cd05833          14 GNASPSAADVKKILGSVG-VEVDDEKLNKVISELEGKDVEELIAAGKEKLASVPAGAGGAAPAA-AAAAAAAAAAKKEEK   91 (109)
T ss_pred             CCCCCCHHHHHHHHHHcC-CCccHHHHHHHHHHHcCCCHHHHHHHhHhhhcCCCcccccccccc-ccccccccchhhhhh
Confidence            44 899999999999999 99999999999999999999999986443  21 11111111111 011111112334455


Q ss_pred             hcccccccccCCCCCCCC
Q 044925           86 KEETKEESDDDMGLSLFD  103 (103)
Q Consensus        86 keeeeEE~ddDmGFgLFD  103 (103)
                      |+|++||+||||||||||
T Consensus        92 kee~eee~ddDmGf~LFd  109 (109)
T cd05833          92 KEESEEESDDDMGFGLFD  109 (109)
T ss_pred             ccCCccccccccCCCCCC
Confidence            556666679999999998


No 5  
>cd04411 Ribosomal_P1_P2_L12p Ribosomal protein P1, P2, and L12p. Ribosomal proteins P1 and P2 are the eukaryotic proteins that are functionally equivalent to bacterial L7/L12. L12p is the archaeal homolog. Unlike other ribosomal proteins, the archaeal L12p and eukaryotic P1 and P2 do not share sequence similarity with their bacterial counterparts. They are part of the ribosomal stalk (called the L7/L12 stalk in bacteria), along with 28S rRNA and the proteins L11 and P0 in eukaryotes (23S rRNA, L11, and L10e in archaea). In bacterial ribosomes, L7/L12 homodimers bind the extended C-terminal helix of L10 to anchor the L7/L12 molecules to the ribosome. Eukaryotic P1/P2 heterodimers and archaeal L12p homodimers are believed to bind the L10 equivalent proteins, eukaryotic P0 and archaeal L10e, in a similar fashion. P1 and P2 (L12p, L7/L12) are the only proteins in the ribosome to occur as multimers, always appearing as sets of dimers. Recent data indicate that most archaeal species contain 
Probab=99.91  E-value=1.7e-24  Score=150.23  Aligned_cols=89  Identities=27%  Similarity=0.324  Sum_probs=62.9

Q ss_pred             cccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCCC--C-cccccccccccccCCCCccchhhhhhhh
Q 044925           10 QIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGSG--G-AHLAVAAPAVASSGLGGAALAAAVEEKK   86 (103)
Q Consensus        10 ~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~ag--g-~a~~aaaa~aa~~~~~a~a~~~~~ee~k   86 (103)
                      ++.+|.++|++||.++| ++|+.++++.++++|+|++|++||++....  + ++.+++++++   ++++++.+++++++|
T Consensus        14 g~~~ta~~I~~IL~aaG-veVe~~~~~~~~~aLaGk~V~eli~~g~~kl~~~~~~~~a~~~a---~~~~~~~~~~~~e~k   89 (105)
T cd04411          14 GKELTEDKIKELLSAAG-AEIEPERVKLFLSALNGKNIDEVISKGKELMSSQAAAAAAPAAT---AAATAEPAEKAEEAK   89 (105)
T ss_pred             CCCCCHHHHHHHHHHcC-CCcCHHHHHHHHHHHcCCCHHHHHHHHHhhccCCCCcccccccc---ccccccchhhhhhhh
Confidence            56699999999999999 999999999999999999999999865431  1 1111111111   111222223444555


Q ss_pred             cccccccccCCCCCCC
Q 044925           87 EETKEESDDDMGLSLF  102 (103)
Q Consensus        87 eeeeEE~ddDmGFgLF  102 (103)
                      +|++||||||||||||
T Consensus        90 ~ee~eE~dddmgf~LF  105 (105)
T cd04411          90 EEEEEEEDEDFGFGLF  105 (105)
T ss_pred             cccccccccccCcccC
Confidence            6677888999999999


No 6  
>cd05831 Ribosomal_P1 Ribosomal protein P1. This subfamily represents the eukaryotic large ribosomal protein P1. Eukaryotic P1 and P2 are functionally equivalent to the bacterial protein L7/L12, but are not homologous to L7/L12. P1 is located in the L12 stalk, with proteins P2, P0, L11, and 28S rRNA. P1 and P2 are the only proteins in the ribosome to occur as multimers, always appearing as sets of heterodimers. Recent data indicate that eukaryotes have four copies (two heterodimers), while most archaeal species contain six copies of L12p (three homodimers) and bacteria may have four or six copies (two or three homodimers), depending on the species. Experiments using S. cerevisiae P1 and P2 indicate that P1 proteins are positioned more internally with limited reactivity in the C-terminal domains, while P2 proteins seem to be more externally located and are more likely to interact with other cellular components. In lower eukaryotes, P1 and P2 are further subdivided into P1A, P1B, P2A, and
Probab=99.88  E-value=3.6e-23  Score=142.96  Aligned_cols=90  Identities=39%  Similarity=0.457  Sum_probs=67.2

Q ss_pred             cccccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCCCCcc-cccccccccccCCCCccchhhhhhhh
Q 044925            8 TVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGSGGAH-LAVAAPAVASSGLGGAALAAAVEEKK   86 (103)
Q Consensus         8 ~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~agg~a-~~aaaa~aa~~~~~a~a~~~~~ee~k   86 (103)
                      .-++.+|.++|++||+++| ++++..+++.+++.|+||+|++||++++++|++ +++++++ +   ++++..+++++++|
T Consensus        13 d~~~~~Tae~I~~ilkAaG-veve~~~~~~f~~~L~gk~i~elIa~~~~~~~~aap~a~~a-~---~~~~~~~~~~~~kk   87 (103)
T cd05831          13 DDGIEITADNINALLKAAG-VNVEPYWPGLFAKALEGKDIKDLLSNVGGGGGGAAPAAAAA-A---AAAAAAEAKKEEKK   87 (103)
T ss_pred             cCCCCCCHHHHHHHHHHcC-CcccHHHHHHHHHHHcCCCHHHHhhcccccccccccccccc-c---cccccccchhhhcc
Confidence            3478899999999999999 999999999999999999999999998765543 2222111 1   11111223345556


Q ss_pred             cccccccccCCCCCCC
Q 044925           87 EETKEESDDDMGLSLF  102 (103)
Q Consensus        87 eeeeEE~ddDmGFgLF  102 (103)
                      ++++||+|||||||||
T Consensus        88 ~e~eee~d~dmgfglF  103 (103)
T cd05831          88 EEEEEESDDDMGFGLF  103 (103)
T ss_pred             cccccccccccccccC
Confidence            6677778999999999


No 7  
>COG2058 RPP1A Ribosomal protein L12E/L44/L45/RPP1/RPP2 [Translation, ribosomal structure and biogenesis]
Probab=99.84  E-value=2.2e-21  Score=135.53  Aligned_cols=97  Identities=31%  Similarity=0.338  Sum_probs=67.3

Q ss_pred             eecccccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCCCCcc-cccccccccccCCCCccc--hhhh
Q 044925            6 MDTVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGSGGAH-LAVAAPAVASSGLGGAAL--AAAV   82 (103)
Q Consensus         6 ~~~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~agg~a-~~aaaa~aa~~~~~a~a~--~~~~   82 (103)
                      +...++++|+++|+++|.++| |+|+..+++.|++.|+||||+++|.+....-++ +++++++++++++.+++.  .++.
T Consensus        10 L~~agkei~e~~l~~vl~aaG-veve~~r~k~lvaaLeg~~idE~i~~~~~~~~a~a~a~aaaa~~A~~~~a~~~~ea~e   88 (109)
T COG2058          10 LHLAGKEITEDNLKSVLEAAG-VEVEEARAKALVAALEGVDIDEVIKNAAEAPAAAAAAGAAAAAAAGAEAAAEADEAEE   88 (109)
T ss_pred             HHHccCcCCHHHHHHHHHHcC-CCccHHHHHHHHHHhcCCCHHHHHHHhcccccccCCcccccccccccccccchhhHHH
Confidence            356789999999999999999 999999999999999999999999876543211 111111110011111111  2223


Q ss_pred             hhhhcccccccccCCCCCCCC
Q 044925           83 EEKKEETKEESDDDMGLSLFD  103 (103)
Q Consensus        83 ee~keeeeEE~ddDmGFgLFD  103 (103)
                      ++++++.+||+++||||+|||
T Consensus        89 Ee~eEe~~EE~~~~~lf~LF~  109 (109)
T COG2058          89 EEKEEEAEEESDDDMLFGLFG  109 (109)
T ss_pred             HHhhhchhhcccccchhhccC
Confidence            334556678889999999998


No 8  
>PF00428 Ribosomal_60s:  60s Acidic ribosomal protein;  InterPro: IPR001813 Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits.  Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ]. The 60S acidic ribosomal protein plays an important role in the elongation step of protein synthesis. This family includes archaebacterial L12, eukaryotic P0, P1 and P2 []. Some of the proteins in this family are allergens. Allergies are hypersensitivity reactions of the immune system to specific substances called allergens (such as pollen, stings, drugs, or food) that, in most people, result in no symptoms. A nomenclature system has been established for antigens (allergens) that cause IgE-mediated atopic allergies in humans [WHO/IUIS Allergen Nomenclature Subcommittee King T.P., Hoffmann D., Loewenstein H., Marsh D.G., Platts-Mills T.A.E., Thomas W. Bull. World Health Organ. 72:797-806(1994)]. This nomenclature system is defined by a designation that is composed of the first three letters of the genus; a space; the first letter of the species name; a space and an arabic number. In the event that two species names have identical designations, they are discriminated from one another by adding one or more letters (as necessary) to each species designation.  The allergens in this family include allergens with the following designations: Alt a 6, Alt a 12, Cla h 3, Cla h 4 and Cla h 12.; GO: 0003735 structural constituent of ribosome, 0006414 translational elongation, 0005622 intracellular, 0005840 ribosome; PDB: 3A1Y_C 3N2D_B 2LBF_A 3IZS_t 3IZR_t 1S4J_A 2JDL_C 2W1O_B 1S4H_A 2ZKR_g.
Probab=99.80  E-value=2.8e-21  Score=129.07  Aligned_cols=87  Identities=39%  Similarity=0.386  Sum_probs=57.6

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCCCCcccccccccccccCCCCccchhhhhhhhcccc-
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGSGGAHLAVAAPAVASSGLGGAALAAAVEEKKEETK-   90 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~agg~a~~aaaa~aa~~~~~a~a~~~~~ee~keeee-   90 (103)
                      .+|+++|.++|.++| +++++.++..++++|+|++|++||++.+.+++++++++++++   ++.++++++++++|++++ 
T Consensus         1 ~pT~~~i~~vl~aag-~~v~~~~~~~~~~~l~~~~i~~li~~~~~~~~~~aaa~aaa~---aa~~~a~a~~e~kkEeeee   76 (88)
T PF00428_consen    1 EPTAENIKKVLKAAG-VEVEAIWLELFAKALEGKDIKELIANGSAGMAAAAAAAAAAA---AAAAAAAAAEEEKKEEEEE   76 (88)
T ss_dssp             S-SCCCHHHHHHHHT-HHHHHHHHHHHHHHHTTSCHHHHHHHHHHHHHHHHHHTTSSH---HHHHHHHHHSTTHHHHT--
T ss_pred             CCCHHHHHHHHHHhC-CchhHHHHHHHHHHHcCCcHHHHHhccccccccccccccccc---ccccccccchhcccccccc
Confidence            378999999999999 999999999999999999999999987765321111111100   011111222223333333 


Q ss_pred             cccccCCCCCCC
Q 044925           91 EESDDDMGLSLF  102 (103)
Q Consensus        91 EE~ddDmGFgLF  102 (103)
                      ||+|+|||||||
T Consensus        77 EEed~dmGf~LF   88 (88)
T PF00428_consen   77 EEEDDDMGFGLF   88 (88)
T ss_dssp             SS-SSSSSTTTT
T ss_pred             cccccccCcCCC
Confidence            688999999999


No 9  
>KOG1762 consensus 60s acidic ribosomal protein P1 [Translation, ribosomal structure and biogenesis]
Probab=99.80  E-value=6.7e-20  Score=128.93  Aligned_cols=82  Identities=44%  Similarity=0.570  Sum_probs=57.4

Q ss_pred             hhhhcccccccHHHHHHHHH----------------HhcCCChHHHhhhcCCCCccccccccccc-ccCC-CCccchhhh
Q 044925           21 GLVEFSFFTSQPEKIATLIK----------------LFEKRSADELYLNVGSGGAHLAVAAPAVA-SSGL-GGAALAAAV   82 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~----------------aL~gk~I~eLIa~v~agg~a~~aaaa~aa-~~~~-~a~a~~~~~   82 (103)
                      ||.--+ |+|+.+||++|+|                +|.+++|.+||+|+++||+++++..++++ ++++ +++++.+++
T Consensus        15 IL~d~~-i~it~dki~tl~kaa~v~ve~~Wp~lfakale~vni~~li~n~gag~~a~a~~~~~~~~aa~~~~aA~~~Ekk   93 (114)
T KOG1762|consen   15 ILHDDE-IEVTADKINTLTKAAGVNVEPYWPGLFAKALEGVNIKELICNVGAGGGALAAGAAAAGGAAAAGGAAAAEEKK   93 (114)
T ss_pred             hccccc-eeeehhhhhhHHHhccCcccccchhHHHHHhccCChHHHHHhcccCCccCCCccccccccccccccccchHHH
Confidence            344456 7777788877665                89999999999999987766544322211 1222 233345556


Q ss_pred             hhhhcccccccccCCCCCCCC
Q 044925           83 EEKKEETKEESDDDMGLSLFD  103 (103)
Q Consensus        83 ee~keeeeEE~ddDmGFgLFD  103 (103)
                      ++.|+|+.||+||||||||||
T Consensus        94 ~eak~EeseesddDmgfGLfd  114 (114)
T KOG1762|consen   94 EEAKKEESEESDDDMGFGLFD  114 (114)
T ss_pred             HHhhhhhhcccccccccCCCC
Confidence            667778889999999999998


No 10 
>PRK06402 rpl12p 50S ribosomal protein L12P; Reviewed
Probab=99.69  E-value=2.7e-17  Score=114.68  Aligned_cols=47  Identities=9%  Similarity=0.099  Sum_probs=44.1

Q ss_pred             ccccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCC
Q 044925            9 VQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGS   56 (103)
Q Consensus         9 ~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~a   56 (103)
                      -++.||+++|++||+++| ++|+..+++.|+++|+|+||++||.++++
T Consensus        13 ~g~~it~e~I~~IL~AAG-veVee~~~k~~v~aL~GkdIeElI~~a~~   59 (106)
T PRK06402         13 AGKEINEDNLKKVLEAAG-VEVDEARVKALVAALEDVNIEEAIKKAAA   59 (106)
T ss_pred             cCCCCCHHHHHHHHHHcC-CCccHHHHHHHHHHHcCCCHHHHHHhccc
Confidence            356999999999999999 99999999999999999999999988765


No 11 
>cd05832 Ribosomal_L12p Ribosomal protein L12p. This subfamily includes archaeal L12p, the protein that is functionally equivalent to L7/L12 in bacteria and the P1 and P2 proteins in eukaryotes. L12p is homologous to P1 and P2 but is not homologous to bacterial L7/L12. It is located in the L12 stalk, with proteins L10, L11, and 23S rRNA. L12p is the only protein in the ribosome to occur as multimers, always appearing as sets of dimers. Recent data indicate that most archaeal species contain six copies of L12p (three homodimers), while eukaryotes have four copies (two heterodimers), and bacteria may have four or six copies (two or three homodimers), depending on the species. The organization of proteins within the stalk has been characterized primarily in bacteria, where L7/L12 forms either two or three homodimers and each homodimer binds to the extended C-terminal helix of L10. L7/L12 is attached to the ribosome through L10 and is the only ribosomal protein that does not directly intera
Probab=99.45  E-value=1e-13  Score=96.66  Aligned_cols=47  Identities=11%  Similarity=0.101  Sum_probs=44.3

Q ss_pred             ccccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCC
Q 044925            9 VQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGS   56 (103)
Q Consensus         9 ~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~a   56 (103)
                      -++.||+++|++||+++| |+++..+++.|++.|+|++|+++|++++.
T Consensus        13 ~G~eITae~I~~IL~AAG-veVd~~~~~ala~aL~gkdIeElIa~~~~   59 (106)
T cd05832          13 AGKEINEENLKKVLEAAG-IEVDEARVKALVAALEEVNIDEAIKKAAV   59 (106)
T ss_pred             cCCCCCHHHHHHHHHHhC-CcccHHHHHHHHHHHcCCCHHHHHHhccc
Confidence            466999999999999999 99999999999999999999999998765


No 12 
>TIGR03685 L21P_arch 50S ribosomal protein L12P. This model represents the L12P protein of the large (50S) subunit of the archaeal ribosome.
Probab=99.44  E-value=1.4e-13  Score=95.61  Aligned_cols=47  Identities=9%  Similarity=0.086  Sum_probs=43.7

Q ss_pred             ccccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCC
Q 044925            9 VQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGS   56 (103)
Q Consensus         9 ~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~a   56 (103)
                      -++.+|.++|++||+++| |+++..+++.|++.|+|++|+++|.++.+
T Consensus        13 ~g~~iT~e~I~~IL~AAG-v~ve~~~~~~la~~L~gk~i~eli~~~~~   59 (105)
T TIGR03685        13 AGKEINEENLKAVLEAAG-VEVDEARVKALVAALEGVNIEEAIKKAAA   59 (105)
T ss_pred             cCCCCCHHHHHHHHHHhC-CcccHHHHHHHHHHHcCCCHHHHHHhhhc
Confidence            356999999999999999 99999999999999999999999987763


No 13 
>PTZ00135 60S acidic ribosomal protein P0; Provisional
Probab=98.56  E-value=4.5e-08  Score=78.53  Aligned_cols=18  Identities=56%  Similarity=0.973  Sum_probs=15.4

Q ss_pred             hcccccccccCCCCCCCC
Q 044925           86 KEETKEESDDDMGLSLFD  103 (103)
Q Consensus        86 keeeeEE~ddDmGFgLFD  103 (103)
                      ++||+|||||||||||||
T Consensus       293 ~~~~~ee~~~~~g~~lf~  310 (310)
T PTZ00135        293 PAEEEEEEEDDMGFGLFD  310 (310)
T ss_pred             ccccccCcchhccccCCC
Confidence            356778889999999998


No 14 
>PTZ00240 60S ribosomal protein P0; Provisional
Probab=97.87  E-value=5.4e-06  Score=67.21  Aligned_cols=17  Identities=53%  Similarity=0.986  Sum_probs=12.8

Q ss_pred             hcccccccccCCCCC-CC
Q 044925           86 KEETKEESDDDMGLS-LF  102 (103)
Q Consensus        86 keeeeEE~ddDmGFg-LF  102 (103)
                      ++|++||+||||||| ||
T Consensus       306 ~~~~~e~~~~d~~~~~~~  323 (323)
T PTZ00240        306 KEEEEESDEDDFGMGALF  323 (323)
T ss_pred             ccCCccCcccccCccccC
Confidence            356677888999997 55


No 15 
>cd04411 Ribosomal_P1_P2_L12p Ribosomal protein P1, P2, and L12p. Ribosomal proteins P1 and P2 are the eukaryotic proteins that are functionally equivalent to bacterial L7/L12. L12p is the archaeal homolog. Unlike other ribosomal proteins, the archaeal L12p and eukaryotic P1 and P2 do not share sequence similarity with their bacterial counterparts. They are part of the ribosomal stalk (called the L7/L12 stalk in bacteria), along with 28S rRNA and the proteins L11 and P0 in eukaryotes (23S rRNA, L11, and L10e in archaea). In bacterial ribosomes, L7/L12 homodimers bind the extended C-terminal helix of L10 to anchor the L7/L12 molecules to the ribosome. Eukaryotic P1/P2 heterodimers and archaeal L12p homodimers are believed to bind the L10 equivalent proteins, eukaryotic P0 and archaeal L10e, in a similar fashion. P1 and P2 (L12p, L7/L12) are the only proteins in the ribosome to occur as multimers, always appearing as sets of dimers. Recent data indicate that most archaeal species contain 
Probab=97.19  E-value=0.00027  Score=49.14  Aligned_cols=45  Identities=9%  Similarity=-0.063  Sum_probs=27.5

Q ss_pred             eecccccCCchhhHhhhhh-cccccccHHHHHHHHHHhcCCChHHHhhhcCCCCccc
Q 044925            6 MDTVQIFWPHNTIDSGLVE-FSFFTSQPEKIATLIKLFEKRSADELYLNVGSGGAHL   61 (103)
Q Consensus         6 ~~~~~~~~~~~~i~~~l~~-~g~vevdaekI~~li~aL~gk~I~eLIa~v~agg~a~   61 (103)
                      +..++.+|+...++.++++ -| .     +|..||.....|     +.++++||+++
T Consensus        26 L~aaGveVe~~~~~~~~~aLaG-k-----~V~eli~~g~~k-----l~~~~~~~~a~   71 (105)
T cd04411          26 LSAAGAEIEPERVKLFLSALNG-K-----NIDEVISKGKEL-----MSSQAAAAAAP   71 (105)
T ss_pred             HHHcCCCcCHHHHHHHHHHHcC-C-----CHHHHHHHHHhh-----ccCCCCccccc
Confidence            4567888888888888888 45 3     355566544322     34455444443


No 16 
>COG2058 RPP1A Ribosomal protein L12E/L44/L45/RPP1/RPP2 [Translation, ribosomal structure and biogenesis]
Probab=97.15  E-value=0.00029  Score=49.65  Aligned_cols=26  Identities=4%  Similarity=-0.038  Sum_probs=20.3

Q ss_pred             hhhhcccccccHHHHHHHHHHhcCCChH
Q 044925           21 GLVEFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      .|-.+| =+||+++|.+|++.. |.+|+
T Consensus         9 lL~~ag-kei~e~~l~~vl~aa-Gveve   34 (109)
T COG2058           9 LLHLAG-KEITEDNLKSVLEAA-GVEVE   34 (109)
T ss_pred             HHHHcc-CcCCHHHHHHHHHHc-CCCcc
Confidence            466778 699999999999965 55554


No 17 
>PRK06402 rpl12p 50S ribosomal protein L12P; Reviewed
Probab=97.11  E-value=0.00071  Score=47.32  Aligned_cols=27  Identities=11%  Similarity=0.060  Sum_probs=21.7

Q ss_pred             hhhhcccccccHHHHHHHHHHhcCCChHH
Q 044925           21 GLVEFSFFTSQPEKIATLIKLFEKRSADE   49 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~aL~gk~I~e   49 (103)
                      +|...| .+||+++|++|+++. |.++++
T Consensus         9 LL~~~g-~~it~e~I~~IL~AA-GveVee   35 (106)
T PRK06402          9 LLHSAG-KEINEDNLKKVLEAA-GVEVDE   35 (106)
T ss_pred             HHHhcC-CCCCHHHHHHHHHHc-CCCccH
Confidence            567778 799999999999976 566654


No 18 
>KOG3449 consensus 60S acidic ribosomal protein P2 [Translation, ribosomal structure and biogenesis]
Probab=96.89  E-value=0.00072  Score=47.80  Aligned_cols=38  Identities=18%  Similarity=0.205  Sum_probs=27.7

Q ss_pred             eeecccccCCchhhHhhhhhcccccccHHHHHHHHH----HhcCCCh
Q 044925            5 YMDTVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIK----LFEKRSA   47 (103)
Q Consensus         5 ~~~~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~----aL~gk~I   47 (103)
                      .+++|+.+++.+.|+.+|+++-     .-+|..||.    .|...+.
T Consensus        26 Il~sVG~E~d~e~i~~visel~-----GK~i~ElIA~G~eklAsvps   67 (112)
T KOG3449|consen   26 ILESVGAEIDDERINLVLSELK-----GKDIEELIAAGREKLASVPS   67 (112)
T ss_pred             HHHHhCcccCHHHHHHHHHHhc-----CCCHHHHHHHhHHHHhcCCC
Confidence            3678999999999999999987     234555555    5544443


No 19 
>cd05831 Ribosomal_P1 Ribosomal protein P1. This subfamily represents the eukaryotic large ribosomal protein P1. Eukaryotic P1 and P2 are functionally equivalent to the bacterial protein L7/L12, but are not homologous to L7/L12. P1 is located in the L12 stalk, with proteins P2, P0, L11, and 28S rRNA. P1 and P2 are the only proteins in the ribosome to occur as multimers, always appearing as sets of heterodimers. Recent data indicate that eukaryotes have four copies (two heterodimers), while most archaeal species contain six copies of L12p (three homodimers) and bacteria may have four or six copies (two or three homodimers), depending on the species. Experiments using S. cerevisiae P1 and P2 indicate that P1 proteins are positioned more internally with limited reactivity in the C-terminal domains, while P2 proteins seem to be more externally located and are more likely to interact with other cellular components. In lower eukaryotes, P1 and P2 are further subdivided into P1A, P1B, P2A, and
Probab=96.65  E-value=0.0035  Score=43.34  Aligned_cols=27  Identities=15%  Similarity=0.124  Sum_probs=21.8

Q ss_pred             hhhhcccccccHHHHHHHHHHhcCCChHH
Q 044925           21 GLVEFSFFTSQPEKIATLIKLFEKRSADE   49 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~aL~gk~I~e   49 (103)
                      +|...| .+||+++|++|+++. |.+++.
T Consensus        10 iL~d~~-~~~Tae~I~~ilkAa-Gveve~   36 (103)
T cd05831          10 ILHDDG-IEITADNINALLKAA-GVNVEP   36 (103)
T ss_pred             HHccCC-CCCCHHHHHHHHHHc-CCcccH
Confidence            677788 999999999999976 455553


No 20 
>PRK04019 rplP0 acidic ribosomal protein P0; Validated
Probab=96.55  E-value=0.003  Score=50.94  Aligned_cols=38  Identities=18%  Similarity=0.072  Sum_probs=27.7

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcC-CChHHHhhhcC
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEK-RSADELYLNVG   55 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~g-k~I~eLIa~v~   55 (103)
                      ++|+++++.+|..+      .-++..|...|.+ .+|.+-|.+..
T Consensus       254 ~~t~e~~~~il~kA------~~~~~ala~~~~~~~~~~~~~~~~~  292 (330)
T PRK04019        254 IVTPETADDILSKA------VAQALALAAALADKDALDEELKEVL  292 (330)
T ss_pred             CCChhhHHHHHHHH------HHHHHHHHHHhcCcccccHHHHhhc
Confidence            46677777777666      3566677778988 99999997654


No 21 
>TIGR03685 L21P_arch 50S ribosomal protein L12P. This model represents the L12P protein of the large (50S) subunit of the archaeal ribosome.
Probab=96.41  E-value=0.002  Score=44.79  Aligned_cols=26  Identities=12%  Similarity=0.034  Sum_probs=20.3

Q ss_pred             hhhhcccccccHHHHHHHHHHhcCCChH
Q 044925           21 GLVEFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      +|.-.| .+||.++|++||+.- |.+++
T Consensus         9 ll~~~g-~~iT~e~I~~IL~AA-Gv~ve   34 (105)
T TIGR03685         9 LLHSAG-KEINEENLKAVLEAA-GVEVD   34 (105)
T ss_pred             HHHhcC-CCCCHHHHHHHHHHh-CCccc
Confidence            566678 799999999999975 44444


No 22 
>cd05832 Ribosomal_L12p Ribosomal protein L12p. This subfamily includes archaeal L12p, the protein that is functionally equivalent to L7/L12 in bacteria and the P1 and P2 proteins in eukaryotes. L12p is homologous to P1 and P2 but is not homologous to bacterial L7/L12. It is located in the L12 stalk, with proteins L10, L11, and 23S rRNA. L12p is the only protein in the ribosome to occur as multimers, always appearing as sets of dimers. Recent data indicate that most archaeal species contain six copies of L12p (three homodimers), while eukaryotes have four copies (two heterodimers), and bacteria may have four or six copies (two or three homodimers), depending on the species. The organization of proteins within the stalk has been characterized primarily in bacteria, where L7/L12 forms either two or three homodimers and each homodimer binds to the extended C-terminal helix of L10. L7/L12 is attached to the ribosome through L10 and is the only ribosomal protein that does not directly intera
Probab=96.11  E-value=0.0085  Score=41.92  Aligned_cols=26  Identities=12%  Similarity=-0.014  Sum_probs=20.3

Q ss_pred             hhhhcccccccHHHHHHHHHHhcCCChH
Q 044925           21 GLVEFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      +|...| .+||+++|++||+.- |.+++
T Consensus         9 LL~~~G-~eITae~I~~IL~AA-GveVd   34 (106)
T cd05832           9 LLHYAG-KEINEENLKKVLEAA-GIEVD   34 (106)
T ss_pred             HHHhcC-CCCCHHHHHHHHHHh-CCccc
Confidence            567778 799999999999965 44444


No 23 
>cd05833 Ribosomal_P2 Ribosomal protein P2. This subfamily represents the eukaryotic large ribosomal protein P2. Eukaryotic P1 and P2 are functionally equivalent to the bacterial protein L7/L12, but are not homologous to L7/L12. P2 is located in the L12 stalk, with proteins P1, P0, L11, and 28S rRNA. P1 and P2 are the only proteins in the ribosome to occur as multimers, always appearing as sets of heterodimers. Recent data indicate that eukaryotes have four copies (two heterodimers), while most archaeal species contain six copies of L12p (three homodimers). Bacteria may have four or six copies of L7/L12 (two or three homodimers) depending on the species. Experiments using S. cerevisiae P1 and P2 indicate that P1 proteins are positioned more internally with limited reactivity in the C-terminal domains, while P2 proteins seem to be more externally located and are more likely to interact with other cellular components. In lower eukaryotes, P1 and P2 are further subdivided into P1A, P1B, P2
Probab=94.79  E-value=0.023  Score=39.76  Aligned_cols=13  Identities=0%  Similarity=0.210  Sum_probs=7.1

Q ss_pred             cccHHHHHHHHHH
Q 044925           29 TSQPEKIATLIKL   41 (103)
Q Consensus        29 evdaekI~~li~a   41 (103)
                      ++|+++|++||++
T Consensus        17 ~pTa~dI~~IL~A   29 (109)
T cd05833          17 SPSAADVKKILGS   29 (109)
T ss_pred             CCCHHHHHHHHHH
Confidence            4555555555554


No 24 
>PLN00138 large subunit ribosomal protein LP2; Provisional
Probab=91.14  E-value=0.12  Score=36.38  Aligned_cols=19  Identities=16%  Similarity=0.270  Sum_probs=14.2

Q ss_pred             cccHHHHHHHHHHhcCCChH
Q 044925           29 TSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        29 evdaekI~~li~aL~gk~I~   48 (103)
                      ++++++|++|++.. |.+++
T Consensus        17 ~pta~dI~~IL~Aa-Gvevd   35 (113)
T PLN00138         17 CPSAEDLKDILGSV-GADAD   35 (113)
T ss_pred             CCCHHHHHHHHHHc-CCccc
Confidence            68999999999965 34454


No 25 
>PTZ00373 60S Acidic ribosomal protein P2; Provisional
Probab=89.86  E-value=0.24  Score=34.98  Aligned_cols=14  Identities=0%  Similarity=0.228  Sum_probs=9.6

Q ss_pred             cccHHHHHHHHHHh
Q 044925           29 TSQPEKIATLIKLF   42 (103)
Q Consensus        29 evdaekI~~li~aL   42 (103)
                      .+++++|++||+..
T Consensus        19 ~pTaddI~kIL~Aa   32 (112)
T PTZ00373         19 NPTKKEVKNVLSAV   32 (112)
T ss_pred             CCCHHHHHHHHHHc
Confidence            47777777777754


No 26 
>PTZ00240 60S ribosomal protein P0; Provisional
Probab=84.47  E-value=0.58  Score=38.25  Aligned_cols=12  Identities=8%  Similarity=0.243  Sum_probs=5.4

Q ss_pred             cccHHHHHHHHH
Q 044925           29 TSQPEKIATLIK   40 (103)
Q Consensus        29 evdaekI~~li~   40 (103)
                      -+|.+.+.-+|.
T Consensus       238 ~pt~~si~~~i~  249 (323)
T PTZ00240        238 IPTAATIGPMLV  249 (323)
T ss_pred             CCcHHHHHHHHH
Confidence            345555544333


No 27 
>PF13833 EF-hand_8:  EF-hand domain pair; PDB: 3KF9_A 1TTX_A 1WLZ_A 1ALV_A 1NX3_A 1ALW_A 1NX2_A 1NX1_A 1NX0_A 1DF0_A ....
Probab=71.44  E-value=4.8  Score=23.11  Aligned_cols=30  Identities=13%  Similarity=0.246  Sum_probs=27.0

Q ss_pred             cCCchhhHhhhhhccccc-ccHHHHHHHHHHh
Q 044925           12 FWPHNTIDSGLVEFSFFT-SQPEKIATLIKLF   42 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~ve-vdaekI~~li~aL   42 (103)
                      .|+.+++.++|..+| +. ++.+.+..++..+
T Consensus         4 ~i~~~~~~~~l~~~g-~~~~s~~e~~~l~~~~   34 (54)
T PF13833_consen    4 KITREEFRRALSKLG-IKDLSEEEVDRLFREF   34 (54)
T ss_dssp             EEEHHHHHHHHHHTT-SSSSCHHHHHHHHHHH
T ss_pred             EECHHHHHHHHHHhC-CCCCCHHHHHHHHHhc
Confidence            578899999998889 99 9999999999966


No 28 
>PF03540 TFIID_30kDa:  Transcription initiation factor TFIID 23-30kDa subunit;  InterPro: IPR003923 Transcription initiation factor TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. The complex includes TATA binding protein (TBP) and various TBP-associated factors (TAFS). TFIID a bona fide RNA polymerase II-specific TATA-binding protein-associated factor (TAF) and is essential for viability []. TFIID acts to nucleate the transcription complex, recruiting the rest of the factors through a direct interaction with TFIIB. The TBP subunit of TFIID is sufficient for TATA-element binding and TFIIB interaction, and can support basal transcription. The protein belongs to the TAF2H family.; GO: 0006352 transcription initiation, DNA-dependent, 0005634 nucleus
Probab=68.67  E-value=4.5  Score=24.90  Aligned_cols=39  Identities=15%  Similarity=0.244  Sum_probs=33.0

Q ss_pred             CCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhh
Q 044925           13 WPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYL   52 (103)
Q Consensus        13 ~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa   52 (103)
                      ||.+=+.-.|...| ++.+.-+|..||+...-|=|.+++.
T Consensus         3 IPD~v~~~yL~~~G-~~~~D~rv~RLvSLaaQKFisdI~~   41 (51)
T PF03540_consen    3 IPDEVTDYYLERSG-FQTSDPRVKRLVSLAAQKFISDIAN   41 (51)
T ss_pred             CCHHHHHHHHHHCC-CCCCCHhHHHHHHHHHHHHHHHHHH
Confidence            56667888999999 9999999999999887777777764


No 29 
>KOG0031 consensus Myosin regulatory light chain, EF-Hand protein superfamily [Cytoskeleton]
Probab=68.48  E-value=10  Score=28.64  Aligned_cols=41  Identities=15%  Similarity=0.266  Sum_probs=34.6

Q ss_pred             ccCCchhhHhhhhhcccccccHHHHHHHHH-----------------HhcCCChHHHhh
Q 044925           11 IFWPHNTIDSGLVEFSFFTSQPEKIATLIK-----------------LFEKRSADELYL   52 (103)
Q Consensus        11 ~~~~~~~i~~~l~~~g~vevdaekI~~li~-----------------aL~gk~I~eLIa   52 (103)
                      -+|..+||+..|.++| =.++.+.|+..++                 -|.|-+.++.|-
T Consensus        47 G~IdkeDL~d~~aSlG-k~~~d~elDaM~~Ea~gPINft~FLTmfGekL~gtdpe~~I~  104 (171)
T KOG0031|consen   47 GFIDKEDLRDMLASLG-KIASDEELDAMMKEAPGPINFTVFLTMFGEKLNGTDPEEVIL  104 (171)
T ss_pred             CcccHHHHHHHHHHcC-CCCCHHHHHHHHHhCCCCeeHHHHHHHHHHHhcCCCHHHHHH
Confidence            3789999999999999 5599999999998                 667777777774


No 30 
>KOG1762 consensus 60s acidic ribosomal protein P1 [Translation, ribosomal structure and biogenesis]
Probab=68.16  E-value=3.1  Score=29.58  Aligned_cols=20  Identities=10%  Similarity=-0.017  Sum_probs=11.6

Q ss_pred             cccCCchhhHhhhhhcccccc
Q 044925           10 QIFWPHNTIDSGLVEFSFFTS   30 (103)
Q Consensus        10 ~~~~~~~~i~~~l~~~g~vev   30 (103)
                      ++.|+.+.|-.+++++| +++
T Consensus        20 ~i~it~dki~tl~kaa~-v~v   39 (114)
T KOG1762|consen   20 EIEVTADKINTLTKAAG-VNV   39 (114)
T ss_pred             ceeeehhhhhhHHHhcc-Ccc
Confidence            45566666666666666 533


No 31 
>PF11116 DUF2624:  Protein of unknown function (DUF2624);  InterPro: IPR020277 This entry contains proteins with no known function.
Probab=64.05  E-value=9.7  Score=25.72  Aligned_cols=36  Identities=0%  Similarity=0.075  Sum_probs=33.3

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChH
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      -+|.+++-+.=+..| |.++..+...+++.|+|++|.
T Consensus        14 ~iT~~eLlkyskqy~-i~it~~QA~~I~~~lr~k~in   49 (85)
T PF11116_consen   14 NITAKELLKYSKQYN-ISITKKQAEQIANILRGKNIN   49 (85)
T ss_pred             cCCHHHHHHHHHHhC-CCCCHHHHHHHHHHHhcCCCC
Confidence            468899999999999 999999999999999999885


No 32 
>PF12169 DNA_pol3_gamma3:  DNA polymerase III subunits gamma and tau domain III;  InterPro: IPR022754  This domain is found in bacteria and eukaryotes, and is approximately 110 amino acids in length. It is found in association with PF00004 from PFAM. This domain is also present in the tau subunit before it undergoes cleavage. Domains I-III are shared between the tau and the gamma subunits, while most of the DnaB-binding Domain IV and all of the alpha-interacting Domain V are unique to tau. ; GO: 0003887 DNA-directed DNA polymerase activity; PDB: 1NJF_B 3GLG_G 1XXH_I 1NJG_A 3GLF_B 3GLI_G.
Probab=63.46  E-value=9.6  Score=26.04  Aligned_cols=32  Identities=19%  Similarity=0.130  Sum_probs=18.9

Q ss_pred             CCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHH
Q 044925           13 WPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADE   49 (103)
Q Consensus        13 ~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~e   49 (103)
                      ||.++|..+|+.++     .+.+..+++++-.+|..+
T Consensus         1 It~e~V~~~lG~v~-----~~~i~~l~~ai~~~d~~~   32 (143)
T PF12169_consen    1 ITAEDVREILGLVD-----EEQIFELLDAILEGDAAE   32 (143)
T ss_dssp             B-HHHHHHHHTHTS-----THHHHHHHHHHHTT-HHH
T ss_pred             CCHHHHHHHHCCCC-----HHHHHHHHHHHHcCCHHH
Confidence            57788888888877     455666666433333333


No 33 
>PF10281 Ish1:  Putative stress-responsive nuclear envelope protein;  InterPro: IPR018803  This group of proteins, found primarily in fungi, consists of putative stress-responsive nuclear envelope protein Ish1 and homologues []. 
Probab=51.12  E-value=11  Score=21.02  Aligned_cols=29  Identities=21%  Similarity=0.327  Sum_probs=20.9

Q ss_pred             cCCchhhHhhhhhcccccccHHH--HHHHHHH
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEK--IATLIKL   41 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaek--I~~li~a   41 (103)
                      -|+.++|++-|.+.| |.+....  -+.|++.
T Consensus         3 tWs~~~L~~wL~~~g-i~~~~~~~~rd~Ll~~   33 (38)
T PF10281_consen    3 TWSDSDLKSWLKSHG-IPVPKSAKTRDELLKL   33 (38)
T ss_pred             CCCHHHHHHHHHHcC-CCCCCCCCCHHHHHHH
Confidence            489999999999999 7665432  4444443


No 34 
>PF03979 Sigma70_r1_1:  Sigma-70 factor, region 1.1;  InterPro: IPR007127 The bacterial core RNA polymerase complex, which consists of five subunits, is sufficient for transcription elongation and termination but is unable to initiate transcription. Transcription initiation from promoter elements requires a sixth, dissociable subunit called a sigma factor, which reversibly associates with the core RNA polymerase complex to form a holoenzyme []. RNA polymerase recruits alternative sigma factors as a means of switching on specific regulons. Most bacteria express a multiplicity of sigma factors. Two of these factors, sigma-70 (gene rpoD), generally known as the major or primary sigma factor, and sigma-54 (gene rpoN or ntrA) direct the transcription of a wide variety of genes. The other sigma factors, known as alternative sigma factors, are required for the transcription of specific subsets of genes.  With regard to sequence similarity, sigma factors can be grouped into two classes, the sigma-54 and sigma-70 families. Sequence alignments of the sigma70 family members reveal four conserved regions that can be further divided into subregions eg. sub-region 2.2, which may be involved in the binding of the sigma factor to the core RNA polymerase; and sub-region 4.2, which seems to harbor a DNA-binding 'helix-turn-helix' motif involved in binding the conserved -35 region of promoters recognised by the major sigma factors [, ].  This entry represents Region 1.1 which modulates DNA binding by region 2 and 4 when sigma is unbound by the core RNA polymerase [, ]. Region 1.1 is also involved in promoter binding.; GO: 0003677 DNA binding, 0006355 regulation of transcription, DNA-dependent; PDB: 2K6X_A.
Probab=49.10  E-value=18  Score=23.29  Aligned_cols=36  Identities=19%  Similarity=0.331  Sum_probs=22.9

Q ss_pred             cccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChH
Q 044925           10 QIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        10 ~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      +.++|.++|...|....   ++.++|..|+..|....|.
T Consensus        19 ~G~lT~~eI~~~L~~~~---~~~e~id~i~~~L~~~gI~   54 (82)
T PF03979_consen   19 KGYLTYDEINDALPEDD---LDPEQIDEIYDTLEDEGIE   54 (82)
T ss_dssp             HSS-BHHHHHHH-S-S------HHHHHHHHHHHHTT---
T ss_pred             cCcCCHHHHHHHcCccC---CCHHHHHHHHHHHHHCCCE
Confidence            45789999999998554   7889999999999777665


No 35 
>PF07308 DUF1456:  Protein of unknown function (DUF1456);  InterPro: IPR009921 This domain occurs in several hypothetical bacterial proteins of around 150 residues in length. The function of this domain is unknown.
Probab=45.30  E-value=23  Score=22.59  Aligned_cols=28  Identities=4%  Similarity=0.057  Sum_probs=25.4

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHH
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIK   40 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~   40 (103)
                      .++.+++-.++...| ++++.+.|.++++
T Consensus        13 ~l~d~~m~~if~l~~-~~vs~~el~a~lr   40 (68)
T PF07308_consen   13 DLKDDDMIEIFALAG-FEVSKAELSAWLR   40 (68)
T ss_pred             cCChHHHHHHHHHcC-CccCHHHHHHHHC
Confidence            467889999999999 9999999999887


No 36 
>PF07499 RuvA_C:  RuvA, C-terminal domain;  InterPro: IPR011114 In prokaryotes, RuvA, RuvB, and RuvC process the universal DNA intermediate of homologous recombination, termed Holliday junction. The tetrameric DNA helicase RuvA specifically binds to the Holliday junction and facilitates the isomerization of the junction from the stacked folded configuration to the square-planar structure []. In the RuvA tetramer, each subunit consists of three domains, I, II and III, where I and II form the major core that is responsible for Holliday junction binding and base pair rearrangements of Holliday junction executed at the crossover point, whereas domain III regulates branch migration through direct contact with RuvB. The domain represents the C-terminal domain III of RuvA. This domain plays a significant role in the ATP-dependent branch migration of the hetero-duplex through direct contact with RuvB []. Within the Holliday junction, this domain makes no interaction with the DNA.; GO: 0005524 ATP binding, 0009378 four-way junction helicase activity, 0006281 DNA repair, 0006310 DNA recombination, 0009379 Holliday junction helicase complex; PDB: 1HJP_A 1CUK_A 1C7Y_A 1IXS_A 1IXR_B 1BVS_E 2ZTC_A 2ZTD_B 2H5X_A.
Probab=44.79  E-value=58  Score=18.83  Aligned_cols=34  Identities=9%  Similarity=0.112  Sum_probs=23.9

Q ss_pred             hhhHhhhhhcccccccHHHHHHHHHHh---cCCChHHHhh
Q 044925           16 NTIDSGLVEFSFFTSQPEKIATLIKLF---EKRSADELYL   52 (103)
Q Consensus        16 ~~i~~~l~~~g~vevdaekI~~li~aL---~gk~I~eLIa   52 (103)
                      +++...|.++|   .+...+..+++.+   .+.++.++|.
T Consensus         4 ~d~~~AL~~LG---y~~~e~~~av~~~~~~~~~~~e~~ik   40 (47)
T PF07499_consen    4 EDALEALISLG---YSKAEAQKAVSKLLEKPGMDVEELIK   40 (47)
T ss_dssp             HHHHHHHHHTT---S-HHHHHHHHHHHHHSTTS-HHHHHH
T ss_pred             HHHHHHHHHcC---CCHHHHHHHHHHhhcCCCCCHHHHHH
Confidence            67888999999   4566667666655   6778888885


No 37 
>PF03484 B5:  tRNA synthetase B5 domain;  InterPro: IPR005147 Domain B5 is found in phenylalanine-tRNA synthetase beta subunits. This domain has been shown to bind DNA through a winged helix-turn-helix motif []. Phenylalanine-tRNA synthetase may influence common cellular processes via DNA binding, in addition to its aminoacylation function.; GO: 0000287 magnesium ion binding, 0003723 RNA binding, 0005524 ATP binding, 0006432 phenylalanyl-tRNA aminoacylation; PDB: 2AKW_B 1B70_B 1B7Y_B 2ALY_B 2IY5_B 2AMC_B 3PCO_D 2CXI_C 1JJC_B 1EIY_B ....
Probab=39.03  E-value=14  Score=22.98  Aligned_cols=18  Identities=17%  Similarity=-0.007  Sum_probs=8.9

Q ss_pred             ccccCCchhhHhhhhhcc
Q 044925            9 VQIFWPHNTIDSGLVEFS   26 (103)
Q Consensus         9 ~~~~~~~~~i~~~l~~~g   26 (103)
                      +|..++.+++.++|..+|
T Consensus        15 lG~~i~~~~i~~~L~~lg   32 (70)
T PF03484_consen   15 LGIDISPEEIIKILKRLG   32 (70)
T ss_dssp             HTS---HHHHHHHHHHTT
T ss_pred             hCCCCCHHHHHHHHHHCC
Confidence            455556666666666666


No 38 
>COG5126 FRQ1 Ca2+-binding protein (EF-Hand superfamily) [Signal transduction mechanisms / Cytoskeleton / Cell division and chromosome partitioning / General function prediction only]
Probab=38.15  E-value=52  Score=24.40  Aligned_cols=41  Identities=15%  Similarity=0.181  Sum_probs=33.2

Q ss_pred             ccCCchhhHhhhhhcccccccHHHHHHHHHHhc----CCChHHHhh
Q 044925           11 IFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFE----KRSADELYL   52 (103)
Q Consensus        11 ~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~----gk~I~eLIa   52 (103)
                      -.|+.+++.++|+++| ..++..-|+.++..+.    ..+..++|.
T Consensus        35 G~I~~~el~~ilr~lg-~~~s~~ei~~l~~~~d~~~~~idf~~Fl~   79 (160)
T COG5126          35 GLIDRNELGKILRSLG-FNPSEAEINKLFEEIDAGNETVDFPEFLT   79 (160)
T ss_pred             CCCcHHHHHHHHHHcC-CCCcHHHHHHHHHhccCCCCccCHHHHHH
Confidence            3588999999999999 8888888999999775    355567765


No 39 
>PF05788 Orbi_VP1:  Orbivirus RNA-dependent RNA polymerase (VP1);  InterPro: IPR008723 This family consists of the RNA-dependent RNA polymerase protein VP1 from the Orbivirus. VP1 may have both enzymatic and structural roles in the virus life cycle [].; GO: 0003723 RNA binding, 0003968 RNA-directed RNA polymerase activity, 0006351 transcription, DNA-dependent
Probab=38.11  E-value=16  Score=34.85  Aligned_cols=41  Identities=32%  Similarity=0.510  Sum_probs=35.3

Q ss_pred             Cceeeeecc----------cccCCchhhHhhhhhcccccccHHHHHHHHHHh
Q 044925            1 MRVQYMDTV----------QIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLF   42 (103)
Q Consensus         1 ~~~~~~~~~----------~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL   42 (103)
                      +|+.|||.+          .-+||.|.|-++|..+| +.-+++.+..++..|
T Consensus      1116 ~r~SYvDrID~ILR~DvVMRGfiTsn~Il~vle~iG-~~h~a~Dl~~iF~lm 1166 (1301)
T PF05788_consen 1116 MRMSYVDRIDSILRGDVVMRGFITSNTILNVLEKIG-FGHSASDLATIFTLM 1166 (1301)
T ss_pred             hHHHHHHHHHHHHhhhhhhhhhhhhHHHHHHHHHhc-CCCCHHHHHHHHHHh
Confidence            467787754          34899999999999999 999999999999966


No 40 
>smart00874 B5 tRNA synthetase B5 domain. This domain is found in phenylalanine-tRNA synthetase beta subunits.
Probab=35.21  E-value=23  Score=21.58  Aligned_cols=15  Identities=20%  Similarity=0.394  Sum_probs=7.8

Q ss_pred             ccccHHHHHHHHHHh
Q 044925           28 FTSQPEKIATLIKLF   42 (103)
Q Consensus        28 vevdaekI~~li~aL   42 (103)
                      ++++.+.+..+++.|
T Consensus        17 ~~i~~~ei~~~L~~l   31 (71)
T smart00874       17 LDLSAEEIEEILKRL   31 (71)
T ss_pred             CCCCHHHHHHHHHHC
Confidence            455555555555544


No 41 
>PHA02770 hypothetical protein; Provisional
Probab=34.55  E-value=30  Score=22.75  Aligned_cols=19  Identities=21%  Similarity=0.468  Sum_probs=17.3

Q ss_pred             HHHHHHHHhcCCChHHHhh
Q 044925           34 KIATLIKLFEKRSADELYL   52 (103)
Q Consensus        34 kI~~li~aL~gk~I~eLIa   52 (103)
                      +|+.+|+.|..|+|+++|.
T Consensus         3 qieeiik~lnkkdikdiit   21 (81)
T PHA02770          3 QIEEIIKTLNKKDIKDIIT   21 (81)
T ss_pred             HHHHHHHHhhhhhHHHHHh
Confidence            6888999999999999995


No 42 
>PF10815 ComZ:  ComZ;  InterPro: IPR024558 ComZ, which contains a leucine zipper motif, negatively regulates transcription of the ComG operon [].
Probab=32.85  E-value=22  Score=22.38  Aligned_cols=37  Identities=16%  Similarity=0.329  Sum_probs=30.2

Q ss_pred             eeeeecccccCCchhhHhhhhhcccccccHHHHHHHHHHh
Q 044925            3 VQYMDTVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLF   42 (103)
Q Consensus         3 ~~~~~~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL   42 (103)
                      .+||+.--|.+|+  -+..|...| |+.+.+.|+-++..|
T Consensus         4 m~FmqIaMK~lPE--ak~~L~k~G-IeLsme~~qP~m~L~   40 (56)
T PF10815_consen    4 MEFMQIAMKYLPE--AKEELDKKG-IELSMEMLQPLMQLL   40 (56)
T ss_pred             hHHHHHHHHHhHH--HHHHHHHcC-ccCCHHHHHHHHHHH
Confidence            3566666677777  689999999 999999999888855


No 43 
>cd00051 EFh EF-hand, calcium binding motif; A diverse superfamily of calcium sensors and calcium signal modulators; most examples in this alignment model have 2 active canonical EF hands. Ca2+ binding induces a conformational change in the EF-hand motif, leading to the activation or inactivation of target proteins. EF-hands tend to occur in pairs or higher copy numbers.
Probab=32.82  E-value=73  Score=16.87  Aligned_cols=30  Identities=13%  Similarity=0.172  Sum_probs=27.0

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHh
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLF   42 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL   42 (103)
                      .++.+++..++...| ...+.+.+..+++.+
T Consensus        16 ~l~~~e~~~~l~~~~-~~~~~~~~~~~~~~~   45 (63)
T cd00051          16 TISADELKAALKSLG-EGLSEEEIDEMIREV   45 (63)
T ss_pred             cCcHHHHHHHHHHhC-CCCCHHHHHHHHHHh
Confidence            578899999999999 999999999998877


No 44 
>cd05031 S-100A10_like S-100A10_like: S-100A10 domain found in proteins similar to S100A10. S100A10 is a member of the S100 family of EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100A1_like group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100 proteins are expressed exclusively in vertebrates, and are implicated in intracellular and extracellular regulatory activities. A unique feature of S100A10 is that it contains mutation in both of the calcium binding sites, making it calcium insensitive. S100A10 has been detected in brain, heart, gastrointestinal tract, kidney, liver, lung, spleen, testes, epidermis, aorta, and thymus. Structural data supports the homo- and hetero-dimeric as well as hetero-tetrameric nature of the protein. S100A10 has multiple binding partners in its calcium free state and is therefore involved in many diverse biological functions.
Probab=32.39  E-value=50  Score=21.18  Aligned_cols=31  Identities=6%  Similarity=0.128  Sum_probs=26.9

Q ss_pred             ccCCchhhHhhhhh-----cccccccHHHHHHHHHHh
Q 044925           11 IFWPHNTIDSGLVE-----FSFFTSQPEKIATLIKLF   42 (103)
Q Consensus        11 ~~~~~~~i~~~l~~-----~g~vevdaekI~~li~aL   42 (103)
                      -.|+.+++.++|.+     +| ..++.+.|+.+++.+
T Consensus        25 G~Is~~El~~~l~~~~g~~lg-~~~s~~ei~~~~~~~   60 (94)
T cd05031          25 NTLSRKELKKLMEKELSEFLK-NQKDPMAVDKIMKDL   60 (94)
T ss_pred             CeECHHHHHHHHHHHhHHHhh-ccccHHHHHHHHHHh
Confidence            47999999999987     67 778888999999877


No 45 
>smart00523 DWA Domain A in dwarfin family proteins.
Probab=32.11  E-value=35  Score=23.81  Aligned_cols=26  Identities=31%  Similarity=0.459  Sum_probs=21.2

Q ss_pred             HHHHHHHHhcCCChHHHhhhcCCCCc
Q 044925           34 KIATLIKLFEKRSADELYLNVGSGGA   59 (103)
Q Consensus        34 kI~~li~aL~gk~I~eLIa~v~agg~   59 (103)
                      .+.+|++.|+.+.+++|+..+.+-|.
T Consensus         9 ~~~sL~KklK~k~le~L~~AV~s~g~   34 (109)
T smart00523        9 ATESLLKKLKKKQLEELLQAVESKGG   34 (109)
T ss_pred             HHHHHHHHHHHHHHHHHHHHHHcCCC
Confidence            46788999999999999998876553


No 46 
>PF03575 Peptidase_S51:  Peptidase family S51;  InterPro: IPR005320 In the MEROPS database peptidases and peptidase homologues are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry based on a common structural fold:  Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, N-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins. Peptidase families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; N, asparagine; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. In the case of the asparagine endopeptidases, the nucleophile is asparagine and all are self-processing endopeptidases.   In many instances the structural protein fold that characterises the clan or family may have lost its catalytic activity, yet retain its function in protein recognition and binding.  Proteolytic enzymes that exploit serine in their catalytic activity are ubiquitous, being found in viruses, bacteria and eukaryotes []. They include a wide range of peptidase activity, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Over 20 families (denoted S1 - S66) of serine protease have been identified, these being grouped into clans on the basis of structural similarity and other functional evidence []. Structures are known for members of the clans and the structures indicate that some appear to be totally unrelated, suggesting different evolutionary origins for the serine peptidases []. Not withstanding their different evolutionary origins, there are similarities in the reaction mechanisms of several peptidases. Chymotrypsin, subtilisin and carboxypeptidase C have a catalytic triad of serine, aspartate and histidine in common: serine acts as a nucleophile, aspartate as an electrophile, and histidine as a base []. The geometric orientations of the catalytic residues are similar between families, despite different protein folds []. The linear arrangements of the catalytic residues commonly reflect clan relationships. For example the catalytic triad in the chymotrypsin clan (PA) is ordered HDS, but is ordered DHS in the subtilisin clan (SB) and SDH in the carboxypeptidase clan (SC) [, ]. This group of serine peptidases belong to MEROPS peptidase family S51 (clan PC(S)). The type example being dipeptidase E (alpha-aspartyl dipeptidase) from Escherichia coli. The family contains alpha-aspartyl dipeptidases (dipeptidase E) and cyanophycinases. The three-dimensional structure of Salmonella typhimurium aspartyl dipeptidase, peptidase E has been determine at 1.2-A resolution. The structure of this 25kDa enzyme consists of two mixed beta-sheets forming a V, flanked by six alpha-helices. The active site contains a Ser-His-Glu catalytic triad and is the first example of a serine peptidase/protease with a glutamate in the catalytic triad. The active site Ser is located on a strand-helix motif reminiscent of that found in alpha/beta-hydrolases, but the polypeptide fold and the organisation of the catalytic triad differ from those of the known serine proteases. This enzyme appears to represent a new example of convergent evolution of peptidase activity []. Alpha-aspartyl dipeptidase hydrolyses dipeptides containing N-terminal aspartate residues, asp-|-xaa. It does not act on peptides with N-terminal Glu, Asn or Gln, nor does it cleave isoaspartyl peptides. In the cyanobacteria, cyanophycinase is an exopeptidase that catalyses the hydrolytic cleavage of multi-l-arginyl-poly-l-aspartic acid (cyanophycin; a water- insoluble reserve polymer) into aspartate-arginine dipeptides.; GO: 0008236 serine-type peptidase activity, 0006508 proteolysis; PDB: 3EN0_B 1FYE_A 1FY2_A 3L4E_A.
Probab=32.05  E-value=31  Score=24.18  Aligned_cols=50  Identities=14%  Similarity=0.096  Sum_probs=37.6

Q ss_pred             ceeeeecccccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhh
Q 044925            2 RVQYMDTVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLN   53 (103)
Q Consensus         2 ~~~~~~~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~   53 (103)
                      +|++++....  +..++.+.|..+.+|-+..-+=..+++.|++..+.++|..
T Consensus        15 ~v~~l~~~~~--~~~~~~~~i~~ad~I~~~GG~~~~l~~~l~~t~l~~~i~~   64 (154)
T PF03575_consen   15 EVDQLDLSDR--NDADILEAIREADAIFLGGGDTFRLLRQLKETGLDEAIRE   64 (154)
T ss_dssp             EEEECCCTSC--GHHHHHHHHHHSSEEEE--S-HHHHHHHHHHTTHHHHHHH
T ss_pred             EEEEEeccCC--ChHHHHHHHHhCCEEEECCCCHHHHHHHHHhCCHHHHHHH
Confidence            4666666655  4557888888888799999999999999999999999975


No 47 
>cd05027 S-100B S-100B: S-100B domain found in proteins similar to S100B. S100B is a calcium-binding protein belonging to a large S100 vertebrate-specific protein family within the EF-hand superfamily of calcium-binding proteins. Note that the S-100 hierarchy, to which this S-100B group belongs, contains only S-100 EF-hand domains, other EF-hands have been modeled separately. S100B is most abundant in glial cells of the central nervous system, predominately in astrocytes. S100B is involved in signal transduction via the inhibition of protein phoshorylation, regulation of enzyme activity and by affecting the calcium homeostasis. Upon calcium binding the S100B homodimer changes conformation to expose a hydrophobic cleft, which represents the interaction site of S100B with its more than 20 known target  proteins. These target proteins include several cellular architecture proteins such as tubulin and GFAP; S100B can inhibit polymerization of these oligomeric molecules. Furthermore, S100B i
Probab=32.05  E-value=60  Score=21.08  Aligned_cols=40  Identities=5%  Similarity=0.108  Sum_probs=31.7

Q ss_pred             cCCchhhHhhhhh-----cccccccHHHHHHHHHHhc-----CCChHHHhh
Q 044925           12 FWPHNTIDSGLVE-----FSFFTSQPEKIATLIKLFE-----KRSADELYL   52 (103)
Q Consensus        12 ~~~~~~i~~~l~~-----~g~vevdaekI~~li~aL~-----gk~I~eLIa   52 (103)
                      .++.++++++|.+     +| -..+.+.++.+++.+.     ..+..+.+.
T Consensus        26 ~I~~~eL~~ll~~~~~~~lg-~~~~~~~v~~~i~~~D~n~dG~v~f~eF~~   75 (88)
T cd05027          26 KLKKSELKELINNELSHFLE-EIKEQEVVDKVMETLDSDGDGECDFQEFMA   75 (88)
T ss_pred             EECHHHHHHHHHHHhHHHhc-CCCCHHHHHHHHHHhCCCCCCcCcHHHHHH
Confidence            5999999999999     99 7788888999999772     134555553


No 48 
>COG1460 Uncharacterized protein conserved in archaea [Function unknown]
Probab=27.76  E-value=69  Score=22.77  Aligned_cols=29  Identities=10%  Similarity=0.165  Sum_probs=25.4

Q ss_pred             CCchhhHhhhhhcccccccHHHHHHHHHHh
Q 044925           13 WPHNTIDSGLVEFSFFTSQPEKIATLIKLF   42 (103)
Q Consensus        13 ~~~~~i~~~l~~~g~vevdaekI~~li~aL   42 (103)
                      -|..+|++||..-+ +.++.|.+++++.-+
T Consensus        80 ~t~~ElRsIla~e~-~~~s~E~l~~Ildiv  108 (114)
T COG1460          80 RTPDELRSILAKER-VMLSDEELDKILDIV  108 (114)
T ss_pred             CCHHHHHHHHHHcc-CCCCHHHHHHHHHHH
Confidence            47789999999999 999999999988754


No 49 
>PRK00994 F420-dependent methylenetetrahydromethanopterin dehydrogenase; Provisional
Probab=26.14  E-value=33  Score=27.74  Aligned_cols=46  Identities=15%  Similarity=0.196  Sum_probs=38.8

Q ss_pred             ceeeeecccccCCchhhHhhhhhcccccccHHHHHHHHHHh-cCCCh
Q 044925            2 RVQYMDTVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLF-EKRSA   47 (103)
Q Consensus         2 ~~~~~~~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL-~gk~I   47 (103)
                      |-+|+|.++--.=-.|+-+||..-|.+-.-.+-|+++|... +|+.+
T Consensus       124 rREFLDP~EMa~fNaD~~kVLa~tG~~RlvQ~elD~vi~~v~~G~e~  170 (277)
T PRK00994        124 RREFLDPVEMALFNADVLKVLAGTGAVRLVQEELDKVIDQVKEGKEI  170 (277)
T ss_pred             hhhccCHHHHHHhhhhHHHHHHhhhHHHHHHHHHHHHHHHHhcCCCc
Confidence            66888888887778899999999998888888899999977 56644


No 50 
>PRK06770 hypothetical protein; Provisional
Probab=25.93  E-value=65  Score=24.57  Aligned_cols=25  Identities=16%  Similarity=0.304  Sum_probs=20.4

Q ss_pred             hcccccccHHHHHHHHHHhcCCChH
Q 044925           24 EFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        24 ~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      -.||++++.++|++|.+.|..-+..
T Consensus        89 KwG~~~mT~enI~~l~~~i~~sn~~  113 (180)
T PRK06770         89 KWGFIEMTQENIEKLKDIINSSNFV  113 (180)
T ss_pred             ccceEecCHHHHHHHHHHHhccchh
Confidence            4699999999999999988755553


No 51 
>PF00076 RRM_1:  RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain);  InterPro: IPR000504 Many eukaryotic proteins containing one or more copies of a putative RNA-binding domain of about 90 amino acids are known to bind single-stranded RNAs [, , ]. The largest group of single strand RNA-binding proteins is the eukaryotic RNA recognition motif (RRM) family that contains an eight amino acid RNP-1 consensus sequence [, ]. RRM proteins have a variety of RNA binding preferences and functions, and include heterogeneous nuclear ribonucleoproteins (hnRNPs), proteins implicated in regulation of alternative splicing (SR, U2AF, Sxl), protein components of small nuclear ribonucleoproteins (U1 and U2 snRNPs), and proteins that regulate RNA stability and translation (PABP, La, Hu) [, , ]. The RRM in heterodimeric splicing factor U2 snRNP auxiliary factor (U2AF) appears to have two RRM-like domains with specialised features for protein recognition []. The motif also appears in a few single stranded DNA binding proteins. The typical RRM consists of four anti-parallel beta-strands and two alpha-helices arranged in a beta-alpha-beta-beta-alpha-beta fold with side chains that stack with RNA bases. Specificity of RNA binding is determined by multiple contacts with surrounding amino acids. A third helix is present during RNA binding in some cases []. The RRM is reviewed in a number of publications [, , ].; GO: 0003676 nucleic acid binding; PDB: 2RNE_A 2DGO_A 2DO4_A 1YTY_B 2VOO_B 2VOP_A 2VON_B 1ZH5_B 2VOD_A 1S79_A ....
Probab=25.76  E-value=59  Score=18.47  Aligned_cols=22  Identities=9%  Similarity=0.170  Sum_probs=18.3

Q ss_pred             eeecccccCCchhhHhhhhhcc
Q 044925            5 YMDTVQIFWPHNTIDSGLVEFS   26 (103)
Q Consensus         5 ~~~~~~~~~~~~~i~~~l~~~g   26 (103)
                      |+..+-..+++.+|++.++.+|
T Consensus         2 ~v~nlp~~~t~~~l~~~f~~~g   23 (70)
T PF00076_consen    2 YVGNLPPDVTEEELRDFFSQFG   23 (70)
T ss_dssp             EEESETTTSSHHHHHHHHHTTS
T ss_pred             EEcCCCCcCCHHHHHHHHHHhh
Confidence            6667778888999999988888


No 52 
>PF03960 ArsC:  ArsC family;  InterPro: IPR006660 Several bacterial taxon have a chromosomal resistance system, encoded by the ars operon, for the detoxification of arsenate, arsenite, and antimonite []. This system transports arsenite and antimonite out of the cell. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. Arsenate, however, must first be reduced to arsenite before it is extruded. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance. ArsC is an approximately 150-residue arsenate reductase that uses reduced glutathione (GSH) to convert arsenate to arsenite with a redox active cysteine residue in the active site. ArsC forms an active quaternary complex with GSH, arsenate, and glutaredoxin 1 (Grx1). The three ligands must be present simultaneously for reduction to occur []. The arsC family also comprises the Spx proteins which are GRAM-positive bacterial transcription factors that regulate the transcription of multiple genes in response to disulphide stress []. The arsC protein structure has been solved []. It belongs to the thioredoxin superfamily fold which is defined by a beta-sheet core surrounded by alpha-helices. The active cysteine residue of ArsC is located in the loop between the first beta-strand and the first helix, which is also conserved in the Spx protein and its homologues.; PDB: 2KOK_A 1SK1_A 1SK2_A 1JZW_A 1J9B_A 1S3C_A 1SD8_A 1SD9_A 1I9D_A 1SK0_A ....
Probab=25.72  E-value=56  Score=21.63  Aligned_cols=25  Identities=8%  Similarity=0.145  Sum_probs=17.7

Q ss_pred             ceeeeecccccCCchhhHhhhhhcc
Q 044925            2 RVQYMDTVQIFWPHNTIDSGLVEFS   26 (103)
Q Consensus         2 ~~~~~~~~~~~~~~~~i~~~l~~~g   26 (103)
                      .+++.|..+..+|.+.|..+|..+|
T Consensus        22 ~~~~~d~~k~p~s~~el~~~l~~~~   46 (110)
T PF03960_consen   22 EYEFIDYKKEPLSREELRELLSKLG   46 (110)
T ss_dssp             -EEEEETTTS---HHHHHHHHHHHT
T ss_pred             CeEeehhhhCCCCHHHHHHHHHHhc
Confidence            4677888888888888888888888


No 53 
>PTZ00135 60S acidic ribosomal protein P0; Provisional
Probab=25.14  E-value=36  Score=27.54  Aligned_cols=17  Identities=18%  Similarity=0.094  Sum_probs=9.1

Q ss_pred             hhhcccccccccCCCCC
Q 044925           84 EKKEETKEESDDDMGLS  100 (103)
Q Consensus        84 e~keeeeEE~ddDmGFg  100 (103)
                      ++++||+|++..-..|+
T Consensus       294 ~~~~ee~~~~~g~~lf~  310 (310)
T PTZ00135        294 AEEEEEEEDDMGFGLFD  310 (310)
T ss_pred             cccccCcchhccccCCC
Confidence            44455666665544453


No 54 
>PF09682 Holin_LLH:  Phage holin protein (Holin_LLH);  InterPro: IPR010026 This entry represents the Bacteriophage LL-H, Orf107, holin protein. The characteristics of the protein distribution suggest prophage matches in addition to the phage matches. This protein family represent one of a large number of mutually dissimilar families of phage holins. It is thought that the temporal precision of holin-mediated lysis may occur through the build-up of a holin oligomer which causes the lysis [].
Probab=24.96  E-value=79  Score=21.38  Aligned_cols=23  Identities=17%  Similarity=0.189  Sum_probs=19.8

Q ss_pred             hhHhhhhhcccccccHHHHHHHHH
Q 044925           17 TIDSGLVEFSFFTSQPEKIATLIK   40 (103)
Q Consensus        17 ~i~~~l~~~g~vevdaekI~~li~   40 (103)
                      -|...|...| +.+|.+.|+.+|.
T Consensus        76 ~v~~~L~~~g-i~~t~~~i~~~IE   98 (108)
T PF09682_consen   76 YVKERLKKKG-IKVTDEQIEGAIE   98 (108)
T ss_pred             HHHHHHHHcC-CCCCHHHHHHHHH
Confidence            4667899999 7999999999887


No 55 
>PRK12402 replication factor C small subunit 2; Reviewed
Probab=24.78  E-value=1.2e+02  Score=23.02  Aligned_cols=37  Identities=14%  Similarity=0.018  Sum_probs=27.3

Q ss_pred             ccCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHh
Q 044925           11 IFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELY   51 (103)
Q Consensus        11 ~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLI   51 (103)
                      ..||.++|+.++....    ..++|..+++++.++++...+
T Consensus       235 ~~It~~~v~~~~~~~~----~~~~i~~l~~ai~~~~~~~a~  271 (337)
T PRK12402        235 GEITMEAAYEALGDVG----TDEVIESLLDAAEAGDFTDAR  271 (337)
T ss_pred             CCCCHHHHHHHhCCCC----CHHHHHHHHHHHHcCCHHHHH
Confidence            4688888888765443    456888899988888887654


No 56 
>COG0317 SpoT Guanosine polyphosphate pyrophosphohydrolases/synthetases [Signal transduction mechanisms / Transcription]
Probab=24.52  E-value=1.1e+02  Score=27.88  Aligned_cols=42  Identities=19%  Similarity=0.429  Sum_probs=35.7

Q ss_pred             chhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHhhhcCCCCcc
Q 044925           15 HNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELYLNVGSGGAH   60 (103)
Q Consensus        15 ~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLIa~v~agg~a   60 (103)
                      .+=+++.|...| .  +.+.++ ++..|.-+++++|++.+|.|.-.
T Consensus       488 ~~lLe~~l~~~g-~--~~~~~~-~l~~~~~~~~edl~a~ig~g~~~  529 (701)
T COG0317         488 RELLEKELSRLG-L--PKELEE-LLEKLNFKTVEDLYAAVGAGDIR  529 (701)
T ss_pred             HHHHHHHHHHcC-C--ChHHHH-HHHHhCCCCHHHHHHHhccCCCC
Confidence            455788999999 4  889999 99999999999999999877643


No 57 
>PF13405 EF-hand_6:  EF-hand domain; PDB: 2AMI_A 3QRX_A 1W7J_B 1OE9_B 1W7I_B 1KFU_S 1KFX_S 2BL0_B 1Y1X_B 3MSE_B ....
Probab=24.41  E-value=31  Score=17.79  Aligned_cols=16  Identities=13%  Similarity=0.094  Sum_probs=12.5

Q ss_pred             ccCCchhhHhhhh-hcc
Q 044925           11 IFWPHNTIDSGLV-EFS   26 (103)
Q Consensus        11 ~~~~~~~i~~~l~-~~g   26 (103)
                      -+|+.+++.++|. ++|
T Consensus        15 G~I~~~el~~~l~~~lG   31 (31)
T PF13405_consen   15 GFIDFEELRAILRKSLG   31 (31)
T ss_dssp             SEEEHHHHHHHHHHHTT
T ss_pred             CcCcHHHHHHHHHHhcC
Confidence            3678888888888 776


No 58 
>KOG0027 consensus Calmodulin and related proteins (EF-Hand superfamily) [Signal transduction mechanisms]
Probab=24.39  E-value=97  Score=21.44  Aligned_cols=41  Identities=15%  Similarity=0.082  Sum_probs=33.3

Q ss_pred             ccCCchhhHhhhhhcccccccHHHHHHHHHHhcC-----CChHHHhh
Q 044925           11 IFWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEK-----RSADELYL   52 (103)
Q Consensus        11 ~~~~~~~i~~~l~~~g~vevdaekI~~li~aL~g-----k~I~eLIa   52 (103)
                      ..++...+..++.++| ..++...|..+++.+..     .++.+++.
T Consensus        23 G~i~~~el~~~lr~lg-~~~t~~el~~~~~~~D~dg~g~I~~~eF~~   68 (151)
T KOG0027|consen   23 GKISVEELGAVLRSLG-QNPTEEELRDLIKEIDLDGDGTIDFEEFLD   68 (151)
T ss_pred             CcccHHHHHHHHHHcC-CCCCHHHHHHHHHHhCCCCCCeEcHHHHHH
Confidence            4688999999999999 89999999999997752     35555553


No 59 
>PRK10853 putative reductase; Provisional
Probab=24.06  E-value=86  Score=21.55  Aligned_cols=25  Identities=8%  Similarity=-0.037  Sum_probs=21.9

Q ss_pred             ceeeeecccccCCchhhHhhhhhcc
Q 044925            2 RVQYMDTVQIFWPHNTIDSGLVEFS   26 (103)
Q Consensus         2 ~~~~~~~~~~~~~~~~i~~~l~~~g   26 (103)
                      .+++.|-.+..++.+.|+++|..+|
T Consensus        26 ~~~~~d~~k~p~s~~eL~~~l~~~g   50 (118)
T PRK10853         26 DYRFHDYRVDGLDSELLQGFIDELG   50 (118)
T ss_pred             CcEEeehccCCcCHHHHHHHHHHcC
Confidence            3577888888999999999999999


No 60 
>PF13443 HTH_26:  Cro/C1-type HTH DNA-binding domain; PDB: 3TYR_A 3TYS_A 3B7H_A.
Probab=23.59  E-value=1.1e+02  Score=17.78  Aligned_cols=38  Identities=16%  Similarity=0.162  Sum_probs=19.8

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhcCCChHHHh
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFEKRSADELY   51 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~gk~I~eLI   51 (103)
                      .++...|.+++..=- -.++.+.|.++.++| |.++.+|+
T Consensus        21 gis~~tl~~~~~~~~-~~~~~~~l~~ia~~l-~~~~~el~   58 (63)
T PF13443_consen   21 GISRSTLSRILNGKP-SNPSLDTLEKIAKAL-NCSPEELF   58 (63)
T ss_dssp             T--HHHHHHHHTTT------HHHHHHHHHHH-T--HHHCT
T ss_pred             CcCHHHHHHHHhccc-ccccHHHHHHHHHHc-CCCHHHHh
Confidence            345566666666321 257778888888877 66777776


No 61 
>smart00803 TAF TATA box binding protein associated factor. TAFs (TATA box binding protein associated factors) are part of the transcription initiation factor TFIID multimeric protein complex. TFIID is composed of the TATA box binding protein (TBP) and a number of TAFs. The TAFs provide binding sites for many different transcriptional activators and co-activators that modulate transcription initiation by Pol II. TAF proteins adopt a histone-like fold.
Probab=23.53  E-value=1.2e+02  Score=18.91  Aligned_cols=30  Identities=17%  Similarity=0.160  Sum_probs=22.3

Q ss_pred             cCCchhhHhhhhhccccc-ccHHHHHHHHHHh
Q 044925           12 FWPHNTIDSGLVEFSFFT-SQPEKIATLIKLF   42 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~ve-vdaekI~~li~aL   42 (103)
                      .+|.+.|+++..+.| ++ +..+-...|-..+
T Consensus         2 ~~p~~~i~ria~~~G-i~ris~~a~~~l~~~~   32 (65)
T smart00803        2 WLPKETIKDVAESLG-IGNLSDEAAKLLAEDV   32 (65)
T ss_pred             CCCHHHHHHHHHHCC-CccccHHHHHHHHHHH
Confidence            478899999999999 76 6666555555544


No 62 
>TIGR00135 gatC glutamyl-tRNA(Gln) and/or aspartyl-tRNA(Asn) amidotransferase, C subunit. This model has been revised to remove the candidate sequence from Methanococcus jannaschii, now part of a related model.
Probab=22.17  E-value=99  Score=20.07  Aligned_cols=30  Identities=3%  Similarity=-0.037  Sum_probs=23.0

Q ss_pred             CCchhhHhhhhhcccccccHHHHHHHHHHhc
Q 044925           13 WPHNTIDSGLVEFSFFTSQPEKIATLIKLFE   43 (103)
Q Consensus        13 ~~~~~i~~~l~~~g~vevdaekI~~li~aL~   43 (103)
                      +++++|+++-.-+- +.++.+.+..+.+.|.
T Consensus         1 i~~~~v~~lA~La~-L~l~eee~~~~~~~l~   30 (93)
T TIGR00135         1 ISDEEVKHLAKLAR-LELSEEEAESFAGDLD   30 (93)
T ss_pred             CCHHHHHHHHHHhC-CCCCHHHHHHHHHHHH
Confidence            46778888776666 8889888888888663


No 63 
>PRK00034 gatC aspartyl/glutamyl-tRNA amidotransferase subunit C; Reviewed
Probab=21.75  E-value=1e+02  Score=19.89  Aligned_cols=31  Identities=3%  Similarity=-0.032  Sum_probs=25.5

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhc
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFE   43 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~   43 (103)
                      .+++++|+++..-+- +.++.+.+..+.+.|+
T Consensus         2 ~i~~e~i~~la~La~-l~l~~ee~~~~~~~l~   32 (95)
T PRK00034          2 AITREEVKHLAKLAR-LELSEEELEKFAGQLN   32 (95)
T ss_pred             CCCHHHHHHHHHHhC-CCCCHHHHHHHHHHHH
Confidence            478899999888777 9999998888888653


No 64 
>PF09504 RE_Bsp6I:  Bsp6I restriction endonuclease;  InterPro: IPR019037 There are four classes of restriction endonucleases: types I, II,III and IV. All types of enzymes recognise specific short DNA sequences and carry out the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. They differ in their recognition sequence, subunit composition, cleavage position, and cofactor requirements [, ], as summarised below:   Type I enzymes (3.1.21.3 from EC) cleave at sites remote from recognition site; require both ATP and S-adenosyl-L-methionine to function; multifunctional protein with both restriction and methylase (2.1.1.72 from EC) activities. Type II enzymes (3.1.21.4 from EC) cleave within or at short specific distances from recognition site; most require magnesium; single function (restriction) enzymes independent of methylase. Type III enzymes (3.1.21.5 from EC) cleave at sites a short distance from recognition site; require ATP (but doesn't hydrolyse it); S-adenosyl-L-methionine stimulates reaction but is not required; exists as part of a complex with a modification methylase methylase (2.1.1.72 from EC). Type IV enzymes target methylated DNA.   Type II restriction endonucleases (3.1.21.4 from EC) are components of prokaryotic DNA restriction-modification mechanisms that protect the organism against invading foreign DNA. These site-specific deoxyribonucleases catalyse the endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates. Of the 3000 restriction endonucleases that have been characterised, most are homodimeric or tetrameric enzymes that cleave target DNA at sequence-specific sites close to the recognition site. For homodimeric enzymes, the recognition site is usually a palindromic sequence 4-8 bp in length. Most enzymes require magnesium ions as a cofactor for catalysis. Although they can vary in their mode of recognition, many restriction endonucleases share a similar structural core comprising four beta-strands and one alpha-helix, as well as a similar mechanism of cleavage, suggesting a common ancestral origin []. However, there is still considerable diversity amongst restriction endonucleases [, ]. The target site recognition process triggers large conformational changes of the enzyme and the target DNA, leading to the activation of the catalytic centres. Like other DNA binding proteins, restriction enzymes are capable of non-specific DNA binding as well, which is the prerequisite for efficient target site location by facilitated diffusion. Non-specific binding usually does not involve interactions with the bases but only with the DNA backbone [].   This entry includes the restriction endonuclease Bsp6I, which recognises and cleaves the double-stranded sequence GC^NGC. 
Probab=21.41  E-value=72  Score=24.32  Aligned_cols=32  Identities=6%  Similarity=0.188  Sum_probs=24.0

Q ss_pred             hhhhcccccccHHHHHHHHH---------------HhcCCChHHHhh
Q 044925           21 GLVEFSFFTSQPEKIATLIK---------------LFEKRSADELYL   52 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~---------------aL~gk~I~eLIa   52 (103)
                      ++..+|.|+||..+++.+++               --.|.|+.|.|+
T Consensus         2 ~~~~f~~ikidk~r~~~~~~~Y~~WK~LN~~IKn~~~RGiN~pd~fS   48 (180)
T PF09504_consen    2 AYKKFGYIKIDKARFEITIDAYFKWKDLNNYIKNIYSRGINFPDVFS   48 (180)
T ss_pred             cccccCeEEecHHHHHHHHHHHHHHHHHHHHhhhccCCCccchHHHH
Confidence            35678889999999988887               226777777774


No 65 
>COG5126 FRQ1 Ca2+-binding protein (EF-Hand superfamily) [Signal transduction mechanisms / Cytoskeleton / Cell division and chromosome partitioning / General function prediction only]
Probab=21.13  E-value=95  Score=23.01  Aligned_cols=31  Identities=13%  Similarity=0.238  Sum_probs=27.8

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHhc
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLFE   43 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL~   43 (103)
                      .|+.+.+..||+++| -..+.+.++.+|+.+.
T Consensus       108 ~Is~~eL~~vl~~lg-e~~~deev~~ll~~~d  138 (160)
T COG5126         108 YISIGELRRVLKSLG-ERLSDEEVEKLLKEYD  138 (160)
T ss_pred             eecHHHHHHHHHhhc-ccCCHHHHHHHHHhcC
Confidence            578899999999999 9999999999999663


No 66 
>COG1927 Mtd Coenzyme F420-dependent N(5),N(10)-methenyltetrahydromethanopterin dehydrogenase [Energy production and conversion]
Probab=21.09  E-value=51  Score=26.40  Aligned_cols=46  Identities=20%  Similarity=0.233  Sum_probs=37.5

Q ss_pred             ceeeeecccccCCchhhHhhhhhcccccccHHHHHHHHHHh-cCCCh
Q 044925            2 RVQYMDTVQIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLF-EKRSA   47 (103)
Q Consensus         2 ~~~~~~~~~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL-~gk~I   47 (103)
                      |-.|+|.|+--.=..|+-++|.+-|.+-+-.+-|+++|... +|+.+
T Consensus       124 rREFLDPvEMA~fNaDv~kVLa~tGa~R~vQeaiD~~ie~vk~gk~~  170 (277)
T COG1927         124 RREFLDPVEMASFNADVMKVLAATGAFRLVQEAIDKVIEDVKEGKEP  170 (277)
T ss_pred             hhhhcCHHHHHhhhhHHHHHHHhccHHHHHHHHHHHHHHHHhcCCCc
Confidence            45677888777778899999999998889999999999966 45443


No 67 
>PF09386 ParD:  Antitoxin ParD;  InterPro: IPR018985  ParD is a plasmid anti-toxin than forms a ribbon-helix-helix DNA binding structure []. It stabilises plasmids by inhibiting ParE toxicity in cells that express ParD and ParE. ParD forms a dimer and also regulates its own promoter (parDE). ; PDB: 2AN7_A.
Probab=21.08  E-value=93  Score=20.83  Aligned_cols=24  Identities=4%  Similarity=0.169  Sum_probs=16.2

Q ss_pred             ccccHHHHHHH--HHHhcCCChHHHh
Q 044925           28 FTSQPEKIATL--IKLFEKRSADELY   51 (103)
Q Consensus        28 vevdaekI~~l--i~aL~gk~I~eLI   51 (103)
                      |+++.++=..|  +.+|+||.|+++.
T Consensus         6 IDiT~qQHQsLKAlAAlqGkTIKqYa   31 (79)
T PF09386_consen    6 IDITDQQHQSLKALAALQGKTIKQYA   31 (79)
T ss_dssp             EEE-HHHHHHHHHHHHHHTS-HHHHH
T ss_pred             eeCCHHHHHHHHHHHHHcCCcHHHHH
Confidence            66777665543  4599999999877


No 68 
>PF02885 Glycos_trans_3N:  Glycosyl transferase family, helical bundle domain Prosite entry for Thymidine and pyrimidine-nucleoside phosphorylases;  InterPro: IPR017459 The biosynthesis of disaccharides, oligosaccharides and polysaccharides involves the action of hundreds of different glycosyltransferases. These enzymes catalyse the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. A classification of glycosyltransferases using nucleotide diphospho-sugar, nucleotide monophospho-sugar and sugar phosphates (2.4.1.- from EC) and related proteins into distinct sequence based families has been described []. This classification is available on the CAZy (CArbohydrate-Active EnZymes) web site. The same three-dimensional fold is expected to occur within each of the families. Because 3-D structures are better conserved than sequences, several of the families defined on the basis of sequence similarities may have similar 3-D structures and therefore form 'clans'. The glycosyl transferase family includes anthranilate phosphoribosyltransferase (TrpD, 2.4.2.18 from EC) and thymidine phosphorylase (2.4.2.2 from EC). All these proteins can transfer a phosphorylated ribose substrate. Thymidine phosphorylase (2.4.2.2 from EC) catalyses the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose 1-phosphate. This enzyme regulates the availability of thymidine and is therefore essential to nucleic acid metabolism. This N-terminal domain is found in various family 3 glycosyl transferases, including anthranilate phosphoribosyltransferase (TrpD, 2.4.2.18 from EC) and thymidine phosphorylase (2.4.2.2 from EC). All these proteins can transfer a phosphorylated ribose substrate. Thymidine phosphorylase catalyses the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose 1-phosphate. This enzyme regulates the availability of thymidine and is therefore essential to nucleic acid metabolism.; PDB: 2DSJ_B 2ELC_B 2BPQ_A 1ZVW_B 3QR9_B 1V8G_B 2WK5_C 2J0F_C 2WK6_B 1UOU_A ....
Probab=20.93  E-value=1.5e+02  Score=17.98  Aligned_cols=43  Identities=7%  Similarity=-0.010  Sum_probs=26.4

Q ss_pred             cccCCchhhHhhhhhcccccccHHHHHHHHHHh--cCCChHHHhh
Q 044925           10 QIFWPHNTIDSGLVEFSFFTSQPEKIATLIKLF--EKRSADELYL   52 (103)
Q Consensus        10 ~~~~~~~~i~~~l~~~g~vevdaekI~~li~aL--~gk~I~eLIa   52 (103)
                      ++..+.+.+..++..+-.=+++..+|-+++.+|  +|.+.+|+..
T Consensus        12 g~~Ls~~e~~~~~~~i~~g~~s~~qiaAfL~al~~kget~~Eiag   56 (66)
T PF02885_consen   12 GEDLSREEAKAAFDAILDGEVSDAQIAAFLMALRMKGETPEEIAG   56 (66)
T ss_dssp             T----HHHHHHHHHHHHTTSS-HHHHHHHHHHHHHH---HHHHHH
T ss_pred             CCCCCHHHHHHHHHHHHcCCCCHHHHHHHHHHHHHhCcCHHHHHH
Confidence            456777888888777654478888899888865  7888888763


No 69 
>PF04940 BLUF:  Sensors of blue-light using FAD;  InterPro: IPR007024 An FAD-binding domain, BLUF, exemplified by the N terminus of the AppA protein, (Q53119 from SWISSPROT), from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold [].; PDB: 2IYG_A 2IYI_B 1X0P_A 2HFN_G 3MZI_A 2HFO_E 3GFZ_A 3GG1_B 2KB2_A 3GFY_A ....
Probab=20.90  E-value=70  Score=21.11  Aligned_cols=24  Identities=17%  Similarity=0.106  Sum_probs=19.5

Q ss_pred             ceeeeecccccCCchhhHhhhhhc
Q 044925            2 RVQYMDTVQIFWPHNTIDSGLVEF   25 (103)
Q Consensus         2 ~~~~~~~~~~~~~~~~i~~~l~~~   25 (103)
                      |+-|..+....++.++|..||...
T Consensus         3 ~l~Y~S~~~~~~~~~~~~~Il~~s   26 (93)
T PF04940_consen    3 RLIYVSTASEDLSPEDLADILRSS   26 (93)
T ss_dssp             EEEEEEEE-TTS-HHHHHHHHHHH
T ss_pred             EEEEEEccCCCCCHHHHHHHHHHH
Confidence            788999999999999999999865


No 70 
>PF03165 MH1:  MH1 domain;  InterPro: IPR003619 Mammalian dwarfins are phosphorylated in response to transforming growth factor beta and are implicated in control of cell growth []. The dwarfin family also includes the Drosophila protein MAD that is required for the function of decapentaplegic (DPP) and may play a role in DPP signalling. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Dpp []. This domain is also found in nuclear factor I (NF-I) or CCAAT box-binding transcription factor (CTF). This entry represents the MH1 (MAD homology 1) domain is found at the amino terminus of MAD related proteins such as Smads. This domain is separated from the MH2 domain by a non-conserved linker region. The crystal structure of the MH1 domain shows that a highly conserved 11 residue beta hairpin is used to bind the DNA consensus sequence GNCN in the major groove, shown to be vital for the transcriptional activation of target genes. Not all examples of MH1 can bind to DNA however. Smad2 cannot bind DNA and has a large insertion within the hairpin that presumably abolishes DNA binding. A basic helix (H2) in MH1 with the nuclear localisation signal KKLKK has been shown to be essential for Smad3 nuclear import. Smads also use the MH1 domain to interact with transcription factors such as Jun, TFE3, Sp1, and Runx [, , ].; GO: 0006355 regulation of transcription, DNA-dependent, 0005622 intracellular; PDB: 3QSV_A 1MHD_A 1OZJ_A 3KMP_B.
Probab=20.37  E-value=84  Score=21.53  Aligned_cols=26  Identities=35%  Similarity=0.497  Sum_probs=20.8

Q ss_pred             HHHHHHHHhcCC--ChHHHhhhcCCCCc
Q 044925           34 KIATLIKLFEKR--SADELYLNVGSGGA   59 (103)
Q Consensus        34 kI~~li~aL~gk--~I~eLIa~v~agg~   59 (103)
                      .+..|++.|+.+  .+++|+..+.+.|.
T Consensus         4 ~~~sLlkkLK~~~~~le~L~~Av~s~g~   31 (103)
T PF03165_consen    4 AIKSLLKKLKKKIGQLEELLKAVESRGD   31 (103)
T ss_dssp             HHHHHHHHHTTTCTHHHHHHHHHHCTTT
T ss_pred             HHHHHHHHHccccchHHHHHHHHhcCCC
Confidence            478899999888  89999988775443


No 71 
>PTZ00184 calmodulin; Provisional
Probab=20.36  E-value=1.1e+02  Score=20.02  Aligned_cols=30  Identities=10%  Similarity=0.166  Sum_probs=25.2

Q ss_pred             cCCchhhHhhhhhcccccccHHHHHHHHHHh
Q 044925           12 FWPHNTIDSGLVEFSFFTSQPEKIATLIKLF   42 (103)
Q Consensus        12 ~~~~~~i~~~l~~~g~vevdaekI~~li~aL   42 (103)
                      .++.+++.++|..+| +.++.+.+..++..+
T Consensus       100 ~i~~~e~~~~l~~~~-~~~~~~~~~~~~~~~  129 (149)
T PTZ00184        100 FISAAELRHVMTNLG-EKLTDEEVDEMIREA  129 (149)
T ss_pred             eEeHHHHHHHHHHHC-CCCCHHHHHHHHHhc
Confidence            478889999999998 888888888888765


No 72 
>PF03880 DbpA:  DbpA RNA binding domain   ;  InterPro: IPR005580 This RNA binding domain is found at the C terminus of a number of DEAD helicase proteins [].; PDB: 2G0C_A 3MOJ_B.
Probab=20.15  E-value=28  Score=21.78  Aligned_cols=28  Identities=14%  Similarity=0.241  Sum_probs=18.0

Q ss_pred             hhhhcccccccHHHHHHHHHHhcCCChH
Q 044925           21 GLVEFSFFTSQPEKIATLIKLFEKRSAD   48 (103)
Q Consensus        21 ~l~~~g~vevdaekI~~li~aL~gk~I~   48 (103)
                      |...+.||++..+..+.+++.|++..+.
T Consensus        38 I~~~~S~vev~~~~a~~v~~~l~~~~~~   65 (74)
T PF03880_consen   38 IFDNFSFVEVPEEVAEKVLEALNGKKIK   65 (74)
T ss_dssp             E-SS-EEEEE-TT-HHHHHHHHTT--SS
T ss_pred             EeeeEEEEEECHHHHHHHHHHhcCCCCC
Confidence            4566678899999999999999877654


Done!