Query psy1249
Match_columns 64
No_of_seqs 111 out of 420
Neff 4.7
Searched_HMMs 46136
Date Fri Aug 16 20:38:49 2013
Command hhsearch -i /work/01045/syshi/Psyhhblits/psy1249.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/1249hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 KOG3589|consensus 99.5 2.2E-14 4.9E-19 98.5 4.0 43 1-43 161-205 (221)
2 smart00315 RGS Regulator of G 98.8 3.4E-09 7.5E-14 63.5 2.7 34 3-36 84-117 (118)
3 PF00615 RGS: Regulator of G p 98.6 2.4E-08 5.1E-13 59.0 2.2 35 3-37 84-118 (118)
4 KOG3590|consensus 95.9 0.0032 7E-08 49.6 1.1 34 4-37 273-306 (602)
5 KOG3590|consensus 92.9 0.13 2.8E-06 40.9 3.4 57 3-59 408-464 (602)
6 PF11946 DUF3463: Domain of un 69.0 5.3 0.00011 26.9 2.5 27 14-41 29-55 (138)
7 COG1381 RecO Recombinational D 52.5 32 0.0007 24.2 4.2 42 2-43 109-150 (251)
8 PF02843 GARS_C: Phosphoribosy 49.1 14 0.0003 22.4 1.8 27 7-33 61-88 (93)
9 PF01991 vATP-synt_E: ATP synt 32.5 17 0.00036 23.6 0.2 27 7-33 76-103 (198)
10 PRK03963 V-type ATP synthase s 28.3 41 0.00089 22.2 1.6 31 6-37 84-114 (198)
11 PF00508 PPV_E2_N: E2 (early) 27.3 59 0.0013 23.0 2.3 18 7-24 6-23 (202)
12 PF13124 DUF3963: Protein of u 27.2 60 0.0013 17.6 1.8 12 8-19 12-23 (40)
13 PF08594 UPF0300: Uncharacteri 24.8 53 0.0012 23.6 1.7 27 13-39 25-51 (215)
14 KOG1027|consensus 24.2 65 0.0014 27.6 2.3 22 5-26 542-563 (903)
15 COG4281 ACB Acyl-CoA-binding p 23.5 79 0.0017 19.8 2.1 20 6-25 3-22 (87)
16 PF14695 LINES_C: Lines C-term 22.5 1.4E+02 0.0029 16.1 2.7 21 6-26 3-23 (39)
17 PF01274 Malate_synthase: Mala 22.3 1.2E+02 0.0027 24.2 3.4 34 5-38 493-526 (526)
18 cd07451 CRD_SMO Cysteine-rich 20.8 1E+02 0.0022 20.3 2.3 34 3-36 76-109 (132)
No 1
>KOG3589|consensus
Probab=99.49 E-value=2.2e-14 Score=98.46 Aligned_cols=43 Identities=47% Similarity=0.818 Sum_probs=39.4
Q ss_pred CCCCC--HHHHHHHHHHHHHHHhhCcccchhccHHHHHHHHhcCC
Q psy1249 1 MVSPS--NHTFDEAQLQIYTLMHRDSYPRFINSTVYKQLAQLDSS 43 (64)
Q Consensus 1 l~~P~--~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~ll~~~~~ 43 (64)
|.+|+ ++|||.||.+||.||++|||||||+|++|++++.....
T Consensus 161 l~~p~~~~~~f~~Aq~~i~~lm~~dsy~RFl~s~~y~~l~~~~~~ 205 (221)
T KOG3589|consen 161 LSEPSGQRTCFDEAQKHVYTLMEKDSYPRFLRSPLYLDLLKQPKK 205 (221)
T ss_pred hcCCCCCCCcHHHHHHHHHHhcccCCCccccCCHHHHHHHHHhhc
Confidence 46788 99999999999999999999999999999999996554
No 2
>smart00315 RGS Regulator of G protein signalling domain. RGS family members are GTPase-activating proteins for heterotrimeric G-protein alpha-subunits.
Probab=98.80 E-value=3.4e-09 Score=63.47 Aligned_cols=34 Identities=44% Similarity=0.879 Sum_probs=32.0
Q ss_pred CCCHHHHHHHHHHHHHHHhhCcccchhccHHHHH
Q psy1249 3 SPSNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQ 36 (64)
Q Consensus 3 ~P~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~ 36 (64)
.|++++|+.||.+|+.+|+.|+||||++|+.|.+
T Consensus 84 ~~~~~~F~~~~~~v~~~l~~~~~~~F~~S~~y~~ 117 (118)
T smart00315 84 EPPPDLFDEAQEEVYELLEKDSFPRFLESDYYLR 117 (118)
T ss_pred CCChHHHHHHHHHHHHHHhcCchHHHhCCHhhcc
Confidence 4889999999999999999999999999999975
No 3
>PF00615 RGS: Regulator of G protein signaling domain; InterPro: IPR000342 RGS (Regulator of G Protein Signalling) proteins are multi-functional, GTPase-accelerating proteins that promote GTP hydrolysis by the alpha subunit of heterotrimeric G proteins, thereby inactivating the G protein and rapidly switching off G protein-coupled receptor signalling pathways []. Upon activation by GPCRs, heterotrimeric G proteins exchange GDP for GTP, are released from the receptor, and dissociate into free, active GTP-bound alpha subunit and beta-gamma dimer, both of which activate downstream effectors. The response is terminated upon GTP hydrolysis by the alpha subunit (IPR001019 from INTERPRO), which can then bind the beta-gamma dimer (IPR001632 from INTERPRO, IPR001770 from INTERPRO) and the receptor. RGS proteins markedly reduce the lifespan of GTP-bound alpha subunits by stabilising the G protein transition state. All RGS proteins contain an 'RGS-box' (or RGS domain), which is required for activity. Some small RGS proteins such as RGS1 and RGS4 are comprised of little more than an RGS domain, while others also contain additional domains that confer further functionality []. RGS domains can be found in conjunction with a variety of domains, including: DEP for membrane targeting (IPR000591 from INTERPRO), PDZ for binding to GPCRs (IPR001478 from INTERPRO), PTB for phosphotyrosine-binding (IPR006020 from INTERPRO), RBD for Ras-binding (IPR003116 from INTERPRO), GoLoco for guanine nucleotide inhibitor activity (IPR003109 from INTERPRO), PX for phosphatidylinositol-binding (IPR001683 from INTERPRO), PXA that is associated with PX (IPR003114 from INTERPRO), PH for stimulating guanine nucleotide exchange (IPR001849 from INTERPRO), and GGL (G protein gamma subunit-like) for binding G protein beta subunits (IPR001770 from INTERPRO) []. Those RGS proteins that contain GGL domains can interact with G protein beta subunits to form novel dimers that prevent G protein gamma subunit binding and G protein alpha subunit association, thereby preventing heterotrimer formation.; GO: 0004871 signal transducer activity; PDB: 2BCJ_A 3PSC_A 3PVU_A 1YM7_B 3PVW_A 1OMW_A 2EBZ_A 2BV1_B 2GTP_D 1CMZ_A ....
Probab=98.61 E-value=2.4e-08 Score=59.00 Aligned_cols=35 Identities=43% Similarity=0.840 Sum_probs=32.9
Q ss_pred CCCHHHHHHHHHHHHHHHhhCcccchhccHHHHHH
Q psy1249 3 SPSNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQL 37 (64)
Q Consensus 3 ~P~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~l 37 (64)
.|.+++|+.||.+|+..|+.+.||+|++|+.|+++
T Consensus 84 ~~~~~~f~~a~~~v~~~L~~~~~~~F~~S~~y~~~ 118 (118)
T PF00615_consen 84 PPSPDLFDEAQEEVYEMLEEDWFPKFLKSEEYKQF 118 (118)
T ss_dssp STTTTTTHHHHHHHHHHHHHTHHHHHHTSHHHHHH
T ss_pred cccHHHHHHHHHHHHHHHhhchHHhHccCHhhhcC
Confidence 38899999999999999999999999999999874
No 4
>KOG3590|consensus
Probab=95.90 E-value=0.0032 Score=49.58 Aligned_cols=34 Identities=26% Similarity=0.528 Sum_probs=30.4
Q ss_pred CCHHHHHHHHHHHHHHHhhCcccchhccHHHHHH
Q psy1249 4 PSNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQL 37 (64)
Q Consensus 4 P~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~l 37 (64)
.+++|||+||.-|+.-||+|-+.-||+|..|-.+
T Consensus 273 i~~~CFDEAq~~v~~~~e~Dhf~~fl~s~h~~~y 306 (602)
T KOG3590|consen 273 VDPNCFDEAQSIVFSAMEQDHFSEFLRSHHFCKY 306 (602)
T ss_pred CCchHHHHHHHHHHHHHHHHHHHHHHHhccccce
Confidence 5789999999999999999999999999886543
No 5
>KOG3590|consensus
Probab=92.88 E-value=0.13 Score=40.87 Aligned_cols=57 Identities=16% Similarity=0.218 Sum_probs=47.2
Q ss_pred CCCHHHHHHHHHHHHHHHhhCcccchhccHHHHHHHHhcCCCCCCCCCCCCCChhhh
Q psy1249 3 SPSNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQLAQLDSSPGDTGGNSDSSTPARK 59 (64)
Q Consensus 3 ~P~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~ll~~~~~~~~~~~~~~~~~~~~~ 59 (64)
.|-+..|+.|-.+-+.-+++--+|.||+|.+|-++|..-....+..+|++-+..-+|
T Consensus 408 gp~~~AF~tAl~~~~~~Le~KYl~DFLKs~~y~NYlnEL~~~~~~~~fl~~TvsL~R 464 (602)
T KOG3590|consen 408 GPLPNAFTTALRQAWTTLEKKYLPDFLKSNLYYNYLNELIHSVRGDEFLGGTVSLTR 464 (602)
T ss_pred CCchhHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHhhccCCcccCceeeccC
Confidence 388999999999999999999999999999999999966665666677666555443
No 6
>PF11946 DUF3463: Domain of unknown function (DUF3463); InterPro: IPR022563 This functionally uncharacterised domain is found in bacteria and archaea, which is about 140 amino acids in length and is found C-terminal to PF04055 from PFAM. It contains two conserved sequence motifs: CTPWG and PCYL. This domain is associated with hopanoid biosynthesis associated radical SAM proteins.
Probab=68.97 E-value=5.3 Score=26.87 Aligned_cols=27 Identities=15% Similarity=0.310 Sum_probs=21.8
Q ss_pred HHHHHHHhhCcccchhccHHHHHHHHhc
Q psy1249 14 LQIYTLMHRDSYPRFINSTVYKQLAQLD 41 (64)
Q Consensus 14 ~~Iy~LMe~DSYpRFLkS~~Y~~ll~~~ 41 (64)
+.|+..+.+..|+ |..|+.|.+.|...
T Consensus 29 r~i~~~~~~k~w~-f~~SplyLdfL~G~ 55 (138)
T PF11946_consen 29 RKIFAKGKKKKWR-FNHSPLYLDFLAGN 55 (138)
T ss_pred HHHHHhcccCCcc-ccCCHHHHHHHcCC
Confidence 4566667778887 99999999999853
No 7
>COG1381 RecO Recombinational DNA repair protein (RecF pathway) [DNA replication, recombination, and repair]
Probab=52.50 E-value=32 Score=24.18 Aligned_cols=42 Identities=12% Similarity=0.067 Sum_probs=34.9
Q ss_pred CCCCHHHHHHHHHHHHHHHhhCcccchhccHHHHHHHHhcCC
Q psy1249 2 VSPSNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQLAQLDSS 43 (64)
Q Consensus 2 ~~P~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~ll~~~~~ 43 (64)
++|+|.+|+..+..+..+|.....|.++-.-+...+|+..|-
T Consensus 109 ~~~~p~Lf~~~~~~L~~l~~~~~~~~~~l~~fel~lL~~~G~ 150 (251)
T COG1381 109 EDPNPELFELYLETLEYLLSDGNDPELLLRRFELKLLGELGI 150 (251)
T ss_pred CCCChHHHHHHHHHHHHHHcCCCCcHHHHHHHHHHHHHHcCC
Confidence 469999999999999999988888888888788888874443
No 8
>PF02843 GARS_C: Phosphoribosylglycinamide synthetase, C domain; InterPro: IPR020560 Phosphoribosylglycinamide synthetase (6.3.4.13 from EC) (GARS) (phosphoribosylamine glycine ligase) [] catalyses the second step in the de novo biosynthesis of purine. The reaction catalysed by phosphoribosylglycinamide synthetase is the ATP-dependent addition of 5-phosphoribosylamine to glycine to form 5'phosphoribosylglycinamide: ATP + 5-phosphoribosylamine + glycine = ADP + Pi + 5'-phosphoribosylglycinamide In bacteria, GARS is a monofunctional enzyme (encoded by the purD gene). In yeast, GARS is part of a bifunctional enzyme (encoded by the ADE5/7 gene) in conjunction with phosphoribosylformylglycinamidine cyclo-ligase (AIRS) (IPR000728 from INTERPRO). In higher eukaryotes, GARS is part of a trifunctional enzyme in conjunction with AIRS (IPR000728 from INTERPRO) and with phosphoribosylglycinamide formyltransferase (GART) (), forming GARS-AIRS-GART. This entry represents the C-domain, which is related to the C-terminal domain of biotin carboxylase/carbamoyl phosphate synthetase (IPR005480 from INTERPRO).; GO: 0004637 phosphoribosylamine-glycine ligase activity, 0009113 purine base biosynthetic process; PDB: 2YW2_B 2YYA_A 3MJF_A 2IP4_A 3LP8_A 1VKZ_A 2YS6_A 2YRX_A 2YRW_A 2YS7_A ....
Probab=49.08 E-value=14 Score=22.42 Aligned_cols=27 Identities=22% Similarity=0.527 Sum_probs=19.9
Q ss_pred HHHHHHHHHHHHHHhhCccc-chhccHH
Q psy1249 7 HTFDEAQLQIYTLMHRDSYP-RFINSTV 33 (64)
Q Consensus 7 ~~Fd~AQ~~Iy~LMe~DSYp-RFLkS~~ 33 (64)
..|++|+..+|..++.=.++ .|-|.|+
T Consensus 61 ~tl~eA~~~ay~~i~~I~~~g~~yR~DI 88 (93)
T PF02843_consen 61 DTLEEAREKAYEAIEKIDFPGMFYRKDI 88 (93)
T ss_dssp SSHHHHHHHHHHHHTTSB-TTEE--STT
T ss_pred CCHHHHHHHHHHHHhccCCCCCEEcCcc
Confidence 35899999999999987777 7777664
No 9
>PF01991 vATP-synt_E: ATP synthase (E/31 kDa) subunit; InterPro: IPR002842 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include: F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP. The V-ATPases (or V1V0-ATPase) and A-ATPases (or A1A0-ATPase) are each composed of two linked complexes: the V1 or A1 complex contains the catalytic core that hydrolyses/synthesizes ATP, and the V0 or A0 complex that forms the membrane-spanning pore. The V- and A-ATPases both contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis [, , ]. The V- and A-ATPases more closely resemble one another in subunit structure than they do the F-ATPases, although the function of A-ATPases is closer to that of F-ATPases. This entry represents subunit E from the V1 and A1 complexes of V- and A-ATPases, respectively. Subunit E appears to form a tight interaction with subunit G in the F0 complex, which together may act as stators to prevent certain subunits from rotating with the central rotary element, much in the same way as the F0 complex subunit B does in F-ATPases []. In addition to its key role in stator structure, subunit E appears to have a role in mediating interactions with putative regulatory subunits []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0046961 proton-transporting ATPase activity, rotational mechanism, 0015991 ATP hydrolysis coupled proton transport, 0033178 proton-transporting two-sector ATPase complex, catalytic domain; PDB: 3LG8_A 2KK7_A 4DT0_A 2DM9_A 2DMA_A 3V6I_A 3K5B_A 3J0J_L 2KZ9_A.
Probab=32.53 E-value=17 Score=23.61 Aligned_cols=27 Identities=15% Similarity=0.486 Sum_probs=22.4
Q ss_pred HHHHHHHHHHHHHHhhC-cccchhccHH
Q psy1249 7 HTFDEAQLQIYTLMHRD-SYPRFINSTV 33 (64)
Q Consensus 7 ~~Fd~AQ~~Iy~LMe~D-SYpRFLkS~~ 33 (64)
.+|+.+...+..+...+ -|..||.+-+
T Consensus 76 ~v~~~~~~~L~~~~~~~~~Y~~~L~~li 103 (198)
T PF01991_consen 76 EVFEEVKEKLKSFSKDPDDYKKFLKKLI 103 (198)
T ss_dssp HHHHHHHHHHHCTTCCC-THHHHHHHHH
T ss_pred HHHHHHHHHHHHHhcCHHHHHHHHHHHH
Confidence 57999999999998886 8999988743
No 10
>PRK03963 V-type ATP synthase subunit E; Provisional
Probab=28.33 E-value=41 Score=22.25 Aligned_cols=31 Identities=10% Similarity=0.217 Sum_probs=23.7
Q ss_pred HHHHHHHHHHHHHHHhhCcccchhccHHHHHH
Q psy1249 6 NHTFDEAQLQIYTLMHRDSYPRFINSTVYKQL 37 (64)
Q Consensus 6 ~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~l 37 (64)
..+|+.|...+..|. .|.|+.||.+-+-..+
T Consensus 84 ~~v~~~a~~~l~~~~-~~~Y~~~l~~li~~a~ 114 (198)
T PRK03963 84 SEVLEAVRERLAELP-EDEYFETLKALTKEAV 114 (198)
T ss_pred HHHHHHHHHHHHhhh-hhhHHHHHHHHHHHHH
Confidence 468999999999865 5699999988655443
No 11
>PF00508 PPV_E2_N: E2 (early) protein, N terminal; InterPro: IPR001866 E2 is an early regulatory protein found in the dsDNA papillomaviruses. E2 regulates viral transcription and DNA replication. It binds to the E2RE response element (5'-ACCNNNNNNGGT-3') present in multiple copies in the regulatory region. It can either activate or repress transcription, depending on E2RE's posiiton with regard to proximal promoter elements. Repression occurs by sterically hindering the assembly of the transcription initiation complex. The E1-E2 dimer complex binds to the origin of DNA replication [].; GO: 0006275 regulation of DNA replication, 0006355 regulation of transcription, DNA-dependent, 0016032 viral reproduction; PDB: 1R6K_A 1R6N_A 2JEX_A 2JEU_A 1TUE_E 1QQH_A 1DTO_A 2NNU_A.
Probab=27.28 E-value=59 Score=23.01 Aligned_cols=18 Identities=33% Similarity=0.475 Sum_probs=15.4
Q ss_pred HHHHHHHHHHHHHHhhCc
Q psy1249 7 HTFDEAQLQIYTLMHRDS 24 (64)
Q Consensus 7 ~~Fd~AQ~~Iy~LMe~DS 24 (64)
.-||..|.++..|.|+||
T Consensus 6 ~RLdalQe~~l~lyE~ds 23 (202)
T PF00508_consen 6 QRLDALQEQLLELYEKDS 23 (202)
T ss_dssp HHHHHHHHHHHHHHHHT-
T ss_pred HHHHHHHHHHHHHHhCCC
Confidence 358999999999999996
No 12
>PF13124 DUF3963: Protein of unknown function (DUF3963)
Probab=27.22 E-value=60 Score=17.57 Aligned_cols=12 Identities=33% Similarity=0.421 Sum_probs=9.9
Q ss_pred HHHHHHHHHHHH
Q psy1249 8 TFDEAQLQIYTL 19 (64)
Q Consensus 8 ~Fd~AQ~~Iy~L 19 (64)
-||+.|+.|.+.
T Consensus 12 yfddiqkwirni 23 (40)
T PF13124_consen 12 YFDDIQKWIRNI 23 (40)
T ss_pred HHHHHHHHHHHH
Confidence 599999998764
No 13
>PF08594 UPF0300: Uncharacterised protein family (UPF0300); InterPro: IPR013903 This entry of proteins appear to be specific to Schizosaccharomyces pombe (Fission yeast).
Probab=24.78 E-value=53 Score=23.60 Aligned_cols=27 Identities=30% Similarity=0.600 Sum_probs=22.6
Q ss_pred HHHHHHHHhhCcccchhccHHHHHHHH
Q psy1249 13 QLQIYTLMHRDSYPRFINSTVYKQLAQ 39 (64)
Q Consensus 13 Q~~Iy~LMe~DSYpRFLkS~~Y~~ll~ 39 (64)
|--|-.+|-.|.||.||+..+.+....
T Consensus 25 ~VLiHHvMLYd~Yp~~lq~aLW~AV~~ 51 (215)
T PF08594_consen 25 QVLIHHVMLYDYYPEFLQEALWKAVEH 51 (215)
T ss_pred HHHHHHHHHHHhCcHHHHHHHHHHHHH
Confidence 334678999999999999999887765
No 14
>KOG1027|consensus
Probab=24.20 E-value=65 Score=27.63 Aligned_cols=22 Identities=36% Similarity=0.363 Sum_probs=18.7
Q ss_pred CHHHHHHHHHHHHHHHhhCccc
Q psy1249 5 SNHTFDEAQLQIYTLMHRDSYP 26 (64)
Q Consensus 5 ~~~~Fd~AQ~~Iy~LMe~DSYp 26 (64)
-+.+|+-||++|-.|++.|--|
T Consensus 542 l~e~~~~A~rEi~lL~eSD~H~ 563 (903)
T KOG1027|consen 542 LEEFFDFAQREIQLLQESDEHP 563 (903)
T ss_pred hhHhHHHHHHHHHHHHhccCCC
Confidence 3678999999999999999544
No 15
>COG4281 ACB Acyl-CoA-binding protein [Lipid metabolism]
Probab=23.45 E-value=79 Score=19.78 Aligned_cols=20 Identities=25% Similarity=0.388 Sum_probs=16.7
Q ss_pred HHHHHHHHHHHHHHHhhCcc
Q psy1249 6 NHTFDEAQLQIYTLMHRDSY 25 (64)
Q Consensus 6 ~~~Fd~AQ~~Iy~LMe~DSY 25 (64)
...|++||..|-.|-++-+-
T Consensus 3 s~~Feqa~~dV~~L~~kP~~ 22 (87)
T COG4281 3 STRFEQAQTDVKELSEKPSN 22 (87)
T ss_pred hhHHHHHHHHHHHhccCCCc
Confidence 46799999999999888653
No 16
>PF14695 LINES_C: Lines C-terminus
Probab=22.50 E-value=1.4e+02 Score=16.10 Aligned_cols=21 Identities=19% Similarity=0.373 Sum_probs=18.3
Q ss_pred HHHHHHHHHHHHHHHhhCccc
Q psy1249 6 NHTFDEAQLQIYTLMHRDSYP 26 (64)
Q Consensus 6 ~~~Fd~AQ~~Iy~LMe~DSYp 26 (64)
-.||..-|..|+.|-+++=||
T Consensus 3 m~cl~~L~~aI~rL~~k~LFP 23 (39)
T PF14695_consen 3 MKCLIRLRLAIERLVRKNLFP 23 (39)
T ss_pred HHHHHHHHHHHHHHHHCCCCC
Confidence 468889999999999999777
No 17
>PF01274 Malate_synthase: Malate synthase; InterPro: IPR001465 Malate synthase (2.3.3.9 from EC) catalyses the aldol condensation of glyoxylate with acetyl-CoA to form malate as part of the second step of the glyoxylate bypass and an alternative to the tricarboxylic acid cycle in bacteria, fungi and plants. Malate synthase has a TIM beta/alpha-barrel fold [].; GO: 0004474 malate synthase activity, 0006097 glyoxylate cycle; PDB: 1Y8B_A 1P7T_A 2JQX_A 1D8C_A 3CUX_A 1N8W_A 2GQ3_A 1N8I_A 3CV2_A 3CUZ_A ....
Probab=22.30 E-value=1.2e+02 Score=24.22 Aligned_cols=34 Identities=21% Similarity=0.474 Sum_probs=29.0
Q ss_pred CHHHHHHHHHHHHHHHhhCcccchhccHHHHHHH
Q psy1249 5 SNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQLA 38 (64)
Q Consensus 5 ~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~ll 38 (64)
....|++|-.-+..+...+.|+.||-.+.|..++
T Consensus 493 ~~~~~~~a~~i~~~~v~~~~f~~FlT~~ay~~lv 526 (526)
T PF01274_consen 493 ADPRYREAADIFEELVTSEDFPDFLTLPAYEHLV 526 (526)
T ss_dssp TCTTHHHHHHHHHHHHHTSTGGC-HHHHHHHHHH
T ss_pred CCchHHHHHHHHHHHhccCCcchhhhHhhhhccC
Confidence 4566889999999999999999999999999875
No 18
>cd07451 CRD_SMO Cysteine-rich domain of the smoothened receptor (Smo) integral membrane protein. The cysteine-rich domain (CRD) is part of the smoothened receptor (Smo), an integral membrane protein and one of the key players in the Hedgehog (Hh) signaling pathway, critical for development, cell growth and migration, as well as stem cell maintenance. The CRD of Smo is conserved in vertebrates and can also be identified in invertebrates. The precise function of the CRD in Smo is unknown. Mutations in the Drosophila CRD disrupt Smo activity in vivo, while deletion of the CRD in mammalian cells does not seem to affect the activity of overexpressed Smo.
Probab=20.77 E-value=1e+02 Score=20.27 Aligned_cols=34 Identities=12% Similarity=0.200 Sum_probs=29.4
Q ss_pred CCCHHHHHHHHHHHHHHHhhCcccchhccHHHHH
Q psy1249 3 SPSNHTFDEAQLQIYTLMHRDSYPRFINSTVYKQ 36 (64)
Q Consensus 3 ~P~~~~Fd~AQ~~Iy~LMe~DSYpRFLkS~~Y~~ 36 (64)
-|.+.+-+.+......+|+.=.+|.||+.+.+..
T Consensus 76 ~PCRslCe~vr~~C~~~m~~~~WP~~L~C~~~p~ 109 (132)
T cd07451 76 LPSQEMCQATRGPCKIVENERGWPDFLRCDNDRF 109 (132)
T ss_pred CCCHHHHHHHHHHHHHHHHcCCCCCcCcCCCCCC
Confidence 4889999999999999999889999999885543
Done!