RPS-BLAST 2.2.26 [Sep-21-2011]

Database: CDD.v3.10 
           44,354 sequences; 10,937,602 total letters

Searching..................................................done

Query= psy15224
         (502 letters)



>gnl|CDD|234596 PRK00049, PRK00049, elongation factor Tu; Reviewed.
          Length = 396

 Score =  649 bits (1678), Expect = 0.0
 Identities = 234/291 (80%), Positives = 257/291 (88%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV SAADGPMPQTREHILLARQVGVPYIVVFLNK DMVDDEELLELVE
Sbjct: 92  MITGAAQMDGAILVVSAADGPMPQTREHILLARQVGVPYIVVFLNKCDMVDDEELLELVE 151

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           +E+RELL+KY+FPG+D PII+GSA  ALEGD     E+ IL L  A+D+YIPTP RAID 
Sbjct: 152 MEVRELLSKYDFPGDDTPIIRGSALKALEGDDDEEWEKKILELMDAVDSYIPTPERAIDK 211

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            FL+P+EDVFSISGRGTVVTGRVERGI++VGEE+EI+GI+DT KTT TGVEMFRKLLD+G
Sbjct: 212 PFLMPIEDVFSISGRGTVVTGRVERGIIKVGEEVEIVGIRDTQKTTVTGVEMFRKLLDEG 271

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
           QAGDN+G LLRG KREDVERGQVLAKPGSI PH  F  E+Y LSK+EGGRHTPFF+ YRP
Sbjct: 272 QAGDNVGALLRGIKREDVERGQVLAKPGSITPHTKFEAEVYVLSKEEGGRHTPFFNGYRP 331

Query: 241 QFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           QFYFRTTDVTG IELP+  EMVMPGDNV +TV LI PIAMEEGLRFAIREG
Sbjct: 332 QFYFRTTDVTGVIELPEGVEMVMPGDNVEMTVELIAPIAMEEGLRFAIREG 382


>gnl|CDD|183708 PRK12735, PRK12735, elongation factor Tu; Reviewed.
          Length = 396

 Score =  644 bits (1664), Expect = 0.0
 Identities = 235/291 (80%), Positives = 259/291 (89%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV SAADGPMPQTREHILLARQVGVPYIVVFLNK DMVDDEELLELVE
Sbjct: 92  MITGAAQMDGAILVVSAADGPMPQTREHILLARQVGVPYIVVFLNKCDMVDDEELLELVE 151

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           +E+RELL+KY+FPG+D PII+GSA  ALEGD     E  IL L  A+D+YIP P RAID 
Sbjct: 152 MEVRELLSKYDFPGDDTPIIRGSALKALEGDDDEEWEAKILELMDAVDSYIPEPERAIDK 211

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            FL+P+EDVFSISGRGTVVTGRVERGIV+VG+E+EI+GIK+T KTT TGVEMFRKLLD+G
Sbjct: 212 PFLMPIEDVFSISGRGTVVTGRVERGIVKVGDEVEIVGIKETQKTTVTGVEMFRKLLDEG 271

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
           QAGDN+G+LLRGTKREDVERGQVLAKPGSIKPH  F  E+Y LSK+EGGRHTPFF+ YRP
Sbjct: 272 QAGDNVGVLLRGTKREDVERGQVLAKPGSIKPHTKFEAEVYVLSKEEGGRHTPFFNGYRP 331

Query: 241 QFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           QFYFRTTDVTG+IELP+  EMVMPGDNV +TV LI PIAMEEGLRFAIREG
Sbjct: 332 QFYFRTTDVTGTIELPEGVEMVMPGDNVKMTVELIAPIAMEEGLRFAIREG 382


>gnl|CDD|237184 PRK12736, PRK12736, elongation factor Tu; Reviewed.
          Length = 394

 Score =  587 bits (1516), Expect = 0.0
 Identities = 222/291 (76%), Positives = 257/291 (88%), Gaps = 2/291 (0%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV +A DGPMPQTREHILLARQVGVPY+VVFLNK D+VDDEELLELVE
Sbjct: 92  MITGAAQMDGAILVVAATDGPMPQTREHILLARQVGVPYLVVFLNKVDLVDDEELLELVE 151

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           +E+RELL++Y+FPG+DIP+I+GSA  ALEGD  P  E +I+ L  A+D YIPTP R  D 
Sbjct: 152 MEVRELLSEYDFPGDDIPVIRGSALKALEGD--PKWEDAIMELMDAVDEYIPTPERDTDK 209

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            FL+PVEDVF+I+GRGTVVTGRVERG V+VG+E+EI+GIK+T KT  TGVEMFRKLLD+G
Sbjct: 210 PFLMPVEDVFTITGRGTVVTGRVERGTVKVGDEVEIVGIKETQKTVVTGVEMFRKLLDEG 269

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
           QAGDN+G+LLRG  R++VERGQVLAKPGSIKPH  F  E+Y L+K+EGGRHTPFF+NYRP
Sbjct: 270 QAGDNVGVLLRGVDRDEVERGQVLAKPGSIKPHTKFKAEVYILTKEEGGRHTPFFNNYRP 329

Query: 241 QFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           QFYFRTTDVTGSIELP+  EMVMPGDNV ITV LI+PIAME+GL+FAIREG
Sbjct: 330 QFYFRTTDVTGSIELPEGTEMVMPGDNVTITVELIHPIAMEQGLKFAIREG 380


>gnl|CDD|223128 COG0050, TufB, GTPases - translation elongation factors
           [Translation, ribosomal structure and biogenesis].
          Length = 394

 Score =  553 bits (1428), Expect = 0.0
 Identities = 229/291 (78%), Positives = 253/291 (86%), Gaps = 2/291 (0%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV +A DGPMPQTREHILLARQVGVPYIVVFLNK DMVDDEELLELVE
Sbjct: 92  MITGAAQMDGAILVVAATDGPMPQTREHILLARQVGVPYIVVFLNKVDMVDDEELLELVE 151

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           +E+RELL++Y FPG+D PII+GSA  ALEGD     E  I  L  A+D+YIPTP R ID 
Sbjct: 152 MEVRELLSEYGFPGDDTPIIRGSALKALEGD--AKWEAKIEELMDAVDSYIPTPERDIDK 209

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            FL+PVEDVFSISGRGTVVTGRVERGI++VGEE+EI+GIK+T KTT TGVEMFRKLLD+G
Sbjct: 210 PFLMPVEDVFSISGRGTVVTGRVERGILKVGEEVEIVGIKETQKTTVTGVEMFRKLLDEG 269

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
           QAGDN+G+LLRG KREDVERGQVLAKPGSIKPH  F  E+Y LSK+EGGRHTPFF  YRP
Sbjct: 270 QAGDNVGVLLRGVKREDVERGQVLAKPGSIKPHTKFEAEVYVLSKEEGGRHTPFFHGYRP 329

Query: 241 QFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           QFYFRTTDVTG+I LP+  EMVMPGDNV + V LI+PIAMEEGLRFAIREG
Sbjct: 330 QFYFRTTDVTGAITLPEGVEMVMPGDNVKMVVELIHPIAMEEGLRFAIREG 380


>gnl|CDD|129576 TIGR00485, EF-Tu, translation elongation factor TU.  This model
           models orthologs of translation elongation factor EF-Tu
           in bacteria, mitochondria, and chloroplasts, one of
           several GTP-binding translation factors found by the
           more general pfam model GTP_EFTU. The eukaryotic
           conterpart, eukaryotic translation elongation factor 1
           (eEF-1 alpha), is excluded from this model. EF-Tu is one
           of the most abundant proteins in bacteria, as well as
           one of the most highly conserved, and in a number of
           species the gene is duplicated with identical function.
           When bound to GTP, EF-Tu can form a complex with any
           (correctly) aminoacylated tRNA except those for
           initiation and for selenocysteine, in which case EF-Tu
           is replaced by other factors. Transfer RNA is carried to
           the ribosome in these complexes for protein translation
           [Protein synthesis, Translation factors].
          Length = 394

 Score =  532 bits (1371), Expect = 0.0
 Identities = 224/291 (76%), Positives = 252/291 (86%), Gaps = 2/291 (0%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV SA DGPMPQTREHILLARQVGVPYIVVFLNK DMVDDEELLELVE
Sbjct: 92  MITGAAQMDGAILVVSATDGPMPQTREHILLARQVGVPYIVVFLNKCDMVDDEELLELVE 151

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           +E+RELL++Y+FPG+D PII+GSA  ALEGD     E  IL L  A+D YIPTP R  D 
Sbjct: 152 MEVRELLSEYDFPGDDTPIIRGSALKALEGD--AEWEAKILELMDAVDEYIPTPERETDK 209

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            FL+P+EDVFSI+GRGTVVTGRVERGIV+VGEE+EI+G+KDT KTT TGVEMFRK LD+G
Sbjct: 210 PFLMPIEDVFSITGRGTVVTGRVERGIVKVGEEVEIVGLKDTRKTTVTGVEMFRKELDEG 269

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
           +AGDN+GLLLRG KRE++ERG VLAKPGSIKPH  F  E+Y L K+EGGRHTPFFS YRP
Sbjct: 270 RAGDNVGLLLRGIKREEIERGMVLAKPGSIKPHTKFEAEVYVLKKEEGGRHTPFFSGYRP 329

Query: 241 QFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           QFYFRTTDVTGSI LP+  EMVMPGDNV +TV LI+PIA+E+G+RFAIREG
Sbjct: 330 QFYFRTTDVTGSITLPEGVEMVMPGDNVKMTVELISPIALEQGMRFAIREG 380


>gnl|CDD|178673 PLN03127, PLN03127, Elongation factor Tu; Provisional.
          Length = 447

 Score =  508 bits (1310), Expect = e-178
 Identities = 203/293 (69%), Positives = 243/293 (82%), Gaps = 2/293 (0%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDG ILV SA DGPMPQT+EHILLARQVGVP +VVFLNK D+VDDEELLELVE
Sbjct: 141 MITGAAQMDGGILVVSAPDGPMPQTKEHILLARQVGVPSLVVFLNKVDVVDDEELLELVE 200

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           +E+RELL+ Y+FPG++IPII+GSA  AL+G    +G+ +IL L  A+D YIP P R +D 
Sbjct: 201 MELRELLSFYKFPGDEIPIIRGSALSALQGTNDEIGKNAILKLMDAVDEYIPEPVRVLDK 260

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKD--TVKTTCTGVEMFRKLLD 178
            FL+P+EDVFSI GRGTV TGRVE+G ++VGEE+EI+G++    +KTT TGVEMF+K+LD
Sbjct: 261 PFLMPIEDVFSIQGRGTVATGRVEQGTIKVGEEVEIVGLRPGGPLKTTVTGVEMFKKILD 320

Query: 179 QGQAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNY 238
           QGQAGDN+GLLLRG KREDV+RGQV+ KPGSIK +K F  EIY L+KDEGGRHTPFFSNY
Sbjct: 321 QGQAGDNVGLLLRGLKREDVQRGQVICKPGSIKTYKKFEAEIYVLTKDEGGRHTPFFSNY 380

Query: 239 RPQFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           RPQFY RT DVTG +ELP+  +MVMPGDNV     LI+P+ +E G RFA+REG
Sbjct: 381 RPQFYLRTADVTGKVELPEGVKMVMPGDNVTAVFELISPVPLEPGQRFALREG 433


>gnl|CDD|177010 CHL00071, tufA, elongation factor Tu.
          Length = 409

 Score =  498 bits (1284), Expect = e-175
 Identities = 199/304 (65%), Positives = 239/304 (78%), Gaps = 13/304 (4%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV SAADGPMPQT+EHILLA+QVGVP IVVFLNK D VDDEELLELVE
Sbjct: 92  MITGAAQMDGAILVVSAADGPMPQTKEHILLAKQVGVPNIVVFLNKEDQVDDEELLELVE 151

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALE----GDTGPLGEQS----ILSLSKALDTYIP 112
           +E+RELL+KY+FPG+DIPI+ GSA LALE          GE      I +L  A+D+YIP
Sbjct: 152 LEVRELLSKYDFPGDDIPIVSGSALLALEALTENPKIKRGENKWVDKIYNLMDAVDSYIP 211

Query: 113 TPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEM 172
           TP R  D  FL+ +EDVFSI+GRGTV TGR+ERG V+VG+ +EI+G+++T  TT TG+EM
Sbjct: 212 TPERDTDKPFLMAIEDVFSITGRGTVATGRIERGTVKVGDTVEIVGLRETKTTTVTGLEM 271

Query: 173 FRKLLDQGQAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHT 232
           F+K LD+G AGDN+G+LLRG ++ED+ERG VLAKPG+I PH  F  ++Y L+K+EGGRHT
Sbjct: 272 FQKTLDEGLAGDNVGILLRGIQKEDIERGMVLAKPGTITPHTKFEAQVYILTKEEGGRHT 331

Query: 233 PFFSNYRPQFYFRTTDVTGSIEL-----PKNKEMVMPGDNVLITVRLINPIAMEEGLRFA 287
           PFF  YRPQFY RTTDVTG IE          EMVMPGD + +TV LI PIA+E+G+RFA
Sbjct: 332 PFFPGYRPQFYVRTTDVTGKIESFTADDGSKTEMVMPGDRIKMTVELIYPIAIEKGMRFA 391

Query: 288 IREG 291
           IREG
Sbjct: 392 IREG 395


>gnl|CDD|215592 PLN03126, PLN03126, Elongation factor Tu; Provisional.
          Length = 478

 Score =  416 bits (1070), Expect = e-142
 Identities = 198/304 (65%), Positives = 234/304 (76%), Gaps = 13/304 (4%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV S ADGPMPQT+EHILLA+QVGVP +VVFLNK D VDDEELLELVE
Sbjct: 161 MITGAAQMDGAILVVSGADGPMPQTKEHILLAKQVGVPNMVVFLNKQDQVDDEELLELVE 220

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTG----PLGEQS----ILSLSKALDTYIP 112
           +E+RELL+ YEFPG+DIPII GSA LALE          G+      I  L  A+D+YIP
Sbjct: 221 LEVRELLSSYEFPGDDIPIISGSALLALEALMENPNIKRGDNKWVDKIYELMDAVDSYIP 280

Query: 113 TPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEM 172
            P R  D  FLL VEDVFSI+GRGTV TGRVERG V+VGE ++I+G+++T  TT TGVEM
Sbjct: 281 IPQRQTDLPFLLAVEDVFSITGRGTVATGRVERGTVKVGETVDIVGLRETRSTTVTGVEM 340

Query: 173 FRKLLDQGQAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHT 232
           F+K+LD+  AGDN+GLLLRG ++ D++RG VLAKPGSI PH  F   +Y L K+EGGRH+
Sbjct: 341 FQKILDEALAGDNVGLLLRGIQKADIQRGMVLAKPGSITPHTKFEAIVYVLKKEEGGRHS 400

Query: 233 PFFSNYRPQFYFRTTDVTG---SIELPKNKE--MVMPGDNVLITVRLINPIAMEEGLRFA 287
           PFF+ YRPQFY RTTDVTG   SI   K++E  MVMPGD V + V LI P+A E+G+RFA
Sbjct: 401 PFFAGYRPQFYMRTTDVTGKVTSIMNDKDEESKMVMPGDRVKMVVELIVPVACEQGMRFA 460

Query: 288 IREG 291
           IREG
Sbjct: 461 IREG 464


>gnl|CDD|180161 PRK05609, nusG, transcription antitermination protein NusG;
           Validated.
          Length = 181

 Score =  282 bits (725), Expect = 4e-94
 Identities = 106/178 (59%), Positives = 146/178 (82%)

Query: 325 NNKKRWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKR 384
           + KKRWYV+ +YSG EK V+  L  RI  LGM+   G +LVPTEE+V+VK  +K  ++++
Sbjct: 3   SMKKRWYVVQTYSGYEKKVKENLENRIETLGMEDLIGEVLVPTEEVVEVKNGKKKKVERK 62

Query: 385 FFPGYVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILKQIKKGVEKPR 444
           FFPGYVL++M MTDESWHLV+NT  VTGF+G   ++PTP+S KE+E+ILKQ+++GVEKP+
Sbjct: 63  FFPGYVLVKMVMTDESWHLVRNTPGVTGFVGSTGSKPTPLSEKEVEKILKQLQEGVEKPK 122

Query: 445 PKILYQLDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSVTIFGRATPVELEFNQVEKI 502
           PK+ +++ E+VR+ DGPF DF+G +EEV+YEKS+++V V+IFGR TPVELEF+QVEKI
Sbjct: 123 PKVDFEVGEMVRVIDGPFADFNGTVEEVDYEKSKLKVLVSIFGRETPVELEFSQVEKI 180


>gnl|CDD|206671 cd01884, EF_Tu, Elongation Factor Tu (EF-Tu) GTP-binding proteins. 
           EF-Tu subfamily. This subfamily includes orthologs of
           translation elongation factor EF-Tu in bacteria,
           mitochondria, and chloroplasts. It is one of several
           GTP-binding translation factors found in the larger
           family of GTP-binding elongation factors. The eukaryotic
           counterpart, eukaryotic translation elongation factor 1
           (eEF-1 alpha), is excluded from this family. EF-Tu is
           one of the most abundant proteins in bacteria, as well
           as, one of the most highly conserved, and in a number of
           species the gene is duplicated with identical function.
           When bound to GTP, EF-Tu can form a complex with any
           (correctly) aminoacylated tRNA except those for
           initiation and for selenocysteine, in which case EF-Tu
           is replaced by other factors. Transfer RNA is carried to
           the ribosome in these complexes for protein translation.
          Length = 195

 Score =  235 bits (601), Expect = 3e-75
 Identities = 88/114 (77%), Positives = 96/114 (84%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MITGAAQMDGAILV SA DGPMPQTREH+LLARQVGVPYIVVFLNKADMVDDEELLELVE
Sbjct: 82  MITGAAQMDGAILVVSATDGPMPQTREHLLLARQVGVPYIVVFLNKADMVDDEELLELVE 141

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTP 114
           +E+RELL+KY F G+D PI++GSA  ALEGD        IL L  ALD+YIPTP
Sbjct: 142 MEVRELLSKYGFDGDDTPIVRGSALKALEGDDPNKWVDKILELLDALDSYIPTP 195


>gnl|CDD|233188 TIGR00922, nusG, transcription termination/antitermination factor
           NusG.  NusG proteins are transcription factors which are
           aparrently universal in prokaryotes (archaea and
           eukaryotes have homologs that may have related
           functions). The essential components of these factors
           include an N-terminal RNP-like (ribonucleoprotein)
           domain and a C-terminal KOW motif (pfam00467) believed
           to be a nucleic acid binding domain. In E. coli, NusA
           has been shown to interact with RNA polymerase and
           termination factor Rho. This model covers a wide variety
           of bacterial species but excludes mycoplasmas which are
           covered by a separate model (TIGR01956).The function of
           all of these NusG proteins is likely to be the same at
           the level of interaction with RNA and other protein
           factors to affect termination; however different species
           may utilize NusG towards different processes and in
           combination with different suites of affector
           proteins.In E. coli, NusG promotes rho-dependent
           termination. It is an essential gene. In Streptomyces
           virginiae and related species, an additional N-terminal
           sequence is also present and is suggested to play a role
           in butyrolactone-mediated autoregulation. In Thermotoga
           maritima, NusG has a long insert, fails to substitute
           for E. coli NusG (with or without the long insert), is a
           large 0.7 % of total cellular protein, and has a
           general, sequence non-specific DNA and RNA binding
           activity that blocks ethidium staining, yet permits
           transcription.Archaeal proteins once termed NusG share
           the KOW domain but are actually a ribosomal protein
           corresponding to L24p in bacterial and L26e in
           eukaryotes (TIGR00405) [Transcription, Transcription
           factors].
          Length = 172

 Score =  229 bits (586), Expect = 2e-73
 Identities = 90/172 (52%), Positives = 130/172 (75%)

Query: 330 WYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPGY 389
           WYV+ +YSG EK V++ L E I  LGM      ++VPTEE+V++KK +K V++++ FPGY
Sbjct: 1   WYVVQTYSGYEKKVKQNLEELIELLGMGDYIFEVIVPTEEVVEIKKGKKKVVERKIFPGY 60

Query: 390 VLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILKQIKKGVEKPRPKILY 449
           VL++M++TD SWHLVKNT  VTGF+G           +E++ IL  +++G +KP+PKI +
Sbjct: 61  VLVKMDLTDVSWHLVKNTPGVTGFVGSGGKPKALSEDEEVKNILNALEEGKDKPKPKIDF 120

Query: 450 QLDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSVTIFGRATPVELEFNQVEK 501
           ++ E VR+ DGPF +F+G +EEV+YEKS+++VSV+IFGR TPVELEF+QVEK
Sbjct: 121 EVGEQVRVNDGPFANFTGTVEEVDYEKSKLKVSVSIFGRETPVELEFSQVEK 172


>gnl|CDD|223328 COG0250, NusG, Transcription antiterminator [Transcription].
          Length = 178

 Score =  217 bits (556), Expect = 8e-69
 Identities = 89/177 (50%), Positives = 128/177 (72%)

Query: 326 NKKRWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRF 385
             KRWYV+ +YSG EK V+  L  +   LGM+     +LVPTEE+V+VK  +K +++++ 
Sbjct: 1   LMKRWYVVQTYSGQEKKVKENLERKAELLGMEDLIFEVLVPTEEVVEVKGKRKVIVERKL 60

Query: 386 FPGYVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILKQIKKGVEKPRP 445
           FPGYVL+EM+MTDE+WHLV+NT  VTGF+G    +P P+S +EIE IL  +++ V   +P
Sbjct: 61  FPGYVLVEMDMTDEAWHLVRNTPGVTGFVGSGGAKPVPLSEEEIEHILGFLEEEVAPKKP 120

Query: 446 KILYQLDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSVTIFGRATPVELEFNQVEKI 502
           K+ ++  ++VRI DGPF  F   +EEV+ EK +++V V+IFGR TPVELEF+QVEK+
Sbjct: 121 KVDFEPGDVVRIIDGPFAGFKAKVEEVDEEKGKLKVEVSIFGRPTPVELEFDQVEKL 177


>gnl|CDD|239678 cd03707, EFTU_III, Domain III of elongation factor (EF) Tu. Ef-Tu
           consists of three structural domains, designated I, II
           and III. Domain III adopts a beta barrel structure.
           Domain III is involved in binding to both charged tRNA
           and binding to elongation factor Ts (EF-Ts). EF-Ts is
           the guanine-nucleotide-exchange factor for EF-Tu.  EF-Tu
           and EF-G participate in the elongation phase during
           protein biosynthesis on the ribosome. Their functional
           cycles depend on GTP binding and its hydrolysis. The
           EF-Tu complexed with GTP and aminoacyl-tRNA delivers
           tRNA to the ribosome, whereas EF-G stimulates
           translocation, a process in which tRNA and mRNA
           movements occur in the ribosome. Crystallographic
           studies revealed structural similarities ("molecular
           mimicry") between tertiary structures of EF-G and the
           EF-Tu-aminoacyl-tRNA ternary complex. Domains III, IV,
           and V of EF-G mimic the tRNA structure in the EF-Tu
           ternary complex; domains III, IV and V can be related to
           the acceptor stem, anticodon helix and T stem of tRNA
           respectively.
          Length = 90

 Score =  166 bits (423), Expect = 2e-50
 Identities = 61/81 (75%), Positives = 69/81 (85%)

Query: 211 KPHKHFTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNVLI 270
           KPH  F  E+Y L+K+EGGRHTPFFS YRPQFY RTTDVTGSI LP+  EMVMPGDNV +
Sbjct: 1   KPHTKFEAEVYVLTKEEGGRHTPFFSGYRPQFYIRTTDVTGSITLPEGTEMVMPGDNVKM 60

Query: 271 TVRLINPIAMEEGLRFAIREG 291
           TV LI+PIA+E+GLRFAIREG
Sbjct: 61  TVELIHPIALEKGLRFAIREG 81


>gnl|CDD|239668 cd03697, EFTU_II, EFTU_II: Elongation factor Tu domain II.
           Elongation factors Tu (EF-Tu) are three-domain GTPases
           with an essential function in the elongation phase of
           mRNA translation. The GTPase center of EF-Tu is in the
           N-terminal domain (domain I), also known as the
           catalytic or G-domain. The G-domain is composed of about
           200 amino acid residues, arranged into a predominantly
           parallel six-stranded beta-sheet core surrounded by
           seven a-helices. Non-catalytic domains II and III are
           beta-barrels of seven and six, respectively,
           antiparallel beta-strands that share an extended
           interface. Either non-catalytic domain is composed of
           about 100 amino acid residues.  EF-Tu proteins exist in
           two principal conformations: in a compact one,
           EF-Tu*GTP, with tight interfaces between all three
           domains and a high affinity for aminoacyl-tRNA, and in
           an open one, EF-Tu*GDP, with essentially no
           G-domain-domain II interactions and a low affinity for
           aminoacyl-tRNA. EF-Tu has approximately a 100-fold
           higher affinity for GDP than for GTP.
          Length = 87

 Score =  165 bits (421), Expect = 4e-50
 Identities = 63/87 (72%), Positives = 78/87 (89%)

Query: 122 FLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQGQ 181
           FL+P+EDVFSI GRGTVVTGR+ERG ++VG+E+EI+G  +T+KTT TG+EMFRK LD+ +
Sbjct: 1   FLMPIEDVFSIPGRGTVVTGRIERGTIKVGDEVEIVGFGETLKTTVTGIEMFRKTLDEAE 60

Query: 182 AGDNIGLLLRGTKREDVERGQVLAKPG 208
           AGDN+G+LLRG KREDVERG VLAKPG
Sbjct: 61  AGDNVGVLLRGVKREDVERGMVLAKPG 87


>gnl|CDD|193580 cd09891, NGN_Bact_1, Bacterial N-Utilization Substance G (NusG)
           N-terminal (NGN) domain, subgroup 1.  The N-Utilization
           Substance G (NusG) protein is involved in transcription
           elongation and termination in bacteria. NusG is
           essential in Escherichia coli and associates with RNA
           polymerase elongation and Rho-termination. Homologs of
           the NusG gene exist in all bacteria. The NusG N-terminal
           domain (NGN) is similar in all NusG homologs, but its
           C-terminal domain and the linker that separates these
           two domains are different. The domain organization of
           NusG suggests that the common properties of NusG and its
           homologs are due to their similar NGN domains.
          Length = 107

 Score =  157 bits (400), Expect = 1e-46
 Identities = 54/108 (50%), Positives = 79/108 (73%), Gaps = 1/108 (0%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
           +WYV+H+YSG E  V+  L +RI   G++   G +LVPTEE+V+VK  +K V +++ FPG
Sbjct: 1   KWYVVHTYSGYENKVKENLEKRIESEGLEDYIGEVLVPTEEVVEVKNGKKKVKERKLFPG 60

Query: 389 YVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILKQI 436
           YVL+EM+M D++WHLV+NT  VTGF+G    +P P+S +E+E IL Q+
Sbjct: 61  YVLVEMDMNDDTWHLVRNTPGVTGFVGSG-GKPVPLSEEEVERILGQV 107


>gnl|CDD|227581 COG5256, TEF1, Translation elongation factor EF-1alpha (GTPase)
           [Translation, ribosomal structure and biogenesis].
          Length = 428

 Score =  161 bits (410), Expect = 2e-44
 Identities = 101/332 (30%), Positives = 153/332 (46%), Gaps = 62/332 (18%)

Query: 1   MITGAAQMDGAILVCSAADG-------PMPQTREHILLARQVGVPYIVVFLNKADMVD-D 52
           MITGA+Q D A+LV  A DG          QTREH  LAR +G+  ++V +NK D+V  D
Sbjct: 102 MITGASQADVAVLVVDARDGEFEAGFGVGGQTREHAFLARTLGIKQLIVAVNKMDLVSWD 161

Query: 53  EELLELVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGD------------TGPLGEQSI 100
           EE  E +  E+ +LL    +   D+P I  S     +GD             GP      
Sbjct: 162 EERFEEIVSEVSKLLKMVGYNPKDVPFIPISG---FKGDNLTKKSENMPWYKGP------ 212

Query: 101 LSLSKALDTYIPTPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIK 160
            +L +ALD  +  P R +D    LP++DV+SISG GTV  GRVE G+++ G+++  +   
Sbjct: 213 -TLLEALD-QLEPPERPLDKPLRLPIQDVYSISGIGTVPVGRVESGVIKPGQKVTFMPAG 270

Query: 161 DTVKTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKH---FT 217
             V      +EM  + + Q + GDN+G  +RG ++ D+ RG V+       P      FT
Sbjct: 271 --VVGEVKSIEMHHEEISQAEPGDNVGFNVRGVEKNDIRRGDVIGHS--DNPPTVSPEFT 326

Query: 218 GEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSI-------------ELPKNKEMVMP 264
            +I  L            S Y P  +  T  V   I             +L +N + +  
Sbjct: 327 AQIIVL-----WHPGIITSGYTPVLHAHTAQVACRIAELLSKLDPRTGKKLEENPQFLKR 381

Query: 265 GDNVLITVRLINPIAMEEGL------RFAIRE 290
           GD  ++ +    P+ +E+        RFA+R+
Sbjct: 382 GDAAIVKIEPEKPLCLEKVSEIPQLGRFALRD 413


>gnl|CDD|237055 PRK12317, PRK12317, elongation factor 1-alpha; Reviewed.
          Length = 425

 Score =  161 bits (409), Expect = 2e-44
 Identities = 111/330 (33%), Positives = 169/330 (51%), Gaps = 65/330 (19%)

Query: 1   MITGAAQMDGAILVCSAAD--GPMPQTREHILLARQVGVPYIVVFLNKADMVD-DEELLE 57
           MITGA+Q D A+LV +A D  G MPQTREH+ LAR +G+  ++V +NK D V+ DE+  E
Sbjct: 101 MITGASQADAAVLVVAADDAGGVMPQTREHVFLARTLGINQLIVAINKMDAVNYDEKRYE 160

Query: 58  LVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGD------------TGPLGEQSILSLSK 105
            V+ E+ +LL    +  +DIP I  SA    EGD             GP       +L +
Sbjct: 161 EVKEEVSKLLKMVGYKPDDIPFIPVSA---FEGDNVVKKSENMPWYNGP-------TLLE 210

Query: 106 ALDTYIPTPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEEL--EIIGIKDTV 163
           ALD  +  P +  D    +P++DV+SISG GTV  GRVE G+++VG+++     G+   V
Sbjct: 211 ALDN-LKPPEKPTDKPLRIPIQDVYSISGVGTVPVGRVETGVLKVGDKVVFMPAGVVGEV 269

Query: 164 KTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKREDVERGQV---LAKPGSIKPHKHFTGEI 220
           K+    +EM  + L Q + GDNIG  +RG  ++D++RG V      P ++   + FT +I
Sbjct: 270 KS----IEMHHEELPQAEPGDNIGFNVRGVGKKDIKRGDVCGHPDNPPTVA--EEFTAQI 323

Query: 221 YALSKDEGGRH-TPFFSNYRPQFYFRTTDVTGSIE-------------LPKNKEMVMPGD 266
             L      +H +     Y P F+  T  V  + E               +N + +  GD
Sbjct: 324 VVL------QHPSAITVGYTPVFHAHTAQVACTFEELVKKLDPRTGQVAEENPQFIKTGD 377

Query: 267 NVLITVRLINPIAMEE-------GLRFAIR 289
             ++ ++   P+ +E+       G RFAIR
Sbjct: 378 AAIVKIKPTKPLVIEKVKEIPQLG-RFAIR 406


>gnl|CDD|215653 pfam00009, GTP_EFTU, Elongation factor Tu GTP binding domain.  This
           domain contains a P-loop motif, also found in several
           other families such as pfam00071, pfam00025 and
           pfam00063. Elongation factor Tu consists of three
           structural domains, this plus two C-terminal beta barrel
           domains.
          Length = 184

 Score =  140 bits (356), Expect = 2e-39
 Identities = 59/113 (52%), Positives = 73/113 (64%), Gaps = 11/113 (9%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           MI GA+Q DGAILV  A +G MPQTREH+LLA+ +GVP I+VF+NK D VDD EL E+VE
Sbjct: 83  MIRGASQADGAILVVDAVEGVMPQTREHLLLAKTLGVP-IIVFINKIDRVDDAELEEVVE 141

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPT 113
              RELL KY F G  +P++ GSA               I  L +ALD Y+P+
Sbjct: 142 EISRELLEKYGFGGETVPVVPGSALTGE----------GIDELLEALDLYLPS 184


>gnl|CDD|129574 TIGR00483, EF-1_alpha, translation elongation factor EF-1 alpha.
           This model represents the counterpart of bacterial EF-Tu
           for the Archaea (aEF-1 alpha) and Eukaryotes (eEF-1
           alpha). The trusted cutoff is set fairly high so that
           incomplete sequences will score between suggested and
           trusted cutoff levels [Protein synthesis, Translation
           factors].
          Length = 426

 Score =  138 bits (348), Expect = 6e-36
 Identities = 105/328 (32%), Positives = 158/328 (48%), Gaps = 58/328 (17%)

Query: 1   MITGAAQMDGAILVCSAADGP---MPQTREHILLARQVGVPYIVVFLNKADMVD-DEELL 56
           MITGA+Q D A+LV +  DG     PQTREH  LAR +G+  ++V +NK D V+ DEE  
Sbjct: 102 MITGASQADAAVLVVAVGDGEFEVQPQTREHAFLARTLGINQLIVAINKMDSVNYDEEEF 161

Query: 57  ELVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGDT------------GPLGEQSILSLS 104
           E ++ E+  L+ K  +  + +P I  SA     GD             G        +L 
Sbjct: 162 EAIKKEVSNLIKKVGYNPDTVPFIPISA---WNGDNVIKKSENTPWYKGK-------TLL 211

Query: 105 KALDTYIPTPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEEL--EIIGIKDT 162
           +ALD   P P +  D    +P++DV+SI+G GTV  GRVE G+++ G+++  E  G+   
Sbjct: 212 EALDALEP-PEKPTDKPLRIPIQDVYSITGVGTVPVGRVETGVLKPGDKVVFEPAGVSGE 270

Query: 163 VKTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKREDVERGQVLAKPGS-IKPHKHFTGEIY 221
           VK+    +EM  + ++Q + GDNIG  +RG  ++D+ RG V   P +  K  K FT +I 
Sbjct: 271 VKS----IEMHHEQIEQAEPGDNIGFNVRGVSKKDIRRGDVCGHPDNPPKVAKEFTAQIV 326

Query: 222 ALSKDEGGRHTPFFSNYRPQFYFRTTDVTGS-IELPK------------NKEMVMPGDNV 268
            L              Y P F+  T  +     EL K            N + +  GD  
Sbjct: 327 VLQHP-----GAITVGYTPVFHCHTAQIACRFDELLKKNDPRTGQVLEENPQFLKTGDAA 381

Query: 269 LITVRLINPIAMEEGL------RFAIRE 290
           ++  +   P+ +E         RFAIR+
Sbjct: 382 IVKFKPTKPMVIEAVKEIPPLGRFAIRD 409


>gnl|CDD|217387 pfam03143, GTP_EFTU_D3, Elongation factor Tu C-terminal domain.
           Elongation factor Tu consists of three structural
           domains, this is the third domain. This domain adopts a
           beta barrel structure. This the third domain is involved
           in binding to both charged tRNA and binding to EF-Ts
           pfam00889.
          Length = 91

 Score =  128 bits (323), Expect = 7e-36
 Identities = 46/83 (55%), Positives = 54/83 (65%), Gaps = 5/83 (6%)

Query: 209 SIKPHKHFTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNV 268
            IKPH  F  ++Y L+       TP F+ YRP FY  T DVTG   LP  KE VMPGDN 
Sbjct: 1   PIKPHTKFKAQVYILNH-----PTPIFNGYRPVFYCHTADVTGKFILPGKKEFVMPGDNA 55

Query: 269 LITVRLINPIAMEEGLRFAIREG 291
           ++TV LI PIA+E+G RFAIREG
Sbjct: 56  IVTVELIKPIAVEKGQRFAIREG 78


>gnl|CDD|225815 COG3276, SelB, Selenocysteine-specific translation elongation
           factor [Translation, ribosomal structure and
           biogenesis].
          Length = 447

 Score =  133 bits (336), Expect = 5e-34
 Identities = 77/292 (26%), Positives = 131/292 (44%), Gaps = 28/292 (9%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           ++ G   +D A+LV +A +G M QT EH+L+   +G+   ++ L KAD VD+      +E
Sbjct: 67  LLAGLGGIDYALLVVAADEGLMAQTGEHLLILDLLGIKNGIIVLTKADRVDEAR----IE 122

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
            +I+++L        +  I K SAK            + I  L   L   +    R    
Sbjct: 123 QKIKQILADLSLA--NAKIFKTSAKT----------GRGIEELKNELIDLLEEIERDEQK 170

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            F + ++  F++ G GTVVTG V  G V+VG++L +  I   V+     ++     +++ 
Sbjct: 171 PFRIAIDRAFTVKGVGTVVTGTVLSGEVKVGDKLYLSPINKEVRV--RSIQAHDVDVEEA 228

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
           +AG  +GL L+G ++E++ERG  L KP  ++       E+      +             
Sbjct: 229 KAGQRVGLALKGVEKEEIERGDWLLKPEPLEVTTRLIVELEIDPLFK----KTLKQGQPV 284

Query: 241 QFYFRTTDVTGSIE-LPKNKEMVM-----PGDNVLITVRLINPIAMEEGLRF 286
             +     VTG I  L KN E+ +      GDN  + +R  + +    G R 
Sbjct: 285 HIHVGLRSVTGRIVPLEKNAELNLVKPIALGDNDRLVLRDNSAVIKLAGARV 336


>gnl|CDD|227583 COG5258, GTPBP1, GTPase [General function prediction only].
          Length = 527

 Score =  127 bits (322), Expect = 7e-32
 Identities = 91/300 (30%), Positives = 147/300 (49%), Gaps = 25/300 (8%)

Query: 7   QMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIREL 66
           ++D  +LV +A DG    T+EH+ +A  + +P IVV + K DMV D+    +VE EI  L
Sbjct: 226 KVDYGLLVVAADDGVTKMTKEHLGIALAMELPVIVV-VTKIDMVPDDRFQGVVE-EISAL 283

Query: 67  L---NKYEFPGNDIPIIKGSAKLALEGDT-GPLGEQSILSLSKALDTYI-------PTPN 115
           L    +      D   +  +AK    G    P+   S ++  + LD              
Sbjct: 284 LKRVGRIPLIVKDTDDVVLAAKAMKAGRGVVPIFYTSSVTG-EGLDLLDEFFLLLPKRRR 342

Query: 116 RAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDT--VKTTCTGVEMF 173
              +G FL+ ++ ++S++G GTVV+G V+ GI+ VG+ + +   KD    +     +EM 
Sbjct: 343 WDDEGPFLMYIDKIYSVTGVGTVVSGSVKSGILHVGDTVLLGPFKDGKFREVVVKSIEMH 402

Query: 174 RKLLDQGQAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRH-T 232
              +D  +AG  IG+ L+G ++E++ERG VL+     K  + F  E+  L      RH T
Sbjct: 403 HYRVDSAKAGSIIGIALKGVEKEELERGMVLSAGADPKAVREFDAEVLVL------RHPT 456

Query: 233 PFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRL-INPIAMEEGLRFAIREG 291
              + Y P F++ T       E   +K  +MPGD  ++ +R    P  +EEG +F  REG
Sbjct: 457 TIRAGYEPVFHYETIREAVYFE-EIDKGFLMPGDRGVVRMRFKYRPHHVEEGQKFVFREG 515


>gnl|CDD|197850 smart00738, NGN, In Spt5p, this domain may confer affinity for
           Spt4p. It possesses a RNP-like fold.  In Spt5p, this
           domain may confer affinity for Spt4p.Spt4p.
          Length = 106

 Score =  117 bits (296), Expect = 7e-32
 Identities = 43/107 (40%), Positives = 68/107 (63%), Gaps = 1/107 (0%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
            WY + + SG EK V   L  +   LG++ K   ILVPTEE+ ++++ +K V++++ FPG
Sbjct: 1   NWYAVRTTSGQEKRVAENLERKAEALGLEDKIVSILVPTEEVKEIRRGKKKVVERKLFPG 60

Query: 389 YVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILKQ 435
           Y+ +E ++ DE W  ++ T  V GF+GG   +PTP+   EIE+ILK 
Sbjct: 61  YIFVEADLEDEVWTAIRGTPGVRGFVGGG-GKPTPVPDDEIEKILKP 106


>gnl|CDD|129567 TIGR00475, selB, selenocysteine-specific elongation factor SelB.
           In prokaryotes, the incorporation of selenocysteine as
           the 21st amino acid, encoded by TGA, requires several
           elements: SelC is the tRNA itself, SelD acts as a donor
           of reduced selenium, SelA modifies a serine residue on
           SelC into selenocysteine, and SelB is a
           selenocysteine-specific translation elongation factor.
           3-prime or 5-prime non-coding elements of mRNA have been
           found as probable structures for directing
           selenocysteine incorporation. This model describes the
           elongation factor SelB, a close homolog rf EF-Tu. It may
           function by replacing EF-Tu. A C-terminal domain not
           found in EF-Tu is in all SelB sequences in the seed
           alignment except that from Methanococcus jannaschii.
           This model does not find an equivalent protein for
           eukaryotes [Protein synthesis, Translation factors].
          Length = 581

 Score =  119 bits (299), Expect = 1e-28
 Identities = 77/310 (24%), Positives = 133/310 (42%), Gaps = 32/310 (10%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
            I G   +D A+LV  A +G M QT EH+ +   +G+P+ +V + KAD V++EE+    E
Sbjct: 67  AIAGGGGIDAALLVVDADEGVMTQTGEHLAVLDLLGIPHTIVVITKADRVNEEEIKR-TE 125

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
           + ++++LN Y F  N   I K SAK    G      ++ + +L ++LD       + I  
Sbjct: 126 MFMKQILNSYIFLKN-AKIFKTSAK---TGQGIGELKKELKNLLESLD------IKRIQK 175

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
              + ++  F + G GTVVTG    G V+VG+ L ++ I   V+     ++   + ++  
Sbjct: 176 PLRMAIDRAFKVKGAGTVVTGTAFSGEVKVGDNLRLLPINHEVRV--KAIQAQNQDVEIA 233

Query: 181 QAGDNIGLLLRGTKREDVERGQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRP 240
            AG  I L L   + E ++RG ++  P    P      +  A          P       
Sbjct: 234 YAGQRIALNLMDVEPESLKRGLLILTPED--PKLRVVVKFIA--------EVPLLELQPY 283

Query: 241 QFYFRTTDVTGSIELPKNK--EMVMP-------GDNVLITVRLINPIAMEEGLRFAIREG 291
                 +  TG I L       + +        GD +++     N +A    L   +R  
Sbjct: 284 HIAHGMSVTTGKISLLDKGIALLTLDAPLILAKGDKLVLRDSSGNFLAGARVLEPPVRVK 343

Query: 292 VQQFIQDNLL 301
            + FI + + 
Sbjct: 344 RKAFIAELIK 353


>gnl|CDD|239677 cd03706, mtEFTU_III, Domain III of mitochondrial EF-TU (mtEF-TU).
           mtEF-TU is highly conserved and is 55-60% identical to
           bacterial EF-TU. The overall structure is similar to
           that observed in the Escherichia coli and Thermus
           aquaticus EF-TU. However, compared with that observed in
           prokaryotic EF-TU the nucleotide-binding domain (domain
           I) of EF-TUmt is in a different orientation relative to
           the rest of the structure. Furthermore, domain III is
           followed by a short 11-amino acid extension that forms
           one helical turn. This extension seems to be specific to
           the mitochondrial factors and has not been observed in
           any of the prokaryotic factors.
          Length = 93

 Score =  102 bits (256), Expect = 2e-26
 Identities = 39/81 (48%), Positives = 54/81 (66%)

Query: 211 KPHKHFTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNVLI 270
           KPH     ++Y LSK EGGRH PF SN++PQ +  T D    I+LP  KEMVMPG++  +
Sbjct: 1   KPHDKVEAQVYILSKAEGGRHKPFVSNFQPQMFSLTWDCAARIDLPPGKEMVMPGEDTKV 60

Query: 271 TVRLINPIAMEEGLRFAIREG 291
           T+ L  P+ +E+G RF +R+G
Sbjct: 61  TLILRRPMVLEKGQRFTLRDG 81


>gnl|CDD|211860 TIGR03680, eif2g_arch, translation initiation factor 2 subunit
           gamma.  This model represents the archaeal translation
           initiation factor 2 subunit gamma and is found in all
           known archaea. eIF-2 functions in the early steps of
           protein synthesis by forming a ternary complex with GTP
           and initiator tRNA.
          Length = 406

 Score =  108 bits (271), Expect = 1e-25
 Identities = 97/327 (29%), Positives = 149/327 (45%), Gaps = 73/327 (22%)

Query: 1   MITGAAQMDGAILVCSAADG-PMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELV 59
           M++GAA MDGA+LV +A +  P PQTREH++    +G+  IV+  NK D+V  E+ LE  
Sbjct: 97  MLSGAALMDGALLVIAANEPCPQPQTREHLMALEIIGIKNIVIVQNKIDLVSKEKALENY 156

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAID 119
           E EI+E +        + PII  SA          L   +I +L +A++ +IPTP R +D
Sbjct: 157 E-EIKEFVKGT--IAENAPIIPVSA----------LHNANIDALLEAIEKFIPTPERDLD 203

Query: 120 GAFLLPVEDVFSISGRGT--------VVTGRVERGIVRVGEELEII-GIKDT-------- 162
              L+ V   F ++  GT        V+ G + +G ++VG+E+EI  GIK          
Sbjct: 204 KPPLMYVARSFDVNKPGTPPEKLKGGVIGGSLIQGKLKVGDEIEIRPGIKVEKGGKTKWE 263

Query: 163 -VKTTCTGVEMFRKLLDQGQAGDNIGLLLRGTK------REDVERGQVLAKPGSIKPHKH 215
            + T  T +      +++ + G   GL+  GTK      + D   GQV+ KPG++ P   
Sbjct: 264 PIYTEITSLRAGGYKVEEARPG---GLVGVGTKLDPALTKADALAGQVVGKPGTLPPVWE 320

Query: 216 -FTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNVLIT--- 271
               E++ L +  G                  T+    +E  K  E++M       T   
Sbjct: 321 SLELEVHLLERVVG------------------TEEELKVEPIKTGEVLMLNVGTATTVGV 362

Query: 272 ----------VRLINPIAMEEGLRFAI 288
                     V+L  P+  EEG R AI
Sbjct: 363 VTSARKDEIEVKLKRPVCAEEGDRVAI 389


>gnl|CDD|182508 PRK10512, PRK10512, selenocysteinyl-tRNA-specific translation
           factor; Provisional.
          Length = 614

 Score =  103 bits (260), Expect = 1e-23
 Identities = 69/233 (29%), Positives = 110/233 (47%), Gaps = 22/233 (9%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           M+ G   +D A+LV +  DG M QTREH+ + +  G P + V L KAD VD+  + E V 
Sbjct: 68  MLAGVGGIDHALLVVACDDGVMAQTREHLAILQLTGNPMLTVALTKADRVDEARIAE-VR 126

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDG 120
            +++ +L +Y F   +  +   +   A EG       + I +L + L   +P    A   
Sbjct: 127 RQVKAVLREYGFA--EAKLFVTA---ATEG-------RGIDALREHLLQ-LPEREHAAQH 173

Query: 121 AFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            F L ++  F++ G G VVTG    G V+VG+ L + G+   ++    G+    +  +Q 
Sbjct: 174 RFRLAIDRAFTVKGAGLVVTGTALSGEVKVGDTLWLTGVNKPMRV--RGLHAQNQPTEQA 231

Query: 181 QAGDNIGLLLRG-TKREDVERGQ-VLAKPGSIKPHKHFTGEIYALSKDEGGRH 231
           QAG  I L + G  ++E + RG  +LA      P + FT  I  L        
Sbjct: 232 QAGQRIALNIAGDAEKEQINRGDWLLADA----PPEPFTRVIVELQTHTPLTQ 280


>gnl|CDD|185474 PTZ00141, PTZ00141, elongation factor 1- alpha; Provisional.
          Length = 446

 Score =  102 bits (257), Expect = 1e-23
 Identities = 75/220 (34%), Positives = 110/220 (50%), Gaps = 25/220 (11%)

Query: 1   MITGAAQMDGAILVCSAADGPMP-------QTREHILLARQVGVPYIVVFLNKADMVD-- 51
           MITG +Q D AILV ++  G          QTREH LLA  +GV  ++V +NK D     
Sbjct: 102 MITGTSQADVAILVVASTAGEFEAGISKDGQTREHALLAFTLGVKQMIVCINKMDDKTVN 161

Query: 52  -DEELLELVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSI-------LSL 103
             +E  + ++ E+   L K  +    +P I  S     +GD   + E+S         +L
Sbjct: 162 YSQERYDEIKKEVSAYLKKVGYNPEKVPFIPISG---WQGDN--MIEKSDNMPWYKGPTL 216

Query: 104 SKALDTYIPTPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTV 163
            +ALDT  P P R +D    LP++DV+ I G GTV  GRVE GI++ G  + +      V
Sbjct: 217 LEALDTLEP-PKRPVDKPLRLPLQDVYKIGGIGTVPVGRVETGILKPG--MVVTFAPSGV 273

Query: 164 KTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKREDVERGQV 203
            T    VEM  + L +   GDN+G  ++    +D++RG V
Sbjct: 274 TTEVKSVEMHHEQLAEAVPGDNVGFNVKNVSVKDIKRGYV 313


>gnl|CDD|206647 cd00881, GTP_translation_factor, GTP translation factor family
           primarily contains translation initiation, elongation
           and release factors.  The GTP translation factor family
           consists primarily of translation initiation,
           elongation, and release factors, which play specific
           roles in protein translation. In addition, the family
           includes Snu114p, a component of the U5 small nuclear
           riboprotein particle which is a component of the
           spliceosome and is involved in excision of introns,
           TetM, a tetracycline resistance gene that protects the
           ribosome from tetracycline binding, and the unusual
           subfamily CysN/ATPS, which has an unrelated function
           (ATP sulfurylase) acquired through lateral transfer of
           the EF1-alpha gene and development of a new function.
          Length = 183

 Score = 94.3 bits (235), Expect = 2e-22
 Identities = 44/117 (37%), Positives = 58/117 (49%), Gaps = 15/117 (12%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
            + G AQ DGA+LV  A +G  PQTREH+ +A   G   I+V +NK D V  EE  + V 
Sbjct: 79  TVRGLAQADGALLVVDANEGVEPQTREHLNIALA-GGLPIIVAVNKIDRV-GEEDFDEVL 136

Query: 61  IEIRELLNKYEF---PGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTP 114
            EI+ELL    F    G D+PII  SA      +           L  A+  ++P P
Sbjct: 137 REIKELLKLIGFTFLKGKDVPIIPISALTGEGIEE----------LLDAIVEHLPPP 183


>gnl|CDD|235194 PRK04000, PRK04000, translation initiation factor IF-2 subunit
           gamma; Validated.
          Length = 411

 Score = 94.9 bits (237), Expect = 5e-21
 Identities = 95/331 (28%), Positives = 147/331 (44%), Gaps = 81/331 (24%)

Query: 1   MITGAAQMDGAILVCSAADG-PMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELV 59
           M++GAA MDGAILV +A +  P PQT+EH++    +G+  IV+  NK D+V  E  LE  
Sbjct: 102 MLSGAALMDGAILVIAANEPCPQPQTKEHLMALDIIGIKNIVIVQNKIDLVSKERALENY 161

Query: 60  EIEIRELLNKYEFPGN---DIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNR 116
           E +I+E +      G    + PII  SA          L + +I +L +A++  IPTP R
Sbjct: 162 E-QIKEFVK-----GTVAENAPIIPVSA----------LHKVNIDALIEAIEEEIPTPER 205

Query: 117 AIDGAFLLPVEDVFSISGRGT--------VVTGRVERGIVRVGEELEII-GIKDTVK--- 164
            +D    + V   F ++  GT        V+ G + +G+++VG+E+EI  GIK       
Sbjct: 206 DLDKPPRMYVARSFDVNKPGTPPEKLKGGVIGGSLIQGVLKVGDEIEIRPGIKVEEGGKT 265

Query: 165 ------TTCTGVEMFRKLLDQGQAGDNIGLLLRGTK------REDVERGQVLAKPGSIKP 212
                 T    +    + +++ + G   GL+  GTK      + D   G V  KPG++ P
Sbjct: 266 KWEPITTKIVSLRAGGEKVEEARPG---GLVGVGTKLDPSLTKADALAGSVAGKPGTLPP 322

Query: 213 -HKHFTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVM-------- 263
             +  T E++ L +  G                  T     +E  K  E +M        
Sbjct: 323 VWESLTIEVHLLERVVG------------------TKEELKVEPIKTGEPLMLNVGTATT 364

Query: 264 PG------DNVLITVRLINPIAMEEGLRFAI 288
            G       +    V+L  P+  EEG R AI
Sbjct: 365 VGVVTSARKDE-AEVKLKRPVCAEEGDRVAI 394


>gnl|CDD|227582 COG5257, GCD11, Translation initiation factor 2, gamma subunit
           (eIF-2gamma; GTPase) [Translation, ribosomal structure
           and biogenesis].
          Length = 415

 Score = 93.9 bits (234), Expect = 1e-20
 Identities = 97/318 (30%), Positives = 148/318 (46%), Gaps = 55/318 (17%)

Query: 1   MITGAAQMDGAILVCSAADG-PMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELV 59
           M++GAA MDGA+LV +A +  P PQTREH++    +G+  I++  NK D+V  E  LE  
Sbjct: 103 MLSGAALMDGALLVIAANEPCPQPQTREHLMALEIIGIKNIIIVQNKIDLVSRERALENY 162

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAID 119
           E +I+E + K     N  PII  SA+           + +I +L +A++ YIPTP R +D
Sbjct: 163 E-QIKEFV-KGTVAEN-APIIPISAQH----------KANIDALIEAIEKYIPTPERDLD 209

Query: 120 GAFLLPVEDVFSISGRGT--------VVTGRVERGIVRVGEELEI---IGIKDTVKTTCT 168
               + V   F ++  GT        V+ G + +G++RVG+E+EI   I ++   KT   
Sbjct: 210 KPPRMYVARSFDVNKPGTPPEELKGGVIGGSLVQGVLRVGDEIEIRPGIVVEKGGKTVWE 269

Query: 169 GVEMFRKLLDQGQAGDNI-------GLLLRGTK------REDVERGQVLAKPGSIKPHKH 215
            +    +++   QAG          GL+  GTK      + D   GQV+ KPG++ P   
Sbjct: 270 PI--TTEIVSL-QAGGEDVEEARPGGLVGVGTKLDPTLTKADALVGQVVGKPGTLPPVWT 326

Query: 216 -FTGEIYALSK----DEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNVLI 270
               E + L +     E  +  P  +N        T    G +   K  E         I
Sbjct: 327 SIRIEYHLLERVVGTKEELKVEPIKTNEVLMLNVGTATTVGVVTSAKKDE---------I 377

Query: 271 TVRLINPIAMEEGLRFAI 288
            V+L  P+  E G R AI
Sbjct: 378 EVKLKRPVCAEIGERVAI 395


>gnl|CDD|239667 cd03696, selB_II, selB_II: this subfamily represents the domain of
           elongation factor SelB, homologous to domain II of
           EF-Tu. SelB may function by replacing EF-Tu. In
           prokaryotes, the incorporation of selenocysteine as the
           21st amino acid, encoded by TGA, requires several
           elements: SelC is the tRNA itself, SelD acts as a donor
           of reduced selenium, SelA modifies a serine residue on
           SelC into selenocysteine, and SelB is a
           selenocysteine-specific translation elongation factor.
           3' or 5' non-coding elements of mRNA have been found as
           probable structures for directing selenocysteine
           incorporation.
          Length = 83

 Score = 84.1 bits (209), Expect = 5e-20
 Identities = 32/85 (37%), Positives = 56/85 (65%), Gaps = 2/85 (2%)

Query: 122 FLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQGQ 181
           F LP++ VF++ G+GTVVTG V  G V+VG+++EI+ + +  +     +++  K +++ +
Sbjct: 1   FRLPIDRVFTVKGQGTVVTGTVLSGSVKVGDKVEILPLGEETRV--RSIQVHGKDVEEAK 58

Query: 182 AGDNIGLLLRGTKREDVERGQVLAK 206
           AGD + L L G   +D+ERG VL+ 
Sbjct: 59  AGDRVALNLTGVDAKDLERGDVLSS 83


>gnl|CDD|216991 pfam02357, NusG, Transcription termination factor nusG. 
          Length = 90

 Score = 83.1 bits (206), Expect = 1e-19
 Identities = 35/99 (35%), Positives = 59/99 (59%), Gaps = 12/99 (12%)

Query: 328 KRWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKN-QKSVIKKRFF 386
           K+WYV+ + SG EK V   L         +++     +P EE+V+V+KN +K  +++  F
Sbjct: 1   KKWYVLRTKSGQEKKVAENL---------ERQGIESFLPPEEVVEVRKNGRKKKVERPLF 51

Query: 387 PGYVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPIS 425
           PGYV + M++ DE+W  +++T  VTGF+G    +P P+ 
Sbjct: 52  PGYVFVRMDLNDETWA-IRSTPGVTGFVGFGG-KPAPVP 88


>gnl|CDD|240515 cd06091, KOW_NusG, NusG contains an NGN domain at its N-terminus
           and KOW motif at its C-terminus.  KOW_NusG motif is one
           of the two domains of N-Utilization Substance G (NusG) a
           transcription elongation and Rho-termination factor in
           bacteria and archaea. KOW domain is known as an
           RNA-binding motif that is shared so far among some
           families of ribosomal proteins, the essential bacterial
           transcriptional elongation factor NusG, the eukaryotic
           chromatin elongation factor Spt5, the higher eukaryotic
           KIN17 proteins and Mtr4. The eukaryotic ortholog of NusG
           is Spt5 with multiple KOW motifs at its C-terminus.
          Length = 56

 Score = 79.8 bits (198), Expect = 6e-19
 Identities = 28/56 (50%), Positives = 42/56 (75%)

Query: 446 KILYQLDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSVTIFGRATPVELEFNQVEK 501
           ++ +++ + VRI  GPF  F G +EE++ EK +V+V V +FGR TPVEL+F+QVEK
Sbjct: 1   EVDFEVGDTVRIISGPFAGFEGKVEEIDEEKGKVKVLVEMFGRETPVELDFDQVEK 56


>gnl|CDD|225448 COG2895, CysN, GTPases - Sulfate adenylate transferase subunit 1
           [Inorganic ion transport and metabolism].
          Length = 431

 Score = 86.6 bits (215), Expect = 3e-18
 Identities = 63/243 (25%), Positives = 107/243 (44%), Gaps = 37/243 (15%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVD-DEELLELV 59
           M TGA+  D AIL+  A  G + QTR H  +A  +G+ ++VV +NK D+VD  EE+ E +
Sbjct: 103 MATGASTADLAILLVDARKGVLEQTRRHSFIASLLGIRHVVVAVNKMDLVDYSEEVFEAI 162

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGD------------TGPLGEQSILSLSKAL 107
             +      +      D+  I  S   AL GD             GP    ++L +   L
Sbjct: 163 VADYLAFAAQ--LGLKDVRFIPIS---ALLGDNVVSKSENMPWYKGP----TLLEI---L 210

Query: 108 DTYIPTPNRAIDGAFLLPVEDV--FSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKT 165
           +T +   +     AF  PV+ V   ++  RG    G +  G V+VG+  E++ +     +
Sbjct: 211 ET-VEIADDRSAKAFRFPVQYVNRPNLDFRG--YAGTIASGSVKVGD--EVVVLPSGKTS 265

Query: 166 TCTGVEMFRKLLDQGQAGDNIGLLLRGTKRE-DVERGQVLAKPGSI-KPHKHFTGEIYAL 223
               +  F   L Q  AG+ + L+L     E D+ RG ++    +       F  ++  +
Sbjct: 266 RVKRIVTFDGELAQASAGEAVTLVL---ADEIDISRGDLIVAADAPPAVADAFDADVVWM 322

Query: 224 SKD 226
            ++
Sbjct: 323 DEE 325


>gnl|CDD|217388 pfam03144, GTP_EFTU_D2, Elongation factor Tu domain 2.  Elongation
           factor Tu consists of three structural domains, this is
           the second domain. This domain adopts a beta barrel
           structure. This the second domain is involved in binding
           to charged tRNA. This domain is also found in other
           proteins such as elongation factor G and translation
           initiation factor IF-2. This domain is structurally
           related to pfam03143, and in fact has weak sequence
           matches to this domain.
          Length = 70

 Score = 77.3 bits (191), Expect = 9e-18
 Identities = 27/70 (38%), Positives = 39/70 (55%)

Query: 136 GTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKR 195
           GTV TGRVE G ++ G+++ I       K   T +EMF   L +  AG N G++L G   
Sbjct: 1   GTVATGRVESGTLKKGDKVVIGPNGTGKKGRVTSLEMFHGDLREAVAGANAGIILAGIGL 60

Query: 196 EDVERGQVLA 205
           +D++RG  L 
Sbjct: 61  KDIKRGDTLT 70


>gnl|CDD|165621 PLN00043, PLN00043, elongation factor 1-alpha; Provisional.
          Length = 447

 Score = 85.1 bits (210), Expect = 9e-18
 Identities = 88/326 (26%), Positives = 142/326 (43%), Gaps = 41/326 (12%)

Query: 1   MITGAAQMDGAILVCSAADGPMP-------QTREHILLARQVGVPYIVVFLNKADMVD-- 51
           MITG +Q D A+L+  +  G          QTREH LLA  +GV  ++   NK D     
Sbjct: 102 MITGTSQADCAVLIIDSTTGGFEAGISKDGQTREHALLAFTLGVKQMICCCNKMDATTPK 161

Query: 52  -DEELLELVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSI-------LSL 103
             +   + +  E+   L K  +  + IP +  S     EGD   + E+S         +L
Sbjct: 162 YSKARYDEIVKEVSSYLKKVGYNPDKIPFVPISG---FEGDN--MIERSTNLDWYKGPTL 216

Query: 104 SKALDTYIPTPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTV 163
            +ALD  I  P R  D    LP++DV+ I G GTV  GRVE G+++ G  + +      +
Sbjct: 217 LEALDQ-INEPKRPSDKPLRLPLQDVYKIGGIGTVPVGRVETGVIKPG--MVVTFGPTGL 273

Query: 164 KTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKREDVERGQVL--AKPGSIKPHKHFTGEIY 221
            T    VEM  + L +   GDN+G  ++    +D++RG V   +K    K   +FT ++ 
Sbjct: 274 TTEVKSVEMHHESLQEALPGDNVGFNVKNVAVKDLKRGYVASNSKDDPAKEAANFTSQVI 333

Query: 222 ALSK--DEGGRHTPFFSNYRPQFYFRTTDVTGSI------ELPKNKEMVMPGDNVLITVR 273
            ++     G  + P    +      +  ++   I      EL K  + +  GD   + + 
Sbjct: 334 IMNHPGQIGNGYAPVLDCHTSHIAVKFAEILTKIDRRSGKELEKEPKFLKNGDAGFVKMI 393

Query: 274 LINPIAMEEGL------RFAIREGVQ 293
              P+ +E         RFA+R+  Q
Sbjct: 394 PTKPMVVETFSEYPPLGRFAVRDMRQ 419


>gnl|CDD|238652 cd01342, Translation_Factor_II_like, Translation_Factor_II_like:
           Elongation factor Tu (EF-Tu) domain II-like proteins.
           Elongation factor Tu consists of three structural
           domains, this family represents the second domain.
           Domain II adopts a beta barrel structure and is involved
           in binding to charged tRNA. Domain II is found in other
           proteins such as elongation factor G and translation
           initiation factor IF-2. This group also includes the C2
           subdomain of domain IV of IF-2 that has the same fold as
           domain II of (EF-Tu). Like IF-2 from certain prokaryotes
           such as Thermus thermophilus, mitochondrial IF-2 lacks
           domain II, which is thought  to be involved in binding
           of E.coli IF-2 to 30S subunits.
          Length = 83

 Score = 75.8 bits (187), Expect = 4e-17
 Identities = 27/85 (31%), Positives = 46/85 (54%), Gaps = 2/85 (2%)

Query: 122 FLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQGQ 181
               V  VF   GRGTV TGRVE G ++ G+++ +      VK     ++ F+  +D+  
Sbjct: 1   LRALVFKVFKDKGRGTVATGRVESGTLKKGDKVRVGPGGGGVKGKVKSLKRFKGEVDEAV 60

Query: 182 AGDNIGLLLRGTKREDVERGQVLAK 206
           AGD +G++L+   ++D++ G  L  
Sbjct: 61  AGDIVGIVLKD--KDDIKIGDTLTD 83


>gnl|CDD|193574 cd08000, NGN, N-Utilization Substance G (NusG) N-terminal (NGN)
           domain Superfamily.  The N-Utilization Substance G
           (NusG) and its eukaryotic homolog Spt5 are involved in
           transcription elongation and termination. NusG contains
           an NGN domain at its N-terminus and Kyrpides Ouzounis
           and Woese (KOW) repeats at its C-terminus in bacteria
           and archaea. The eukaryotic ortholog, Spt5, is a large
           protein composed of an acidic N-terminus, an NGN domain,
           and multiple KOW motifs at its C-terminus. Spt5 forms a
           Spt4-Spt5 complex that is an essential RNA Polymerase II
           elongation factor. NusG was originally discovered as an
           N-dependent antitermination enhancing activity in
           Escherichia coli and has a variety of functions, such as
           being involved in RNA polymerase elongation and
           Rho-termination in bacteria. Orthologs of the NusG gene
           exist in all bacteria, but its functions and
           requirements are different. The diverse activities
           suggest that, after diverging from a common ancestor,
           NusG proteins became specialized in different bacteria.
          Length = 99

 Score = 74.7 bits (184), Expect = 1e-16
 Identities = 33/104 (31%), Positives = 58/104 (55%), Gaps = 6/104 (5%)

Query: 330 WYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPGY 389
           WYV+   +G E+ V+ KL+E+  +    +      VP +E+ + K+ +   + K  FPGY
Sbjct: 2   WYVLFVKTGREEKVE-KLLEKRFEANDIE----AFVPKKEVPERKRGKIEEVIKPLFPGY 56

Query: 390 VLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEIL 433
           V +E +++ E + L++    V G +G     P+P+S +EIE IL
Sbjct: 57  VFVETDLSPELYELIREVPGVIGILGNG-EEPSPVSDEEIEMIL 99


>gnl|CDD|206734 cd04171, SelB, SelB, the dedicated elongation factor for delivery
           of selenocysteinyl-tRNA to the ribosome.  SelB is an
           elongation factor needed for the co-translational
           incorporation of selenocysteine. Selenocysteine is coded
           by a UGA stop codon in combination with a specific
           downstream mRNA hairpin. In bacteria, the C-terminal
           part of SelB recognizes this hairpin, while the
           N-terminal part binds GTP and tRNA in analogy with
           elongation factor Tu (EF-Tu). It specifically recognizes
           the selenocysteine charged tRNAsec, which has a UCA
           anticodon, in an EF-Tu like manner. This allows
           insertion of selenocysteine at in-frame UGA stop codons.
           In E. coli SelB binds GTP, selenocysteyl-tRNAsec, and a
           stem-loop structure immediately downstream of the UGA
           codon (the SECIS sequence). The absence of active SelB
           prevents the participation of selenocysteyl-tRNAsec in
           translation. Archaeal and animal mechanisms of
           selenocysteine incorporation are more complex. Although
           the SECIS elements have different secondary structures
           and conserved elements between archaea and eukaryotes,
           they do share a common feature. Unlike in E. coli, these
           SECIS elements are located in the 3' UTRs. This group
           contains bacterial SelBs, as well as, one from archaea.
          Length = 170

 Score = 76.9 bits (190), Expect = 2e-16
 Identities = 38/85 (44%), Positives = 51/85 (60%), Gaps = 3/85 (3%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           M+ GA  +D  +LV +A +G MPQTREH+ +   +G+   +V L KAD+V DE+ LELVE
Sbjct: 67  MLAGAGGIDAVLLVVAADEGIMPQTREHLEILELLGIKKGLVVLTKADLV-DEDRLELVE 125

Query: 61  IEIRELLNKYEFPGNDIPIIKGSAK 85
            EI ELL        D PI   S+ 
Sbjct: 126 EEILELLAGTFLA--DAPIFPVSSV 148


>gnl|CDD|206670 cd01883, EF1_alpha, Elongation Factor 1-alpha (EF1-alpha) protein
           family.  EF1 is responsible for the GTP-dependent
           binding of aminoacyl-tRNAs to the ribosomes. EF1 is
           composed of four subunits: the alpha chain which binds
           GTP and aminoacyl-tRNAs, the gamma chain that probably
           plays a role in anchoring the complex to other cellular
           components and the beta and delta (or beta') chains.
           This subfamily is the alpha subunit, and represents the
           counterpart of bacterial EF-Tu for the archaea
           (aEF1-alpha) and eukaryotes (eEF1-alpha). eEF1-alpha
           interacts with the actin of the eukaryotic cytoskeleton
           and may thereby play a role in cellular transformation
           and apoptosis. EF-Tu can have no such role in bacteria.
           In humans, the isoform eEF1A2 is overexpressed in 2/3 of
           breast cancers and has been identified as a putative
           oncogene. This subfamily also includes Hbs1, a G protein
           known to be important for efficient growth and protein
           synthesis under conditions of limiting translation
           initiation in yeast, and to associate with Dom34. It has
           been speculated that yeast Hbs1 and Dom34 proteins may
           function as part of a complex with a role in gene
           expression.
          Length = 219

 Score = 76.8 bits (190), Expect = 5e-16
 Identities = 38/101 (37%), Positives = 52/101 (51%), Gaps = 13/101 (12%)

Query: 1   MITGAAQMDGAILVCSAADG-------PMPQTREHILLARQVGVPYIVVFLNKADMVD-- 51
           MITGA+Q D A+LV SA  G          QTREH LLAR +GV  ++V +NK D V   
Sbjct: 94  MITGASQADVAVLVVSARKGEFEAGFEKGGQTREHALLARTLGVKQLIVAVNKMDDVTVN 153

Query: 52  -DEELLELVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGD 91
             +E  + ++ ++   L K  +   D+P I  S      GD
Sbjct: 154 WSQERYDEIKKKVSPFLKKVGYNPKDVPFIPIS---GFTGD 191


>gnl|CDD|235349 PRK05124, cysN, sulfate adenylyltransferase subunit 1; Provisional.
          Length = 474

 Score = 77.3 bits (191), Expect = 4e-15
 Identities = 68/228 (29%), Positives = 107/228 (46%), Gaps = 41/228 (17%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVD-DEELLELV 59
           M TGA+  D AIL+  A  G + QTR H  +A  +G+ ++VV +NK D+VD  EE+ E +
Sbjct: 124 MATGASTCDLAILLIDARKGVLDQTRRHSFIATLLGIKHLVVAVNKMDLVDYSEEVFERI 183

Query: 60  EIEIRELLNKYEFPGN-DIPIIKGSAKLALEGD------------TGPLGEQSILSLSKA 106
             +      +   PGN DI  +  S   ALEGD            +GP       +L + 
Sbjct: 184 REDYLTFAEQ--LPGNLDIRFVPLS---ALEGDNVVSQSESMPWYSGP-------TLLEV 231

Query: 107 LDTYIPTPNRAIDGAFLLPVEDVF--SISGRGTVVTGRVERGIVRVGEELEII--GIKDT 162
           L+T +          F  PV+ V   ++  RG    G +  G+V+VG+ ++++  G +  
Sbjct: 232 LET-VDIQRVVDAQPFRFPVQYVNRPNLDFRG--YAGTLASGVVKVGDRVKVLPSGKESN 288

Query: 163 VKTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKRE-DVERGQVLAKPGS 209
           V    T    F   L++  AG+ I L+L   + E D+ RG +L     
Sbjct: 289 VARIVT----FDGDLEEAFAGEAITLVL---EDEIDISRGDLLVAADE 329


>gnl|CDD|239664 cd03693, EF1_alpha_II, EF1_alpha_II: this family represents the
           domain II of elongation factor 1-alpha (EF-1a) that is
           found in archaea and all eukaryotic lineages. EF-1A is
           very abundant in the cytosol, where it is involved in
           the GTP-dependent binding of aminoacyl-tRNAs to the A
           site of the ribosomes in the second step of translation
           from mRNAs to proteins. Both domain II of EF1A and
           domain IV of IF2/eIF5B have been implicated in
           recognition of the 3'-ends of tRNA. More than 61% of
           eukaryotic elongation factor 1A (eEF-1A) in cells is
           estimated to be associated with actin cytoskeleton. The
           binding of eEF1A to actin is a noncanonical function
           that may link two distinct cellular processes,
           cytoskeleton organization and gene expression.
          Length = 91

 Score = 69.1 bits (170), Expect = 1e-14
 Identities = 31/88 (35%), Positives = 50/88 (56%), Gaps = 6/88 (6%)

Query: 118 IDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEII--GIKDTVKTTCTGVEMFRK 175
            D    LP++DV+ I G GTV  GRVE G+++ G  +     G+   VK+    VEM  +
Sbjct: 1   TDKPLRLPIQDVYKIGGIGTVPVGRVETGVLKPGMVVTFAPAGVTGEVKS----VEMHHE 56

Query: 176 LLDQGQAGDNIGLLLRGTKREDVERGQV 203
            L++   GDN+G  ++   ++D++RG V
Sbjct: 57  PLEEALPGDNVGFNVKNVSKKDIKRGDV 84


>gnl|CDD|206729 cd04166, CysN_ATPS, CysN, together with protein CysD, forms the ATP
           sulfurylase (ATPS) complex.  CysN_ATPS subfamily. CysN,
           together with protein CysD, form the ATP sulfurylase
           (ATPS) complex in some bacteria and lower eukaryotes.
           ATPS catalyzes the production of ATP sulfurylase (APS)
           and pyrophosphate (PPi) from ATP and sulfate. CysD,
           which catalyzes ATP hydrolysis, is a member of the ATP
           pyrophosphatase (ATP PPase) family. CysN hydrolysis of
           GTP is required for CysD hydrolysis of ATP; however,
           CysN hydrolysis of GTP is not dependent on CysD
           hydrolysis of ATP. CysN is an example of lateral gene
           transfer followed by acquisition of new function. In
           many organisms, an ATPS exists which is not
           GTP-dependent and shares no sequence or structural
           similarity to CysN.
          Length = 209

 Score = 68.4 bits (168), Expect = 3e-13
 Identities = 36/92 (39%), Positives = 51/92 (55%), Gaps = 6/92 (6%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVD-DEELLELV 59
           M+TGA+  D AIL+  A  G + QTR H  +A  +G+ ++VV +NK D+VD DEE+ E +
Sbjct: 95  MVTGASTADLAILLVDARKGVLEQTRRHSYIASLLGIRHVVVAVNKMDLVDYDEEVFEEI 154

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGD 91
           + +             DI  I  S   ALEGD
Sbjct: 155 KADYLAFAASLGIE--DITFIPIS---ALEGD 181


>gnl|CDD|240362 PTZ00327, PTZ00327, eukaryotic translation initiation factor 2
           gamma subunit; Provisional.
          Length = 460

 Score = 70.8 bits (174), Expect = 4e-13
 Identities = 67/239 (28%), Positives = 110/239 (46%), Gaps = 44/239 (18%)

Query: 1   MITGAAQMDGAILVCSAADG-PMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELV 59
           M+ GAA MD A+L+ +A +  P PQT EH+     + + +I++  NK D+V + +  +  
Sbjct: 134 MLNGAAVMDAALLLIAANESCPQPQTSEHLAAVEIMKLKHIIILQNKIDLVKEAQAQDQY 193

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAID 119
           E EIR  +       ++ PII  SA+L    D           + + + T IP P R + 
Sbjct: 194 E-EIRNFVKGTI--ADNAPIIPISAQLKYNIDV----------VLEYICTQIPIPKRDLT 240

Query: 120 GAFLL----------PVEDVFSISGRGTVVTGRVERGIVRVGEELEII-GI--KDTVKTT 166
               +          P ED+ ++  +G V  G + +G+++VG+E+EI  GI  KD+    
Sbjct: 241 SPPRMIVIRSFDVNKPGEDIENL--KGGVAGGSILQGVLKVGDEIEIRPGIISKDS-GGE 297

Query: 167 CTGVEMFRKLLDQGQAGDNI-------GLLLRGTK------REDVERGQVLAKPGSIKP 212
            T   +  +++    A +N        GL+  GT       R D   GQVL  PG +  
Sbjct: 298 FTCRPIRTRIVSL-FAENNELQYAVPGGLIGVGTTIDPTLTRADRLVGQVLGYPGKLPE 355


>gnl|CDD|233655 TIGR01956, NusG_myco, NusG family protein.  This model represents a
           family of Mycoplasma proteins orthologous to the
           bacterial transcription termination/antitermination
           factor NusG. These sequences from Mycoplasma are notably
           diverged (long branches in a Neighbor-joining
           phylogenetic tree) from the bacterial species. And
           although NusA and ribosomal protein S10 (NusE) appear to
           be present, NusB may be absent in Mycoplasmas calling
           into question whether these species have a functional
           Nus system including this family as a member.
          Length = 258

 Score = 66.9 bits (163), Expect = 2e-12
 Identities = 44/205 (21%), Positives = 87/205 (42%), Gaps = 35/205 (17%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVK-------------K 375
           +WY+  + +G E  V   +  ++  LG++       +  E  ++ K             K
Sbjct: 1   QWYIATTINGNEDEVIENIKAKVRALGLENYISDFKILKEREIEEKVFEPKNGQAPRSMK 60

Query: 376 NQKS---------------VIKKRFFPGYVLIEMEMTDESWHLVKNTKKVTGFIG--GKS 418
           N  +               + +K  + GY+ I+M MT+++W L++NT+ VTG +G  GK 
Sbjct: 61  NTATTKWETLDETKYKKTKISEKNKYNGYIYIKMIMTEDAWFLIRNTENVTGLVGSSGKG 120

Query: 419 NRPTPISSKEIEEILKQIKKGVE-KPRPKILYQLDELVRIKDGPFTDFSGNIEEVNYEKS 477
            +P PIS+   +    ++ KG+    + ++L     +V +++  F +    I +    K 
Sbjct: 121 AKPIPISADADKL---KMLKGISENTKKRVLVTNTAIVEMEENKFDEKCQYILKHKQVKP 177

Query: 478 RVRVSVTIFG-RATPVELEFNQVEK 501
                V+  G     +  EF  V+ 
Sbjct: 178 EAIAQVSESGEIIDEIVEEFQLVDN 202


>gnl|CDD|206675 cd01888, eIF2_gamma, Gamma subunit of initiation factor 2 (eIF2
           gamma).  eIF2 is a heterotrimeric translation initiation
           factor that consists of alpha, beta, and gamma subunits.
           The GTP-bound gamma subunit also binds initiator
           methionyl-tRNA and delivers it to the 40S ribosomal
           subunit. Following hydrolysis of GTP to GDP, eIF2:GDP is
           released from the ribosome. The gamma subunit has no
           intrinsic GTPase activity, but is stimulated by the
           GTPase activating protein (GAP) eIF5, and GDP/GTP
           exchange is stimulated by the guanine nucleotide
           exchange factor (GEF) eIF2B. eIF2B is a heteropentamer,
           and the epsilon chain binds eIF2. Both eIF5 and
           eIF2B-epsilon are known to bind strongly to eIF2-beta,
           but have also been shown to bind directly to eIF2-gamma.
           It is possible that eIF2-beta serves simply as a
           high-affinity docking site for eIF5 and eIF2B-epsilon,
           or that eIF2-beta serves a regulatory role. eIF2-gamma
           is found only in eukaryotes and archaea. It is closely
           related to SelB, the selenocysteine-specific elongation
           factor from eubacteria. The translational factor
           components of the ternary complex, IF2 in eubacteria and
           eIF2 in eukaryotes are not the same protein (despite
           their unfortunately similar names). Both factors are
           GTPases; however, eubacterial IF-2 is a single
           polypeptide, while eIF2 is heterotrimeric. eIF2-gamma is
           a member of the same family as eubacterial IF2, but the
           two proteins are only distantly related. This family
           includes translation initiation, elongation, and release
           factors.
          Length = 197

 Score = 65.4 bits (160), Expect = 2e-12
 Identities = 41/117 (35%), Positives = 65/117 (55%), Gaps = 14/117 (11%)

Query: 1   MITGAAQMDGAILVCSAADG-PMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELV 59
           M++GAA MDGA+L+ +A +  P PQT EH+     +G+ +I++  NK D+V +E+ LE  
Sbjct: 94  MLSGAAVMDGALLLIAANEPCPQPQTSEHLAALEIMGLKHIIILQNKIDLVKEEQALENY 153

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNR 116
           E +I+E +        + PII  SA+L          + +I  L + +   IPTP R
Sbjct: 154 E-QIKEFVK--GTIAENAPIIPISAQL----------KYNIDVLCEYIVKKIPTPPR 197


>gnl|CDD|131010 TIGR01955, RfaH, transcriptional activator RfaH.  This model
           represents the transcriptional activator protein, RfaH.
           This protein is most closely related to the
           transcriptional termination/antitermination protein NusG
           (TIGR00922) and contains the KOW motif (pfam00467). This
           protein appears to be limited to the gamma
           proteobacteria. In E. coli, this gene appears to control
           the expression of haemolysin, sex factor and
           lipopolysaccharide genes [Transcription, Transcription
           factors].
          Length = 159

 Score = 64.4 bits (157), Expect = 3e-12
 Identities = 41/173 (23%), Positives = 74/173 (42%), Gaps = 16/173 (9%)

Query: 330 WYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPGY 389
           WY+++     E+  Q  L ER              +P   +  + + ++  + +  FP Y
Sbjct: 1   WYLLYCKPRQEQRAQEHL-ERQAV--------ECYLPMITVEKIVRGKRQAVSEPLFPNY 51

Query: 390 VLIEMEMTDESWHLVKNTKKVTGFI--GGKSNRPTPISSKEIEEILKQIKKGVEKPRPKI 447
           + IE +   +SW  +++T+ V+ F+  GG    P P+    I ++ +Q +     P    
Sbjct: 52  LFIEFDPEVDSWTTIRSTRGVSRFVRFGGH---PAPVPDDLIHQL-RQYEPKDSVPPATT 107

Query: 448 LYQLDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSVTIFGRATPVELEFNQVE 500
           L    + VRI DG F  F     E + EK R  + + + G+   V +    VE
Sbjct: 108 LPYKGDKVRITDGAFAGFEAIFLEPDGEK-RSMLLLNMIGKQIKVSVPNTSVE 159


>gnl|CDD|213679 TIGR02034, CysN, sulfate adenylyltransferase, large subunit.
           Metabolic assimilation of sulfur from inorganic sulfate,
           requires sulfate activation by coupling to a nucleoside,
           for the production of high-energy nucleoside
           phosphosulfates. This pathway appears to be similar in
           all prokaryotic organisms. Activation is first achieved
           through sulfation of sulfate with ATP by sulfate
           adenylyltransferase (ATP sulfurylase) to produce
           5'-phosphosulfate (APS), coupled by GTP hydrolysis.
           Subsequently, APS is phosphorylated by an APS kinase to
           produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In
           Escherichia coli, ATP sulfurylase is a heterodimer
           composed of two subunits encoded by cysD and cysN, with
           APS kinase encoded by cysC. These genes are located in a
           unidirectionally transcribed gene cluster, and have been
           shown to be required for the synthesis of
           sulfur-containing amino acids. Homologous to this E.coli
           activation pathway are nodPQH gene products found among
           members of the Rhizobiaceae family. These gene products
           have been shown to exhibit ATP sulfurase and APS kinase
           activity, yet are involved in Nod factor sulfation, and
           sulfation of other macromolecules. With members of the
           Rhizobiaceae family, nodQ often appears as a fusion of
           cysN (large subunit of ATP sulfurase) and cysC (APS
           kinase) [Central intermediary metabolism, Sulfur
           metabolism].
          Length = 406

 Score = 67.4 bits (165), Expect = 4e-12
 Identities = 68/230 (29%), Positives = 105/230 (45%), Gaps = 40/230 (17%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVD-DEELLELV 59
           M TGA+  D A+L+  A  G + QTR H  +A  +G+ ++V+ +NK D+VD DEE+ E +
Sbjct: 97  MATGASTADLAVLLVDARKGVLEQTRRHSYIASLLGIRHVVLAVNKMDLVDYDEEVFENI 156

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGD------------TGPLGEQSILSLSKAL 107
           + +      +  F   D+  I  S   AL+GD            +GP       +L + L
Sbjct: 157 KKDYLAFAEQLGF--RDVTFIPLS---ALKGDNVVSRSESMPWYSGP-------TLLEIL 204

Query: 108 DTYIPTPNRAIDGAFLLPVEDVF--SISGRGTVVTGRVERGIVRVGEELEII--GIKDTV 163
           +T +     A D     PV+ V   ++  RG    G +  G V VG+E+ ++  G    V
Sbjct: 205 ET-VEVERDAQDLPLRFPVQYVNRPNLDFRG--YAGTIASGSVHVGDEVVVLPSGRSSRV 261

Query: 164 KTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKRE-DVERGQVLAKPGSIKP 212
               T    F   L+Q +AG  + L L     E D+ RG +LA   S   
Sbjct: 262 ARIVT----FDGDLEQARAGQAVTLTL---DDEIDISRGDLLAAADSAPE 304


>gnl|CDD|180120 PRK05506, PRK05506, bifunctional sulfate adenylyltransferase
           subunit 1/adenylylsulfate kinase protein; Provisional.
          Length = 632

 Score = 67.3 bits (165), Expect = 7e-12
 Identities = 66/228 (28%), Positives = 102/228 (44%), Gaps = 44/228 (19%)

Query: 1   MITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVD-DEELLELV 59
           M+TGA+  D AI++  A  G + QTR H  +A  +G+ ++V+ +NK D+VD D+E+ + +
Sbjct: 121 MVTGASTADLAIILVDARKGVLTQTRRHSFIASLLGIRHVVLAVNKMDLVDYDQEVFDEI 180

Query: 60  EIEIRELLNKYEFPGNDIPIIKGSAKLALEGD------------TGPLGEQSILSLSKAL 107
             + R    K      D+  I  S   AL+GD             GP       SL + L
Sbjct: 181 VADYRAFAAKLGLH--DVTFIPIS---ALKGDNVVTRSARMPWYEGP-------SLLEHL 228

Query: 108 DT-YIPTPNRAIDGAFLLPVEDV------FSISGRGTVVTGRVERGIVRVGEELEIIGIK 160
           +T  I +     D  F  PV+ V      F    RG    G V  G+VR G+E+ ++   
Sbjct: 229 ETVEIASDRNLKD--FRFPVQYVNRPNLDF----RG--FAGTVASGVVRPGDEVVVLPSG 280

Query: 161 DTVKTTCTGVEMFRKLLDQGQAGDNIGLLLRGTKREDVERGQVLAKPG 208
            T  +    +      LD+  AG  + L L      D+ RG +LA+  
Sbjct: 281 KT--SRVKRIVTPDGDLDEAFAGQAVTLTLA--DEIDISRGDMLARAD 324


>gnl|CDD|206674 cd01887, IF2_eIF5B, Initiation Factor 2 (IF2)/ eukaryotic
           Initiation Factor 5B (eIF5B) family.  IF2/eIF5B
           contribute to ribosomal subunit joining and function as
           GTPases that are maximally activated by the presence of
           both ribosomal subunits. As seen in other GTPases,
           IF2/IF5B undergoes conformational changes between its
           GTP- and GDP-bound states. Eukaryotic IF2/eIF5Bs possess
           three characteristic segments, including a divergent
           N-terminal region followed by conserved central and
           C-terminal segments. This core region is conserved among
           all known eukaryotic and archaeal IF2/eIF5Bs and
           eubacterial IF2s.
          Length = 169

 Score = 62.9 bits (154), Expect = 1e-11
 Identities = 37/83 (44%), Positives = 46/83 (55%), Gaps = 2/83 (2%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD-MVDDEELLELVEIE 62
           GA+  D AILV +A DG MPQT E I  A+   VP I+V +NK D     E   E V+ E
Sbjct: 69  GASVTDIAILVVAADDGVMPQTIEAINHAKAANVP-IIVAINKIDKPYGTEADPERVKNE 127

Query: 63  IRELLNKYEFPGNDIPIIKGSAK 85
           + EL    E  G D+ I+  SAK
Sbjct: 128 LSELGLVGEEWGGDVSIVPISAK 150


>gnl|CDD|233394 TIGR01394, TypA_BipA, GTP-binding protein TypA/BipA.  This
           bacterial (and Arabidopsis) protein, termed TypA or
           BipA, a GTP-binding protein, is phosphorylated on a
           tyrosine residue under some cellular conditions. Mutants
           show altered regulation of some pathways, but the
           precise function is unknown [Regulatory functions,
           Other, Cellular processes, Adaptations to atypical
           conditions, Protein synthesis, Translation factors].
          Length = 594

 Score = 62.7 bits (153), Expect = 2e-10
 Identities = 48/186 (25%), Positives = 85/186 (45%), Gaps = 16/186 (8%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
           DG +L+  A++GPMPQTR  +  A ++G+  IVV +NK D        E+V+ E+ +L  
Sbjct: 89  DGVLLLVDASEGPMPQTRFVLKKALELGLKPIVV-INKIDR-PSARPDEVVD-EVFDLF- 144

Query: 69  KYEFPGN----DIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAFLL 124
             E   +    D PI+  S +             ++  L  A+  ++P P   +D    +
Sbjct: 145 -AELGADDEQLDFPIVYASGRAGWASLDLDDPSDNMAPLFDAIVRHVPAPKGDLDEPLQM 203

Query: 125 PVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMF------RKLLD 178
            V ++      G +  GRV RG V+ G+++ ++  +D         ++       R  +D
Sbjct: 204 LVTNLDYDEYLGRIAIGRVHRGTVKKGQQVALMK-RDGTIENGRISKLLGFEGLERVEID 262

Query: 179 QGQAGD 184
           +  AGD
Sbjct: 263 EAGAGD 268


>gnl|CDD|238771 cd01513, Translation_factor_III, Domain III of Elongation factor
           (EF) Tu (EF-TU) and EF-G.  Elongation factors (EF) EF-Tu
           and EF-G participate in the elongation phase during
           protein biosynthesis on the ribosome. Their functional
           cycles depend on GTP binding and its hydrolysis. The
           EF-Tu complexed with GTP and aminoacyl-tRNA delivers
           tRNA to the ribosome, whereas EF-G stimulates
           translocation, a process in which tRNA and mRNA
           movements occur in the ribosome. Experimental data
           showed that: (1) intrinsic GTPase activity of EF-G is
           influenced by excision of its domain III; (2) that EF-G
           lacking domain III has a 1,000-fold decreased GTPase
           activity on the ribosome and, a slightly decreased
           affinity for GTP; and (3) EF-G lacking domain III does
           not stimulate translocation, despite the physical
           presence of domain IV which is also very important for
           translocation. These findings indicate an essential
           contribution of domain III to activation of GTP
           hydrolysis. Domains III and V of EF-G have the same fold
           (although they are not completely superimposable), the
           double split beta-alpha-beta fold. This fold is observed
           in a large number of ribonucleotide binding proteins and
           is also referred to as the ribonucleoprotein (RNP) or
           RNA recognition (RRM) motif.  This domain III is found
           in several elongation factors, as well as in peptide
           chain release factors and in GT-1 family of GTPase
           (GTPBP1).
          Length = 102

 Score = 56.3 bits (136), Expect = 5e-10
 Identities = 28/98 (28%), Positives = 38/98 (38%), Gaps = 22/98 (22%)

Query: 211 KPHKHFTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELP-----------KNK 259
           +    F  EIY L   E     P    Y+P     T  V G I              K  
Sbjct: 1   QAVDKFVAEIYVLDHPE-----PLSPGYKPVLNVGTAHVPGRIAKLLSKVDGKTEEKKPP 55

Query: 260 EMVMPGDNVLITVRLINPIAME------EGLRFAIREG 291
           E +  G+  ++ V L  P+A+E      EG RFA+R+G
Sbjct: 56  EFLKSGERGIVEVELQKPVALETFSENQEGGRFALRDG 93


>gnl|CDD|224138 COG1217, TypA, Predicted membrane GTPase involved in stress
           response [Signal transduction mechanisms].
          Length = 603

 Score = 60.7 bits (148), Expect = 8e-10
 Identities = 47/188 (25%), Positives = 85/188 (45%), Gaps = 20/188 (10%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDD------EELLELVEIE 62
           DG +L+  A++GPMPQTR  +  A  +G+  IVV +NK D  D       +E+ +L  +E
Sbjct: 93  DGVLLLVDASEGPMPQTRFVLKKALALGLKPIVV-INKIDRPDARPDEVVDEVFDLF-VE 150

Query: 63  IRELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAF 122
           +     + +FP        G+A L  E +   +       L + +  ++P P   +D   
Sbjct: 151 LGATDEQLDFPIVYASARNGTASLDPEDEADDMA-----PLFETILDHVPAPKGDLDEPL 205

Query: 123 LLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMF------RKL 176
            + V  +   S  G +  GR+ RG V+  +++ +I   D         ++       R  
Sbjct: 206 QMQVTQLDYNSYVGRIGIGRIFRGTVKPNQQVALIK-SDGTTENGRITKLLGFLGLERIE 264

Query: 177 LDQGQAGD 184
           +++ +AGD
Sbjct: 265 IEEAEAGD 272


>gnl|CDD|206739 cd09912, DLP_2, Dynamin-like protein including dynamins,
           mitofusins, and guanylate-binding proteins.  The dynamin
           family of large mechanochemical GTPases includes the
           classical dynamins and dynamin-like proteins (DLPs) that
           are found throughout the Eukarya. This family also
           includes bacterial DLPs. These proteins catalyze
           membrane fission during clathrin-mediated endocytosis.
           Dynamin consists of five domains; an N-terminal G domain
           that binds and hydrolyzes GTP, a middle domain (MD)
           involved in self-assembly and oligomerization, a
           pleckstrin homology (PH) domain responsible for
           interactions with the plasma membrane, GED, which is
           also involved in self-assembly, and a proline arginine
           rich domain (PRD) that interacts with SH3 domains on
           accessory proteins. To date, three vertebrate dynamin
           genes have been identified; dynamin 1, which is brain
           specific, mediates uptake of synaptic vesicles in
           presynaptic terminals; dynamin-2 is expressed
           ubiquitously and similarly participates in membrane
           fission; mutations in the MD, PH and GED domains of
           dynamin 2 have been linked to human diseases such as
           Charcot-Marie-Tooth peripheral neuropathy and rare forms
           of centronuclear myopathy. Dynamin 3 participates in
           megakaryocyte progenitor amplification, and is also
           involved in cytoplasmic enlargement and the formation of
           the demarcation membrane system. This family also
           includes mitofusins (MFN1 and MFN2 in mammals) that are
           involved in mitochondrial fusion. Dynamin oligomerizes
           into helical structures around the neck of budding
           vesicles in a GTP hydrolysis-dependent manner.
          Length = 180

 Score = 53.3 bits (129), Expect = 2e-08
 Identities = 35/110 (31%), Positives = 52/110 (47%), Gaps = 7/110 (6%)

Query: 7   QMDGAILVCSAADGPMPQT-REHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRE 65
           + D  I V SA D P+ ++ RE +    +     I   LNK D++ +EEL E++E   RE
Sbjct: 73  RADAVIFVLSA-DQPLTESEREFLKEILKWSGKKIFFVLNKIDLLSEEELEEVLE-YSRE 130

Query: 66  LLNKYEFPGNDIPIIKGSAKLALEG----DTGPLGEQSILSLSKALDTYI 111
            L   E  G +  I   SAK ALE     D   L +     L + L+ ++
Sbjct: 131 ELGVLELGGGEPRIFPVSAKEALEARLQGDEELLEQSGFEELEEHLEEFL 180


>gnl|CDD|223606 COG0532, InfB, Translation initiation factor 2 (IF-2; GTPase)
           [Translation, ribosomal structure and biogenesis].
          Length = 509

 Score = 56.0 bits (136), Expect = 2e-08
 Identities = 51/156 (32%), Positives = 70/156 (44%), Gaps = 25/156 (16%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEI 63
           GA+  D AILV +A DG MPQT E I  A+  GVP IVV +NK D  +     + V+ E 
Sbjct: 75  GASVTDIAILVVAADDGVMPQTIEAINHAKAAGVP-IVVAINKIDKPEAN--PDKVKQE- 130

Query: 64  RELLNKYEFP----GNDIPIIKGSAKLALEGDTG---PLGEQSILSLSKALDTYIPTPNR 116
              L +Y       G D+  +  SAK      TG       + IL L++ L+        
Sbjct: 131 ---LQEYGLVPEEWGGDVIFVPVSAK------TGEGIDELLELILLLAEVLELKANPEGP 181

Query: 117 AIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRVGE 152
           A  G  +    D     G G V T  V+ G ++ G+
Sbjct: 182 AR-GTVIEVKLD----KGLGPVATVIVQDGTLKKGD 212


>gnl|CDD|239669 cd03698, eRF3_II_like, eRF3_II_like: domain similar to domain II of
           the eukaryotic class II release factor (eRF3). In
           eukaryotes, translation termination is mediated by two
           interacting release factors, eRF1 and eRF3, which act as
           class I and II factors, respectively. eRF1 functions as
           an omnipotent release factor, decoding all three stop
           codons and triggering the release of the nascent peptide
           catalyzed by the ribsome. eRF3 is a GTPase, which
           enhances the termination efficiency by stimulating the
           eRF1 activity in a GTP-dependent manner. Sequence
           comparison of class II release factors with elongation
           factors shows that eRF3 is more similar to eEF1alpha
           whereas prokaryote RF3 is more similar to EF-G, implying
           that their precise function may differ. Only eukaryote
           RF3s are found in this group. Saccharomyces cerevisiae
           eRF3 (Sup35p) is a translation termination factor which
           is divided into three regions N, M and a C-terminal
           eEF1a-like region essential for translation termination.
            Sup35NM  is a non-pathogenic prion-like protein with
           the property of aggregating into polymer-like fibrils.
           This group also contains proteins similar to S.
           cerevisiae Hbs1, a G protein known to be important for
           efficient growth and protein synthesis under conditions
           of limiting translation initiation and, to associate
           with Dom34.  It has been speculated that yeast Hbs1 and
           Dom34 proteins may function as part of a complex with a
           role in gene expression.
          Length = 83

 Score = 48.7 bits (117), Expect = 2e-07
 Identities = 28/84 (33%), Positives = 47/84 (55%), Gaps = 3/84 (3%)

Query: 122 FLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEMFRKLLDQGQ 181
           F LP+ D +     GTVV+G+VE G ++ G+ L ++  K++V      + +  + +D   
Sbjct: 2   FRLPISDKYK-DQGGTVVSGKVESGSIQKGDTLLVMPSKESV--EVKSIYVDDEEVDYAV 58

Query: 182 AGDNIGLLLRGTKREDVERGQVLA 205
           AG+N+ L L+G   ED+  G VL 
Sbjct: 59  AGENVRLKLKGIDEEDISPGDVLC 82


>gnl|CDD|206676 cd01889, SelB_euk, SelB, the dedicated elongation factor for
           delivery of selenocysteinyl-tRNA to the ribosome.  SelB
           is an elongation factor needed for the co-translational
           incorporation of selenocysteine. Selenocysteine is coded
           by a UGA stop codon in combination with a specific
           downstream mRNA hairpin. In bacteria, the C-terminal
           part of SelB recognizes this hairpin, while the
           N-terminal part binds GTP and tRNA in analogy with
           elongation factor Tu (EF-Tu). It specifically recognizes
           the selenocysteine charged tRNAsec, which has a UCA
           anticodon, in an EF-Tu like manner. This allows
           insertion of selenocysteine at in-frame UGA stop codons.
           In E. coli SelB binds GTP, selenocysteyl-tRNAsec and a
           stem-loop structure immediately downstream of the UGA
           codon (the SECIS sequence). The absence of active SelB
           prevents the participation of selenocysteyl-tRNAsec in
           translation. Archaeal and animal mechanisms of
           selenocysteine incorporation are more complex. Although
           the SECIS elements have different secondary structures
           and conserved elements between archaea and eukaryotes,
           they do share a common feature. Unlike in E. coli, these
           SECIS elements are located in the 3' UTRs. This group
           contains eukaryotic SelBs and some from archaea.
          Length = 192

 Score = 50.8 bits (122), Expect = 2e-07
 Identities = 32/88 (36%), Positives = 45/88 (51%), Gaps = 7/88 (7%)

Query: 2   ITGAAQ-MDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           I G AQ +D  +LV  A  G   QT E +++   +  P IVV LNK D++ +EE    +E
Sbjct: 85  IIGGAQIIDLMLLVVDAKKGIQTQTAECLVIGELLCKPLIVV-LNKIDLIPEEERKRKIE 143

Query: 61  I---EIRELLNKYEFPGNDIPIIKGSAK 85
                +++ L K      D PII  SAK
Sbjct: 144 KMKKRLQKTLEKTRLK--DSPIIPVSAK 169


>gnl|CDD|239665 cd03694, GTPBP_II, Domain II of the GP-1 family of GTPase. This
           group includes proteins similar to GTPBP1 and GTPBP2.
           GTPB1 is structurally, related to elongation factor 1
           alpha, a key component of protein biosynthesis
           machinery. Immunohistochemical analyses on mouse tissues
           revealed that GTPBP1 is expressed in some neurons and
           smooth muscle cells of various organs as well as
           macrophages. Immunofluorescence analyses revealed that
           GTPBP1 is localized exclusively in cytoplasm and shows a
           diffuse granular network forming a gradient from the
           nucleus to the periphery of the cells in smooth muscle
           cell lines and macrophages. No significant difference
           was observed in the immune response to protein antigen
           between mutant mice and wild-type mice, suggesting
           normal function of antigen-presenting cells of the
           mutant mice. The absence of an eminent phenotype in
           GTPBP1-deficient mice may be due to functional
           compensation by GTPBP2, which is similar to GTPBP1 in
           structure and tissue distribution.
          Length = 87

 Score = 48.4 bits (116), Expect = 2e-07
 Identities = 23/87 (26%), Positives = 43/87 (49%), Gaps = 4/87 (4%)

Query: 122 FLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDT---VKTTCTGVEMFRKLLD 178
               +++++S+ G GTVV G V +G++R+G+ L ++G          T   +   R  + 
Sbjct: 1   AEFQIDEIYSVPGVGTVVGGTVSKGVIRLGDTL-LLGPDQDGSFRPVTVKSIHRNRSPVR 59

Query: 179 QGQAGDNIGLLLRGTKREDVERGQVLA 205
             +AG +  L L+   R  + +G VL 
Sbjct: 60  VVRAGQSASLALKKIDRSLLRKGMVLV 86


>gnl|CDD|239666 cd03695, CysN_NodQ_II, CysN_NodQ_II: This subfamily represents the
           domain II of the large subunit of ATP sulfurylase
           (ATPS): CysN or the N-terminal portion of NodQ, found
           mainly in proteobacteria and homologous to the domain II
           of EF-Tu. Escherichia coli ATPS consists of CysN and a
           smaller subunit CysD and CysN. ATPS produces
           adenosine-5'-phosphosulfate (APS) from ATP and sulfate,
           coupled with GTP hydrolysis. In the subsequent reaction
           APS is phosphorylated by an APS kinase (CysC), to
           produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for
           use in amino acid (aa) biosynthesis. The Rhizobiaceae
           group (alpha-proteobacteria) appears to carry out the
           same chemistry for the sufation of a nodulation factor.
           In Rhizobium meliloti, a the hererodimeric complex
           comprised of NodP and NodQ appears to possess both ATPS
           and APS kinase activities. The N and C termini of NodQ
           correspond to CysN and CysC, respectively.   Other
           eubacteria, Archaea, and eukaryotes use a different ATP
           sulfurylase, which shows no aa sequence similarity to
           CysN or NodQ.   CysN and the N-terminal portion of NodQ
           show similarity to GTPases involved in translation, in
           particular, EF-Tu and EF-1alpha.
          Length = 81

 Score = 47.9 bits (115), Expect = 2e-07
 Identities = 29/90 (32%), Positives = 44/90 (48%), Gaps = 14/90 (15%)

Query: 122 FLLPVEDV--FSISGRGTVVTGRVERGIVRVGEELEII--GIKDTVKTTCTGVEMFRKLL 177
           F  PV+ V   +   RG    G +  G +RVG+E+ ++  G    VK     +E F   L
Sbjct: 1   FRFPVQYVIRPNADFRG--YAGTIASGSIRVGDEVVVLPSGKTSRVK----SIETFDGEL 54

Query: 178 DQGQAGDNIGLLLRGTKRE-DVERGQVLAK 206
           D+  AG+++ L L   + E DV RG V+  
Sbjct: 55  DEAGAGESVTLTL---EDEIDVSRGDVIVA 81


>gnl|CDD|193579 cd09890, NGN_plant, Plant N-Utilization Substance G (NusG)
           N-terminal (NGN) domain.  The N-Utilization Substance G
           (NusG) protein and its eukaryotic homolog, Spt5, are
           involved in transcription elongation and termination.
           NusG contains a NGN domain at its N-terminus and
           Kyrpides Ouzounis and Woese (KOW) repeats at its
           C-terminus in bacteria and archaea. The eukaryotic
           ortholog, Spt5, is a large protein comprising an acidic
           N-terminus, an NGN domain, and multiple KOW motifs at
           its C-terminus. Spt5 forms an Spt4-Spt5 complex that is
           an essential RNA polymerase II elongation factor. The
           bacterial infected plants contain bacterial DNA, such as
           NGN sequences, that can be used to clone the DNA of
           uncultured organisms.
          Length = 113

 Score = 48.9 bits (117), Expect = 2e-07
 Identities = 31/115 (26%), Positives = 50/115 (43%), Gaps = 16/115 (13%)

Query: 330 WYVIHSYSGMEKNVQRKLIERINKLGMQKKFGR---ILVPTEEIVDVKKNQK-SVIKKRF 385
           WY++   +G E        E + +    +   R   + VP+  +    KN   SV +K  
Sbjct: 2   WYMLRVPAGRENQAA----EALERALATEFPDREFEVWVPSIPVDRKLKNGSISVKEKPL 57

Query: 386 FPGYVLIEMEMTDESWHLVKNTKKVTGFIGGKS--------NRPTPISSKEIEEI 432
           FPGYVL+   +  E +  +++   V GF+G K           P P+  +EIE I
Sbjct: 58  FPGYVLLRCVLNKEVYDFIRDNDSVYGFVGSKVGKTGKRQIEIPRPVPVEEIEAI 112


>gnl|CDD|232995 TIGR00487, IF-2, translation initiation factor IF-2.  This model
           discriminates eubacterial (and mitochondrial)
           translation initiation factor 2 (IF-2), encoded by the
           infB gene in bacteria, from similar proteins in the
           Archaea and Eukaryotes. In the bacteria and in
           organelles, the initiator tRNA is charged with
           N-formyl-Met instead of Met. This translation factor
           acts in delivering the initator tRNA to the ribosome. It
           is one of a number of GTP-binding translation factors
           recognized by the pfam model GTP_EFTU [Protein
           synthesis, Translation factors].
          Length = 587

 Score = 52.1 bits (125), Expect = 5e-07
 Identities = 49/150 (32%), Positives = 69/150 (46%), Gaps = 13/150 (8%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEI 63
           GA   D  +LV +A DG MPQT E I  A+   VP I+V +NK D  +     + V+ E+
Sbjct: 155 GAKVTDIVVLVVAADDGVMPQTIEAISHAKAANVP-IIVAINKIDKPEAN--PDRVKQEL 211

Query: 64  REL-LNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAF 122
            E  L   ++ G+ I  +  SA    +G    L    IL  S+  +     PN    G  
Sbjct: 212 SEYGLVPEDWGGDTI-FVPVSALTG-DGIDELL--DMILLQSEVEE-LKANPNGQASGV- 265

Query: 123 LLPVEDVFSISGRGTVVTGRVERGIVRVGE 152
              V +     GRG V T  V+ G +RVG+
Sbjct: 266 ---VIEAQLDKGRGPVATVLVQSGTLRVGD 292


>gnl|CDD|193582 cd09893, NGN_SP_TaA, N-Utilization Substance G (NusG) N-terminal
           domain in the NusG Specialized Paralog (SP), TaA.  The
           N-Utilization Substance G (NusG) protein is involved in
           transcription elongation and termination. NusG is
           essential in Escherichia coli and is associated with RNA
           polymerase elongation and Rho-termination in bacteria.
           Paralogs of eubacterial NusG, NusG SP (Specialized
           Paralog of NusG), are more diverse and often found as
           the first ORF in operons encoding secreted proteins and
           LPS biosynthesis genes. NusG SP family members are
           operon-specific transcriptional antiterminationn
           factors. TaA is a NusG SP factor that is required for
           synthesis of a polyketide antibiotic TA in Myxococcus
           xanthus. Orthologs of the NusG gene exist in all
           bacteria, but its functions and requirements are
           different. The NusG N-terminal (NGN) domain is quite
           similar in all NusG orthologs, but its C-terminal
           domains and the linker that separate these two domains
           are different. The domain organization of NusG and its
           orthologs suggest that the common properties of NusG and
           its orthologs and paralogs are due to their similar NGN
           domains.
          Length = 95

 Score = 46.9 bits (112), Expect = 8e-07
 Identities = 30/104 (28%), Positives = 51/104 (49%), Gaps = 11/104 (10%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
            WY +++ S  EK    K+ +R+ K G++       +P  E++   K++K  IK   FPG
Sbjct: 1   SWYALYTRSRHEK----KVADRLAKKGIE-----SFLPLYEVLSRWKDRKKKIKVPLFPG 51

Query: 389 YVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEI 432
           Y+ +  ++  E   ++K    V   I G S  P PI  +EI  +
Sbjct: 52  YLFVRFQLDPERLRILKTPGVVR--IVGNSGGPIPIPDEEIASL 93


>gnl|CDD|193578 cd09889, NGN_Bact_2, Bacterial N-Utilization Substance G (NusG)
           N-terminal (NGN) domain, subgroup 2.  The N-Utilization
           Substance G (NusG) protein is involved in transcription
           elongation and termination. NusG is essential in
           Escherichia coli and associates with RNA polymerase
           elongation and Rho-termination. Paralogs of eubacterial
           NusG, NusG SP (Specialized Paralog of NusG), are more
           diverse and often found as the first ORF in operons
           encoding secreted proteins and LPS biosynthesis genes.
           NusG SP family members are operon-specific
           transcriptional antitermination factors. The NusG
           N-terminal domain (NGN) is quite similar in all NusG
           orthologs, but its C-terminal domain and the linker that
           separates these two domains are different. The domain
           organization of NusG and its orthologs suggests that the
           common properties of NusG and its orthologs and paralogs
           are due to their similar NGN domains.
          Length = 100

 Score = 45.8 bits (109), Expect = 2e-06
 Identities = 30/110 (27%), Positives = 49/110 (44%), Gaps = 15/110 (13%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRF--F 386
            WYV+   +G EK V    +E + KL          +P  E    K++Q    ++++  F
Sbjct: 1   MWYVVQVRTGREKAV----LELLEKLVGPDVLQECFIPQYERK--KRSQGVWRERKYTLF 54

Query: 387 PGYVLIEMEMTDES-WHLVKNTKKVTGFIG--GKSNRPTPISSKEIEEIL 433
           PGYV +  +  DE  + L    K+V GF    G      P++ +E + I 
Sbjct: 55  PGYVFVVTDDIDELYYEL----KRVPGFTRLLGNDGSFFPLTPEEADFIR 100


>gnl|CDD|206678 cd01891, TypA_BipA, Tyrosine phosphorylated protein A (TypA)/BipA
           family belongs to ribosome-binding GTPases.  BipA is a
           protein belonging to the ribosome-binding family of
           GTPases and is widely distributed in bacteria and
           plants. BipA was originally described as a protein that
           is induced in Salmonella typhimurium after exposure to
           bactericidal/permeability-inducing protein (a cationic
           antimicrobial protein produced by neutrophils), and has
           since been identified in E. coli as well. The properties
           thus far described for BipA are related to its role in
           the process of pathogenesis by enteropathogenic E. coli.
           It appears to be involved in the regulation of several
           processes important for infection, including
           rearrangements of the cytoskeleton of the host,
           bacterial resistance to host defense peptides,
           flagellum-mediated cell motility, and expression of K5
           capsular genes. It has been proposed that BipA may
           utilize a novel mechanism to regulate the expression of
           target genes. In addition, BipA from enteropathogenic E.
           coli has been shown to be phosphorylated on a tyrosine
           residue, while BipA from Salmonella and from E. coli K12
           strains is not phosphorylated under the conditions
           assayed. The phosphorylation apparently modifies the
           rate of nucleotide hydrolysis, with the phosphorylated
           form showing greatly increased GTPase activity.
          Length = 194

 Score = 48.0 bits (115), Expect = 2e-06
 Identities = 33/108 (30%), Positives = 53/108 (49%), Gaps = 5/108 (4%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
           DG +L+  A++GPMPQTR  +  A + G+  IVV +NK D   D    E+V+ E+ +L  
Sbjct: 90  DGVLLLVDASEGPMPQTRFVLKKALEAGLKPIVV-INKIDR-PDARPEEVVD-EVFDLFL 146

Query: 69  KYEFPGN--DIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTP 114
           +        D PI+  SAK            + +  L + +  ++P P
Sbjct: 147 ELNATDEQLDFPIVYASAKNGWASLNLDDPSEDLDPLFETIIEHVPAP 194


>gnl|CDD|104396 PRK10218, PRK10218, GTP-binding protein; Provisional.
          Length = 607

 Score = 48.6 bits (115), Expect = 6e-06
 Identities = 49/190 (25%), Positives = 86/190 (45%), Gaps = 10/190 (5%)

Query: 6   AQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRE 65
           + +D  +LV  A DGPMPQTR     A   G+  IVV +NK D        + V  ++ +
Sbjct: 90  SMVDSVLLVVDAFDGPMPQTRFVTKKAFAYGLKPIVV-INKVDRPGARP--DWVVDQVFD 146

Query: 66  LLNKYEFPGN--DIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAFL 123
           L    +      D PI+  SA   + G       + +  L +A+  ++P P+  +DG F 
Sbjct: 147 LFVNLDATDEQLDFPIVYASALNGIAGLDHEDMAEDMTPLYQAIVDHVPAPDVDLDGPFQ 206

Query: 124 LPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKT-----TCTGVEMFRKLLD 178
           + +  +   S  G +  GR++RG V+  +++ II  +   +          + + R   D
Sbjct: 207 MQISQLDYNSYVGVIGIGRIKRGKVKPNQQVTIIDSEGKTRNAKVGKVLGHLGLERIETD 266

Query: 179 QGQAGDNIGL 188
             +AGD + +
Sbjct: 267 LAEAGDIVAI 276


>gnl|CDD|239756 cd04089, eRF3_II, eRF3_II: domain II of the eukaryotic class II
           release factor (eRF3). In eukaryotes, translation
           termination is mediated by two interacting release
           factors, eRF1 and eRF3, which act as class I and II
           factors, respectively. eRF1 functions as an omnipotent
           release factor, decoding all three stop codons and
           triggering the release of the nascent peptide catalyzed
           by the ribsome. eRF3 is a GTPase, which enhances the
           termination efficiency by stimulating the eRF1 activity
           in a GTP-dependent manner. Sequence comparison of class
           II release factors with elongation factors shows that
           eRF3 is more similar to eEF1alpha whereas prokaryote RF3
           is more similar to EF-G, implying that their precise
           function may differ. Only eukaryote RF3s are found in
           this group. Saccharomyces cerevisiae eRF3 (Sup35p) is a
           translation termination factor which is divided into
           three regions N, M and a C-terminal eEF1a-like region
           essential for translation termination.  Sup35NM  is a
           non-pathogenic prion-like protein with the property of
           aggregating into polymer-like fibrils.
          Length = 82

 Score = 43.7 bits (104), Expect = 9e-06
 Identities = 27/86 (31%), Positives = 44/86 (51%), Gaps = 10/86 (11%)

Query: 122 FLLPVEDVFSISGRGTVVTGRVERGIVRVGEELEIIGIKDTVKTT---CTGVEMFRKLLD 178
             LP+ D +     GTVV G+VE G ++ G++L ++  K  V+        VE+      
Sbjct: 2   LRLPIIDKYK--DMGTVVLGKVESGTIKKGDKLLVMPNKTQVEVLSIYNEDVEV-----R 54

Query: 179 QGQAGDNIGLLLRGTKREDVERGQVL 204
             + G+N+ L L+G + ED+  G VL
Sbjct: 55  YARPGENVRLRLKGIEEEDISPGFVL 80


>gnl|CDD|235401 PRK05306, infB, translation initiation factor IF-2; Validated.
          Length = 746

 Score = 45.2 bits (108), Expect = 6e-05
 Identities = 21/40 (52%), Positives = 26/40 (65%), Gaps = 1/40 (2%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           D  +LV +A DG MPQT E I  A+  GVP I+V +NK D
Sbjct: 321 DIVVLVVAADDGVMPQTIEAINHAKAAGVP-IIVAINKID 359


>gnl|CDD|206731 cd04168, TetM_like, Tet(M)-like family includes Tet(M), Tet(O),
           Tet(W), and OtrA, containing tetracycline resistant
           proteins.  Tet(M), Tet(O), Tet(W), and OtrA are
           tetracycline resistance genes found in Gram-positive and
           Gram-negative bacteria. Tetracyclines inhibit protein
           synthesis by preventing aminoacyl-tRNA from binding to
           the ribosomal acceptor site. This subfamily contains
           tetracycline resistance proteins that function through
           ribosomal protection and are typically found on mobile
           genetic elements, such as transposons or plasmids, and
           are often conjugative. Ribosomal protection proteins are
           homologous to the elongation factors EF-Tu and EF-G.
           EF-G and Tet(M) compete for binding on the ribosomes.
           Tet(M) has a higher affinity than EF-G, suggesting these
           two proteins may have overlapping binding sites and that
           Tet(M) must be released before EF-G can bind. Tet(M) and
           Tet(O) have been shown to have ribosome-dependent GTPase
           activity. These proteins are part of the GTP translation
           factor family, which includes EF-G, EF-Tu, EF2, LepA,
           and SelB.
          Length = 237

 Score = 42.6 bits (101), Expect = 2e-04
 Identities = 30/87 (34%), Positives = 44/87 (50%), Gaps = 10/87 (11%)

Query: 8   MDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADM--VDDEELLELVEIEIRE 65
           +DGAILV SA +G   QTR    L R++ +P I +F+NK D    D E++ +    EI+E
Sbjct: 88  LDGAILVISAVEGVQAQTRILFRLLRKLNIPTI-IFVNKIDRAGADLEKVYQ----EIKE 142

Query: 66  LLNKYEFPGND---IPIIKGSAKLALE 89
            L+    P       P I  +  +  E
Sbjct: 143 KLSPDIVPMQKVGLYPNICDTNNIDDE 169


>gnl|CDD|237358 PRK13351, PRK13351, elongation factor G; Reviewed.
          Length = 687

 Score = 43.0 bits (102), Expect = 3e-04
 Identities = 25/76 (32%), Positives = 39/76 (51%), Gaps = 4/76 (5%)

Query: 8   MDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELL 67
           +DGA++V  A  G  PQT      A + G+P  ++F+NK D V   +L +++E +I E  
Sbjct: 97  LDGAVVVFDAVTGVQPQTETVWRQADRYGIP-RLIFINKMDRVGA-DLFKVLE-DIEERF 153

Query: 68  NKYEFPGNDIPIIKGS 83
            K   P   +PI    
Sbjct: 154 GKRPLPLQ-LPIGSED 168


>gnl|CDD|206646 cd00880, Era_like, E. coli Ras-like protein (Era)-like GTPase.  The
           Era (E. coli Ras-like protein)-like family includes
           several distinct subfamilies (TrmE/ThdF, FeoB, YihA
           (EngB), Era, and EngA/YfgK) that generally show sequence
           conservation in the region between the Walker A and B
           motifs (G1 and G3 box motifs), to the exclusion of other
           GTPases. TrmE is ubiquitous in bacteria and is a
           widespread mitochondrial protein in eukaryotes, but is
           absent from archaea. The yeast member of TrmE family,
           MSS1, is involved in mitochondrial translation;
           bacterial members are often present in
           translation-related operons. FeoB represents an unusual
           adaptation of GTPases for high-affinity iron (II)
           transport. YihA (EngB) family of GTPases is typified by
           the E. coli YihA, which is an essential protein involved
           in cell division control. Era is characterized by a
           distinct derivative of the KH domain (the pseudo-KH
           domain) which is located C-terminal to the GTPase
           domain. EngA and its orthologs are composed of two
           GTPase domains and, since the sequences of the two
           domains are more similar to each other than to other
           GTPases, it is likely that an ancient gene duplication,
           rather than a fusion of evolutionarily distinct GTPases,
           gave rise to this family.
          Length = 161

 Score = 41.1 bits (97), Expect = 3e-04
 Identities = 26/81 (32%), Positives = 40/81 (49%), Gaps = 9/81 (11%)

Query: 5   AAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIR 64
           A + D  +LV  +   P+ +  +  LL R+ G P ++V  NK D+V + E  EL+     
Sbjct: 74  ADRADLVLLVVDSDLTPVEEEAKLGLL-RERGKPVLLVL-NKIDLVPESEEEELLRERKL 131

Query: 65  ELLNKYEFPGNDIPIIKGSAK 85
           ELL        D+P+I  SA 
Sbjct: 132 ELL-------PDLPVIAVSAL 145


>gnl|CDD|193581 cd09892, NGN_SP_RfaH, N-Utilization Substance G (NusG) N-terminal
           domain in the NusG Specialized Paralog (SP), RfaH.  RfaH
           is an operon-specific virulence regulator, thought to
           have arisen from an early duplication of N-Utilization
           Substance G (NusG). Paralogs of eubacterial NusG, NusG
           SP (Specialized Paralog of NusG), are more diverse and
           often found as the first ORF in operons encoding
           secreted proteins and LPS biosynthesis genes. NusG SP
           family members are operon-specific transcriptional
           antitermination factors. NusG is essential in
           Escherichia coli and is associated with RNA polymerase
           elongation and Rho-termination in bacteria. In contrast,
           RfaH is a non-essential protein that controls expression
           of operons containing an ops (operon polarity
           suppressor) element in their transcribed DNA. RfaH and
           NusG are different in their response to Rho-dependent
           terminators and regulatory targets. The NusG N-terminal
           (NGN) domain is quite similar in all NusG orthologs, but
           its C-terminal domains and the linker that separate
           these two domains are different. The domain organization
           of NusG and its homologs suggest that the common
           properties of NusG and RfaH are due to their similar NGN
           domains.
          Length = 96

 Score = 39.5 bits (93), Expect = 4e-04
 Identities = 20/104 (19%), Positives = 49/104 (47%), Gaps = 10/104 (9%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
            WY++++    E+     L ER         F  + +P   +   ++ +++V+ +  FPG
Sbjct: 1   AWYLLYTKPRQEERAAENL-ERQG-------F-EVFLPMIRVEKRRRGKRTVVTEPLFPG 51

Query: 389 YVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEI 432
           Y+ + ++   ++W  +++T+ V+  +      P P+    IE +
Sbjct: 52  YLFVRLDPEVQNWRPIRSTRGVSRLVRF-GGEPAPVPDALIEAL 94


>gnl|CDD|206648 cd00882, Ras_like_GTPase, Rat sarcoma (Ras)-like superfamily of
           small guanosine triphosphatases (GTPases).  Ras-like
           GTPase superfamily. The Ras-like superfamily of small
           GTPases consists of several families with an extremely
           high degree of structural and functional similarity. The
           Ras superfamily is divided into at least four families
           in eukaryotes: the Ras, Rho, Rab, and Sar1/Arf families.
           This superfamily also includes proteins like the GTP
           translation factors, Era-like GTPases, and G-alpha chain
           of the heterotrimeric G proteins. Members of the Ras
           superfamily regulate a wide variety of cellular
           functions: the Ras family regulates gene expression, the
           Rho family regulates cytoskeletal reorganization and
           gene expression, the Rab and Sar1/Arf families regulate
           vesicle trafficking, and the Ran family regulates
           nucleocytoplasmic transport and microtubule
           organization. The GTP translation factor family
           regulates initiation, elongation, termination, and
           release in translation, and the Era-like GTPase family
           regulates cell division, sporulation, and DNA
           replication. Members of the Ras superfamily are
           identified by the GTP binding site, which is made up of
           five characteristic sequence motifs, and the switch I
           and switch II regions.
          Length = 161

 Score = 40.5 bits (95), Expect = 5e-04
 Identities = 20/79 (25%), Positives = 37/79 (46%), Gaps = 10/79 (12%)

Query: 9   DGAILVCSAADGPMP--QTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIREL 66
           D  +LV  + D           +   R+ G+P I+V  NK D++++ E+ EL+ +E    
Sbjct: 77  DLILLVVDSTDRESEEDAKLLILRRLRKEGIPIILV-GNKIDLLEEREVEELLRLEELAK 135

Query: 67  LNKYEFPGNDIPIIKGSAK 85
           +         +P+ + SAK
Sbjct: 136 I-------LGVPVFEVSAK 147


>gnl|CDD|223556 COG0480, FusA, Translation elongation factors (GTPases)
           [Translation, ribosomal structure and biogenesis].
          Length = 697

 Score = 41.1 bits (97), Expect = 0.001
 Identities = 24/74 (32%), Positives = 38/74 (51%), Gaps = 4/74 (5%)

Query: 6   AQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRE 65
             +DGA++V  A +G  PQT      A + GVP  ++F+NK D +  +    LV  +++E
Sbjct: 98  RVLDGAVVVVDAVEGVEPQTETVWRQADKYGVP-RILFVNKMDRLGAD--FYLVVEQLKE 154

Query: 66  LLNKYEFPGNDIPI 79
            L     P   +PI
Sbjct: 155 RLGANPVPVQ-LPI 167


>gnl|CDD|206747 cd01854, YjeQ_EngC, Ribosomal interacting GTPase YjeQ/EngC, a
          circularly permuted subfamily of the Ras GTPases.  YjeQ
          (YloQ in Bacillus subtilis) is a ribosomal small
          subunit-dependent GTPase; hence also known as RsgA.
          YjeQ is a late-stage ribosomal biogenesis factor
          involved in the 30S subunit maturation, and it
          represents a protein family whose members are broadly
          conserved in bacteria and have been shown to be
          essential to the growth of E. coli and B. subtilis.
          Proteins of the YjeQ family contain all sequence motifs
          typical of the vast class of P-loop-containing GTPases,
          but show a circular permutation, with a G4-G1-G3
          pattern of motifs as opposed to the regular G1-G3-G4
          pattern seen in most GTPases. All YjeQ family proteins
          display a unique domain architecture, which includes an
          N-terminal OB-fold RNA-binding domain, the central
          permuted GTPase domain, and a zinc knuckle-like
          C-terminal cysteine domain.
          Length = 211

 Score = 39.3 bits (93), Expect = 0.002
 Identities = 28/80 (35%), Positives = 41/80 (51%), Gaps = 15/80 (18%)

Query: 9  DGAILVCSAADGPMPQTR---EHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRE 65
          D  ++V S  + P    R    +++ A   G+   V+ LNKAD+VDDEEL EL+EI   +
Sbjct: 4  DQVLIVFSLKE-PFFNLRLLDRYLVAAEASGIE-PVIVLNKADLVDDEELEELLEI-YEK 60

Query: 66 LLNKYEFPGNDIPIIKGSAK 85
          L           P++  SAK
Sbjct: 61 L---------GYPVLAVSAK 71


>gnl|CDD|206665 cd01876, YihA_EngB, YihA (EngB) GTPase family.  The YihA (EngB)
           subfamily of GTPases is typified by the E. coli YihA, an
           essential protein involved in cell division control.
           YihA and its orthologs are small proteins that typically
           contain less than 200 amino acid residues and consists
           of the GTPase domain only (some of the eukaryotic
           homologs contain an N-terminal extension of about 120
           residues that might be involved in organellar
           targeting). Homologs of yihA are found in most
           Gram-positive and Gram-negative pathogenic bacteria,
           with the exception of Mycobacterium tuberculosis. The
           broad-spectrum nature of YihA and its essentiality for
           cell viability in bacteria make it an attractive
           antibacterial target.
          Length = 170

 Score = 37.9 bits (89), Expect = 0.005
 Identities = 25/76 (32%), Positives = 40/76 (52%), Gaps = 5/76 (6%)

Query: 10  GAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
           G +L+  A  GP P   E +    ++G+P+++V L KAD +   E L  V  +I+E LN 
Sbjct: 84  GVVLLIDARHGPTPIDLEMLEFLEELGIPFLIV-LTKADKLKKSE-LAKVLKKIKEELNL 141

Query: 70  YEFPGNDIPIIKGSAK 85
           +       P+I  S+K
Sbjct: 142 FN---ILPPVILFSSK 154


>gnl|CDD|237186 PRK12740, PRK12740, elongation factor G; Reviewed.
          Length = 668

 Score = 39.0 bits (92), Expect = 0.005
 Identities = 18/40 (45%), Positives = 23/40 (57%), Gaps = 1/40 (2%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           DGA++V  A  G  PQT      A + GVP I +F+NK D
Sbjct: 85  DGAVVVVCAVGGVEPQTETVWRQAEKYGVPRI-IFVNKMD 123


>gnl|CDD|236047 PRK07560, PRK07560, elongation factor EF-2; Reviewed.
          Length = 731

 Score = 38.3 bits (90), Expect = 0.008
 Identities = 26/76 (34%), Positives = 42/76 (55%), Gaps = 18/76 (23%)

Query: 8   MDGAILVCSAADGPMPQTREHILLARQV---GV-PYIVVFLNKAD------MVDDEELLE 57
           +DGAI+V  A +G MPQT E +L  RQ     V P  V+F+NK D       +  +E+ +
Sbjct: 111 VDGAIVVVDAVEGVMPQT-ETVL--RQALRERVKP--VLFINKVDRLIKELKLTPQEMQQ 165

Query: 58  -LVEI--EIRELLNKY 70
            L++I  ++ +L+   
Sbjct: 166 RLLKIIKDVNKLIKGM 181



 Score = 34.1 bits (79), Expect = 0.20
 Identities = 19/53 (35%), Positives = 30/53 (56%), Gaps = 3/53 (5%)

Query: 136 GTVVTGRVERGIVRVGEELEIIGIKDTVKTTCTGVEM--FRKLLDQGQAGDNI 186
           G V TGRV  G +R G+E+ ++G K   +    G+ M   R+ +++  AG NI
Sbjct: 305 GEVATGRVFSGTLRKGQEVYLVGAKKKNRVQQVGIYMGPEREEVEEIPAG-NI 356


>gnl|CDD|223296 COG0218, COG0218, Predicted GTPase [General function prediction
           only].
          Length = 200

 Score = 36.8 bits (86), Expect = 0.010
 Identities = 20/69 (28%), Positives = 32/69 (46%), Gaps = 2/69 (2%)

Query: 2   ITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEI 61
           +   A + G +L+  A   P    RE I    ++G+P IVV   KAD +   E  + +  
Sbjct: 101 LEKRANLKGVVLLIDARHPPKDLDREMIEFLLELGIPVIVVL-TKADKLKKSERNKQLN- 158

Query: 62  EIRELLNKY 70
           ++ E L K 
Sbjct: 159 KVAEELKKP 167


>gnl|CDD|206685 cd01898, Obg, Obg GTPase.  The Obg nucleotide binding protein
           subfamily has been implicated in stress response,
           chromosome partitioning, replication initiation,
           mycelium development, and sporulation. Obg proteins are
           among a large group of GTP binding proteins conserved
           from bacteria to humans. The E. coli homolog, ObgE is
           believed to function in ribosomal biogenesis. Members of
           the subfamily contain two equally and highly conserved
           domains, a C-terminal GTP binding domain and an
           N-terminal glycine-rich domain.
          Length = 170

 Score = 36.2 bits (85), Expect = 0.014
 Identities = 17/36 (47%), Positives = 23/36 (63%), Gaps = 1/36 (2%)

Query: 38  PYIVVFLNKADMVDDEELLELVEIEIRELLNKYEFP 73
           P IVV LNK D++D EE  E ++  ++EL  K  FP
Sbjct: 116 PRIVV-LNKIDLLDAEERFEKLKELLKELKGKKVFP 150


>gnl|CDD|177089 CHL00189, infB, translation initiation factor 2; Provisional.
          Length = 742

 Score = 37.1 bits (86), Expect = 0.019
 Identities = 31/85 (36%), Positives = 40/85 (47%), Gaps = 11/85 (12%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEI 63
           GA   D AIL+ +A DG  PQT E I   +   VP I+V +NK D  +           I
Sbjct: 315 GANVTDIAILIIAADDGVKPQTIEAINYIQAANVP-IIVAINKIDKANAN------TERI 367

Query: 64  RELLNKYEFP----GNDIPIIKGSA 84
           ++ L KY       G D P+I  SA
Sbjct: 368 KQQLAKYNLIPEKWGGDTPMIPISA 392


>gnl|CDD|206732 cd04169, RF3, Release Factor 3 (RF3) protein involved in the
           terminal step of translocation in bacteria.  Peptide
           chain release factor 3 (RF3) is a protein involved in
           the termination step of translation in bacteria.
           Termination occurs when class I release factors (RF1 or
           RF2) recognize the stop codon at the A-site of the
           ribosome and activate the release of the nascent
           polypeptide. The class II release factor RF3 then
           initiates the release of the class I RF from the
           ribosome. RF3 binds to the RF/ribosome complex in the
           inactive (GDP-bound) state. GDP/GTP exchange occurs,
           followed by the release of the class I RF. Subsequent
           hydrolysis of GTP to GDP triggers the release of RF3
           from the ribosome. RF3 also enhances the efficiency of
           class I RFs at less preferred stop codons and at stop
           codons in weak contexts.
          Length = 268

 Score = 36.4 bits (85), Expect = 0.024
 Identities = 24/60 (40%), Positives = 35/60 (58%), Gaps = 3/60 (5%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
           D A++V  AA G  PQTR+   + R  G+P I+ F+NK D  +  + LEL++ EI   L 
Sbjct: 96  DSAVMVIDAAKGVEPQTRKLFEVCRLRGIP-IITFINKLDR-EGRDPLELLD-EIENELG 152


>gnl|CDD|193584 cd09895, NGN_SP_UpxY, N-Utilization Substance G (NusG) N-terminal
           domain in the NusG Specialized Paralog (SP), UpxY.  The
           N-Utilization Substance G (NusG) proteins are involved
           in transcription elongation and termination. NusG is
           essential in Escherichia coli and is associated with RNA
           polymerase elongation and Rho-termination. Paralogs of
           eubacterial NusG, NusG SP (Specialized Paralog of NusG),
           are more diverse and often found as the first ORF in
           operons encoding secreted proteins and LPS
           (lipopolysaccharide) biosynthesis genes. NusG SP family
           members are operon-specific transcriptional
           antitermination factors. UpxY proteins, UpxY proteins,
           where the x is replaced by the letter designation of the
           specific polysaccharide (UpaY to UphY), are a family of
           NusG SP factors that act specifically in transcriptional
           antitermination of operons from which they are encoded. 
           UpxYs are necessary and specific for transcription
           regulation of the polysaccharide biosynthesis operon.
           Orthologs of the NusG gene exist in all bacteria, but
           their functions and requirements are different. The NusG
           N-terminal (NGN) domain is similar in all NusG
           orthologs, but its C-terminal domain and the linker that
           separate these two domains are different. The domain
           organization of NusG and its orthologs suggests that the
           common properties of NusG and its orthologs and paralogs
           are due to their similar NGN domains.
          Length = 95

 Score = 33.7 bits (78), Expect = 0.030
 Identities = 22/104 (21%), Positives = 41/104 (39%), Gaps = 11/104 (10%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
            WY ++++   EK    K+ E + K G+        +P +  V     +K  ++   FP 
Sbjct: 1   PWYALYTFPRREK----KVAEYLEKKGI-----ECFLPMQYEVRQWSGRKKRVEVPLFPN 51

Query: 389 YVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEI 432
            V + +   +     V  T  V  F+  +   P  I  K++E  
Sbjct: 52  LVFVHITREELD--EVLETPGVVRFVRYRGKEPAIIPDKQMESF 93


>gnl|CDD|234395 TIGR03918, GTP_HydF, [FeFe] hydrogenase H-cluster maturation GTPase
           HydF.  This model describes the family of the [Fe]
           hydrogenase maturation protein HypF as characterized in
           Chlamydomonas reinhardtii and found, in an operon with
           radical SAM proteins HydE and HydG, in numerous
           bacteria. It has GTPase activity, can bind an 4Fe-4S
           cluster, and is essential for hydrogenase activity
           [Protein fate, Protein modification and repair].
          Length = 391

 Score = 36.0 bits (84), Expect = 0.044
 Identities = 20/52 (38%), Positives = 28/52 (53%), Gaps = 1/52 (1%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           D A+LV  A  GP     E I   ++  +PYIVV  NK D+ ++   LE +E
Sbjct: 87  DLALLVVDAGVGPGEYELELIEELKERKIPYIVVI-NKIDLGEESAELEKLE 137


>gnl|CDD|181467 PRK08559, nusG, transcription antitermination protein NusG;
           Validated.
          Length = 153

 Score = 34.5 bits (80), Expect = 0.046
 Identities = 33/153 (21%), Positives = 56/153 (36%), Gaps = 32/153 (20%)

Query: 331 YVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPGYV 390
           + + + +G E+NV   L  R  K  +      IL P E            +K     GYV
Sbjct: 9   FAVKTTAGQERNVALMLAMRAKKENLPIY--AILAPPE------------LK-----GYV 49

Query: 391 LIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILKQIKKGVEKPRPKILYQ 450
           L+E E        ++    V G + G+ +          EE+   +K   +     I  +
Sbjct: 50  LVEAESKGAVEEAIRGIPHVRGVVPGEIS---------FEEVEHFLKP--KPIVEGI--K 96

Query: 451 LDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSV 483
             ++V +  GPF      +  V+  K  V V +
Sbjct: 97  EGDIVELIAGPFKGEKARVVRVDESKEEVTVEL 129


>gnl|CDD|206733 cd04170, EF-G_bact, Elongation factor G (EF-G) family.
           Translocation is mediated by EF-G (also called
           translocase). The structure of EF-G closely resembles
           that of the complex between EF-Tu and tRNA. This is an
           example of molecular mimicry; a protein domain evolved
           so that it mimics the shape of a tRNA molecule. EF-G in
           the GTP form binds to the ribosome, primarily through
           the interaction of its EF-Tu-like domain with the 50S
           subunit. The binding of EF-G to the ribosome in this
           manner stimulates the GTPase activity of EF-G. On GTP
           hydrolysis, EF-G undergoes a conformational change that
           forces its arm deeper into the A site on the 30S
           subunit. To accommodate this domain, the peptidyl-tRNA
           in the A site moves to the P site, carrying the mRNA and
           the deacylated tRNA with it. The ribosome may be
           prepared for these rearrangements by the initial binding
           of EF-G as well. The dissociation of EF-G leaves the
           ribosome ready to accept the next aminoacyl-tRNA into
           the A site. This group contains only bacterial members.
          Length = 268

 Score = 35.3 bits (82), Expect = 0.047
 Identities = 11/40 (27%), Positives = 18/40 (45%), Gaps = 1/40 (2%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           D A++V  A  G    T +         +P  ++F+NK D
Sbjct: 89  DAALIVVEAQSGVEVGTEKVWEFLDDAKLP-RIIFINKMD 127


>gnl|CDD|193576 cd09887, NGN_Arch, Archaeal N-Utilization Substance G (NusG)
           N-terminal (NGN) domain.  The N-Utilization Substance G
           (NusG) protein and its eukaryotic homolog, Spt5, are
           involved in transcription elongation and termination.
           Transcription in archaea has a eukaryotic-type
           transcription apparatus, but contains bacterial-type
           transcription factors. NusG is one of the few archaeal
           transcription factors that has orthologs in both
           bacteria and eukaryotes. Archaeal NusG is similar to
           bacterial NusG, composed of an NGN domain and a Kyrpides
           Ouzounis and Woese (KOW) repeat. The eukaryotic
           ortholog, Spt5, is a large protein composed of an acidic
           N-terminus, an NGN domain, and multiple KOW motifs at
           its C-terminus. NusG was originally discovered as a
           N-dependent antitermination enhancing activity in
           Escherichia coli and has a variety of functions, such as
           being involved in RNA polymerase elongation and
           Rho-termination in bacteria. Archaeal NusG forms a
           complex with DNA-directed RNA polymerase subunit E
           (rpoE) that is similar to the Spt5-Spt4 complex in
           eukaryotes.
          Length = 82

 Score = 32.9 bits (76), Expect = 0.056
 Identities = 32/106 (30%), Positives = 43/106 (40%), Gaps = 25/106 (23%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
           R Y + + +G E+NV   L  R  K  +      ILVP E            +K     G
Sbjct: 1   RIYAVKTTAGQERNVADLLAMRAEKENLDVY--SILVPEE------------LK-----G 41

Query: 389 YVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILK 434
           YV +E E  D    L++    V G + G       IS +EIE  LK
Sbjct: 42  YVFVEAEDPDRVEELIRGIPHVRGVVPG------EISLEEIEHFLK 81


>gnl|CDD|193575 cd09886, NGN_SP, N-Utilization Substance G (NusG) N-terminal domain
           in the NusG Specialized Paralog (SP).  The N-Utilization
           Substance G (NusG) protein is involved in transcription
           elongation and termination. NusG is essential in
           Escherichia coli and is associated with RNA polymerase
           elongation and Rho-termination in bacteria. Paralogs of
           eubacterial NusG, NusG SP (Specialized Paralog of NusG),
           are more diverse and often found as the first ORF in
           operons encoding secreted proteins and LPS biosynthesis
           genes. NusG SP family members are operon-specific
           transcriptional antitermination factors. The NusG
           N-terminal (NGN) domain is quite similar in all NusG
           orthologs, but its C-terminal domains and the linker
           that separate these two domains are different. The
           domain organization of NusG and its orthologs suggest
           that the common properties of NusG and its orthologs and
           paralogs are due to their similar NGN domains.
          Length = 97

 Score = 32.7 bits (75), Expect = 0.082
 Identities = 22/107 (20%), Positives = 45/107 (42%), Gaps = 11/107 (10%)

Query: 329 RWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPG 388
            WY + +  G E+  +  L  R    G++       +P       ++ +K  +++  FPG
Sbjct: 1   SWYALRTNPGCEQRAEEALEAR----GVE-----AFLPMLTEERKRRRKKFDVERPLFPG 51

Query: 389 YVLIEM-EMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILK 434
           YV   +     +    ++    V G +G    RP P+  +E+ ++ K
Sbjct: 52  YVFARLDRSKGQDTSTIRACDGVLGVVGF-DGRPAPVPEQEMRDLRK 97


>gnl|CDD|144165 pfam00467, KOW, KOW motif.  This family has been extended to
           coincide with ref. The KOW (Kyprides, Ouzounis, Woese)
           motif is found in a variety of ribosomal proteins and
           NusG.
          Length = 32

 Score = 30.9 bits (71), Expect = 0.086
 Identities = 12/30 (40%), Positives = 18/30 (60%)

Query: 452 DELVRIKDGPFTDFSGNIEEVNYEKSRVRV 481
            ++VR+  GPF    G + EV+  K+RV V
Sbjct: 2   GDVVRVISGPFKGKKGKVVEVDDSKARVHV 31


>gnl|CDD|206728 cd04165, GTPBP1_like, GTP binding protein 1 (GTPBP1)-like family
           includes GTPBP2.  Mammalian GTP binding protein 1
           (GTPBP1), GTPBP2, and nematode homologs AGP-1 and CGP-1
           are GTPases whose specific functions remain unknown. In
           mouse, GTPBP1 is expressed in macrophages, in smooth
           muscle cells of various tissues and in some neurons of
           the cerebral cortex; GTPBP2 tissue distribution appears
           to overlap that of GTPBP1. In human leukemia and
           macrophage cell lines, expression of both GTPBP1 and
           GTPBP2 is enhanced by interferon-gamma (IFN-gamma). The
           chromosomal location of both genes has been identified
           in humans, with GTPBP1 located in chromosome 22q12-13.1
           and GTPBP2 located in chromosome 6p21-12. Human
           glioblastoma multiforme (GBM), a highly-malignant
           astrocytic glioma and the most common cancer in the
           central nervous system, has been linked to chromosomal
           deletions and a translocation on chromosome 6. The GBM
           translocation results in a fusion of GTPBP2 and PTPRZ1,
           a protein involved in oligodendrocyte differentiation,
           recovery, and survival. This fusion product may
           contribute to the onset of GBM.
          Length = 224

 Score = 34.2 bits (79), Expect = 0.090
 Identities = 20/52 (38%), Positives = 28/52 (53%), Gaps = 1/52 (1%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVE 60
           D A+LV  A  G +  T+EH+ LA  + VP  VV + K DM     L E ++
Sbjct: 111 DYAMLVVGANAGIIGMTKEHLGLALALKVPVFVV-VTKIDMTPANVLQETLK 161


>gnl|CDD|239659 cd03688, eIF2_gamma_II, eIF2_gamma_II: this subfamily represents
           the domain II of the gamma subunit of eukaryotic
           translation initiation factor 2 (eIF2-gamma) found in
           Eukaryota and Archaea. eIF2 is a G protein that delivers
           the methionyl initiator tRNA to the small ribosomal
           subunit and releases it upon GTP hydrolysis after the
           recognition of the initiation codon. eIF2 is composed
           three subunits, alpha, beta and gamma. Subunit gamma
           shows strongest conservation, and it confers both tRNA
           binding and GTP/GDP binding.
          Length = 113

 Score = 32.5 bits (75), Expect = 0.12
 Identities = 29/90 (32%), Positives = 47/90 (52%), Gaps = 19/90 (21%)

Query: 135 RGTVVTGRVERGIVRVGEELEI---IGIKDTVKTTCTGVEMFRKLLDQGQAGDNI----- 186
           +G V  G + +G+++VG+E+EI   I +KD  K  C  +  F K++   +A +N      
Sbjct: 27  KGGVAGGSLLQGVLKVGDEIEIRPGIVVKDEGKIKCRPI--FTKIVSL-KAENNDLQEAV 83

Query: 187 --GLLLRGTK------REDVERGQVLAKPG 208
             GL+  GTK      + D   GQV+ +PG
Sbjct: 84  PGGLIGVGTKLDPTLTKADRLVGQVVGEPG 113


>gnl|CDD|206672 cd01885, EF2, Elongation Factor 2 (EF2) in archaea and eukarya.
           Translocation requires hydrolysis of a molecule of GTP
           and is mediated by EF-G in bacteria and by eEF2 in
           eukaryotes. The eukaryotic elongation factor eEF2 is a
           GTPase involved in the translocation of the
           peptidyl-tRNA from the A site to the P site on the
           ribosome. The 95-kDa protein is highly conserved, with
           60% amino acid sequence identity between the human and
           yeast proteins. Two major mechanisms are known to
           regulate protein elongation and both involve eEF2.
           First, eEF2 can be modulated by reversible
           phosphorylation. Increased levels of phosphorylated eEF2
           reduce elongation rates presumably because
           phosphorylated eEF2 fails to bind the ribosomes.
           Treatment of mammalian cells with agents that raise the
           cytoplasmic Ca2+ and cAMP levels reduce elongation rates
           by activating the kinase responsible for phosphorylating
           eEF2. In contrast, treatment of cells with insulin
           increases elongation rates by promoting eEF2
           dephosphorylation. Second, the protein can be
           post-translationally modified by ADP-ribosylation.
           Various bacterial toxins perform this reaction after
           modification of a specific histidine residue to
           diphthamide, but there is evidence for endogenous ADP
           ribosylase activity. Similar to the bacterial toxins, it
           is presumed that modification by the endogenous enzyme
           also inhibits eEF2 activity.
          Length = 218

 Score = 33.7 bits (78), Expect = 0.12
 Identities = 15/43 (34%), Positives = 22/43 (51%), Gaps = 5/43 (11%)

Query: 8   MDGAILVCSAADGPMPQTREHILLARQVGVPYI--VVFLNKAD 48
            DGA++V  A +G   QT    +L RQ     +  V+ +NK D
Sbjct: 96  TDGALVVVDAVEGVCVQT--ETVL-RQALEERVKPVLVINKID 135


>gnl|CDD|234274 TIGR03594, GTPase_EngA, ribosome-associated GTPase EngA.  EngA
           (YfgK, Der) is a ribosome-associated essential GTPase
           with a duplication of its GTP-binding domain. It is
           broadly to universally distributed among bacteria. It
           appears to function in ribosome biogenesis or stability
           [Protein synthesis, Other].
          Length = 429

 Score = 34.3 bits (80), Expect = 0.12
 Identities = 34/115 (29%), Positives = 51/115 (44%), Gaps = 14/115 (12%)

Query: 11  AILVCSAADGPMPQTREHIL-LARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
            +LV  A +G   Q    I  LA + G   ++V  NK D+V DE+  E  + E+R  L  
Sbjct: 258 VLLVLDATEGITEQD-LRIAGLALEAGKALVIVV-NKWDLVKDEKTREEFKKELRRKLPF 315

Query: 70  YEFPGNDIPIIKGSAKLALEG-DTGPLGEQSILSLSKALDTYIPTP--NRAIDGA 121
            +F     PI+  S   AL G     L   +I  + +  +  I T   NR ++ A
Sbjct: 316 LDF----APIVFIS---ALTGQGVDKL-LDAIDEVYENANRRISTSKLNRVLEEA 362


>gnl|CDD|232886 TIGR00231, small_GTP, small GTP-binding protein domain.  Proteins
           with a small GTP-binding domain recognized by this model
           include Ras, RhoA, Rab11, translation elongation factor
           G, translation initiation factor IF-2, tetratcycline
           resistance protein TetM, CDC42, Era, ADP-ribosylation
           factors, tdhF, and many others. In some proteins the
           domain occurs more than once.This model recognizes a
           large number of small GTP-binding proteins and related
           domains in larger proteins. Note that the alpha chains
           of heterotrimeric G proteins are larger proteins in
           which the NKXD motif is separated from the GxxxxGK[ST]
           motif (P-loop) by a long insert and are not easily
           detected by this model [Unknown function, General].
          Length = 162

 Score = 33.5 bits (77), Expect = 0.13
 Identities = 25/77 (32%), Positives = 33/77 (42%), Gaps = 11/77 (14%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
           D  ILV    +    QT+E I  A   GVP I++  NK D+ D    L+     +   LN
Sbjct: 83  DIVILVLDVEEILEKQTKEIIHHAES-GVP-IILVGNKIDLRD--AKLKTHVAFLFAKLN 138

Query: 69  KYEFPGNDIPIIKGSAK 85
                    PII  SA+
Sbjct: 139 G-------EPIIPLSAE 148


>gnl|CDD|235195 PRK04004, PRK04004, translation initiation factor IF-2; Validated.
          Length = 586

 Score = 34.4 bits (80), Expect = 0.17
 Identities = 18/45 (40%), Positives = 24/45 (53%), Gaps = 1/45 (2%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           G A  D AILV    +G  PQT E I + ++   P++V   NK D
Sbjct: 91  GGALADIAILVVDINEGFQPQTIEAINILKRRKTPFVVA-ANKID 134


>gnl|CDD|239662 cd03691, BipA_TypA_II, BipA_TypA_II: domain II of BipA (also called
           TypA) having homology to domain II of the elongation
           factors (EFs) EF-G and EF-Tu.  BipA is a highly
           conserved protein with global regulatory properties in
           Escherichia coli.  BipA is phosphorylated on a tyrosine
           residue under some cellular conditions. Mutants show
           altered regulation of some pathways. BipA functions as a
           translation factor that is required specifically for the
           expression of the transcriptional modulator Fis.  BipA
           binds to ribosomes at a site that coincides with that of
           EF-G and has a GTPase activity that is sensitive to high
           GDP:GTP ratios and, is stimulated  by 70S ribosomes
           programmed with mRNA and aminoacylated tRNAs. The growth
           rate-dependent induction of BipA allows the efficient
           expression of Fis, thereby modulating a range of
           downstream processes, including DNA metabolism and type
           III secretion.
          Length = 86

 Score = 30.9 bits (71), Expect = 0.28
 Identities = 15/54 (27%), Positives = 29/54 (53%), Gaps = 5/54 (9%)

Query: 136 GTVVTGRVERGIVRVGEELEIIGIKDTV-KTTCTGVEMFRKL----LDQGQAGD 184
           G +  GR+ RG V+VG+++ ++     + K   T +  F  L    +++ +AGD
Sbjct: 15  GRIAIGRIFRGTVKVGQQVAVVKRDGKIEKAKITKLFGFEGLKRVEVEEAEAGD 68


>gnl|CDD|130460 TIGR01393, lepA, GTP-binding protein LepA.  LepA (GUF1 in
           Saccaromyces) is a GTP-binding membrane protein related
           to EF-G and EF-Tu. Two types of phylogenetic tree,
           rooted by other GTP-binding proteins, suggest that
           eukaryotic homologs (including GUF1 of yeast) originated
           within the bacterial LepA family. The function is
           unknown [Unknown function, General].
          Length = 595

 Score = 33.1 bits (76), Expect = 0.33
 Identities = 41/153 (26%), Positives = 70/153 (45%), Gaps = 18/153 (11%)

Query: 6   AQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRE 65
           A  +GA+L+  AA G   QT  ++ LA +  +  I V +NK D+   +   E V+ EI E
Sbjct: 92  AACEGALLLVDAAQGIEAQTLANVYLALENDLEIIPV-INKIDLPSAD--PERVKKEIEE 148

Query: 66  LLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAFLLP 125
           ++       ++  +   SAK      TG +G + IL   +A+   +P P    D      
Sbjct: 149 VIG---LDASEAILA--SAK------TG-IGIEEIL---EAIVKRVPPPKGDPDAPLKAL 193

Query: 126 VEDVFSISGRGTVVTGRVERGIVRVGEELEIIG 158
           + D    + RG V   RV  G ++ G+++  + 
Sbjct: 194 IFDSHYDNYRGVVALVRVFEGTIKPGDKIRFMS 226


>gnl|CDD|233986 TIGR02729, Obg_CgtA, Obg family GTPase CgtA.  This model describes
           a univeral, mostly one-gene-per-genome GTP-binding
           protein that associates with ribosomal subunits and
           appears to play a role in ribosomal RNA maturation. This
           GTPase, related to the nucleolar protein Obg, is
           designated CgtA in bacteria. Mutations in this gene are
           pleiotropic, but it appears that effects on cellular
           functions such as chromosome partition may be secondary
           to the effect on ribosome structure. Recent work done in
           Vibrio cholerae shows an essential role in the stringent
           response, in which RelA-dependent ability to synthesize
           the alarmone ppGpp is required for deletion of this
           GTPase to be lethal [Protein synthesis, Other].
          Length = 329

 Score = 32.8 bits (76), Expect = 0.34
 Identities = 18/32 (56%), Positives = 25/32 (78%), Gaps = 2/32 (6%)

Query: 38  PYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
           P IVV LNK D++D+EEL EL++ E++E L K
Sbjct: 275 PRIVV-LNKIDLLDEEELEELLK-ELKEALGK 304


>gnl|CDD|232957 TIGR00398, metG, methionyl-tRNA synthetase.  The methionyl-tRNA
           synthetase (metG) is a class I amino acyl-tRNA ligase.
           This model appears to recognize the methionyl-tRNA
           synthetase of every species, including eukaryotic
           cytosolic and mitochondrial forms. The UPGMA difference
           tree calculated after search and alignment according to
           This model shows an unusual deep split between two
           families of MetG. One family contains forms from the
           Archaea, yeast cytosol, spirochetes, and E. coli, among
           others. The other family includes forms from yeast
           mitochondrion, Synechocystis sp., Bacillus subtilis, the
           Mycoplasmas, Aquifex aeolicus, and Helicobacter pylori.
           The E. coli enzyme is homodimeric, although monomeric
           forms can be prepared that are fully active. Activity of
           this enzyme in bacteria includes aminoacylation of
           fMet-tRNA with Met; subsequent formylation of the Met to
           fMet is catalyzed by a separate enzyme. Note that the
           protein from Aquifex aeolicus is split into an alpha
           (large) and beta (small) subunit; this model does not
           include the C-terminal region corresponding to the beta
           chain [Protein synthesis, tRNA aminoacylation].
          Length = 530

 Score = 32.7 bits (75), Expect = 0.47
 Identities = 26/128 (20%), Positives = 40/128 (31%), Gaps = 14/128 (10%)

Query: 213 HKHFTGEIYALSKDEG----GRHTPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDN- 267
           HK    +I+   K+ G          +      F      V G    PK       GD+ 
Sbjct: 96  HKEIVQKIFQKLKENGYIYEKEIKQLYCPECEMFLP-DRYVEG--TCPKCGSEDARGDHC 152

Query: 268 -----VLITVRLINPIAMEEGLRFAIREGVQQFIQDNLLTKEIVNSNKINIDKGKEYIER 322
                 L    LINP     G +  +R+    F + +   KE+    + N + G      
Sbjct: 153 EVCGRHLEPTELINPRCKICGAKPELRDSEHYFFRLSAFEKELEEWIRKNPESGS-PASN 211

Query: 323 SINNKKRW 330
             N  + W
Sbjct: 212 VKNKAQNW 219


>gnl|CDD|237048 PRK12299, obgE, GTPase CgtA; Reviewed.
          Length = 335

 Score = 32.3 bits (75), Expect = 0.48
 Identities = 12/32 (37%), Positives = 16/32 (50%), Gaps = 1/32 (3%)

Query: 38  PYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
           P I+V LNK D++D+EE  E         L  
Sbjct: 273 PRILV-LNKIDLLDEEEEREKRAALELAALGG 303


>gnl|CDD|129581 TIGR00490, aEF-2, translation elongation factor aEF-2.  This model
           represents archaeal elongation factor 2, a protein more
           similar to eukaryotic EF-2 than to bacterial EF-G, both
           in sequence similarity and in sharing with eukaryotes
           the property of having a diphthamide (modified His)
           residue at a conserved position. The diphthamide can be
           ADP-ribosylated by diphtheria toxin in the presence of
           NAD [Protein synthesis, Translation factors].
          Length = 720

 Score = 32.6 bits (74), Expect = 0.53
 Identities = 24/62 (38%), Positives = 36/62 (58%), Gaps = 3/62 (4%)

Query: 8   MDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELL 67
           +DGAI+V  A +G MPQT   +  A +  V   V+F+NK D + +E  L+L   E++E  
Sbjct: 110 VDGAIVVVCAVEGVMPQTETVLRQALKENVK-PVLFINKVDRLINE--LKLTPQELQERF 166

Query: 68  NK 69
            K
Sbjct: 167 IK 168


>gnl|CDD|129499 TIGR00405, L26e_arch, ribosomal protein L24p/L26e, archaeal.  This
           protein contains a KOW domain, shared by bacterial NusG
           and the L24p/L26e family of ribosomal proteins. Although
           called archaeal NusG in several publications, it is the
           only close homolog of eukaryotic L26e in archaeal
           genomes, shares an operon with L11 in many genomes, and
           has been sequenced from purified ribosomes. It is here
           designated as a ribosomal protein for these reasons
           [Protein synthesis, Ribosomal proteins: synthesis and
           modification].
          Length = 145

 Score = 31.0 bits (70), Expect = 0.57
 Identities = 41/178 (23%), Positives = 65/178 (36%), Gaps = 44/178 (24%)

Query: 331 YVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRFFPGYV 390
           + + +  G EKNV R +  +  K G+  +   IL P                     GY+
Sbjct: 1   FAVKTSVGQEKNVARLMARKARKSGL--EVYSILAPES-----------------LKGYI 41

Query: 391 LIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTPISSKEIEEILK------QIKKGVEKPR 444
           L+E E   +  + +     V G + G+      I  +EIE  L        IKKG     
Sbjct: 42  LVEAETKIDMRNPIIGVPHVRGVVEGE------IDFEEIERFLTPKKIIESIKKG----- 90

Query: 445 PKILYQLDELVRIKDGPFTDFSGNIEEVNYEKSRVRVSVTIFGRATPVELEFNQVEKI 502
                   ++V I  GPF      +  V+  K  V + +       PV ++ +QV  I
Sbjct: 91  --------DIVEIISGPFKGERAKVIRVDESKEEVTLELIEAAVPIPVTVKGDQVRII 140


>gnl|CDD|193583 cd09894, NGN_SP_AnfA1, N-Utilization Substance G (NusG) N-terminal
           domain in the NusG Specialized Paralog (SP), AnFA1.
           Regulation of the afp, antifeeding prophage, gene
           cluster is mediated by AnFA1, a RfaH-like
           transcriptional antiterminator. RfaH is an
           operon-specific virulence regulator, thought to arisen
           from an early duplication of N-Utilization Substance G
           (NusG). NusG is essential in Escherichia coli and is
           associated with RNA polymerase elongation and
           Rho-termination in bacteria. Paralogs of eubacterial
           NusG, NusG SP (Specialized Paralog of NusG), are more
           diverse and often found as the first ORF in operons
           encoding secreted proteins and LPS biosynthesis genes.
           NusG SP family members are operon-specific
           transcriptional antitermination factors. Orthologs of
           the NusG gene exist in all bacteria, but their functions
           and requirements are different. The NusG N-terminal
           domain (NGN) is similar in all NusG orthologs, but its
           C-terminal domain and the linker that separate these two
           domains are different. The domain organization of NusG
           and its orthologs suggests that the common properties of
           NusG and its orthologs and paralogs are due to their
           similar NGN domains.
          Length = 99

 Score = 30.3 bits (69), Expect = 0.64
 Identities = 25/111 (22%), Positives = 46/111 (41%), Gaps = 16/111 (14%)

Query: 328 KRWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKK--RF 385
           KRWY++   SG      + +I  + +LG+      +  P       + + KS  +K    
Sbjct: 1   KRWYLLRCKSGKI----QSVIFSLERLGV-----EVFCPMIRTRRKRTDCKSYREKIEPL 51

Query: 386 FPGYVLIEMEMTDESWHLVKNTKKVTGFI--GGKSNRPTPISSKEIEEILK 434
           FPGY+ +  +        +     V+GF+  GG+   P P+    I  ++ 
Sbjct: 52  FPGYLFVRFDPEVVHTSKITLASGVSGFVRFGGE---PCPVPDAVIRALML 99


>gnl|CDD|206730 cd04167, Snu114p, Snu114p, a spliceosome protein, is a GTPase.
           Snu114p subfamily. Snu114p is one of several proteins
           that make up the U5 small nuclear ribonucleoprotein
           (snRNP) particle. U5 is a component of the spliceosome,
           which catalyzes the splicing of pre-mRNA to remove
           introns. Snu114p is homologous to EF-2, but typically
           contains an additional N-terminal domain not found in
           Ef-2. This protein is part of the GTP translation factor
           family and the Ras superfamily, characterized by five
           G-box motifs.
          Length = 213

 Score = 31.5 bits (72), Expect = 0.72
 Identities = 15/40 (37%), Positives = 21/40 (52%), Gaps = 1/40 (2%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           DG +LV    +G    T   I  A Q G+P ++V +NK D
Sbjct: 96  DGVVLVVDVVEGLTSVTERLIRHAIQEGLPMVLV-INKID 134


>gnl|CDD|234631 PRK00098, PRK00098, GTPase RsgA; Reviewed.
          Length = 298

 Score = 31.7 bits (73), Expect = 0.74
 Identities = 26/72 (36%), Positives = 35/72 (48%), Gaps = 16/72 (22%)

Query: 5   AAQMDGAILVCSAADGPMPQTREHIL-----LARQVGVPYIVVFLNKADMVDDEELLELV 59
           AA +D A+LV +A +   P     +L     LA   G+  I+V  NK D++DD E     
Sbjct: 78  AANVDQAVLVFAAKE---PDFSTDLLDRFLVLAEANGIKPIIVL-NKIDLLDDLE----- 128

Query: 60  EIEIRELLNKYE 71
             E RELL  Y 
Sbjct: 129 --EARELLALYR 138


>gnl|CDD|226593 COG4108, PrfC, Peptide chain release factor RF-3 [Translation,
           ribosomal structure and biogenesis].
          Length = 528

 Score = 31.8 bits (73), Expect = 0.87
 Identities = 22/57 (38%), Positives = 31/57 (54%), Gaps = 3/57 (5%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMV--DDEELLELVEIEI 63
           D A++V  AA G  PQT +   + R   +P I  F+NK D    D  ELL+ +E E+
Sbjct: 106 DSAVMVIDAAKGIEPQTLKLFEVCRLRDIP-IFTFINKLDREGRDPLELLDEIEEEL 161


>gnl|CDD|239761 cd04094, selB_III, This family represents the domain of elongation
           factor SelB, homologous to domain III of EF-Tu. SelB may
           function by replacing EF-Tu. In prokaryotes, the
           incorporation of selenocysteine as the 21st amino acid,
           encoded by TGA, requires several elements: SelC is the
           tRNA itself, SelD acts as a donor of reduced selenium,
           SelA modifies a serine residue on SelC into
           selenocysteine, and SelB is a selenocysteine-specific
           translation elongation factor. 3' or 5' non-coding
           elements of mRNA have been found as probable structures
           for directing selenocysteine incorporation.
          Length = 97

 Score = 29.5 bits (67), Expect = 1.0
 Identities = 25/91 (27%), Positives = 37/91 (40%), Gaps = 5/91 (5%)

Query: 201 GQVLAKPGSIKPHKHFTGEIYALSKDEGGRHTPFFSNYRPQFYFRTTDVTGSIELPKNKE 260
           G VLA PGS+ P +     +  L         P     R   +  T++V   + L    E
Sbjct: 1   GDVLADPGSLLPTRRLDVRLTVLLSAP----RPLKHRQRVHLHHGTSEVLARVVLLDRDE 56

Query: 261 MVMPGDNVLITVRLINPIAMEEGLRFAIREG 291
           +  PG+  L  +RL  P+    G RF +R  
Sbjct: 57  LA-PGEEALAQLRLEEPLVALRGDRFILRSY 86


>gnl|CDD|206726 cd04163, Era, E. coli Ras-like protein (Era) is a multifunctional
           GTPase.  Era (E. coli Ras-like protein) is a
           multifunctional GTPase found in all bacteria except some
           eubacteria. It binds to the 16S ribosomal RNA (rRNA) of
           the 30S subunit and appears to play a role in the
           assembly of the 30S subunit, possibly by chaperoning the
           16S rRNA. It also contacts several assembly elements of
           the 30S subunit. Era couples cell growth with
           cytokinesis and plays a role in cell division and energy
           metabolism. Homologs have also been found in eukaryotes.
           Era contains two domains: the N-terminal GTPase domain
           and a C-terminal domain KH domain that is critical for
           RNA binding. Both domains are important for Era
           function. Era is functionally able to compensate for
           deletion of RbfA, a cold-shock adaptation protein that
           is required for efficient processing of the 16S rRNA.
          Length = 168

 Score = 30.5 bits (70), Expect = 1.0
 Identities = 24/76 (31%), Positives = 36/76 (47%), Gaps = 9/76 (11%)

Query: 11  AILVCSAADGPMPQTREHIL-LARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
            +L    A   + +  E IL L ++   P I+V LNK D+V D+E L  +  +++EL   
Sbjct: 85  LVLFVVDASEWIGEGDEFILELLKKSKTPVILV-LNKIDLVKDKEDLLPLLEKLKELHPF 143

Query: 70  YEFPGNDIPIIKGSAK 85
            E      PI   SA 
Sbjct: 144 AEI----FPI---SAL 152


>gnl|CDD|237185 PRK12739, PRK12739, elongation factor G; Reviewed.
          Length = 691

 Score = 31.7 bits (73), Expect = 1.1
 Identities = 18/40 (45%), Positives = 22/40 (55%), Gaps = 1/40 (2%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           DGA+ V  A  G  PQ+      A + GVP I VF+NK D
Sbjct: 98  DGAVAVFDAVSGVEPQSETVWRQADKYGVPRI-VFVNKMD 136


>gnl|CDD|128978 smart00739, KOW, KOW (Kyprides, Ouzounis, Woese) motif.  Motif in
           ribosomal proteins, NusG, Spt5p, KIN17 and T54.
          Length = 28

 Score = 27.7 bits (63), Expect = 1.1
 Identities = 9/24 (37%), Positives = 13/24 (54%)

Query: 452 DELVRIKDGPFTDFSGNIEEVNYE 475
            + VR+  GPF    G + EV+ E
Sbjct: 5   GDTVRVIAGPFKGKVGKVLEVDGE 28


>gnl|CDD|234624 PRK00089, era, GTPase Era; Reviewed.
          Length = 292

 Score = 30.8 bits (71), Expect = 1.3
 Identities = 28/78 (35%), Positives = 40/78 (51%), Gaps = 10/78 (12%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDD-EELLELVEIEIRELL 67
           D  + V  A +   P     +   ++V  P I+V LNK D+V D EELL L+E E+ EL+
Sbjct: 86  DLVLFVVDADEKIGPGDEFILEKLKKVKTPVILV-LNKIDLVKDKEELLPLLE-ELSELM 143

Query: 68  NKYEFPGNDIPIIKGSAK 85
           +  E     +PI   SA 
Sbjct: 144 DFAEI----VPI---SAL 154


>gnl|CDD|237045 PRK12296, obgE, GTPase CgtA; Reviewed.
          Length = 500

 Score = 31.4 bits (72), Expect = 1.4
 Identities = 13/28 (46%), Positives = 16/28 (57%), Gaps = 1/28 (3%)

Query: 38  PYIVVFLNKADMVDDEELLELVEIEIRE 65
           P +VV LNK D+ D  EL E V  E+  
Sbjct: 286 PRLVV-LNKIDVPDARELAEFVRPELEA 312


>gnl|CDD|193446 pfam12973, Cupin_7, ChrR Cupin-like domain.  Members of this family
           are part of the cupin superfamily. This family includes
           the transcriptional activator ChrR.
          Length = 91

 Score = 29.1 bits (66), Expect = 1.4
 Identities = 19/63 (30%), Positives = 21/63 (33%), Gaps = 23/63 (36%)

Query: 195 REDVERGQ----VLAKPGS-IKPHKHFTG-EIYALS---KDEGGR--------------H 231
           R   E  +    V   PGS   PH+H  G EI  L     DE G               H
Sbjct: 17  RFGGEVARATSLVRYAPGSRFPPHRHPGGEEILVLEGVFSDEHGDYPAGSYLRNPPGSSH 76

Query: 232 TPF 234
            PF
Sbjct: 77  APF 79


>gnl|CDD|217066 pfam02492, cobW, CobW/HypB/UreG, nucleotide-binding domain.  This
           domain is found in HypB, a hydrogenase expression /
           formation protein, and UreG a urease accessory protein.
           Both these proteins contain a P-loop nucleotide binding
           motif. HypB has GTPase activity and is a guanine
           nucleotide binding protein. It is not known whether UreG
           binds GTP or some other nucleotide. Both enzymes are
           involved in nickel binding. HypB can store nickel and is
           required for nickel dependent hydrogenase expression.
           UreG is required for functional incorporation of the
           urease nickel metallocenter. GTP hydrolysis may required
           by these proteins for nickel incorporation into other
           nickel proteins. This family of domains also contains
           P47K, a Pseudomonas chlororaphis protein needed for
           nitrile hydratase expression, and the cobW gene product,
           which may be involved in cobalamin biosynthesis in
           Pseudomonas denitrificans.
          Length = 178

 Score = 30.3 bits (69), Expect = 1.5
 Identities = 8/26 (30%), Positives = 15/26 (57%)

Query: 41  VVFLNKADMVDDEELLELVEIEIREL 66
           ++ +NK D+      LE +E ++R L
Sbjct: 145 LIVINKTDLAPAVADLEKLEADLRRL 170


>gnl|CDD|239679 cd03708, GTPBP_III, Domain III of the GP-1 family of GTPase. This
           group includes proteins similar to GTPBP1 and GTPBP2.
           GTPB1 is structurally, related to elongation factor 1
           alpha, a key component of protein biosynthesis
           machinery. Immunohistochemical analyses on mouse tissues
           revealed that GTPBP1 is expressed in some neurons and
           smooth muscle cells of various organs as well as
           macrophages. Immunofluorescence analyses revealed that
           GTPBP1 is localized exclusively in cytoplasm and shows a
           diffuse granular network forming a gradient from the
           nucleus to the periphery of the cells in smooth muscle
           cell lines and macrophages. No significant difference
           was observed in the immune response to protein antigen
           between mutant mice and wild-type mice, suggesting
           normal function of antigen-presenting cells of the
           mutant mice. The absence of an eminent phenotype in
           GTPBP1-deficient mice may be due to functional
           compensation by GTPBP2, which is similar to GTPBP1 in
           structure and tissue distribution.
          Length = 87

 Score = 28.7 bits (65), Expect = 1.5
 Identities = 21/79 (26%), Positives = 31/79 (39%), Gaps = 9/79 (11%)

Query: 216 FTGEIYALSKDEGGRH-TPFFSNYRPQFYFRTTDVTGSIELPKNKEMVMPGDNVLITVRL 274
           F  EI  L       H T     Y+   +  +   T  I    +K+++  GD  L+  R 
Sbjct: 6   FEAEILVLH------HPTTISPGYQATVHIGSIRQTARIV-SIDKDVLRTGDRALVRFRF 58

Query: 275 IN-PIAMEEGLRFAIREGV 292
           +  P  + EG R   REG 
Sbjct: 59  LYHPEYLREGQRLIFREGR 77


>gnl|CDD|129582 TIGR00491, aIF-2, translation initiation factor aIF-2/yIF-2.  This
           model describes archaeal and eukaryotic orthologs of
           bacterial IF-2. Like IF-2, it helps convey the initiator
           tRNA to the ribosome, although the initiator is
           N-formyl-Met in bacteria and Met here. This protein is
           not closely related to the subunits of eIF-2 of
           eukaryotes, which is also involved in the initiation of
           translation. The aIF-2 of Methanococcus jannaschii
           contains a large intein interrupting a region of very
           strongly conserved sequence very near the amino end; the
           alignment generated by This model does not correctly
           align the sequences from Methanococcus jannaschii and
           Pyrococcus horikoshii in this region [Protein synthesis,
           Translation factors].
          Length = 590

 Score = 30.9 bits (70), Expect = 1.6
 Identities = 17/47 (36%), Positives = 25/47 (53%), Gaps = 1/47 (2%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMV 50
           G A  D AIL+    +G  PQT+E + + R    P++V   NK D +
Sbjct: 89  GGALADLAILIVDINEGFKPQTQEALNILRMYKTPFVVA-ANKIDRI 134


>gnl|CDD|198392 cd10445, GIY-YIG_bI1_like, Catalytic GIY-YIG domain of putative
           intron-encoded endonuclease bI1 and similar proteins.
           The prototype of this family is a putative
           intron-encoded mitochondrial DNA endonuclease bI1 found
           in mitochondrion Ustilago maydis. This protein may arise
           from proteolytic cleavage of an in-frame translation of
           COB exon 1 plus intron 1, containing the bI1 open
           reading frame. It contains an N-terminal truncated
           non-functional cytochrome b region and a C-terminal
           intron-encoded endonuclease bI1 region. The bI1 region
           shows high sequence similarity to endonucleases of group
           I introns of fungi and phage and might be involved in
           intron homing. Many uncharacterized bI1 homologs
           existing in fungi and chlorophyta in this family do not
           contain the cytochrome b region, but have a standalone
           bI1-like region, which contains a GIY-YIG domain and a
           minor-groove binding alpha-helix nuclease-associated
           modular domain (NUMOD). This family also includes a
           Yarrowia lipolytica mobile group-II intron COX1-i1, also
           called intron alpha, encoding protein with reverse
           transcriptase activity. The group-II intron COX1-i1 may
           be involv ed both in the generation of the circular
           multimeric DNA molecules (senDNA alpha) which amplify
           during the senescence syndrome and in the generation of
           the site-specific deletion which accumulates in the
           premature-death syndrome.
          Length = 88

 Score = 28.7 bits (65), Expect = 1.7
 Identities = 19/50 (38%), Positives = 23/50 (46%), Gaps = 9/50 (18%)

Query: 309 NKINIDKGKEYIERSINNKKRW--YVIHSYSGMEKNVQRKLIERINKLGM 356
           NKIN   GK Y+  SIN  KR   Y+  SY      + R L     K G+
Sbjct: 8   NKIN---GKIYVGSSINLYKRLRSYLNPSYLKKNSPILRAL----LKYGL 50


>gnl|CDD|107364 cd06369, PBP1_GC_C_enterotoxin_receptor, Ligand-binding domain of
           the membrane guanylyl cyclase C.  Ligand-binding domain
           of the membrane guanylyl cyclase C (GC-C or StaR). StaR
           is a key receptor for the STa (Escherichia coli Heat
           Stable enterotoxin), a potent stimulant of intestinal
           chloride and bicarbonate secretion that cause acute
           secretory diarrhea. The catalytic domain of the
           STa/guanylin receptor type membrane GC is highly similar
           to those of the natriuretic peptide receptor (NPR) type
           and sensory organ-specific type membrane GCs (GC-D, GC-E
           and GC-F). The GC-C receptor is mainly expressed in the
           intestine of most vertebrates, but is also found in the
           kidney and other organs. Moreover, GC-C is activated by
           guanylin and uroguanylin, endogenous peptide ligands
           synthesized in the intestine and kidney. Consequently,
           the receptor activation results in increased cGMP levels
           and phosphorylation of the CFTR chloride channel and
           secretion.
          Length = 380

 Score = 30.8 bits (70), Expect = 1.7
 Identities = 19/63 (30%), Positives = 24/63 (38%), Gaps = 18/63 (28%)

Query: 139 VTGRVERGIVRVGEELEIIGIKDTV------------------KTTCTGVEMFRKLLDQG 180
           V   VE  I  V E L   G+  TV                   +TC GVE+ +KL   G
Sbjct: 20  VKEAVEEAIEIVAERLAEAGLNVTVNANFEGFNTSLYRSRGCRSSTCEGVELLKKLSVTG 79

Query: 181 QAG 183
           + G
Sbjct: 80  RLG 82


>gnl|CDD|223597 COG0523, COG0523, Putative GTPases (G3E family) [General function
           prediction only].
          Length = 323

 Score = 30.7 bits (70), Expect = 1.7
 Identities = 20/65 (30%), Positives = 30/65 (46%), Gaps = 2/65 (3%)

Query: 2   ITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEI 61
           +    ++DG + V  AA           L   Q+    ++V LNK D+VD EEL  L   
Sbjct: 111 LADGVRLDGVVTVVDAAHFLEGLDAIAELAEDQLAFADVIV-LNKTDLVDAEELEALEAR 169

Query: 62  EIREL 66
            +R+L
Sbjct: 170 -LRKL 173


>gnl|CDD|206666 cd01878, HflX, HflX GTPase family.  HflX subfamily. A distinct
           conserved domain with a glycine-rich segment N-terminal
           of the GTPase domain characterizes the HflX subfamily.
           The E. coli HflX has been implicated in the control of
           the lambda cII repressor proteolysis, but the actual
           biological functions of these GTPases remain unclear.
           HflX is widespread, but not universally represented in
           all three superkingdoms.
          Length = 204

 Score = 30.1 bits (69), Expect = 1.9
 Identities = 21/63 (33%), Positives = 30/63 (47%), Gaps = 11/63 (17%)

Query: 5   AAQMDGAILVCSAADGPMPQTREHILLARQV-------GVPYIVVFLNKADMVDDEELLE 57
            A+ D  + V  A+D   P   E I    +V        +P I+V  NK D++DDEEL E
Sbjct: 118 VAEADLLLHVVDASD---PDREEQIETVEEVLKELGADDIPIILVL-NKIDLLDDEELEE 173

Query: 58  LVE 60
            + 
Sbjct: 174 RLR 176


>gnl|CDD|237039 PRK12288, PRK12288, GTPase RsgA; Reviewed.
          Length = 347

 Score = 30.6 bits (70), Expect = 2.1
 Identities = 12/40 (30%), Positives = 20/40 (50%), Gaps = 6/40 (15%)

Query: 32  ARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNKYE 71
              +G+  ++V LNK D++DDE         + E L+ Y 
Sbjct: 146 CETLGIEPLIV-LNKIDLLDDEGR-----AFVNEQLDIYR 179


>gnl|CDD|173387 PTZ00093, PTZ00093, nucleoside diphosphate kinase, cytosolic;
           Provisional.
          Length = 149

 Score = 29.3 bits (66), Expect = 2.2
 Identities = 18/65 (27%), Positives = 36/65 (55%), Gaps = 2/65 (3%)

Query: 326 NKKRWYVIHSYSGMEKNVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRF 385
           + +R +++    G+++ +  ++I+R  K G +    ++L PT EI   +++ K    K F
Sbjct: 1   SSERTFIMVKPDGVQRGLVGEIIKRFEKKGYKLVALKMLQPTPEI--AEEHYKEHKGKPF 58

Query: 386 FPGYV 390
           FPG V
Sbjct: 59  FPGLV 63


>gnl|CDD|206682 cd01895, EngA2, EngA2 GTPase contains the second domain of EngA.
           This EngA2 subfamily CD represents the second GTPase
           domain of EngA and its orthologs, which are composed of
           two adjacent GTPase domains. Since the sequences of the
           two domains are more similar to each other than to other
           GTPases, it is likely that an ancient gene duplication,
           rather than a fusion of evolutionarily distinct GTPases,
           gave rise to this family. Although the exact function of
           these proteins has not been elucidated, studies have
           revealed that the E. coli EngA homolog, Der, and
           Neisseria gonorrhoeae EngA are essential for cell
           viability. A recent report suggests that E. coli Der
           functions in ribosome assembly and stability.
          Length = 174

 Score = 29.7 bits (68), Expect = 2.4
 Identities = 14/47 (29%), Positives = 27/47 (57%), Gaps = 5/47 (10%)

Query: 40  IVVFLNKADMVD-DEELLELVEIEIRELLNKYEFPGNDIPIIKGSAK 85
           +++ +NK D+V+ DE+ ++  E E+R  L   ++     PI+  SA 
Sbjct: 116 LIIVVNKWDLVEKDEKTMKEFEKELRRKLPFLDY----APIVFISAL 158


>gnl|CDD|129575 TIGR00484, EF-G, translation elongation factor EF-G.  After peptide
           bond formation, this elongation factor of bacteria and
           organelles catalyzes the translocation of the tRNA-mRNA
           complex, with its attached nascent polypeptide chain,
           from the A-site to the P-site of the ribosome. Every
           completed bacterial genome has at least one copy, but
           some species have additional EF-G-like proteins. The
           closest homolog to canonical (e.g. E. coli) EF-G in the
           spirochetes clusters as if it is derived from
           mitochondrial forms, while a more distant second copy is
           also present. Synechocystis PCC6803 has a few proteins
           more closely related to EF-G than to any other
           characterized protein. Two of these resemble E. coli
           EF-G more closely than does the best match from the
           spirochetes; it may be that both function as authentic
           EF-G [Protein synthesis, Translation factors].
          Length = 689

 Score = 30.5 bits (69), Expect = 2.4
 Identities = 16/41 (39%), Positives = 21/41 (51%), Gaps = 1/41 (2%)

Query: 8   MDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKAD 48
           +DGA+ V  A  G  PQ+      A +  VP I  F+NK D
Sbjct: 99  LDGAVAVLDAVGGVQPQSETVWRQANRYEVPRI-AFVNKMD 138


>gnl|CDD|176502 cd08559, GDPD_periplasmic_GlpQ_like, Periplasmic
           glycerophosphodiester phosphodiesterase domain (GlpQ)
           and similar proteins.  This subfamily corresponds to the
           glycerophosphodiester phosphodiesterase domain (GDPD)
           present in bacterial and eukaryotic
           glycerophosphodiester phosphodiesterase (GP-GDE, EC
           3.1.4.46) similar to Escherichia coli periplasmic
           phosphodiesterase GlpQ. GP-GDEs are involved in glycerol
           metabolism and catalyze the degradation of
           glycerophosphodiesters to produce
           sn-glycerol-3-phosphate (G3P) and the corresponding
           alcohols, which are major sources of carbon and
           phosphate. In E. coli, there are two major G3P uptake
           systems: Glp and Ugp, which contain genes coding for two
           different GP-GDEs. GlpQ gene from the glp operon codes
           for a periplasmic phosphodiesterase GlpQ. GlpQ is a
           dimeric enzyme that hydrolyzes periplasmic
           glycerophosphodiesters, such as glycerophosphocholine
           (GPC), glycerophosphoethanolanmine (GPE),
           glycerophosphoglycerol (GPG), glycerophosphoinositol
           (GPI), and glycerophosphoserine (GPS), to the
           corresponding alcohols and G3P, which is subsequently
           transported into the cell through the GlpT transport
           system. Ca2+ is required for GlpQ enzymatic activity.
           This subfamily also includes some GP-GDEs in higher
           plants and their eukaryotic homologs, which show very
           high sequence similarities with bacterial periplasmic
           GP-GDEs.
          Length = 296

 Score = 29.9 bits (68), Expect = 2.9
 Identities = 13/85 (15%), Positives = 26/85 (30%), Gaps = 20/85 (23%)

Query: 294 QFIQDNLLTKEIVNSNKINIDKGKEYIERSINNKKRWYVIHSYSGMEKNVQRKLIERINK 353
           +  Q             + I     Y E     K   +       +E+    KL+E + K
Sbjct: 116 ELAQG----LNKSTGRNVGI-----YPE----TKHPTFHKQEGPDIEE----KLLEVLKK 158

Query: 354 LGMQKKFGRILVPT---EEIVDVKK 375
            G   K   + + +   E +  ++ 
Sbjct: 159 YGYTGKNDPVFIQSFEPESLKRLRN 183


>gnl|CDD|223610 COG0536, Obg, Predicted GTPase [General function prediction only].
          Length = 369

 Score = 29.8 bits (68), Expect = 3.1
 Identities = 16/37 (43%), Positives = 20/37 (54%), Gaps = 1/37 (2%)

Query: 38  PYIVVFLNKADMVDDEELLELVEIEIRELLNKYEFPG 74
           P IVV LNK D+  DEE LE ++  + E L    F  
Sbjct: 277 PRIVV-LNKIDLPLDEEELEELKKALAEALGWEVFYL 312


>gnl|CDD|224082 COG1160, COG1160, Predicted GTPases [General function prediction
           only].
          Length = 444

 Score = 29.8 bits (68), Expect = 3.7
 Identities = 25/88 (28%), Positives = 42/88 (47%), Gaps = 16/88 (18%)

Query: 40  IVVFLNKADMVD-DEELLELVEIEIRELLNKYEFPGNDIPIIKGSAKLALEGDTG-PLGE 97
           IV+ +NK D+V+ DE  +E  + ++R  L   +F     PI+  SA       TG  L +
Sbjct: 292 IVIVVNKWDLVEEDEATMEEFKKKLRRKLPFLDF----APIVFISAL------TGQGLDK 341

Query: 98  --QSILSLSKALDTYIPTP--NRAIDGA 121
             ++I  + +     I T   NR ++ A
Sbjct: 342 LFEAIKEIYECATRRISTSLLNRVLEDA 369


>gnl|CDD|237833 PRK14845, PRK14845, translation initiation factor IF-2;
           Provisional.
          Length = 1049

 Score = 29.9 bits (67), Expect = 3.7
 Identities = 19/47 (40%), Positives = 26/47 (55%), Gaps = 1/47 (2%)

Query: 4   GAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMV 50
           G +  D A+LV    +G  PQT E I + RQ   P+ VV  NK D++
Sbjct: 546 GGSLADLAVLVVDINEGFKPQTIEAINILRQYKTPF-VVAANKIDLI 591


>gnl|CDD|213835 TIGR03598, GTPase_YsxC, ribosome biogenesis GTP-binding protein
           YsxC/EngB.  Members of this protein family are a GTPase
           associated with ribosome biogenesis, typified by YsxC
           from Bacillus subutilis. The family is widely but not
           universally distributed among bacteria. Members commonly
           are called EngB based on homology to EngA, one of
           several other GTPases of ribosome biogenesis. Cutoffs as
           set find essentially all bacterial members, but also
           identify large numbers of eukaryotic (probably
           organellar) sequences. This protein is found in about 80
           percent of bacterial genomes [Protein synthesis, Other].
          Length = 178

 Score = 29.0 bits (66), Expect = 3.8
 Identities = 17/63 (26%), Positives = 30/63 (47%), Gaps = 2/63 (3%)

Query: 10  GAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
           G +L+            E I   R+ G+P ++V L KAD +   EL + ++ +I++ L K
Sbjct: 103 GVVLLMDIRHPLKELDLEMIEWLRERGIPVLIV-LTKADKLKKSELNKQLK-KIKKALKK 160

Query: 70  YEF 72
              
Sbjct: 161 DAD 163


>gnl|CDD|223557 COG0481, LepA, Membrane GTPase LepA [Cell envelope biogenesis,
           outer membrane].
          Length = 603

 Score = 29.8 bits (68), Expect = 3.8
 Identities = 40/144 (27%), Positives = 68/144 (47%), Gaps = 18/144 (12%)

Query: 10  GAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNK 69
           GA+LV  A+ G   QT  ++ LA +  +  I V LNK D+   +   E V+ EI +++  
Sbjct: 102 GALLVVDASQGVEAQTLANVYLALENNLEIIPV-LNKIDLPAAD--PERVKQEIEDII-- 156

Query: 70  YEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAFLLPVEDV 129
                +D  ++  SAK      TG +G + +L   +A+   IP P    D      + D 
Sbjct: 157 -GIDASDAVLV--SAK------TG-IGIEDVL---EAIVEKIPPPKGDPDAPLKALIFDS 203

Query: 130 FSISGRGTVVTGRVERGIVRVGEE 153
           +  +  G VV  R+  G ++ G++
Sbjct: 204 WYDNYLGVVVLVRIFDGTLKKGDK 227


>gnl|CDD|240370 PTZ00342, PTZ00342, acyl-CoA synthetase; Provisional.
          Length = 746

 Score = 29.7 bits (67), Expect = 4.6
 Identities = 18/94 (19%), Positives = 36/94 (38%), Gaps = 9/94 (9%)

Query: 296 IQDNLLTKEIVNSNKINIDKGKEYIERSINNKKRWYVIHSYSGMEKNVQRKL-------I 348
           I D L+  + +N NK   + G         N K     +  S   +++           +
Sbjct: 206 ILDTLIKSKEININKEEKNNGSNVNNNGNKNNKEEQKGNDLSNELEDISLGPLEYDKEKL 265

Query: 349 ERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIK 382
           E+I  L  ++K  ++ +      D+ KN+ +  K
Sbjct: 266 EKIKDL--KEKAKKLGISIILFDDMTKNKTTNYK 297


>gnl|CDD|188643 cd00956, Transaldolase_FSA, Transaldolase-like fructose-6-phosphate
           aldolases (FSA) found in bacteria and archaea.
           Transaldolase-like fructose-6-phosphate aldolases (FSA)
           found in bacteria and archaea, which are member of the
           MipB/TalC subfamily of class I aldolases. FSA catalyze
           an aldol cleavage of fructose 6-phosphate and do not
           utilize fructose, fructose 1-phosphate, fructose
           1,6-phosphate, or dihydroxyacetone phosphate. The
           enzymes belong to the transaldolase family that serves
           in transfer reactions in the pentose phosphate cycle,
           and are more distantly related to fructose
           1,6-bisphosphate aldolase.
          Length = 211

 Score = 29.1 bits (66), Expect = 4.9
 Identities = 15/46 (32%), Positives = 22/46 (47%), Gaps = 6/46 (13%)

Query: 30  LLARQVGVPYIVVFLNKAD--MVDDEELLELVEIEIRELLNKYEFP 73
           LLA + G  Y+  F+ + D    D  EL+     EIR + + Y F 
Sbjct: 116 LLAAKAGATYVSPFVGRIDDLGGDGMELIR----EIRTIFDNYGFD 157


>gnl|CDD|234988 PRK01889, PRK01889, GTPase RsgA; Reviewed.
          Length = 356

 Score = 29.1 bits (66), Expect = 5.4
 Identities = 21/59 (35%), Positives = 31/59 (52%), Gaps = 5/59 (8%)

Query: 5   AAQMDGAILVCSAADGPMPQTRE-HILLARQVGV-PYIVVFLNKADMVDD-EELLELVE 60
           AA +D   +VCS       +  E ++ LA + G  P  V+ L KAD+ +D EE +  VE
Sbjct: 110 AANVDTVFIVCSLNHDFNLRRIERYLALAWESGAEP--VIVLTKADLCEDAEEKIAEVE 166


>gnl|CDD|237047 PRK12298, obgE, GTPase CgtA; Reviewed.
          Length = 390

 Score = 29.1 bits (66), Expect = 5.6
 Identities = 17/47 (36%), Positives = 24/47 (51%), Gaps = 8/47 (17%)

Query: 38  PYIVVFLNKADMVDDEELLELVEIEIRELLNKYEFPGNDIPIIKGSA 84
           P  +VF NK D++D+EE  E  +  I E L      G + P+   SA
Sbjct: 277 PRWLVF-NKIDLLDEEEAEERAK-AIVEAL------GWEGPVYLISA 315


>gnl|CDD|237498 PRK13768, PRK13768, GTPase; Provisional.
          Length = 253

 Score = 28.7 bits (65), Expect = 6.1
 Identities = 12/27 (44%), Positives = 19/27 (70%), Gaps = 1/27 (3%)

Query: 36  GVPYIVVFLNKADMVDDEELLELVEIE 62
           G+P I V LNKAD++ +EEL  +++  
Sbjct: 162 GLPQIPV-LNKADLLSEEELERILKWL 187


>gnl|CDD|233855 TIGR02410, carnitine_TMLD, trimethyllysine dioxygenase.  Members of
           this family with known function act as trimethyllysine
           dioxygenase, an enzyme in the pathway for carnitine
           biosynthesis from lysine. This enzyme is homologous to
           gamma-butyrobetaine,2-oxoglutarate dioxygenase, which
           catalyzes the last step in carnitine biosynthesis.
           Members of this family appear to be eukaryotic only.
          Length = 362

 Score = 29.0 bits (65), Expect = 6.2
 Identities = 16/90 (17%), Positives = 34/90 (37%), Gaps = 4/90 (4%)

Query: 298 DNLLTKEIVNSNKINIDKGK---EYIERSINN-KKRWYVIHSYSGMEKNVQRKLIERINK 353
           D     E +    + ID+      + +  ++  K+ W + HSY   ++   + LI    K
Sbjct: 30  DITSLSEDIKPATVIIDEDTLRVTWPDGHVSKFKEDWLIRHSYEPKKEKNVKALILPNRK 89

Query: 354 LGMQKKFGRILVPTEEIVDVKKNQKSVIKK 383
           +    +F  +  P+        +  S +K 
Sbjct: 90  IYWLAEFNELKDPSVHFKTTYDHTDSTLKS 119


>gnl|CDD|233591 TIGR01833, HMG-CoA-S_euk, 3-hydroxy-3-methylglutaryl-CoA-synthase,
           eukaryotic clade.  Hydroxymethylglutaryl(HMG)-CoA
           synthase is the first step of isopentenyl pyrophosphate
           (IPP) biosynthesis via the mevalonate pathway. This
           pathway is found mainly in eukaryotes, but also in
           archaea and some bacteria. This model is specific for
           eukaryotes.
          Length = 457

 Score = 29.0 bits (65), Expect = 6.7
 Identities = 17/44 (38%), Positives = 25/44 (56%), Gaps = 2/44 (4%)

Query: 342 NVQRKLIERINKLGMQKKFGRILVPTEEIVDVKKNQKSVIKKRF 385
            V  KL+ER N      + GR+ V TE I+D  K+ K+V+ + F
Sbjct: 59  TVVSKLMERYNI--DYDQIGRLEVGTETIIDKSKSVKTVLMQLF 100


>gnl|CDD|179105 PRK00741, prfC, peptide chain release factor 3; Provisional.
          Length = 526

 Score = 28.9 bits (66), Expect = 6.7
 Identities = 26/60 (43%), Positives = 35/60 (58%), Gaps = 3/60 (5%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
           D A++V  AA G  PQTR+ + + R    P I  F+NK D  D  E LEL++ EI E+L 
Sbjct: 104 DSALMVIDAAKGVEPQTRKLMEVCRLRDTP-IFTFINKLDR-DGREPLELLD-EIEEVLG 160


>gnl|CDD|181611 PRK09014, rfaH, transcriptional activator RfaH; Provisional.
          Length = 162

 Score = 28.3 bits (64), Expect = 6.7
 Identities = 24/101 (23%), Positives = 46/101 (45%), Gaps = 11/101 (10%)

Query: 364 LVPTEEIVDVKKNQKSVIKKRFFPGYVLIEMEMTDESWHLVKNTKKVTGFIGGKSNRPTP 423
           ++  E+IV  K+ + S   +  FP Y+ +E +        +++T+ V+ F+     +P  
Sbjct: 32  MITLEKIVRGKRTEVS---EPLFPNYLFVEFDPEVIHTTTIRSTRGVSHFVR-FGAQPAI 87

Query: 424 ISSKEIEEILKQ--IKKGVEKPRPKILYQLDELVRIKDGPF 462
           + S  I + L     +K V+   PK      + V I +G F
Sbjct: 88  VPSDVIYQ-LSVYKPEKIVDPETPKP----GDKVIITEGAF 123


>gnl|CDD|224009 COG1084, COG1084, Predicted GTPase [General function prediction
           only].
          Length = 346

 Score = 28.8 bits (65), Expect = 6.8
 Identities = 18/56 (32%), Positives = 26/56 (46%), Gaps = 5/56 (8%)

Query: 40  IVVFLNKADMVDDEELLELV----EIEIRELLNKYEFPGNDIPIIKGS-AKLALEG 90
           IVV +NK D+ D+E+L E+     E    E L      G  +  ++    K ALE 
Sbjct: 283 IVVVINKIDIADEEKLEEIEASVLEEGGEEPLKISATKGCGLDKLREEVRKTALEP 338


>gnl|CDD|206540 pfam14372, DUF4413, Domain of unknown function (DUF4413).  This
           domain is part of an RNase-H fold section of longer
           proteins some of which are transposable elements
           possibly of the Pong type, since some members are
           putative Tam3 transposases.
          Length = 101

 Score = 27.1 bits (61), Expect = 6.9
 Identities = 9/33 (27%), Positives = 17/33 (51%)

Query: 39  YIVVFLNKADMVDDEELLELVEIEIRELLNKYE 71
            +    +K    D EE ++ V   ++EL ++YE
Sbjct: 69  LLEFCFSKLYGDDAEEYIKEVRDTLKELFDEYE 101


>gnl|CDD|225138 COG2229, COG2229, Predicted GTPase [General function prediction
           only].
          Length = 187

 Score = 28.2 bits (63), Expect = 7.2
 Identities = 19/77 (24%), Positives = 31/77 (40%), Gaps = 8/77 (10%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
            GAI++  ++        E I          +VV +NK D+ D      L   +IRE L 
Sbjct: 93  VGAIVLVDSSRPITFHAEEIIDFLTSRNPIPVVVAINKQDLFD-----ALPPEKIREAL- 146

Query: 69  KYEFPGNDIPIIKGSAK 85
             +     +P+I+  A 
Sbjct: 147 --KLELLSVPVIEIDAT 161


>gnl|CDD|233421 TIGR01453, grpIintron_endo, group I intron endonuclease.  This
           model represents one subfamily of endonucleases
           containing the endo/excinuclease amino terminal domain,
           pfam01541 at its amino end. A distinct subfamily
           includes excinuclease abc subunit c (uvrC). Members of
           pfam01541 are often termed GIY-YIG endonucleases after
           conserved motifs near the amino end. This subfamily in
           This model is found in open reading frames of group I
           introns in both phage and mitochondria. The closely
           related endonucleases of phage T4: segA, segB, segC,
           segD and segE, score below the trusted cutoff for the
           family.
          Length = 214

 Score = 28.5 bits (64), Expect = 7.2
 Identities = 11/42 (26%), Positives = 19/42 (45%), Gaps = 2/42 (4%)

Query: 311 INIDKGKEYIERSINNKKRW--YVIHSYSGMEKNVQRKLIER 350
            N   GK Y+  S+N +KR   ++     G    +Q+ L + 
Sbjct: 8   TNNINGKIYVGSSVNLEKRLKEHLKLLKKGNRIKLQKALNKY 49


>gnl|CDD|214971 smart01008, Ald_Xan_dh_C, Aldehyde oxidase and xanthine
           dehydrogenase, a/b hammerhead domain.  Aldehyde oxidase
           catalyses the conversion of an aldehyde in the presence
           of oxygen and water to an acid and hydrogen peroxide.
           The enzyme is a homodimer, and requires FAD, molybdenum
           and two 2FE-2S clusters as cofactors. Xanthine
           dehydrogenase catalyses the hydrogenation of xanthine to
           urate, and also requires FAD, molybdenum and two 2FE-2S
           clusters as cofactors. This activity is often found in a
           bifunctional enzyme with xanthine oxidase activity too.
           The enzyme can be converted from the dehydrogenase form
           to the oxidase form irreversibly by proteolysis or
           reversibly through oxidation of sulphydryl groups.
          Length = 107

 Score = 27.5 bits (62), Expect = 7.4
 Identities = 22/75 (29%), Positives = 29/75 (38%), Gaps = 19/75 (25%)

Query: 5   AAQMDGAILVCSAADGP-----MPQTREHILLA----RQVGVPYIVVFLNKADMVDDEEL 55
           A  M G + V +A D P      P   +  +LA    R VG P   V        + EE 
Sbjct: 38  ARAMPGVVAVLTAKDVPGLNDFGPLGPDEPVLADDKVRYVGQPVAAVV------AETEEA 91

Query: 56  ----LELVEIEIREL 66
                E V++E  EL
Sbjct: 92  ARDAAEAVKVEYEEL 106


>gnl|CDD|240162 cd05126, Mth938, Mth938 domain. Mth938 is a hypothetical protein
           encoded by the Methanobacterium thermoautotrophicum
           (Mth) genome. This protein crystallizes as a dimer,
           although it is monomeric in solution, with one disulfide
           bond in each monomer. The function of the protein has
           not been determined.
          Length = 117

 Score = 27.3 bits (61), Expect = 7.6
 Identities = 13/48 (27%), Positives = 23/48 (47%), Gaps = 4/48 (8%)

Query: 137 TVVTGRVERGIVRVGEE----LEIIGIKDTVKTTCTGVEMFRKLLDQG 180
            +V G  + G ++V  E    LE  G++  V  T   V+ + +L  +G
Sbjct: 61  VIVIGTGQSGALKVPPETVEKLEKRGVEVLVLPTEEAVKRYNELAGKG 108


>gnl|CDD|130264 TIGR01196, edd, 6-phosphogluconate dehydratase.  A close homolog,
           designated MocB (mannityl opine catabolism), is found in
           a mannopine catabolism region of a plasmid of
           Agrobacterium tumefaciens. However, it is not essential
           for mannopine catabolism, branches within the cluster of
           6-phosphogluconate dehydratases (with a short branch
           length) in a tree rooted by the presence of other
           dehydyatases. It may represent an authentic
           6-phosphogluconate dehydratase, redundant with the
           chromosomal copy shown to exist in plasmid-cured
           strains. This model includes mocB above the trusted
           cutoff, although the designation is somewhat tenuous
           [Energy metabolism, Entner-Doudoroff].
          Length = 601

 Score = 28.6 bits (64), Expect = 8.0
 Identities = 11/41 (26%), Positives = 23/41 (56%)

Query: 110 YIPTPNRAIDGAFLLPVEDVFSISGRGTVVTGRVERGIVRV 150
           +   P  ++D   L PV+D FS +G   ++ G + R ++++
Sbjct: 393 WREAPEHSLDTDILRPVDDPFSANGGLKLLKGNLGRAVIKI 433


>gnl|CDD|200938 pfam00025, Arf, ADP-ribosylation factor family.  Pfam combines a
           number of different Prosite families together.
          Length = 174

 Score = 28.0 bits (63), Expect = 8.1
 Identities = 24/81 (29%), Positives = 35/81 (43%), Gaps = 11/81 (13%)

Query: 9   DGAILVCSAADGP-MPQTRE--HILLARQ--VGVPYIVVFLNKADMVDDEELLELVEIEI 63
           D  I V  +AD   + + +E  H LL  +     P +++  NK D+        + E EI
Sbjct: 83  DAVIFVVDSADRDRIEEAKEELHALLNEEELADAP-LLILANKQDLPGA-----MSEAEI 136

Query: 64  RELLNKYEFPGNDIPIIKGSA 84
           RELL  +E       I   SA
Sbjct: 137 RELLGLHELKDRPWEIQGCSA 157


>gnl|CDD|206673 cd01886, EF-G, Elongation factor G (EF-G) family involved in both
           the elongation and ribosome recycling phases of protein
           synthesis.  Translocation is mediated by EF-G (also
           called translocase). The structure of EF-G closely
           resembles that of the complex between EF-Tu and tRNA.
           This is an example of molecular mimicry; a protein
           domain evolved so that it mimics the shape of a tRNA
           molecule. EF-G in the GTP form binds to the ribosome,
           primarily through the interaction of its EF-Tu-like
           domain with the 50S subunit. The binding of EF-G to the
           ribosome in this manner stimulates the GTPase activity
           of EF-G. On GTP hydrolysis, EF-G undergoes a
           conformational change that forces its arm deeper into
           the A site on the 30S subunit. To accommodate this
           domain, the peptidyl-tRNA in the A site moves to the P
           site, carrying the mRNA and the deacylated tRNA with it.
           The ribosome may be prepared for these rearrangements by
           the initial binding of EF-G as well. The dissociation of
           EF-G leaves the ribosome ready to accept the next
           aminoacyl-tRNA into the A site. This group contains both
           eukaryotic and bacterial members.
          Length = 270

 Score = 28.2 bits (64), Expect = 8.4
 Identities = 19/44 (43%), Positives = 23/44 (52%), Gaps = 9/44 (20%)

Query: 9   DGAILVCSAADGPMPQT----REHILLARQVGVPYIVVFLNKAD 48
           DGA+ V  A  G  PQT    R+    A + GVP I  F+NK D
Sbjct: 89  DGAVAVFDAVAGVQPQTETVWRQ----ADRYGVPRI-AFVNKMD 127


>gnl|CDD|223561 COG0486, ThdF, Predicted GTPase [General function prediction only].
          Length = 454

 Score = 28.7 bits (65), Expect = 8.5
 Identities = 30/119 (25%), Positives = 42/119 (35%), Gaps = 25/119 (21%)

Query: 5   AAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIR 64
             + D  + V  A+     +    I L  +   P IVV LNKAD+V   EL         
Sbjct: 294 IEEADLVLFVLDASQPLDKEDLALIELLPK-KKPIIVV-LNKADLVSKIELESEKLA--- 348

Query: 65  ELLNKYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTPNRAIDGAFL 123
                     N   II  SAK      TG    + + +L +A+           +G FL
Sbjct: 349 ----------NGDAIISISAK------TG----EGLDALREAIKQLFGKGLGNQEGLFL 387


>gnl|CDD|188126 TIGR01283, nifE, nitrogenase molybdenum-iron cofactor biosynthesis
           protein NifE.  This protein is part of the NifEN complex
           involved in biosynthesis of the molybdenum-iron cofactor
           used by the homologous NifDK complex of nitrogenase. In
           a few species, the protein is found as a NifEN fusion
           protein [Biosynthesis of cofactors, prosthetic groups,
           and carriers, Other, Central intermediary metabolism,
           Nitrogen fixation].
          Length = 453

 Score = 28.5 bits (64), Expect = 9.1
 Identities = 17/81 (20%), Positives = 28/81 (34%), Gaps = 16/81 (19%)

Query: 2   ITGAAQMDGAILVCSAADGPMPQTREHILLARQVGVPYIVV-----------FLNKADMV 50
           +  A +    ++ CS A   + +  E      + G+PY                + AD+ 
Sbjct: 236 VQTAHRAKLNMVQCSKAMINLARKME-----EKYGIPYFEGSFYGIEDTSKALRDIADLF 290

Query: 51  DDEELLELVEIEIRELLNKYE 71
            D ELL+  E  I     K  
Sbjct: 291 GDPELLKRTEELIAREEAKIR 311


>gnl|CDD|236794 PRK10917, PRK10917, ATP-dependent DNA helicase RecG; Provisional.
          Length = 681

 Score = 28.6 bits (65), Expect = 9.3
 Identities = 18/41 (43%), Positives = 22/41 (53%), Gaps = 4/41 (9%)

Query: 32  ARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLNKYEF 72
            RQ G+P   V    AD+V DEELLE    + RELL +   
Sbjct: 626 TRQSGLPEFKV----ADLVRDEELLEEARKDARELLERDPE 662


>gnl|CDD|206677 cd01890, LepA, LepA also known as Elongation Factor 4 (EF4).  LepA
           (also known as elongation factor 4, EF4) belongs to the
           GTPase family and exhibits significant homology to the
           translation factors EF-G and EF-Tu, indicating its
           possible involvement in translation and association with
           the ribosome. LepA is ubiquitous in bacteria and
           eukaryota (e.g. yeast GUF1p), but is missing from
           archaea. This pattern of phyletic distribution suggests
           that LepA evolved through a duplication of the EF-G gene
           in bacteria, followed by early transfer into the
           eukaryotic lineage, most likely from the
           promitochondrial endosymbiont. Yeast GUF1p is not
           essential and mutant cells did not reveal any marked
           phenotype.
          Length = 179

 Score = 27.9 bits (63), Expect = 9.9
 Identities = 32/106 (30%), Positives = 50/106 (47%), Gaps = 18/106 (16%)

Query: 9   DGAILVCSAADGPMPQTREHILLARQVGVPYIVVFLNKADMVDDEELLELVEIEIRELLN 68
           +GA+LV  A  G   QT  +  LA +  +  I V +NK D+   +   + V+ EI ++L 
Sbjct: 92  EGALLVVDATQGVEAQTLANFYLALENNLEIIPV-INKIDLPAAD--PDRVKQEIEDVL- 147

Query: 69  KYEFPGNDIPIIKGSAKLALEGDTGPLGEQSILSLSKALDTYIPTP 114
                 ++   I  SAK      TG LG + +L   +A+   IP P
Sbjct: 148 --GLDASE--AILVSAK------TG-LGVEDLL---EAIVERIPPP 179


  Database: CDD.v3.10
    Posted date:  Mar 20, 2013  7:55 AM
  Number of letters in database: 10,937,602
  Number of sequences in database:  44,354
  
Lambda     K      H
   0.318    0.138    0.390 

Gapped
Lambda     K      H
   0.267   0.0825    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 44354
Number of Hits to DB: 26,747,290
Number of extensions: 2798261
Number of successful extensions: 3717
Number of sequences better than 10.0: 1
Number of HSP's gapped: 3606
Number of HSP's successfully gapped: 199
Length of query: 502
Length of database: 10,937,602
Length adjustment: 101
Effective length of query: 401
Effective length of database: 6,457,848
Effective search space: 2589597048
Effective search space used: 2589597048
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 61 (27.1 bits)