Query         047493
Match_columns 77
No_of_seqs    101 out of 262
Neff          4.1 
Searched_HMMs 46136
Date          Fri Mar 29 11:35:08 2013
Command       hhsearch -i /work/01045/syshi/csienesis_hhblits_a3m/047493.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/047493hhsearch_cdd -cpu 12 -v 0 

 No Hit                             Prob E-value P-value  Score    SS Cols Query HMM  Template HMM
  1 KOG2189 Vacuolar H+-ATPase V0   99.9 3.8E-27 8.2E-32  196.9   3.6   58   20-77      1-58  (829)
  2 PF01496 V_ATPase_I:  V-type AT  98.6 7.5E-09 1.6E-13   85.2   0.0   33   45-77      1-33  (759)
  3 PRK05771 V-type ATP synthase s  96.6  0.0019 4.2E-08   52.7   3.1   48   25-72      2-50  (646)
  4 COG1269 NtpI Archaeal/vacuolar  91.3    0.21 4.6E-06   41.7   3.3   42   24-65      1-42  (660)
  5 PF09902 DUF2129:  Uncharacteri  83.8     1.9   4E-05   27.2   3.4   36   23-58     24-59  (71)
  6 PRK02302 hypothetical protein;  82.9     2.6 5.6E-05   27.8   3.9   38   23-60     30-67  (89)
  7 PRK02886 hypothetical protein;  78.7     3.6 7.8E-05   27.1   3.5   38   23-60     28-65  (87)
  8 COG3323 Uncharacterized protei  60.3     9.5 0.00021   26.1   2.5   33   27-59      3-35  (109)
  9 PF08029 HisG_C:  HisG, C-termi  55.8      19 0.00041   22.5   3.2   27   26-52     37-63  (75)
 10 COG4471 Uncharacterized protei  54.9      15 0.00032   24.5   2.7   49   24-73     30-78  (90)
 11 TIGR03455 HisG_C-term ATP phos  54.8      12 0.00026   24.4   2.2   28   26-53     61-88  (100)
 12 PF12339 DNAJ_related:  DNA-J r  50.3     5.8 0.00013   27.4   0.2   31   41-71     22-54  (132)
 13 PF14257 DUF4349:  Domain of un  49.0      23 0.00051   25.7   3.2   31   31-61     97-127 (262)
 14 PF01978 TrmB:  Sugar-specific   47.1      16 0.00034   21.2   1.7   25   36-60     34-58  (68)
 15 COG3454 Metal-dependent hydrol  46.1      34 0.00074   27.9   3.9   51   21-72    124-174 (377)
 16 PF00679 EFG_C:  Elongation fac  44.2      27 0.00059   21.4   2.6   27   27-53      4-30  (89)
 17 cd03710 BipA_TypA_C BipA_TypA_  38.1      41 0.00088   20.2   2.6   26   27-52      1-26  (79)
 18 PF13783 DUF4177:  Domain of un  35.6      29 0.00063   20.1   1.6   24   36-59     17-42  (61)
 19 COG3602 Uncharacterized protei  35.4      23 0.00051   25.0   1.4   19   33-51    111-129 (134)
 20 cd01514 Elongation_Factor_C El  32.9      42 0.00092   19.8   2.1   26   27-52      1-26  (79)
 21 cd03713 EFG_mtEFG_C EFG_mtEFG_  32.8      41 0.00089   19.8   2.0   25   27-51      1-25  (78)
 22 cd03709 lepA_C lepA_C: This fa  32.5      44 0.00095   20.2   2.1   26   27-52      1-26  (80)
 23 cd04096 eEF2_snRNP_like_C eEF2  31.7      44 0.00095   19.9   2.0   26   27-52      1-26  (80)
 24 COG4110 Uncharacterized protei  31.2      41  0.0009   25.1   2.1   38   14-51     29-74  (200)
 25 PF03235 DUF262:  Protein of un  30.2      20 0.00044   24.0   0.3   11   61-71     12-22  (221)
 26 cd04097 mtEFG1_C mtEFG1_C: C-t  28.9      57  0.0012   19.4   2.2   26   27-52      1-26  (78)
 27 PF02629 CoA_binding:  CoA bind  28.8      34 0.00074   21.2   1.2   26   29-54     63-88  (96)
 28 PF09904 HTH_43:  Winged helix-  27.9      46 0.00099   22.0   1.7   23   36-58     33-56  (90)
 29 cd03711 Tet_C Tet_C: C-terminu  27.9      60  0.0013   19.3   2.1   26   27-52      1-26  (78)
 30 PF13350 Y_phosphatase3:  Tyros  27.3      65  0.0014   21.6   2.4   39   14-60     12-50  (164)
 31 PRK00489 hisG ATP phosphoribos  27.3      52  0.0011   24.3   2.1   28   26-53    247-274 (287)
 32 cd07153 Fur_like Ferric uptake  25.7      74  0.0016   19.8   2.4   31   36-66     33-63  (116)
 33 smart00838 EFG_C Elongation fa  25.5      66  0.0014   19.4   2.1   25   27-51      3-27  (85)
 34 PF00392 GntR:  Bacterial regul  25.3      51  0.0011   18.9   1.4   23   36-58     36-58  (64)
 35 PF13380 CoA_binding_2:  CoA bi  25.2      51  0.0011   21.4   1.6   26   27-52     54-79  (116)
 36 PF04567 RNA_pol_Rpb2_5:  RNA p  22.8   1E+02  0.0023   17.4   2.4   20   47-66      3-22  (48)
 37 PF11582 DUF3240:  Protein of u  21.5 1.1E+02  0.0023   19.8   2.5   24   28-51     59-82  (102)
 38 TIGR00341 conserved hypothetic  20.4 1.5E+02  0.0032   23.5   3.5   36   15-52     30-65  (325)
 39 PF09339 HTH_IclR:  IclR helix-  20.3      64  0.0014   17.8   1.2   21   36-56     30-50  (52)
 40 PF10307 DUF2410:  Hypothetical  20.0      42  0.0009   24.7   0.4   33    6-43     18-52  (197)

No 1  
>KOG2189 consensus Vacuolar H+-ATPase V0 sector, subunit a [Energy production and conversion]
Probab=99.93  E-value=3.8e-27  Score=196.93  Aligned_cols=58  Identities=38%  Similarity=0.427  Sum_probs=56.7

Q ss_pred             CCCcccccccceEEEEeecccHHHHHHHhhcccceeeeeCCCCCCccchhhhhhhhcC
Q 047493           20 LPNDGSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLNAGKSLFQRTFAAQVRFM   77 (77)
Q Consensus        20 ~~~~~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN~~v~~FqR~FvneIrRc   77 (77)
                      .+++||||+|+|||||+|+|+||+||++||++|+|||+|||++|++|||+||||||||
T Consensus         1 ~~s~fRSE~M~L~Ql~l~~eaAy~~vaeLGelGlvqFrDLN~~v~afQR~fv~evrRc   58 (829)
T KOG2189|consen    1 MGSLFRSEEMCLVQLFLQSEAAYQCVAELGELGLVQFRDLNPDVSAFQRKFVNEVRRC   58 (829)
T ss_pred             CccccccccceeeEEEecHHHHHHHHHHhhccCeeEeeeCCCccCHHHHHHHHHHHHH
Confidence            3689999999999999999999999999999999999999999999999999999998


No 2  
>PF01496 V_ATPase_I:  V-type ATPase 116kDa subunit family  ;  InterPro: IPR002490 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include:   F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.   The V-ATPases (or V1V0-ATPase) and A-ATPases (or A1A0-ATPase) are each composed of two linked complexes: the V1 or A1 complex contains the catalytic core that hydrolyses/synthesizes ATP, and the V0 or A0 complex that forms the membrane-spanning pore. The V- and A-ATPases both contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis [, , ]. The V- and A-ATPases more closely resemble one another in subunit structure than they do the F-ATPases, although the function of A-ATPases is closer to that of F-ATPases.  This entry represents the 116kDa subunit (or subunit a) and subunit I found in the V0 or A0 complex of V- or A-ATPases, respectively. The 116kDa subunit is a transmembrane glycoprotein required for the assembly and proton transport activity of the ATPase complex. Several isoforms of the 116kDa subunit exist, providing a potential role in the differential targeting and regulation of the V-ATPase for specific organelles []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0015078 hydrogen ion transmembrane transporter activity, 0015991 ATP hydrolysis coupled proton transport, 0033177 proton-transporting two-sector ATPase complex, proton-transporting domain; PDB: 2RPW_X 2NVJ_A 2JTW_A 3RRK_A.
Probab=98.60  E-value=7.5e-09  Score=85.17  Aligned_cols=33  Identities=52%  Similarity=0.779  Sum_probs=0.0

Q ss_pred             HHHhhcccceeeeeCCCCCCccchhhhhhhhcC
Q 047493           45 ISYLGGLGLFQFKDLNAGKSLFQRTFAAQVRFM   77 (77)
Q Consensus        45 V~eLG~lglvqF~DLN~~v~~FqR~FvneIrRc   77 (77)
                      |++||++|+|||+|+|+++++|||+|+++++||
T Consensus         1 V~eLgelG~VqF~Dln~~~~~fqr~f~~ev~r~   33 (759)
T PF01496_consen    1 VNELGELGLVQFRDLNEDVSAFQRKFVNEVRRC   33 (759)
T ss_dssp             ---------------------------------
T ss_pred             CchhhcCCcEEEEECccchhHHHHHhhhccccH
Confidence            789999999999999999999999999999998


No 3  
>PRK05771 V-type ATP synthase subunit I; Validated
Probab=96.58  E-value=0.0019  Score=52.68  Aligned_cols=48  Identities=15%  Similarity=0.126  Sum_probs=41.0

Q ss_pred             cccccceEEEEeecccHHHHHHHhhcccceeeeeCCCCCC-ccchhhhh
Q 047493           25 SSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLNAGKS-LFQRTFAA   72 (77)
Q Consensus        25 RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN~~v~-~FqR~Fvn   72 (77)
                      +.++|..++++.|.+.+.++++.|.++|.||+.|++.... ...+.+.+
T Consensus         2 ~i~kM~kv~l~~~~~~~~~~l~~L~~lg~vhi~~~~~~~~~~~~~~~~~   50 (646)
T PRK05771          2 APVRMKKVLIVTLKSYKDEVLEALHELGVVHIEDLKEELSNERLRKLRS   50 (646)
T ss_pred             CceeeEEEEEEEEHHHHHHHHHHHHhCCCEEEeecccccchhHHhHHHH
Confidence            5689999999999999999999999999999999998875 33444433


No 4  
>COG1269 NtpI Archaeal/vacuolar-type H+-ATPase subunit I [Energy production and conversion]
Probab=91.34  E-value=0.21  Score=41.71  Aligned_cols=42  Identities=17%  Similarity=0.164  Sum_probs=38.1

Q ss_pred             ccccccceEEEEeecccHHHHHHHhhcccceeeeeCCCCCCc
Q 047493           24 GSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLNAGKSL   65 (77)
Q Consensus        24 ~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN~~v~~   65 (77)
                      +|-+.|..+.++.+.+..-+++.+|++.|++|+.|++.++..
T Consensus         1 ~~~~~M~kv~i~~~~~~~~~vi~~L~~~g~~~~~d~~~~~~~   42 (660)
T COG1269           1 MRPEKMKKVSIIGLKSELDPVLAELHDFGLVHLEDLEEGEKG   42 (660)
T ss_pred             CchhhheeEEEEeehhhhhHHHHHHHHcCeEEeecccccccc
Confidence            367899999999999999999999999999999999876543


No 5  
>PF09902 DUF2129:  Uncharacterized protein conserved in bacteria (DUF2129);  InterPro: IPR016979 This is a group of uncharacterised conserved proteins.
Probab=83.81  E-value=1.9  Score=27.21  Aligned_cols=36  Identities=17%  Similarity=-0.004  Sum_probs=32.8

Q ss_pred             cccccccceEEEEeecccHHHHHHHhhcccceeeee
Q 047493           23 DGSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKD   58 (77)
Q Consensus        23 ~~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~D   58 (77)
                      .+-|..|.++.||+..|.+-+++..|.++..|.=++
T Consensus        24 ~Y~Skk~kYvvlYvn~~~~e~~~~kl~~l~fVk~Ve   59 (71)
T PF09902_consen   24 HYVSKKMKYVVLYVNEEDVEEIIEKLKKLKFVKKVE   59 (71)
T ss_pred             EEEECCccEEEEEECHHHHHHHHHHHhcCCCeeEEe
Confidence            458999999999999999999999999999887665


No 6  
>PRK02302 hypothetical protein; Provisional
Probab=82.91  E-value=2.6  Score=27.82  Aligned_cols=38  Identities=13%  Similarity=-0.032  Sum_probs=34.1

Q ss_pred             cccccccceEEEEeecccHHHHHHHhhcccceeeeeCC
Q 047493           23 DGSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLN   60 (77)
Q Consensus        23 ~~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN   60 (77)
                      .+=|..|.++-||+..|.|-+++..|.++..|.-++.-
T Consensus        30 ~Y~Skk~kYvvlYvn~~~~e~~~~kl~~l~fVk~Ve~S   67 (89)
T PRK02302         30 VYHSKRSRYLVLYVNKEDVEQKLEELSKLKFVKKVRPS   67 (89)
T ss_pred             EEEeccccEEEEEECHHHHHHHHHHHhcCCCeeEEccc
Confidence            45799999999999999999999999999988877644


No 7  
>PRK02886 hypothetical protein; Provisional
Probab=78.72  E-value=3.6  Score=27.06  Aligned_cols=38  Identities=16%  Similarity=0.016  Sum_probs=34.1

Q ss_pred             cccccccceEEEEeecccHHHHHHHhhcccceeeeeCC
Q 047493           23 DGSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLN   60 (77)
Q Consensus        23 ~~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN   60 (77)
                      .+=|..|.++-||+..|.|-+++..|.++..|.-++.-
T Consensus        28 ~Y~Skr~kYvvlYvn~~~~e~~~~kl~~l~fVk~Ve~S   65 (87)
T PRK02886         28 HYVSKRLKYAVLYCDMEQVEDIMNKLSSLPFVKRVEPS   65 (87)
T ss_pred             EEEeccccEEEEEECHHHHHHHHHHHhcCCCeeEEccc
Confidence            35799999999999999999999999999998877644


No 8  
>COG3323 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=60.25  E-value=9.5  Score=26.11  Aligned_cols=33  Identities=12%  Similarity=-0.017  Sum_probs=29.5

Q ss_pred             cccceEEEEeecccHHHHHHHhhcccceeeeeC
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLGLFQFKDL   59 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DL   59 (77)
                      +.|.-..+|+|.|-.-..-..|++.|.-|.-|.
T Consensus         3 ~~~~K~~vyVP~~~~e~vr~aL~~aGag~iG~Y   35 (109)
T COG3323           3 EPLYKIEVYVPEEYVEQVRDALFEAGAGHIGNY   35 (109)
T ss_pred             cceeEEEEEeCHHHHHHHHHHHHhcCCcceecc
Confidence            467788999999999999999999999988874


No 9  
>PF08029 HisG_C:  HisG, C-terminal domain;  InterPro: IPR013115 ATP phosphoribosyltransferase (2.4.2.17 from EC) is the enzyme that catalyzes the first step in the biosynthesis of histidine in bacteria, fungi and plants as shown below. It is a member of the larger phosphoribosyltransferase superfamily of enzymes which catalyse the condensation of 5-phospho-alpha-D-ribose 1-diphosphate with nitrogenous bases in the presence of divalent metal ions [].  ATP + 5-phospho-alpha-D-ribose 1-diphosphate = 1-(5-phospho-D-ribosyl)-ATP + diphosphate  Histidine biosynthesis is an energetically expensive process and ATP phosphoribosyltransferase activity is subject to control at several levels. Transcriptional regulation is based primarily on nutrient conditions and determines the amount of enzyme present in the cell, while feedback inihibition rapidly modulates activity in response to cellular conditions. The enzyme has been shown to be inhibited by 1-(5-phospho-D-ribosyl)-ATP, histidine, ppGpp (a signal associated with adverse environmental conditions) and ADP and AMP (which reflect the overall energy status of the cell). As this pathway of histidine biosynthesis is present only in prokayrotes, plants and fungi, this enzyme is a promising target for the development of novel antimicrobial compounds and herbicides. This entry represents the C-terminal portion of ATP phosphoribosyltransferase. The enzyme itself exists in equilibrium between an active dimeric form, an inactive hexameric form and higher aggregates [, ]. Interconversion between the various forms is largely reversible and is influenced by the binding of the natural substrates and inhibitors of the enzyme. This domain is not directly involved in catalysis but appears to be responsible for the formation of hexamers induced by the binding of inhibitors to the enzyme, thus regulating activity.; GO: 0000287 magnesium ion binding, 0003879 ATP phosphoribosyltransferase activity, 0000105 histidine biosynthetic process, 0005737 cytoplasm; PDB: 1Q1K_A 1H3D_A 2VD3_B 1NH7_A 1NH8_A.
Probab=55.81  E-value=19  Score=22.52  Aligned_cols=27  Identities=11%  Similarity=0.132  Sum_probs=24.4

Q ss_pred             ccccceEEEEeecccHHHHHHHhhccc
Q 047493           26 SAVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        26 SE~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      .+++.-++.++|.+..++.|++|=+.|
T Consensus        37 ~~~w~AV~~vV~~~~~~~~~~~Lk~~G   63 (75)
T PF08029_consen   37 DEDWVAVHAVVPEKQVWDLMDKLKAAG   63 (75)
T ss_dssp             STTEEEEEEEEECCCHHHHHHHHHCTT
T ss_pred             CCCEEEEEEEecHHHHHHHHHHHHHcC
Confidence            457888999999999999999998887


No 10 
>COG4471 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=54.90  E-value=15  Score=24.50  Aligned_cols=49  Identities=10%  Similarity=0.059  Sum_probs=37.6

Q ss_pred             ccccccceEEEEeecccHHHHHHHhhcccceeeeeCCCCCCccchhhhhh
Q 047493           24 GSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLNAGKSLFQRTFAAQ   73 (77)
Q Consensus        24 ~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN~~v~~FqR~Fvne   73 (77)
                      +-|.++.++.||++.+..-++++.|..+-.|-=++.-+- +-.+++|.++
T Consensus        30 Y~Skk~kY~vlYvn~~~ve~~~~kl~~~kfVK~V~~s~~-~~Lk~~f~~~   78 (90)
T COG4471          30 YVSKKSKYVVLYVNEQDVEQIVEKLSRLKFVKKVRVSHI-PYLKTEFEGN   78 (90)
T ss_pred             EEecceeEEEEEECHHHHHHHHHHHhhceeeeecccccc-HHHHhHHhhc
Confidence            479999999999999999999999999988876665431 2334455543


No 11 
>TIGR03455 HisG_C-term ATP phosphoribosyltransferase, C-terminal domain. This domain corresponds to the C-terminal third of the HisG protein. It is absent in many lineages.
Probab=54.82  E-value=12  Score=24.45  Aligned_cols=28  Identities=11%  Similarity=0.039  Sum_probs=25.4

Q ss_pred             ccccceEEEEeecccHHHHHHHhhcccc
Q 047493           26 SAVGADAQLIIPIESAHCTISYLGGLGL   53 (77)
Q Consensus        26 SE~M~l~qL~ip~E~A~~~V~eLG~lgl   53 (77)
                      +++|.-++.++|.+..++++++|-+.|-
T Consensus        61 ~~~w~AV~~vv~~~~v~~~~~~Lk~~GA   88 (100)
T TIGR03455        61 DEGWVAVHAVVDEKVVNELIDKLKAAGA   88 (100)
T ss_pred             CCCeEEEEEEEcHHHHHHHHHHHHHcCC
Confidence            5788889999999999999999999883


No 12 
>PF12339 DNAJ_related:  DNA-J related protein ;  InterPro: IPR021059  This domain family is approximately 130 amino acids in length and contains a conserved YYLD sequence motif. The proteins have a C-terminal DNA-J domain PF00226 from PFAM and most of the sequences are annotated as DNA-J related proteins, other annotations include: DnaJ-class molecular chaperon and formate dehydrogenase; but there is currently no publications to support these annotations. 
Probab=50.33  E-value=5.8  Score=27.43  Aligned_cols=31  Identities=35%  Similarity=0.419  Sum_probs=27.0

Q ss_pred             HHHHHHHhhcccce--eeeeCCCCCCccchhhh
Q 047493           41 AHCTISYLGGLGLF--QFKDLNAGKSLFQRTFA   71 (77)
Q Consensus        41 A~~~V~eLG~lglv--qF~DLN~~v~~FqR~Fv   71 (77)
                      -++-+++|++.|..  ...|++++...|+|.|.
T Consensus        22 e~~L~~~L~~~~~~~f~~l~~~~~~~LFk~hFL   54 (132)
T PF12339_consen   22 EHELISQLQEQGYILFPELDLDPPLDLFKRHFL   54 (132)
T ss_pred             HHHHHHHHhhCcCccCCCCCCCcHHHHHHHHHH
Confidence            47889999999988  77788899999999985


No 13 
>PF14257 DUF4349:  Domain of unknown function (DUF4349)
Probab=49.04  E-value=23  Score=25.74  Aligned_cols=31  Identities=13%  Similarity=0.304  Sum_probs=27.6

Q ss_pred             eEEEEeecccHHHHHHHhhcccceeeeeCCC
Q 047493           31 DAQLIIPIESAHCTISYLGGLGLFQFKDLNA   61 (77)
Q Consensus        31 l~qL~ip~E~A~~~V~eLG~lglvqF~DLN~   61 (77)
                      ...+-||++..-+.+++|+++|.|.-...+.
T Consensus        97 ~ltiRVP~~~~~~~l~~l~~~g~v~~~~~~~  127 (262)
T PF14257_consen   97 SLTIRVPADKFDSFLDELSELGKVTSRNISS  127 (262)
T ss_pred             EEEEEECHHHHHHHHHHHhccCceeeeeccc
Confidence            6789999999999999999999888777664


No 14 
>PF01978 TrmB:  Sugar-specific transcriptional regulator TrmB;  InterPro: IPR002831 TrmB, is a protein of 38,800 apparent molecular weight, that is involved in the maltose-specific regulation of the trehalose/maltose ABC transport operon in Thermococcus litoralis. TrmB has been shown to be a maltose-specific repressor, and this inhibition is counteracted by maltose and trehalose. TrmB binds maltose and trehalose half-maximally at 20 uM and 0.5 mM sugar concentration, respectively []. Other members of this family are annotated as either transcriptional regulators or hypothetical proteins. ; PDB: 2D1H_A 3QPH_A 1SFX_A.
Probab=47.08  E-value=16  Score=21.20  Aligned_cols=25  Identities=16%  Similarity=0.139  Sum_probs=22.2

Q ss_pred             eecccHHHHHHHhhcccceeeeeCC
Q 047493           36 IPIESAHCTISYLGGLGLFQFKDLN   60 (77)
Q Consensus        36 ip~E~A~~~V~eLG~lglvqF~DLN   60 (77)
                      +|...++.++..|-+.|+|+..+-+
T Consensus        34 i~~~~v~~~L~~L~~~GlV~~~~~~   58 (68)
T PF01978_consen   34 ISRSTVYRALKSLEEKGLVEREEGR   58 (68)
T ss_dssp             SSHHHHHHHHHHHHHTTSEEEEEEC
T ss_pred             cCHHHHHHHHHHHHHCCCEEEEcCc
Confidence            6788999999999999999988744


No 15 
>COG3454 Metal-dependent hydrolase involved in phosphonate metabolism [Inorganic ion transport and metabolism]
Probab=46.10  E-value=34  Score=27.86  Aligned_cols=51  Identities=12%  Similarity=-0.056  Sum_probs=41.2

Q ss_pred             CCcccccccceEEEEeecccHHHHHHHhhcccceeeeeCCCCCCccchhhhh
Q 047493           21 PNDGSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLNAGKSLFQRTFAA   72 (77)
Q Consensus        21 ~~~~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN~~v~~FqR~Fvn   72 (77)
                      .+.+|++---..+.=++.+...+.+.++.+.+.|+.+-|+.+ +|-||.|.+
T Consensus       124 ~g~lradHr~HlRcEvs~~~~l~~~e~~~~~p~v~LiSlMDH-~PGQrQf~~  174 (377)
T COG3454         124 AGRLRADHRLHLRCEVSHPATLPLFEDLMDHPRVKLISLMDH-TPGQRQFAN  174 (377)
T ss_pred             ccchhhccceeeeeecCChhHHHHHHHHhcCCCeeEEEecCC-CCCcchhhh
Confidence            345666665556666789999999999999999999999988 677998865


No 16 
>PF00679 EFG_C:  Elongation factor G C-terminus;  InterPro: IPR000640 Translation elongation factors are responsible for two main processes during protein synthesis on the ribosome [, , ]. EF1A (or EF-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the A-site (acceptor site) of the ribosome. EF2 (or EF-G) is responsible for the translocation of the peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) of the ribosome, thereby freeing the A-site for the next aminoacyl-tRNA to bind. Elongation factors are responsible for achieving accuracy of translation and both EF1A and EF2 are remarkably conserved throughout evolution. Elongation factor EF2 (EF-G) is a G-protein. It brings about the translocation of peptidyl-tRNA and mRNA through a ratchet-like mechanism: the binding of GTP-EF2 to the ribosome causes a counter-clockwise rotation in the small ribosomal subunit; the hydrolysis of GTP to GDP by EF2 and the subsequent release of EF2 causes a clockwise rotation of the small subunit back to the starting position [, ]. This twisting action destabilises tRNA-ribosome interactions, freeing the tRNA to translocate along the ribosome upon GTP-hydrolysis by EF2. EF2 binding also affects the entry and exit channel openings for the mRNA, widening it when bound to enable the mRNA to translocate along the ribosome. This entry represents the C-terminal domain found in EF2 (or EF-G) of both prokaryotes and eukaryotes (also known as eEF2), as well as in some tetracycline-resistance proteins. This domain adopts a ferredoxin-like fold consisting of an alpha/beta sandwich with anti-parallel beta-sheets. It resembles the topology of domain III found in these elongation factors, with which it forms the C-terminal block, but these two domains cannot be superimposed []. This domain is often found associated with (IPR000795 from INTERPRO), which contains the signatures for the N terminus of the proteins. More information about these proteins can be found at Protein of the Month: Elongation Factors [].; GO: 0005525 GTP binding; PDB: 1WDT_A 2DY1_A 3CB4_F 3DEG_C 2EFG_A 1ELO_A 2XSY_Y 2WRK_Y 1DAR_A 2WRI_Y ....
Probab=44.23  E-value=27  Score=21.40  Aligned_cols=27  Identities=19%  Similarity=-0.001  Sum_probs=23.7

Q ss_pred             cccceEEEEeecccHHHHHHHhhcccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLGL   53 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lgl   53 (77)
                      |++-.+++.+|.|..-.+++.|++.+-
T Consensus         4 EP~~~~~I~~p~~~~g~v~~~l~~r~g   30 (89)
T PF00679_consen    4 EPIMSVEISVPEEYLGKVISDLSKRRG   30 (89)
T ss_dssp             EEEEEEEEEEEGGGHHHHHHHHHHTT-
T ss_pred             CCEEEEEEEECHHHHHHHHHHhccccc
Confidence            677889999999999999999999863


No 17 
>cd03710 BipA_TypA_C BipA_TypA_C: a C-terminal portion of BipA or TypA having homology to the C terminal domains of the elongation factors EF-G and EF-2. A member of the ribosome binding GTPase superfamily, BipA is widely distributed in bacteria and plants.  BipA is a highly conserved protein with global regulatory properties in Escherichia coli. BipA is phosphorylated on a tyrosine residue under some cellular conditions. Mutants show altered regulation of some pathways. BipA functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis.  BipA binds to ribosomes at a site that coincides with that of EF-G and has a GTPase activity that is sensitive to high GDP:GTP ratios and, is stimulated  by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secreti
Probab=38.11  E-value=41  Score=20.20  Aligned_cols=26  Identities=19%  Similarity=0.161  Sum_probs=23.3

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      |+|-.+.+.+|.|..-.+++.|.+..
T Consensus         1 EPi~~v~I~~P~~~~g~V~~~l~~rr   26 (79)
T cd03710           1 EPIEELTIDVPEEYSGAVIEKLGKRK   26 (79)
T ss_pred             CCEEEEEEEeCchhhHHHHHHHHhCC
Confidence            67788999999999999999998874


No 18 
>PF13783 DUF4177:  Domain of unknown function (DUF4177)
Probab=35.58  E-value=29  Score=20.11  Aligned_cols=24  Identities=21%  Similarity=0.153  Sum_probs=21.1

Q ss_pred             eecccHHHHHHHhhccc--ceeeeeC
Q 047493           36 IPIESAHCTISYLGGLG--LFQFKDL   59 (77)
Q Consensus        36 ip~E~A~~~V~eLG~lg--lvqF~DL   59 (77)
                      ++.+...+.++++|+.|  +|+..+-
T Consensus        17 ~~~~~~~~~Ln~~g~eGWeLV~~~~~   42 (61)
T PF13783_consen   17 IDPEDLEEILNEYGKEGWELVSIIPP   42 (61)
T ss_pred             CCHHHHHHHHHHHHhCCcEEEEEEcC
Confidence            56677889999999999  9999987


No 19 
>COG3602 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=35.38  E-value=23  Score=24.98  Aligned_cols=19  Identities=37%  Similarity=0.604  Sum_probs=17.2

Q ss_pred             EEEeecccHHHHHHHhhcc
Q 047493           33 QLIIPIESAHCTISYLGGL   51 (77)
Q Consensus        33 qL~ip~E~A~~~V~eLG~l   51 (77)
                      ++|+|.|.|.+.+..|+.+
T Consensus       111 HlFVp~e~a~~A~~~L~~l  129 (134)
T COG3602         111 HLFVPAERAKEALVVLQGL  129 (134)
T ss_pred             eeeeeHHHHHHHHHHHHHH
Confidence            6999999999999998865


No 20 
>cd01514 Elongation_Factor_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of elongation factors (EFs) bacterial EF-G, eukaryotic and archeal EF-2 and eukaryotic mitochondrial mtEFG1s and mtEFG2s. This group also includes proteins similar to the ribosomal protection proteins Tet(M) and Tet(O), BipA, LepA and, spliceosomal proteins: human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and yeast counterpart Snu114p.  This domain adopts a ferredoxin-like fold consisting of an alpha-beta sandwich with anti-parallel beta-sheets, resembling the topology of domain III found in the elongation factors EF-G and eukaryotic EF-2, with which it forms the C-terminal block. The two domains however are not superimposable and domain III lacks some of the characteristics of this domain.  EF-2/EF-G in complex with GTP, promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the
Probab=32.94  E-value=42  Score=19.77  Aligned_cols=26  Identities=15%  Similarity=0.089  Sum_probs=23.0

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      |+|-.+.+.+|.|..-.+++.|....
T Consensus         1 EPi~~~~I~~p~~~~g~v~~~l~~rr   26 (79)
T cd01514           1 EPIMKVEITVPEEYLGAVIGDLSKRR   26 (79)
T ss_pred             CCEEEEEEEcCHHHHHHHHHHHHhcC
Confidence            67889999999999999999997764


No 21 
>cd03713 EFG_mtEFG_C EFG_mtEFG_C: domains similar to the C-terminal domain of the bacterial translational elongation factor (EF) EF-G.  Included in this group is the C-terminus of mitochondrial Elongation factor G1 (mtEFG1) and G2 (mtEFG2) proteins. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. In bacteria this translocation step is catalyzed by EF-G_GTP, which is hydrolyzed to provide
Probab=32.78  E-value=41  Score=19.84  Aligned_cols=25  Identities=16%  Similarity=0.070  Sum_probs=22.5

Q ss_pred             cccceEEEEeecccHHHHHHHhhcc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGL   51 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~l   51 (77)
                      |+|-.+.+.+|.+..-.+++.|.+.
T Consensus         1 EPi~~~~I~~p~~~~g~v~~~l~~r   25 (78)
T cd03713           1 EPIMKVEVTVPEEYMGDVIGDLSSR   25 (78)
T ss_pred             CCEEEEEEEcCHHHHHHHHHHHHHc
Confidence            6788899999999999999999875


No 22 
>cd03709 lepA_C lepA_C: This family represents the C-terminal region of LepA, a GTP-binding protein localized in the cytoplasmic membrane.   LepA is ubiquitous in Bacteria and Eukaryota (e.g. Saccharomyces cerevisiae GUF1p), but is missing from Archaea. LepA exhibits significant homology to elongation factors (EFs) Tu and G. The function(s) of the proteins in this family are unknown. The N-terminal domain of LepA is homologous to a domain of similar size found in initiation factor 2 (IF2), and in EF-Tu and EF-G (factors required for translation in Escherichia coli). Two types of phylogenetic tree, rooted by other GTP-binding proteins, suggest that eukaryotic homologs (including S. cerevisiae GUF1) originated within the bacterial LepA family. LepA has never been observed in archaea, and eukaryl LepA is organellar. LepA is therefore a true bacterial GTPase, found only in the bacterial lineage.
Probab=32.53  E-value=44  Score=20.22  Aligned_cols=26  Identities=15%  Similarity=0.043  Sum_probs=23.2

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      |++-.+.+.+|.|..-++++.|....
T Consensus         1 EPi~~v~i~vP~e~~G~V~~~l~~rr   26 (80)
T cd03709           1 EPFVKATIITPSEYLGAIMELCQERR   26 (80)
T ss_pred             CCEEEEEEEeCHHhhHHHHHHHHHhC
Confidence            67888999999999999999999863


No 23 
>cd04096 eEF2_snRNP_like_C eEF2_snRNP_like_C: this family represents a C-terminal domain of eukaryotic elongation factor 2 (eEF-2) and a homologous domain of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and, its yeast counterpart Snu114p.  Yeast Snu114p is essential for cell viability and for splicing in vivo. U5-116 kD binds GTP.  Experiments suggest that GTP binding and probably GTP hydrolysis is important for the function of the U5-116 kD/Snu114p.   In complex with GTP, EF-2 promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the uncharged tRNA from the P site to the E-site and, the mRNA is shifted one codon relative to the ribosome.
Probab=31.74  E-value=44  Score=19.89  Aligned_cols=26  Identities=12%  Similarity=-0.088  Sum_probs=23.3

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      |+|-.+.+.+|.|..-.+++.|+...
T Consensus         1 EPi~~~~I~~p~~~~g~V~~~l~~rr   26 (80)
T cd04096           1 EPIYLVEIQCPEDALGKVYSVLSKRR   26 (80)
T ss_pred             CCEEEEEEEEcHHHhhHHHHhhhhCe
Confidence            67888999999999999999998875


No 24 
>COG4110 Uncharacterized protein involved in stress response [General function prediction only]
Probab=31.19  E-value=41  Score=25.08  Aligned_cols=38  Identities=16%  Similarity=-0.009  Sum_probs=32.7

Q ss_pred             cCccccCC------Ccccc--cccceEEEEeecccHHHHHHHhhcc
Q 047493           14 NGRWWLLP------NDGSS--AVGADAQLIIPIESAHCTISYLGGL   51 (77)
Q Consensus        14 ~~~~~~~~------~~~RS--E~M~l~qL~ip~E~A~~~V~eLG~l   51 (77)
                      |..|=+-+      +||+|  -|..|..+|.-.|-.+.+|..||+.
T Consensus        29 NLNW~rGg~~~f~~giF~~~giDLDLG~~~~LnDGskGviQALGN~   74 (200)
T COG4110          29 NLNWHRGGSKSFFAGIFGSKGIDLDLGAFVELNDGSKGVIQALGNA   74 (200)
T ss_pred             EeeeccCCCcchhhhhhccCccccccceEEEecCCchHHHHHHhhh
Confidence            56677777      89999  5677999999999999999999975


No 25 
>PF03235 DUF262:  Protein of unknown function DUF262;  InterPro: IPR004919 This entry is found in prokaryotic proteins of unknown function.
Probab=30.21  E-value=20  Score=23.97  Aligned_cols=11  Identities=18%  Similarity=0.241  Sum_probs=9.0

Q ss_pred             CCCCccchhhh
Q 047493           61 AGKSLFQRTFA   71 (77)
Q Consensus        61 ~~v~~FqR~Fv   71 (77)
                      =.+|.|||+|+
T Consensus        12 ~~iP~yQR~yv   22 (221)
T PF03235_consen   12 IVIPDYQRDYV   22 (221)
T ss_pred             ccCCCCCCCCc
Confidence            35789999997


No 26 
>cd04097 mtEFG1_C mtEFG1_C: C-terminus of mitochondrial Elongation factor G1 (mtEFG1)-like proteins found in eukaryotes.  Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species.  Eukaryotic EF-2 operates in the cytosolic protein synthesis machinery of eukaryotes, EF-Gs in protein synthesis in bacteria.  Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs.  Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. There are two forms of mtEFG present in mammals (desig
Probab=28.90  E-value=57  Score=19.39  Aligned_cols=26  Identities=15%  Similarity=0.060  Sum_probs=23.0

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      |+|-.+.+.+|.|..-.+++.|.+..
T Consensus         1 EPi~~~~I~~p~~~~g~v~~~l~~rr   26 (78)
T cd04097           1 EPIMKVEVTAPTEFQGNVIGLLNKRK   26 (78)
T ss_pred             CCEEEEEEEecHHHHHHHHHHHHHCC
Confidence            67788999999999999999998864


No 27 
>PF02629 CoA_binding:  CoA binding domain;  InterPro: IPR003781 This domain has a Rossmann fold and is found in a number of proteins including succinyl CoA synthetases, malate and ATP-citrate ligases.; GO: 0005488 binding; PDB: 3IL2_B 3IKT_A 3IKV_B 2SCU_D 1JKJ_D 2NU7_A 1CQI_A 1JLL_A 2NU8_D 1SCU_D ....
Probab=28.76  E-value=34  Score=21.18  Aligned_cols=26  Identities=23%  Similarity=0.144  Sum_probs=19.5

Q ss_pred             cceEEEEeecccHHHHHHHhhcccce
Q 047493           29 GADAQLIIPIESAHCTISYLGGLGLF   54 (77)
Q Consensus        29 M~l~qL~ip~E~A~~~V~eLG~lglv   54 (77)
                      ....=+++|.+.|.+++.++-+.|+=
T Consensus        63 i~iaii~VP~~~a~~~~~~~~~~gIk   88 (96)
T PF02629_consen   63 IDIAIITVPAEAAQEVADELVEAGIK   88 (96)
T ss_dssp             TSEEEEES-HHHHHHHHHHHHHTT-S
T ss_pred             CCEEEEEcCHHHHHHHHHHHHHcCCC
Confidence            44556889999999999999887753


No 28 
>PF09904 HTH_43:  Winged helix-turn helix;  InterPro: IPR017162 There is currently no experimental data for members of this group or their homologues, nor do they exhibit features indicative of any function.; PDB: 3KE2_B.
Probab=27.89  E-value=46  Score=22.05  Aligned_cols=23  Identities=30%  Similarity=0.483  Sum_probs=17.3

Q ss_pred             eecccHHHHHHHhhcccc-eeeee
Q 047493           36 IPIESAHCTISYLGGLGL-FQFKD   58 (77)
Q Consensus        36 ip~E~A~~~V~eLG~lgl-vqF~D   58 (77)
                      +|+..+.+++..|.++|+ +.|+.
T Consensus        33 mPrRT~Qd~i~aL~~~~I~~~Fvq   56 (90)
T PF09904_consen   33 MPRRTIQDTIKALPELGIECEFVQ   56 (90)
T ss_dssp             --HHHHHHHHHGGGGGT-EEEEE-
T ss_pred             CCHhHHHHHHHHhhcCCeEEEEEe
Confidence            689999999999999994 66775


No 29 
>cd03711 Tet_C Tet_C: C-terminus of ribosomal protection proteins Tet(M) and Tet(O). This domain has homology to the C terminal domains of the elongation factors EF-G and EF-2. Tet(M) and Tet(O) catalyze the release of tetracycline (Tc) from the ribosome in a GTP-dependent manner thereby mediating Tc resistance.  Tcs are broad-spectrum antibiotics.  Typical Tcs bind to the ribosome and inhibit the elongation phase of protein synthesis, by inhibiting the  occupation of site A by aminoacyl-tRNA.
Probab=27.89  E-value=60  Score=19.29  Aligned_cols=26  Identities=19%  Similarity=0.213  Sum_probs=23.1

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      |+|-.+.+.+|.|..-.+++.|++..
T Consensus         1 EPi~~~~i~~p~~~~g~v~~~l~~rr   26 (78)
T cd03711           1 EPYLRFELEVPQDALGRAMSDLAKMG   26 (78)
T ss_pred             CCeEEEEEEcCHHHHHHHHHHHHHcC
Confidence            67888999999999999999998864


No 30 
>PF13350 Y_phosphatase3:  Tyrosine phosphatase family; PDB: 1YWF_A 2OZ5_B.
Probab=27.30  E-value=65  Score=21.57  Aligned_cols=39  Identities=21%  Similarity=0.131  Sum_probs=19.4

Q ss_pred             cCccccCCCcccccccceEEEEeecccHHHHHHHhhcccceeeeeCC
Q 047493           14 NGRWWLLPNDGSSAVGADAQLIIPIESAHCTISYLGGLGLFQFKDLN   60 (77)
Q Consensus        14 ~~~~~~~~~~~RSE~M~l~qL~ip~E~A~~~V~eLG~lglvqF~DLN   60 (77)
                      .++.=+.+-+|||...+        ...-+-+..|.++|+=..+||=
T Consensus        12 ~g~~ir~g~lyRS~~l~--------~lt~~d~~~L~~lgI~tIiDLR   50 (164)
T PF13350_consen   12 DGRRIRPGRLYRSGNLS--------NLTEADLERLRELGIRTIIDLR   50 (164)
T ss_dssp             ---TS-TTSEEEES--T--------T--HHHHHHHHHTT--EEEE-S
T ss_pred             ceeeecCCcEEecCCcC--------cCCHHHHHHHHhCCCCEEEECC
Confidence            34444567799999954        3344445566688888888863


No 31 
>PRK00489 hisG ATP phosphoribosyltransferase; Reviewed
Probab=27.27  E-value=52  Score=24.28  Aligned_cols=28  Identities=14%  Similarity=0.163  Sum_probs=25.0

Q ss_pred             ccccceEEEEeecccHHHHHHHhhcccc
Q 047493           26 SAVGADAQLIIPIESAHCTISYLGGLGL   53 (77)
Q Consensus        26 SE~M~l~qL~ip~E~A~~~V~eLG~lgl   53 (77)
                      .+++.-++.++|.+..++++++|-+.|-
T Consensus       247 ~~~~~av~~~~~~~~~~~~~~~l~~~ga  274 (287)
T PRK00489        247 DEGWVAVHAVVPEDLVWELMDKLKALGA  274 (287)
T ss_pred             CCCeEEEEEEECHHHHHHHHHHHHHcCC
Confidence            4678889999999999999999998883


No 32 
>cd07153 Fur_like Ferric uptake regulator(Fur) and related metalloregulatory proteins; typically iron-dependent, DNA-binding repressors and activators. Ferric uptake regulator (Fur) and related metalloregulatory proteins are iron-dependent, DNA-binding repressors and activators mainly involved in iron metabolism.  A general model for Fur repression under iron-rich conditions is that activated Fur (a dimer having one Fe2+ coordinated per monomer) binds to specific DNA sequences (Fur boxes) in the promoter region of iron-responsive genes, hindering access of RNA polymerase, and repressing transcription. Positive regulation by Fur can be direct or indirect, as in the Fur repression of an anti-sense regulatory small RNA. Some members sense metal ions other than Fe2+.  For example, the zinc uptake regulator (Zur) responds to Zn2+, the manganese uptake regulator (Mur) responds to Mn2+, and the nickel uptake regulator (Nur) responds to Ni2+. Other members sense signals other than metal ions.  
Probab=25.70  E-value=74  Score=19.79  Aligned_cols=31  Identities=26%  Similarity=0.409  Sum_probs=24.8

Q ss_pred             eecccHHHHHHHhhcccceeeeeCCCCCCcc
Q 047493           36 IPIESAHCTISYLGGLGLFQFKDLNAGKSLF   66 (77)
Q Consensus        36 ip~E~A~~~V~eLG~lglvqF~DLN~~v~~F   66 (77)
                      ++....|.+++.|-+.|+|+-++...+...|
T Consensus        33 i~~~TVYR~L~~L~~~Gli~~~~~~~~~~~y   63 (116)
T cd07153          33 ISLATVYRTLELLEEAGLVREIELGDGKARY   63 (116)
T ss_pred             CCHHHHHHHHHHHHhCCCEEEEEeCCCceEE
Confidence            5667899999999999999998876653333


No 33 
>smart00838 EFG_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold.
Probab=25.54  E-value=66  Score=19.37  Aligned_cols=25  Identities=16%  Similarity=0.070  Sum_probs=22.7

Q ss_pred             cccceEEEEeecccHHHHHHHhhcc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGL   51 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~l   51 (77)
                      |+|-.+.+.+|.|..-.+++.|.+.
T Consensus         3 EPi~~~~I~~p~~~~g~v~~~l~~r   27 (85)
T smart00838        3 EPIMKVEVTVPEEYMGDVIGDLNSR   27 (85)
T ss_pred             CCEEEEEEEeCHHHHHHHHHHHHHc
Confidence            7888999999999999999999775


No 34 
>PF00392 GntR:  Bacterial regulatory proteins, gntR family;  InterPro: IPR000524 Many bacterial transcription regulation proteins bind DNA through a helix-turn-helix (HTH) motif, which can be classified into subfamilies on the basis of sequence similarities. The HTH GntR family has many members distributed among diverse bacterial groups that regulate various biological processes. It was named GntR after the Bacillus subtilis repressor of the gluconate operon []. Family members include GntR, HutC, KorA, NtaR, FadR, ExuR, FarR, DgoR and PhnF. The crystal structure of the FadR protein has been determined []. In general, these proteins contain a DNA-binding HTH domain at the N terminus, and an effector-binding or oligomerisation domain at the C terminus (IPR011711 from INTERPRO). The DNA-binding domain is well conserved in structure for the whole of the GntR family, consisting of a 3-helical bundle core with a small beta-sheet (wing); the GntR winged helix structure is similar to that found in several other transcriptional regulator families. The regions outside the DNA-binding domain are more variable and are consequently used to define GntR subfamilies []. This entry represents the N-terminal DNA-binding domain of the GntR family.; GO: 0003700 sequence-specific DNA binding transcription factor activity, 0006355 regulation of transcription, DNA-dependent, 0005622 intracellular; PDB: 1HW1_B 1H9T_A 1HW2_A 1H9G_A 1E2X_A 3IHU_A 3C7J_A 2RA5_A 3BY6_C 3IC7_A ....
Probab=25.32  E-value=51  Score=18.86  Aligned_cols=23  Identities=13%  Similarity=0.213  Sum_probs=19.1

Q ss_pred             eecccHHHHHHHhhcccceeeee
Q 047493           36 IPIESAHCTISYLGGLGLFQFKD   58 (77)
Q Consensus        36 ip~E~A~~~V~eLG~lglvqF~D   58 (77)
                      ++...+++++..|-+.|+|+.++
T Consensus        36 vsr~tvr~al~~L~~~g~i~~~~   58 (64)
T PF00392_consen   36 VSRTTVREALRRLEAEGLIERRP   58 (64)
T ss_dssp             S-HHHHHHHHHHHHHTTSEEEET
T ss_pred             cCCcHHHHHHHHHHHCCcEEEEC
Confidence            66778899999999999998764


No 35 
>PF13380 CoA_binding_2:  CoA binding domain; PDB: 3FF4_A 2D5A_A 2D59_A 2E6U_X 1IUL_A 1IUK_A 1Y81_A 2DUW_A.
Probab=25.17  E-value=51  Score=21.37  Aligned_cols=26  Identities=15%  Similarity=0.113  Sum_probs=21.4

Q ss_pred             cccceEEEEeecccHHHHHHHhhccc
Q 047493           27 AVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        27 E~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      ++..++-+++|.+..-+.+.+++++|
T Consensus        54 ~~iDlavv~~~~~~~~~~v~~~~~~g   79 (116)
T PF13380_consen   54 EPIDLAVVCVPPDKVPEIVDEAAALG   79 (116)
T ss_dssp             ST-SEEEE-S-HHHHHHHHHHHHHHT
T ss_pred             CCCCEEEEEcCHHHHHHHHHHHHHcC
Confidence            56779999999999999999999998


No 36 
>PF04567 RNA_pol_Rpb2_5:  RNA polymerase Rpb2, domain 5;  InterPro: IPR007647 RNA polymerases catalyse the DNA dependent polymerisation of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial and chloroplast polymerases). Domain 5, is also known as the external 2 domain [].; GO: 0003677 DNA binding, 0003899 DNA-directed RNA polymerase activity, 0006351 transcription, DNA-dependent; PDB: 3S17_B 1I6H_B 4A3B_B 3K1F_B 4A3I_B 1TWA_B 3S14_B 3S15_B 2NVX_B 3M3Y_B ....
Probab=22.79  E-value=1e+02  Score=17.38  Aligned_cols=20  Identities=15%  Similarity=0.210  Sum_probs=14.3

Q ss_pred             HhhcccceeeeeCCCCCCcc
Q 047493           47 YLGGLGLFQFKDLNAGKSLF   66 (77)
Q Consensus        47 eLG~lglvqF~DLN~~v~~F   66 (77)
                      .|=+.|+|.|+|-+...++.
T Consensus         3 ~ll~~G~vE~id~eEEe~~~   22 (48)
T PF04567_consen    3 DLLKEGVVEYIDAEEEETCM   22 (48)
T ss_dssp             HHHHTTSEEEEETTTCTT--
T ss_pred             hHhhCCCEEEecchhccccE
Confidence            45567999999988876554


No 37 
>PF11582 DUF3240:  Protein of unknown function (DUF3240);  InterPro: IPR021634  This family of proteins with unknown function appears to be restricted to Proteobacteria. ; PDB: 3CE8_A.
Probab=21.46  E-value=1.1e+02  Score=19.82  Aligned_cols=24  Identities=25%  Similarity=0.198  Sum_probs=21.2

Q ss_pred             ccceEEEEeecccHHHHHHHhhcc
Q 047493           28 VGADAQLIIPIESAHCTISYLGGL   51 (77)
Q Consensus        28 ~M~l~qL~ip~E~A~~~V~eLG~l   51 (77)
                      ++..+++++|.+.|.+.++.|.+.
T Consensus        59 ~~~~~~~~~~~~~~~~Ll~~L~~~   82 (102)
T PF11582_consen   59 RRVRFQVILPEEDAEELLAALKQE   82 (102)
T ss_dssp             EEEEEEEEEEGGGHHHHHHHHHHH
T ss_pred             ceEEEEEEECHHHHHHHHHHHHHH
Confidence            667899999999999999999764


No 38 
>TIGR00341 conserved hypothetical protein TIGR00341. This conserved hypothetical protein is found so far only in three archaeal genomes and in Streptomyces coelicolor. It shares a hydrophobic uncharacterized domain (see model TIGR00271) of about 180 residues with several eubacterial proteins, including the much longer protein sll1151 of Synechocystis PCC6803.
Probab=20.42  E-value=1.5e+02  Score=23.49  Aligned_cols=36  Identities=11%  Similarity=-0.179  Sum_probs=29.0

Q ss_pred             CccccCCCcccccccceEEEEeecccHHHHHHHhhccc
Q 047493           15 GRWWLLPNDGSSAVGADAQLIIPIESAHCTISYLGGLG   52 (77)
Q Consensus        15 ~~~~~~~~~~RSE~M~l~qL~ip~E~A~~~V~eLG~lg   52 (77)
                      -.||.....-..+  ..+++++|.|++-+.+++|-++|
T Consensus        30 i~~~~~~~~~~~~--~~i~~~v~~~~~e~vld~L~~lg   65 (325)
T TIGR00341        30 IAIELGDKTFIYD--DRIELYVQDSDTEKIVSRLKDKL   65 (325)
T ss_pred             ceEEeccCCCCcc--eEEEEEcChhhHHHHHHHHHHcC
Confidence            5677776544444  68999999999999999999985


No 39 
>PF09339 HTH_IclR:  IclR helix-turn-helix domain;  InterPro: IPR005471 The many bacterial transcription regulation proteins which bind DNA through a 'helix-turn-helix' motif can be classified into subfamilies on the basis of sequence similarities. One of these subfamilies, called 'iclR', groups several proteins including:  gylR, a possible activator protein for the gylABX glycerol operon in Streptomyces.   iclR, the repressor of the acetate operon (also known as glyoxylate bypass operon) in Escherichia coli and Salmonella typhimurium.    These proteins have a Helix-Turn-Helix motif at the N terminus that is similar to that of other DNA-binding proteins [].; GO: 0003677 DNA binding, 0006355 regulation of transcription, DNA-dependent; PDB: 1MKM_A 3MQ0_A 3R4K_A 2G7U_C 2O0Y_C 2XRO_F 2XRN_B 2IA2_D.
Probab=20.31  E-value=64  Score=17.81  Aligned_cols=21  Identities=19%  Similarity=0.256  Sum_probs=17.6

Q ss_pred             eecccHHHHHHHhhcccceee
Q 047493           36 IPIESAHCTISYLGGLGLFQF   56 (77)
Q Consensus        36 ip~E~A~~~V~eLG~lglvqF   56 (77)
                      +|+-.++..+..|-+.|.|+-
T Consensus        30 l~~stv~r~L~tL~~~g~v~~   50 (52)
T PF09339_consen   30 LPKSTVHRLLQTLVEEGYVER   50 (52)
T ss_dssp             S-HHHHHHHHHHHHHTTSEEE
T ss_pred             cCHHHHHHHHHHHHHCcCeec
Confidence            788899999999999998864


No 40 
>PF10307 DUF2410:  Hypothetical protein (DUF2410);  InterPro: IPR018812  This entry represents a family of proteins conserved in fungi whose function is not known. There are two characteristic sequence motifs, GGWW and TGR. 
Probab=20.03  E-value=42  Score=24.72  Aligned_cols=33  Identities=21%  Similarity=0.340  Sum_probs=22.8

Q ss_pred             HHHHhhhhcCccccCCCcccc--cccceEEEEeecccHHH
Q 047493            6 LFNQKRKKNGRWWLLPNDGSS--AVGADAQLIIPIESAHC   43 (77)
Q Consensus         6 ~~~~~~~~~~~~~~~~~~~RS--E~M~l~qL~ip~E~A~~   43 (77)
                      |-++-.-.|+-||.+|+++.-  +.     +.++...||+
T Consensus        18 L~~~~~~~ngGWW~d~~~L~~t~~~-----~~~~~~~~w~   52 (197)
T PF10307_consen   18 LMSPDSFSNGGWWHDPRILAATGEG-----MEVEEKRAWE   52 (197)
T ss_pred             HhCcccCCCCCCcCCcHHHHhhccc-----ccccCccccc
Confidence            445555678999999999966  33     4456666665


Done!