Query         psy15627
Match_columns 77
No_of_seqs    104 out of 271
Neff          3.8 
Searched_HMMs 46136
Date          Fri Aug 16 17:32:55 2013
Command       hhsearch -i /work/01045/syshi/Psyhhblits/psy15627.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/15627hhsearch_cdd -cpu 12 -v 0 

 No Hit                             Prob E-value P-value  Score    SS Cols Query HMM  Template HMM
  1 KOG2189|consensus               99.9 9.4E-24   2E-28  177.6   2.6   54    1-54      1-54  (829)
  2 PF01496 V_ATPase_I:  V-type AT  97.8 4.4E-06 9.5E-11   69.1   0.0   31   26-56      1-31  (759)
  3 PRK05771 V-type ATP synthase s  96.1  0.0045 9.8E-08   50.6   2.6   41    5-45      1-41  (646)
  4 PF03235 DUF262:  Protein of un  93.8   0.011 2.3E-07   40.0  -1.0   33   42-77     12-46  (221)
  5 COG1269 NtpI Archaeal/vacuolar  91.8    0.17 3.7E-06   42.4   3.2   43    5-47      1-43  (660)
  6 PF09902 DUF2129:  Uncharacteri  85.9     1.4   3E-05   28.0   3.5   36    5-40     25-60  (71)
  7 PRK02302 hypothetical protein;  81.7     2.4 5.3E-05   28.1   3.5   37    5-41     31-67  (89)
  8 PRK02886 hypothetical protein;  79.3     3.3 7.1E-05   27.4   3.5   37    5-41     29-65  (87)
  9 PF14257 DUF4349:  Domain of un  61.7      10 0.00022   27.6   3.1   31   12-42     97-127 (262)
 10 PF08029 HisG_C:  HisG, C-termi  55.6      17 0.00036   22.9   2.9   27    7-33     37-63  (75)
 11 TIGR03455 HisG_C-term ATP phos  54.7      12 0.00027   24.5   2.3   28    7-34     61-88  (100)
 12 TIGR02549 CRISPR_DxTHG CRISPR-  51.8     4.1 8.8E-05   21.6  -0.3   17   52-68      3-19  (26)
 13 COG3323 Uncharacterized protei  48.6      20 0.00042   24.8   2.6   34    8-41      3-36  (109)
 14 COG1479 Uncharacterized conser  48.2     7.3 0.00016   28.7   0.5   16   43-58     21-36  (409)
 15 PF08473 VGCC_alpha2:  Neuronal  44.7      13 0.00028   25.1   1.2   40   30-74     20-64  (94)
 16 COG0301 ThiI Thiamine biosynth  43.6      11 0.00024   30.5   0.9   35   38-76    139-174 (383)
 17 COG4471 Uncharacterized protei  43.2      29 0.00064   23.2   2.7   35    6-40     31-65  (90)
 18 PF01978 TrmB:  Sugar-specific   39.9      25 0.00054   20.4   1.8   25   17-41     34-58  (68)
 19 TIGR02913 HAF_rpt probable ext  35.1      14 0.00031   20.6   0.2   10   55-64     20-29  (39)
 20 PF13783 DUF4177:  Domain of un  34.0      58  0.0012   18.9   2.7   24   17-40     17-42  (61)
 21 PF00679 EFG_C:  Elongation fac  32.4      44 0.00096   20.5   2.2   33    8-41      4-36  (89)
 22 COG3602 Uncharacterized protei  32.1      28 0.00061   24.8   1.3   19   14-32    111-129 (134)
 23 cd03713 EFG_mtEFG_C EFG_mtEFG_  31.8      44 0.00095   19.8   2.0   25    8-32      1-25  (78)
 24 cd03710 BipA_TypA_C BipA_TypA_  31.5      63  0.0014   19.4   2.7   26    8-33      1-26  (79)
 25 PRK00489 hisG ATP phosphoribos  29.1      48   0.001   24.6   2.2   27    7-33    247-273 (287)
 26 cd03709 lepA_C lepA_C: This fa  29.0      58  0.0013   19.7   2.2   25    8-32      1-25  (80)
 27 PF04567 RNA_pol_Rpb2_5:  RNA p  28.0      73  0.0016   18.1   2.4   21   27-47      2-22  (48)
 28 cd01514 Elongation_Factor_C El  27.4      60  0.0013   19.2   2.1   26    8-33      1-26  (79)
 29 cd03711 Tet_C Tet_C: C-terminu  26.9      63  0.0014   19.3   2.1   26    8-33      1-26  (78)
 30 cd04096 eEF2_snRNP_like_C eEF2  26.8      60  0.0013   19.3   2.0   27    8-34      1-27  (80)
 31 cd04097 mtEFG1_C mtEFG1_C: C-t  25.6      71  0.0015   19.0   2.2   26    8-33      1-26  (78)
 32 PRK05256 condesin subunit E; P  25.1      51  0.0011   25.5   1.8   24   19-42    152-175 (238)
 33 smart00838 EFG_C Elongation fa  23.6      76  0.0017   19.1   2.1   33    8-42      3-36  (85)
 34 COG3454 Metal-dependent hydrol  23.0 1.4E+02  0.0031   24.6   4.0   50    2-52    124-173 (377)
 35 PF02629 CoA_binding:  CoA bind  22.3      48   0.001   20.5   1.0   28   10-37     63-90  (96)
 36 TIGR00341 conserved hypothetic  21.8 1.6E+02  0.0034   23.4   4.0   21    9-29      2-22  (325)
 37 PF08003 Methyltransf_9:  Prote  21.7      92   0.002   24.9   2.7   45   15-59    243-287 (315)

No 1  
>KOG2189|consensus
Probab=99.88  E-value=9.4e-24  Score=177.56  Aligned_cols=54  Identities=50%  Similarity=0.758  Sum_probs=52.0

Q ss_pred             CCCcccccCCceEEEEecCccHHHHHHHhhcccceeEeecCCCCCccccceecC
Q psy15627          1 MGAMFRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEERPMCVSSSRVDWN   54 (77)
Q Consensus         1 m~slfRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN~~v~afqR~y~~~   54 (77)
                      |++|||||+|+|||+|+|+|+||+||++|||+|+|||+|||++|++|||+|+=.
T Consensus         1 ~~s~fRSE~M~L~Ql~l~~eaAy~~vaeLGelGlvqFrDLN~~v~afQR~fv~e   54 (829)
T KOG2189|consen    1 MGSLFRSEEMCLVQLFLQSEAAYQCVAELGELGLVQFRDLNPDVSAFQRKFVNE   54 (829)
T ss_pred             CccccccccceeeEEEecHHHHHHHHHHhhccCeeEeeeCCCccCHHHHHHHHH
Confidence            799999999999999999999999999999999999999999999999998743


No 2  
>PF01496 V_ATPase_I:  V-type ATPase 116kDa subunit family  ;  InterPro: IPR002490 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include:   F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.   The V-ATPases (or V1V0-ATPase) and A-ATPases (or A1A0-ATPase) are each composed of two linked complexes: the V1 or A1 complex contains the catalytic core that hydrolyses/synthesizes ATP, and the V0 or A0 complex that forms the membrane-spanning pore. The V- and A-ATPases both contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis [, , ]. The V- and A-ATPases more closely resemble one another in subunit structure than they do the F-ATPases, although the function of A-ATPases is closer to that of F-ATPases.  This entry represents the 116kDa subunit (or subunit a) and subunit I found in the V0 or A0 complex of V- or A-ATPases, respectively. The 116kDa subunit is a transmembrane glycoprotein required for the assembly and proton transport activity of the ATPase complex. Several isoforms of the 116kDa subunit exist, providing a potential role in the differential targeting and regulation of the V-ATPase for specific organelles []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0015078 hydrogen ion transmembrane transporter activity, 0015991 ATP hydrolysis coupled proton transport, 0033177 proton-transporting two-sector ATPase complex, proton-transporting domain; PDB: 2RPW_X 2NVJ_A 2JTW_A 3RRK_A.
Probab=97.80  E-value=4.4e-06  Score=69.10  Aligned_cols=31  Identities=32%  Similarity=0.462  Sum_probs=0.0

Q ss_pred             HHHhhcccceeEeecCCCCCccccceecCCC
Q psy15627         26 VSTLGEAGIVQFRDEERPMCVSSSRVDWNTS   56 (77)
Q Consensus        26 V~eLGeLGlVQF~DLN~~v~afqR~y~~~~~   56 (77)
                      |++||++|+|||+|+|+++++|||+|+-...
T Consensus         1 V~eLgelG~VqF~Dln~~~~~fqr~f~~ev~   31 (759)
T PF01496_consen    1 VNELGELGLVQFRDLNEDVSAFQRKFVNEVR   31 (759)
T ss_dssp             -------------------------------
T ss_pred             CchhhcCCcEEEEECccchhHHHHHhhhccc
Confidence            6899999999999999999999999765543


No 3  
>PRK05771 V-type ATP synthase subunit I; Validated
Probab=96.06  E-value=0.0045  Score=50.63  Aligned_cols=41  Identities=15%  Similarity=0.195  Sum_probs=38.4

Q ss_pred             ccccCCceEEEEecCccHHHHHHHhhcccceeEeecCCCCC
Q psy15627          5 FRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEERPMC   45 (77)
Q Consensus         5 fRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN~~v~   45 (77)
                      ++.++|+.++++.|.+.+.+++++|.++|.+|+.|+|...+
T Consensus         1 m~i~kM~kv~l~~~~~~~~~~l~~L~~lg~vhi~~~~~~~~   41 (646)
T PRK05771          1 LAPVRMKKVLIVTLKSYKDEVLEALHELGVVHIEDLKEELS   41 (646)
T ss_pred             CCceeeEEEEEEEEHHHHHHHHHHHHhCCCEEEeecccccc
Confidence            46799999999999999999999999999999999998775


No 4  
>PF03235 DUF262:  Protein of unknown function DUF262;  InterPro: IPR004919 This entry is found in prokaryotic proteins of unknown function.
Probab=93.84  E-value=0.011  Score=39.96  Aligned_cols=33  Identities=15%  Similarity=0.285  Sum_probs=22.3

Q ss_pred             CCCCccccceecCCCcccccccccccc--eeeccCCCC
Q psy15627         42 RPMCVSSSRVDWNTSHAFRHTPFVKGL--GIALPLGSI   77 (77)
Q Consensus        42 ~~v~afqR~y~~~~~~~~~~~~~~~~~--~~~~~~~~~   77 (77)
                      =.+|.|||.|+|...+.   .-|..-+  .-..|+|+|
T Consensus        12 ~~iP~yQR~yvW~~~~~---~~Li~si~~~~~~~iG~i   46 (221)
T PF03235_consen   12 IVIPDYQRDYVWDEEQI---EELIDSILELRGYPIGSI   46 (221)
T ss_pred             ccCCCCCCCCccCHHHH---HHHHHHHHhccCCccceE
Confidence            36799999999988773   2344444  555566653


No 5  
>COG1269 NtpI Archaeal/vacuolar-type H+-ATPase subunit I [Energy production and conversion]
Probab=91.78  E-value=0.17  Score=42.36  Aligned_cols=43  Identities=19%  Similarity=0.176  Sum_probs=39.3

Q ss_pred             ccccCCceEEEEecCccHHHHHHHhhcccceeEeecCCCCCcc
Q psy15627          5 FRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEERPMCVS   47 (77)
Q Consensus         5 fRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN~~v~af   47 (77)
                      +|-|+|+.+.++.+.+..-+++.+|++.|++|+.|++..+...
T Consensus         1 ~~~~~M~kv~i~~~~~~~~~vi~~L~~~g~~~~~d~~~~~~~~   43 (660)
T COG1269           1 MRPEKMKKVSIIGLKSELDPVLAELHDFGLVHLEDLEEGEKGL   43 (660)
T ss_pred             CchhhheeEEEEeehhhhhHHHHHHHHcCeEEeeccccccccc
Confidence            5789999999999999999999999999999999999876543


No 6  
>PF09902 DUF2129:  Uncharacterized protein conserved in bacteria (DUF2129);  InterPro: IPR016979 This is a group of uncharacterised conserved proteins.
Probab=85.86  E-value=1.4  Score=27.96  Aligned_cols=36  Identities=17%  Similarity=0.276  Sum_probs=32.1

Q ss_pred             ccccCCceEEEEecCccHHHHHHHhhcccceeEeec
Q psy15627          5 FRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDE   40 (77)
Q Consensus         5 fRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DL   40 (77)
                      +-|.+|.++.||+..|.+-+++++|.++.-|.-+..
T Consensus        25 Y~Skk~kYvvlYvn~~~~e~~~~kl~~l~fVk~Ve~   60 (71)
T PF09902_consen   25 YVSKKMKYVVLYVNEEDVEEIIEKLKKLKFVKKVEP   60 (71)
T ss_pred             EEECCccEEEEEECHHHHHHHHHHHhcCCCeeEEec
Confidence            468999999999999999999999999988876653


No 7  
>PRK02302 hypothetical protein; Provisional
Probab=81.67  E-value=2.4  Score=28.10  Aligned_cols=37  Identities=14%  Similarity=0.209  Sum_probs=32.6

Q ss_pred             ccccCCceEEEEecCccHHHHHHHhhcccceeEeecC
Q psy15627          5 FRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEE   41 (77)
Q Consensus         5 fRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN   41 (77)
                      .=|.+|.++-||+..|.|-+++..|.++--|.-++.-
T Consensus        31 Y~Skk~kYvvlYvn~~~~e~~~~kl~~l~fVk~Ve~S   67 (89)
T PRK02302         31 YHSKRSRYLVLYVNKEDVEQKLEELSKLKFVKKVRPS   67 (89)
T ss_pred             EEeccccEEEEEECHHHHHHHHHHHhcCCCeeEEccc
Confidence            3488999999999999999999999999988776643


No 8  
>PRK02886 hypothetical protein; Provisional
Probab=79.35  E-value=3.3  Score=27.40  Aligned_cols=37  Identities=14%  Similarity=0.198  Sum_probs=32.9

Q ss_pred             ccccCCceEEEEecCccHHHHHHHhhcccceeEeecC
Q psy15627          5 FRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEE   41 (77)
Q Consensus         5 fRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN   41 (77)
                      .=|..|.++.||+..|.+-+++..|.++-.|.-++.-
T Consensus        29 Y~Skr~kYvvlYvn~~~~e~~~~kl~~l~fVk~Ve~S   65 (87)
T PRK02886         29 YVSKRLKYAVLYCDMEQVEDIMNKLSSLPFVKRVEPS   65 (87)
T ss_pred             EEeccccEEEEEECHHHHHHHHHHHhcCCCeeEEccc
Confidence            3488999999999999999999999999988877644


No 9  
>PF14257 DUF4349:  Domain of unknown function (DUF4349)
Probab=61.72  E-value=10  Score=27.64  Aligned_cols=31  Identities=19%  Similarity=0.154  Sum_probs=27.7

Q ss_pred             eEEEEecCccHHHHHHHhhcccceeEeecCC
Q psy15627         12 LCQLFIQPEAAYSSVSTLGEAGIVQFRDEER   42 (77)
Q Consensus        12 l~qLiip~E~A~d~V~eLGeLGlVQF~DLN~   42 (77)
                      ...+.||++..-+.+++|+++|.|.-++.+.
T Consensus        97 ~ltiRVP~~~~~~~l~~l~~~g~v~~~~~~~  127 (262)
T PF14257_consen   97 SLTIRVPADKFDSFLDELSELGKVTSRNISS  127 (262)
T ss_pred             EEEEEECHHHHHHHHHHHhccCceeeeeccc
Confidence            7789999999999999999999888777763


No 10 
>PF08029 HisG_C:  HisG, C-terminal domain;  InterPro: IPR013115 ATP phosphoribosyltransferase (2.4.2.17 from EC) is the enzyme that catalyzes the first step in the biosynthesis of histidine in bacteria, fungi and plants as shown below. It is a member of the larger phosphoribosyltransferase superfamily of enzymes which catalyse the condensation of 5-phospho-alpha-D-ribose 1-diphosphate with nitrogenous bases in the presence of divalent metal ions [].  ATP + 5-phospho-alpha-D-ribose 1-diphosphate = 1-(5-phospho-D-ribosyl)-ATP + diphosphate  Histidine biosynthesis is an energetically expensive process and ATP phosphoribosyltransferase activity is subject to control at several levels. Transcriptional regulation is based primarily on nutrient conditions and determines the amount of enzyme present in the cell, while feedback inihibition rapidly modulates activity in response to cellular conditions. The enzyme has been shown to be inhibited by 1-(5-phospho-D-ribosyl)-ATP, histidine, ppGpp (a signal associated with adverse environmental conditions) and ADP and AMP (which reflect the overall energy status of the cell). As this pathway of histidine biosynthesis is present only in prokayrotes, plants and fungi, this enzyme is a promising target for the development of novel antimicrobial compounds and herbicides. This entry represents the C-terminal portion of ATP phosphoribosyltransferase. The enzyme itself exists in equilibrium between an active dimeric form, an inactive hexameric form and higher aggregates [, ]. Interconversion between the various forms is largely reversible and is influenced by the binding of the natural substrates and inhibitors of the enzyme. This domain is not directly involved in catalysis but appears to be responsible for the formation of hexamers induced by the binding of inhibitors to the enzyme, thus regulating activity.; GO: 0000287 magnesium ion binding, 0003879 ATP phosphoribosyltransferase activity, 0000105 histidine biosynthetic process, 0005737 cytoplasm; PDB: 1Q1K_A 1H3D_A 2VD3_B 1NH7_A 1NH8_A.
Probab=55.56  E-value=17  Score=22.87  Aligned_cols=27  Identities=15%  Similarity=0.309  Sum_probs=24.3

Q ss_pred             ccCCceEEEEecCccHHHHHHHhhccc
Q psy15627          7 SEEMALCQLFIQPEAAYSSVSTLGEAG   33 (77)
Q Consensus         7 SE~M~l~qLiip~E~A~d~V~eLGeLG   33 (77)
                      .++|--++.+++.+..|+.|++|=+.|
T Consensus        37 ~~~w~AV~~vV~~~~~~~~~~~Lk~~G   63 (75)
T PF08029_consen   37 DEDWVAVHAVVPEKQVWDLMDKLKAAG   63 (75)
T ss_dssp             STTEEEEEEEEECCCHHHHHHHHHCTT
T ss_pred             CCCEEEEEEEecHHHHHHHHHHHHHcC
Confidence            357888999999999999999998887


No 11 
>TIGR03455 HisG_C-term ATP phosphoribosyltransferase, C-terminal domain. This domain corresponds to the C-terminal third of the HisG protein. It is absent in many lineages.
Probab=54.65  E-value=12  Score=24.51  Aligned_cols=28  Identities=14%  Similarity=0.213  Sum_probs=25.2

Q ss_pred             ccCCceEEEEecCccHHHHHHHhhcccc
Q psy15627          7 SEEMALCQLFIQPEAAYSSVSTLGEAGI   34 (77)
Q Consensus         7 SE~M~l~qLiip~E~A~d~V~eLGeLGl   34 (77)
                      +++|.-++.++|.+..++++++|-+.|-
T Consensus        61 ~~~w~AV~~vv~~~~v~~~~~~Lk~~GA   88 (100)
T TIGR03455        61 DEGWVAVHAVVDEKVVNELIDKLKAAGA   88 (100)
T ss_pred             CCCeEEEEEEEcHHHHHHHHHHHHHcCC
Confidence            5788889999999999999999998883


No 12 
>TIGR02549 CRISPR_DxTHG CRISPR-associated DxTHG motif protein. This model describes a short region highly conserved between two otherwise substantially different CRISPR-associated (cas) proteins, TIGR02221 and TIGR01987. This region includes the motif [VIL]-D-x-[ST]-H-[GS].
Probab=51.82  E-value=4.1  Score=21.64  Aligned_cols=17  Identities=18%  Similarity=0.325  Sum_probs=12.9

Q ss_pred             ecCCCcccccccccccc
Q psy15627         52 DWNTSHAFRHTPFVKGL   68 (77)
Q Consensus        52 ~~~~~~~~~~~~~~~~~   68 (77)
                      ..+..|+||+-|++--.
T Consensus         3 ilDiTHGfr~~P~la~~   19 (26)
T TIGR02549         3 ILDVTHGFNFMPLLAYE   19 (26)
T ss_pred             EEEecCcccchHHHHHH
Confidence            34678999999987543


No 13 
>COG3323 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=48.59  E-value=20  Score=24.75  Aligned_cols=34  Identities=18%  Similarity=0.191  Sum_probs=30.4

Q ss_pred             cCCceEEEEecCccHHHHHHHhhcccceeEeecC
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEE   41 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN   41 (77)
                      +.|.-..+++|.|-.-+.-..|++.|.-|..|..
T Consensus         3 ~~~~K~~vyVP~~~~e~vr~aL~~aGag~iG~Y~   36 (109)
T COG3323           3 EPLYKIEVYVPEEYVEQVRDALFEAGAGHIGNYD   36 (109)
T ss_pred             cceeEEEEEeCHHHHHHHHHHHHhcCCcceeccc
Confidence            4677889999999999999999999999998744


No 14 
>COG1479 Uncharacterized conserved protein [Function unknown]
Probab=48.23  E-value=7.3  Score=28.71  Aligned_cols=16  Identities=6%  Similarity=0.083  Sum_probs=13.1

Q ss_pred             CCCccccceecCCCcc
Q psy15627         43 PMCVSSSRVDWNTSHA   58 (77)
Q Consensus        43 ~v~afqR~y~~~~~~~   58 (77)
                      .++-+||+|+|...+.
T Consensus        21 ~ip~yQR~Y~W~~~~~   36 (409)
T COG1479          21 IIPDYQRPYVWDEKNI   36 (409)
T ss_pred             eccCccCCCcCcHHHH
Confidence            4578999999998665


No 15 
>PF08473 VGCC_alpha2:  Neuronal voltage-dependent calcium channel alpha 2acd;  InterPro: IPR013680 Ca2+ ions are unique in that they not only carry charge but they are also the most widely used of diffusible second messengers. Voltage-dependent Ca2+ channels (VDCC) are a family of molecules that allow cells to couple electrical activity to intracellular Ca2+ signalling. The opening and closing of these channels by depolarizing stimuli, such as action potentials, allows Ca2+ ions to enter neurons down a steep electrochemical gradient, producing transient intracellular Ca2+ signals. Many of the processes that occur in neurons, including transmitter release, gene transcription and metabolism are controlled by Ca2+ influx occurring simultaneously at different cellular locales. The pore is formed by the alpha-1 subunit which incorporates the conduction pore, the voltage sensor and gating apparatus, and the known sites of channel regulation by second messengers, drugs, and toxins []. The activity of this pore is modulated by 4 tightly-coupled subunits: an intracellular beta subunit; a transmembrane gamma subunit; and a disulphide-linked complex of alpha-2 and delta subunits, which are proteolytically cleaved from the same gene product. Properties of the protein including gating voltage-dependence, G protein modulation and kinase susceptibility can be influenced by these subunits. Voltage-gated calcium channels are classified as T, L, N, P, Q and R, and are distinguished by their sensitivity to pharmacological blocks, single-channel conductance kinetics, and voltage-dependence. On the basis of their voltage activation properties, the voltage-gated calcium classes can be further divided into two broad groups: the low (T-type) and high (L, N, P, Q and R-type) threshold-activated channels. This eukaryotic domain has been found in the neuronal voltage-dependent calcium channel (VGCC) alpha 2a, 2c, and 2d subunits. It is also found in other calcium channel alpha-2/delta subunits to the N terminus of a Cache domain (IPR004010 from INTERPRO). 
Probab=44.73  E-value=13  Score=25.12  Aligned_cols=40  Identities=23%  Similarity=0.375  Sum_probs=26.9

Q ss_pred             hcccceeEeecC-----CCCCccccceecCCCcccccccccccceeeccC
Q psy15627         30 GEAGIVQFRDEE-----RPMCVSSSRVDWNTSHAFRHTPFVKGLGIALPL   74 (77)
Q Consensus        30 GeLGlVQF~DLN-----~~v~afqR~y~~~~~~~~~~~~~~~~~~~~~~~   74 (77)
                      |+-|-.+|.-+.     .-+.--+|.|+|..-   +-|||  .||++||-
T Consensus        20 g~~Ge~~i~tlvks~DeRYId~~~RtYtw~PI---~gT~y--SLaLVLP~   64 (94)
T PF08473_consen   20 GRSGEKTIRTLVKSQDERYIDEVNRTYTWTPI---NGTDY--SLALVLPS   64 (94)
T ss_pred             CCCCcEEEEEEEeeccceeeeeeceeEEEecc---CCCcc--eeEEEcCC
Confidence            455555554433     345667899999754   46888  58999985


No 16 
>COG0301 ThiI Thiamine biosynthesis ATP pyrophosphatase [Coenzyme metabolism]
Probab=43.63  E-value=11  Score=30.46  Aligned_cols=35  Identities=26%  Similarity=0.448  Sum_probs=27.5

Q ss_pred             eec-CCCCCccccceecCCCcccccccccccceeeccCCC
Q psy15627         38 RDE-ERPMCVSSSRVDWNTSHAFRHTPFVKGLGIALPLGS   76 (77)
Q Consensus        38 ~DL-N~~v~afqR~y~~~~~~~~~~~~~~~~~~~~~~~~~   76 (77)
                      +|| |||+..+   ...--.+||=||.=.||.| .||+|+
T Consensus       139 Vdl~~Pdv~i~---iEIr~~~ayi~~~~~~G~G-GLPvGt  174 (383)
T COG0301         139 VDLKNPDVEIH---IEIREDKAYIYTERIKGPG-GLPVGT  174 (383)
T ss_pred             eecCCCCeEEE---EEEecCeEEEEEeeeccCC-CCcccc
Confidence            566 8887764   3445578999999999998 799986


No 17 
>COG4471 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=43.19  E-value=29  Score=23.25  Aligned_cols=35  Identities=14%  Similarity=0.131  Sum_probs=30.8

Q ss_pred             cccCCceEEEEecCccHHHHHHHhhcccceeEeec
Q psy15627          6 RSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDE   40 (77)
Q Consensus         6 RSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DL   40 (77)
                      -|.++.++.||++.+..-+.+++|-.+-.|--++.
T Consensus        31 ~Skk~kY~vlYvn~~~ve~~~~kl~~~kfVK~V~~   65 (90)
T COG4471          31 VSKKSKYVVLYVNEQDVEQIVEKLSRLKFVKKVRV   65 (90)
T ss_pred             EecceeEEEEEECHHHHHHHHHHHhhceeeeeccc
Confidence            48899999999999999999999999888766654


No 18 
>PF01978 TrmB:  Sugar-specific transcriptional regulator TrmB;  InterPro: IPR002831 TrmB, is a protein of 38,800 apparent molecular weight, that is involved in the maltose-specific regulation of the trehalose/maltose ABC transport operon in Thermococcus litoralis. TrmB has been shown to be a maltose-specific repressor, and this inhibition is counteracted by maltose and trehalose. TrmB binds maltose and trehalose half-maximally at 20 uM and 0.5 mM sugar concentration, respectively []. Other members of this family are annotated as either transcriptional regulators or hypothetical proteins. ; PDB: 2D1H_A 3QPH_A 1SFX_A.
Probab=39.91  E-value=25  Score=20.39  Aligned_cols=25  Identities=24%  Similarity=0.490  Sum_probs=21.9

Q ss_pred             ecCccHHHHHHHhhcccceeEeecC
Q psy15627         17 IQPEAAYSSVSTLGEAGIVQFRDEE   41 (77)
Q Consensus        17 ip~E~A~d~V~eLGeLGlVQF~DLN   41 (77)
                      +|...++++++.|-+.|+|+...-+
T Consensus        34 i~~~~v~~~L~~L~~~GlV~~~~~~   58 (68)
T PF01978_consen   34 ISRSTVYRALKSLEEKGLVEREEGR   58 (68)
T ss_dssp             SSHHHHHHHHHHHHHTTSEEEEEEC
T ss_pred             cCHHHHHHHHHHHHHCCCEEEEcCc
Confidence            5778899999999999999998844


No 19 
>TIGR02913 HAF_rpt probable extracellular repeat, HAF family. The model for this family detects a homology domain of about 40 amino acids. Member proteins always have a least two tandem copies and as many as seven. The spacing between repeats as defined here usually is four residues exactly. This repeat is named for a tripeptide motif HAF found in most members. Some members proteins are found in species with no outer membrane (archaea and Gram-positive bacteria) while others have C-terminal autotransporter domains that suggest that the repeat region is transported across the outer membrane. This domain seems likely to be an extracellular protein repeat.
Probab=35.08  E-value=14  Score=20.59  Aligned_cols=10  Identities=30%  Similarity=0.268  Sum_probs=7.8

Q ss_pred             CCcccccccc
Q psy15627         55 TSHAFRHTPF   64 (77)
Q Consensus        55 ~~~~~~~~~~   64 (77)
                      ..|||++++=
T Consensus        20 ~~hAF~W~~g   29 (39)
T TIGR02913        20 ETHAFLYSDG   29 (39)
T ss_pred             CEeEEEECCC
Confidence            3599999874


No 20 
>PF13783 DUF4177:  Domain of unknown function (DUF4177)
Probab=33.96  E-value=58  Score=18.91  Aligned_cols=24  Identities=25%  Similarity=0.433  Sum_probs=20.6

Q ss_pred             ecCccHHHHHHHhhccc--ceeEeec
Q psy15627         17 IQPEAAYSSVSTLGEAG--IVQFRDE   40 (77)
Q Consensus        17 ip~E~A~d~V~eLGeLG--lVQF~DL   40 (77)
                      ++.+...+.++++|+.|  +|+..+-
T Consensus        17 ~~~~~~~~~Ln~~g~eGWeLV~~~~~   42 (61)
T PF13783_consen   17 IDPEDLEEILNEYGKEGWELVSIIPP   42 (61)
T ss_pred             CCHHHHHHHHHHHHhCCcEEEEEEcC
Confidence            45677889999999999  9999886


No 21 
>PF00679 EFG_C:  Elongation factor G C-terminus;  InterPro: IPR000640 Translation elongation factors are responsible for two main processes during protein synthesis on the ribosome [, , ]. EF1A (or EF-Tu) is responsible for the selection and binding of the cognate aminoacyl-tRNA to the A-site (acceptor site) of the ribosome. EF2 (or EF-G) is responsible for the translocation of the peptidyl-tRNA from the A-site to the P-site (peptidyl-tRNA site) of the ribosome, thereby freeing the A-site for the next aminoacyl-tRNA to bind. Elongation factors are responsible for achieving accuracy of translation and both EF1A and EF2 are remarkably conserved throughout evolution. Elongation factor EF2 (EF-G) is a G-protein. It brings about the translocation of peptidyl-tRNA and mRNA through a ratchet-like mechanism: the binding of GTP-EF2 to the ribosome causes a counter-clockwise rotation in the small ribosomal subunit; the hydrolysis of GTP to GDP by EF2 and the subsequent release of EF2 causes a clockwise rotation of the small subunit back to the starting position [, ]. This twisting action destabilises tRNA-ribosome interactions, freeing the tRNA to translocate along the ribosome upon GTP-hydrolysis by EF2. EF2 binding also affects the entry and exit channel openings for the mRNA, widening it when bound to enable the mRNA to translocate along the ribosome. This entry represents the C-terminal domain found in EF2 (or EF-G) of both prokaryotes and eukaryotes (also known as eEF2), as well as in some tetracycline-resistance proteins. This domain adopts a ferredoxin-like fold consisting of an alpha/beta sandwich with anti-parallel beta-sheets. It resembles the topology of domain III found in these elongation factors, with which it forms the C-terminal block, but these two domains cannot be superimposed []. This domain is often found associated with (IPR000795 from INTERPRO), which contains the signatures for the N terminus of the proteins. More information about these proteins can be found at Protein of the Month: Elongation Factors [].; GO: 0005525 GTP binding; PDB: 1WDT_A 2DY1_A 3CB4_F 3DEG_C 2EFG_A 1ELO_A 2XSY_Y 2WRK_Y 1DAR_A 2WRI_Y ....
Probab=32.38  E-value=44  Score=20.49  Aligned_cols=33  Identities=12%  Similarity=0.090  Sum_probs=26.0

Q ss_pred             cCCceEEEEecCccHHHHHHHhhcccceeEeecC
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEE   41 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN   41 (77)
                      |++-.+++.+|.|..-.+++.|.+.+- ++.+.+
T Consensus         4 EP~~~~~I~~p~~~~g~v~~~l~~r~g-~i~~~~   36 (89)
T PF00679_consen    4 EPIMSVEISVPEEYLGKVISDLSKRRG-EILSMD   36 (89)
T ss_dssp             EEEEEEEEEEEGGGHHHHHHHHHHTT--EEEEEE
T ss_pred             CCEEEEEEEECHHHHHHHHHHhccccc-EEEech
Confidence            677889999999999999999998753 344433


No 22 
>COG3602 Uncharacterized protein conserved in bacteria [Function unknown]
Probab=32.10  E-value=28  Score=24.77  Aligned_cols=19  Identities=26%  Similarity=0.384  Sum_probs=17.3

Q ss_pred             EEEecCccHHHHHHHhhcc
Q psy15627         14 QLFIQPEAAYSSVSTLGEA   32 (77)
Q Consensus        14 qLiip~E~A~d~V~eLGeL   32 (77)
                      ++++|.|.|.+.+..|+.+
T Consensus       111 HlFVp~e~a~~A~~~L~~l  129 (134)
T COG3602         111 HLFVPAERAKEALVVLQGL  129 (134)
T ss_pred             eeeeeHHHHHHHHHHHHHH
Confidence            6999999999999998875


No 23 
>cd03713 EFG_mtEFG_C EFG_mtEFG_C: domains similar to the C-terminal domain of the bacterial translational elongation factor (EF) EF-G.  Included in this group is the C-terminus of mitochondrial Elongation factor G1 (mtEFG1) and G2 (mtEFG2) proteins. Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species. During the process of peptide synthesis and tRNA site changes, the ribosome is moved along the mRNA a distance equal to one codon with the addition of each amino acid. In bacteria this translocation step is catalyzed by EF-G_GTP, which is hydrolyzed to provide
Probab=31.76  E-value=44  Score=19.77  Aligned_cols=25  Identities=12%  Similarity=0.138  Sum_probs=22.5

Q ss_pred             cCCceEEEEecCccHHHHHHHhhcc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEA   32 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeL   32 (77)
                      |+|-.+.+.+|.|..-.+++.|.+.
T Consensus         1 EPi~~~~I~~p~~~~g~v~~~l~~r   25 (78)
T cd03713           1 EPIMKVEVTVPEEYMGDVIGDLSSR   25 (78)
T ss_pred             CCEEEEEEEcCHHHHHHHHHHHHHc
Confidence            7888999999999999999999864


No 24 
>cd03710 BipA_TypA_C BipA_TypA_C: a C-terminal portion of BipA or TypA having homology to the C terminal domains of the elongation factors EF-G and EF-2. A member of the ribosome binding GTPase superfamily, BipA is widely distributed in bacteria and plants.  BipA is a highly conserved protein with global regulatory properties in Escherichia coli. BipA is phosphorylated on a tyrosine residue under some cellular conditions. Mutants show altered regulation of some pathways. BipA functions as a translation factor that is required specifically for the expression of the transcriptional modulator Fis.  BipA binds to ribosomes at a site that coincides with that of EF-G and has a GTPase activity that is sensitive to high GDP:GTP ratios and, is stimulated  by 70S ribosomes programmed with mRNA and aminoacylated tRNAs. The growth rate-dependent induction of BipA allows the efficient expression of Fis, thereby modulating a range of downstream processes, including DNA metabolism and type III secreti
Probab=31.51  E-value=63  Score=19.42  Aligned_cols=26  Identities=15%  Similarity=0.183  Sum_probs=23.2

Q ss_pred             cCCceEEEEecCccHHHHHHHhhccc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAG   33 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLG   33 (77)
                      |+|-.+.+.+|.|..-.+++.|.+..
T Consensus         1 EPi~~v~I~~P~~~~g~V~~~l~~rr   26 (79)
T cd03710           1 EPIEELTIDVPEEYSGAVIEKLGKRK   26 (79)
T ss_pred             CCEEEEEEEeCchhhHHHHHHHHhCC
Confidence            67888999999999999999998764


No 25 
>PRK00489 hisG ATP phosphoribosyltransferase; Reviewed
Probab=29.06  E-value=48  Score=24.55  Aligned_cols=27  Identities=11%  Similarity=0.224  Sum_probs=24.6

Q ss_pred             ccCCceEEEEecCccHHHHHHHhhccc
Q psy15627          7 SEEMALCQLFIQPEAAYSSVSTLGEAG   33 (77)
Q Consensus         7 SE~M~l~qLiip~E~A~d~V~eLGeLG   33 (77)
                      .++|.-++.++|.+..|+++++|-+.|
T Consensus       247 ~~~~~av~~~~~~~~~~~~~~~l~~~g  273 (287)
T PRK00489        247 DEGWVAVHAVVPEDLVWELMDKLKALG  273 (287)
T ss_pred             CCCeEEEEEEECHHHHHHHHHHHHHcC
Confidence            467888999999999999999999888


No 26 
>cd03709 lepA_C lepA_C: This family represents the C-terminal region of LepA, a GTP-binding protein localized in the cytoplasmic membrane.   LepA is ubiquitous in Bacteria and Eukaryota (e.g. Saccharomyces cerevisiae GUF1p), but is missing from Archaea. LepA exhibits significant homology to elongation factors (EFs) Tu and G. The function(s) of the proteins in this family are unknown. The N-terminal domain of LepA is homologous to a domain of similar size found in initiation factor 2 (IF2), and in EF-Tu and EF-G (factors required for translation in Escherichia coli). Two types of phylogenetic tree, rooted by other GTP-binding proteins, suggest that eukaryotic homologs (including S. cerevisiae GUF1) originated within the bacterial LepA family. LepA has never been observed in archaea, and eukaryl LepA is organellar. LepA is therefore a true bacterial GTPase, found only in the bacterial lineage.
Probab=29.01  E-value=58  Score=19.74  Aligned_cols=25  Identities=12%  Similarity=0.044  Sum_probs=22.7

Q ss_pred             cCCceEEEEecCccHHHHHHHhhcc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEA   32 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeL   32 (77)
                      |+|-.+.+.+|.|..-++++.|...
T Consensus         1 EPi~~v~i~vP~e~~G~V~~~l~~r   25 (80)
T cd03709           1 EPFVKATIITPSEYLGAIMELCQER   25 (80)
T ss_pred             CCEEEEEEEeCHHhhHHHHHHHHHh
Confidence            6788899999999999999999975


No 27 
>PF04567 RNA_pol_Rpb2_5:  RNA polymerase Rpb2, domain 5;  InterPro: IPR007647 RNA polymerases catalyse the DNA dependent polymerisation of RNA. Prokaryotes contain a single RNA polymerase compared to three in eukaryotes (not including mitochondrial and chloroplast polymerases). Domain 5, is also known as the external 2 domain [].; GO: 0003677 DNA binding, 0003899 DNA-directed RNA polymerase activity, 0006351 transcription, DNA-dependent; PDB: 3S17_B 1I6H_B 4A3B_B 3K1F_B 4A3I_B 1TWA_B 3S14_B 3S15_B 2NVX_B 3M3Y_B ....
Probab=27.97  E-value=73  Score=18.12  Aligned_cols=21  Identities=24%  Similarity=0.368  Sum_probs=15.1

Q ss_pred             HHhhcccceeEeecCCCCCcc
Q psy15627         27 STLGEAGIVQFRDEERPMCVS   47 (77)
Q Consensus        27 ~eLGeLGlVQF~DLN~~v~af   47 (77)
                      +.|=+.|.|.|+|-|...+++
T Consensus         2 ~~ll~~G~vE~id~eEEe~~~   22 (48)
T PF04567_consen    2 DDLLKEGVVEYIDAEEEETCM   22 (48)
T ss_dssp             HHHHHTTSEEEEETTTCTT--
T ss_pred             hhHhhCCCEEEecchhccccE
Confidence            345567999999999877653


No 28 
>cd01514 Elongation_Factor_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of elongation factors (EFs) bacterial EF-G, eukaryotic and archeal EF-2 and eukaryotic mitochondrial mtEFG1s and mtEFG2s. This group also includes proteins similar to the ribosomal protection proteins Tet(M) and Tet(O), BipA, LepA and, spliceosomal proteins: human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and yeast counterpart Snu114p.  This domain adopts a ferredoxin-like fold consisting of an alpha-beta sandwich with anti-parallel beta-sheets, resembling the topology of domain III found in the elongation factors EF-G and eukaryotic EF-2, with which it forms the C-terminal block. The two domains however are not superimposable and domain III lacks some of the characteristics of this domain.  EF-2/EF-G in complex with GTP, promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the
Probab=27.43  E-value=60  Score=19.16  Aligned_cols=26  Identities=12%  Similarity=0.147  Sum_probs=22.9

Q ss_pred             cCCceEEEEecCccHHHHHHHhhccc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAG   33 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLG   33 (77)
                      |+|-.+.+.+|.|..-.+++.|.+..
T Consensus         1 EPi~~~~I~~p~~~~g~v~~~l~~rr   26 (79)
T cd01514           1 EPIMKVEITVPEEYLGAVIGDLSKRR   26 (79)
T ss_pred             CCEEEEEEEcCHHHHHHHHHHHHhcC
Confidence            78889999999999999999997654


No 29 
>cd03711 Tet_C Tet_C: C-terminus of ribosomal protection proteins Tet(M) and Tet(O). This domain has homology to the C terminal domains of the elongation factors EF-G and EF-2. Tet(M) and Tet(O) catalyze the release of tetracycline (Tc) from the ribosome in a GTP-dependent manner thereby mediating Tc resistance.  Tcs are broad-spectrum antibiotics.  Typical Tcs bind to the ribosome and inhibit the elongation phase of protein synthesis, by inhibiting the  occupation of site A by aminoacyl-tRNA.
Probab=26.93  E-value=63  Score=19.26  Aligned_cols=26  Identities=23%  Similarity=0.250  Sum_probs=23.3

Q ss_pred             cCCceEEEEecCccHHHHHHHhhccc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAG   33 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLG   33 (77)
                      |+|-.+.+.+|.|..-++++.|.+..
T Consensus         1 EPi~~~~i~~p~~~~g~v~~~l~~rr   26 (78)
T cd03711           1 EPYLRFELEVPQDALGRAMSDLAKMG   26 (78)
T ss_pred             CCeEEEEEEcCHHHHHHHHHHHHHcC
Confidence            67889999999999999999998764


No 30 
>cd04096 eEF2_snRNP_like_C eEF2_snRNP_like_C: this family represents a C-terminal domain of eukaryotic elongation factor 2 (eEF-2) and a homologous domain of the spliceosomal human 116kD U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116 kD) and, its yeast counterpart Snu114p.  Yeast Snu114p is essential for cell viability and for splicing in vivo. U5-116 kD binds GTP.  Experiments suggest that GTP binding and probably GTP hydrolysis is important for the function of the U5-116 kD/Snu114p.   In complex with GTP, EF-2 promotes the translocation step of translation. During translocation the peptidyl-tRNA is moved from the A site to the P site, the uncharged tRNA from the P site to the E-site and, the mRNA is shifted one codon relative to the ribosome.
Probab=26.82  E-value=60  Score=19.32  Aligned_cols=27  Identities=19%  Similarity=0.090  Sum_probs=23.6

Q ss_pred             cCCceEEEEecCccHHHHHHHhhcccc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAGI   34 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLGl   34 (77)
                      |+|-.+.+.+|.|..-+.++.|.+..-
T Consensus         1 EPi~~~~I~~p~~~~g~V~~~l~~rrg   27 (80)
T cd04096           1 EPIYLVEIQCPEDALGKVYSVLSKRRG   27 (80)
T ss_pred             CCEEEEEEEEcHHHhhHHHHhhhhCee
Confidence            678889999999999999999987653


No 31 
>cd04097 mtEFG1_C mtEFG1_C: C-terminus of mitochondrial Elongation factor G1 (mtEFG1)-like proteins found in eukaryotes.  Eukaryotic cells harbor 2 protein synthesis systems: one localized in the cytoplasm, the other in the mitochondria. Most factors regulating mitochondrial protein synthesis are encoded by nuclear genes, translated in the cytoplasm, and then transported to the mitochondria. The eukaryotic system of elongation factor (EF) components is more complex than that in prokaryotes, with both cytoplasmic and mitochondrial elongation factors and multiple isoforms being expressed in certain species.  Eukaryotic EF-2 operates in the cytosolic protein synthesis machinery of eukaryotes, EF-Gs in protein synthesis in bacteria.  Eukaryotic mtEFG1 proteins show significant homology to bacterial EF-Gs.  Mutants in yeast mtEFG1 have impaired mitochondrial protein synthesis, respiratory defects and a tendency to lose mitochondrial DNA. There are two forms of mtEFG present in mammals (desig
Probab=25.60  E-value=71  Score=19.02  Aligned_cols=26  Identities=12%  Similarity=0.083  Sum_probs=23.0

Q ss_pred             cCCceEEEEecCccHHHHHHHhhccc
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEAG   33 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeLG   33 (77)
                      |+|-.+.+.+|.|..-++++.|.+..
T Consensus         1 EPi~~~~I~~p~~~~g~v~~~l~~rr   26 (78)
T cd04097           1 EPIMKVEVTAPTEFQGNVIGLLNKRK   26 (78)
T ss_pred             CCEEEEEEEecHHHHHHHHHHHHHCC
Confidence            67888999999999999999998754


No 32 
>PRK05256 condesin subunit E; Provisional
Probab=25.14  E-value=51  Score=25.52  Aligned_cols=24  Identities=25%  Similarity=0.387  Sum_probs=20.0

Q ss_pred             CccHHHHHHHhhcccceeEeecCC
Q psy15627         19 PEAAYSSVSTLGEAGIVQFRDEER   42 (77)
Q Consensus        19 ~E~A~d~V~eLGeLGlVQF~DLN~   42 (77)
                      .|..+.++..|..+|.|+|.+=|.
T Consensus       152 ~ekvr~sLrrLrRlgmI~~l~~d~  175 (238)
T PRK05256        152 QEKVRTSLNRLRRLGMVWFMGHDS  175 (238)
T ss_pred             HHHHHHHHHHHHhccceeeecCCC
Confidence            367788999999999999988443


No 33 
>smart00838 EFG_C Elongation factor G C-terminus. This domain includes the carboxyl terminal regions of Elongation factor G, elongation factor 2 and some tetracycline resistance proteins and adopt a ferredoxin-like fold.
Probab=23.65  E-value=76  Score=19.13  Aligned_cols=33  Identities=15%  Similarity=0.218  Sum_probs=26.1

Q ss_pred             cCCceEEEEecCccHHHHHHHhhcc-cceeEeecCC
Q psy15627          8 EEMALCQLFIQPEAAYSSVSTLGEA-GIVQFRDEER   42 (77)
Q Consensus         8 E~M~l~qLiip~E~A~d~V~eLGeL-GlVQF~DLN~   42 (77)
                      |+|-.+.+.+|.|..-.+++.|.+. |.+  .+.++
T Consensus         3 EPi~~~~I~~p~~~~g~v~~~l~~rrG~i--~~~~~   36 (85)
T smart00838        3 EPIMKVEVTVPEEYMGDVIGDLNSRRGKI--EGMEQ   36 (85)
T ss_pred             CCEEEEEEEeCHHHHHHHHHHHHHcCCEE--ECeec
Confidence            7889999999999999999999764 433  34443


No 34 
>COG3454 Metal-dependent hydrolase involved in phosphonate metabolism [Inorganic ion transport and metabolism]
Probab=22.97  E-value=1.4e+02  Score=24.57  Aligned_cols=50  Identities=8%  Similarity=-0.007  Sum_probs=40.8

Q ss_pred             CCcccccCCceEEEEecCccHHHHHHHhhcccceeEeecCCCCCcccccee
Q psy15627          2 GAMFRSEEMALCQLFIQPEAAYSSVSTLGEAGIVQFRDEERPMCVSSSRVD   52 (77)
Q Consensus         2 ~slfRSE~M~l~qLiip~E~A~d~V~eLGeLGlVQF~DLN~~v~afqR~y~   52 (77)
                      .+.+|++---+.++=++.+...+.++++.+.+.|+.+-|+.+.+ =||+|.
T Consensus       124 ~g~lradHr~HlRcEvs~~~~l~~~e~~~~~p~v~LiSlMDH~P-GQrQf~  173 (377)
T COG3454         124 AGRLRADHRLHLRCEVSHPATLPLFEDLMDHPRVKLISLMDHTP-GQRQFA  173 (377)
T ss_pred             ccchhhccceeeeeecCChhHHHHHHHHhcCCCeeEEEecCCCC-Ccchhh
Confidence            35677777777777789999999999999999999999998754 477764


No 35 
>PF02629 CoA_binding:  CoA binding domain;  InterPro: IPR003781 This domain has a Rossmann fold and is found in a number of proteins including succinyl CoA synthetases, malate and ATP-citrate ligases.; GO: 0005488 binding; PDB: 3IL2_B 3IKT_A 3IKV_B 2SCU_D 1JKJ_D 2NU7_A 1CQI_A 1JLL_A 2NU8_D 1SCU_D ....
Probab=22.32  E-value=48  Score=20.54  Aligned_cols=28  Identities=29%  Similarity=0.351  Sum_probs=20.0

Q ss_pred             CceEEEEecCccHHHHHHHhhcccceeE
Q psy15627         10 MALCQLFIQPEAAYSSVSTLGEAGIVQF   37 (77)
Q Consensus        10 M~l~qLiip~E~A~d~V~eLGeLGlVQF   37 (77)
                      ....=+.+|.+.|.+++.++=+.|+=-+
T Consensus        63 i~iaii~VP~~~a~~~~~~~~~~gIk~i   90 (96)
T PF02629_consen   63 IDIAIITVPAEAAQEVADELVEAGIKGI   90 (96)
T ss_dssp             TSEEEEES-HHHHHHHHHHHHHTT-SEE
T ss_pred             CCEEEEEcCHHHHHHHHHHHHHcCCCEE
Confidence            3445578999999999999988775433


No 36 
>TIGR00341 conserved hypothetical protein TIGR00341. This conserved hypothetical protein is found so far only in three archaeal genomes and in Streptomyces coelicolor. It shares a hydrophobic uncharacterized domain (see model TIGR00271) of about 180 residues with several eubacterial proteins, including the much longer protein sll1151 of Synechocystis PCC6803.
Probab=21.82  E-value=1.6e+02  Score=23.42  Aligned_cols=21  Identities=10%  Similarity=0.021  Sum_probs=12.2

Q ss_pred             CCceEEEEecCccHHHHHHHh
Q psy15627          9 EMALCQLFIQPEAAYSSVSTL   29 (77)
Q Consensus         9 ~M~l~qLiip~E~A~d~V~eL   29 (77)
                      +|.++|+++|++.--.....|
T Consensus         2 ~mRliev~iP~~~~~~v~~~l   22 (325)
T TIGR00341         2 RHRTNDCLIPKEGVVMRKEIV   22 (325)
T ss_pred             CceEEEEEeccchHHHHHHHH
Confidence            467777777765544444444


No 37 
>PF08003 Methyltransf_9:  Protein of unknown function (DUF1698);  InterPro: IPR010017 Methyl transfer from the ubiquitous S-adenosyl-L-methionine (AdoMet) to either nitrogen, oxygen or carbon atoms is frequently employed in diverse organisms ranging from bacteria to plants and mammals. The reaction is catalysed by methyltransferases (Mtases) and modifies DNA, RNA, proteins and small molecules, such as catechol for regulatory purposes. The various aspects of the role of DNA methylation in prokaryotic restriction-modification systems and in a number of cellular processes in eukaryotes including gene regulation and differentiation is well documented. Three classes of DNA Mtases transfer the methyl group from AdoMet to the target base to form either N-6-methyladenine, or N-4-methylcytosine, or C-5- methylcytosine. In C-5-cytosine Mtases, ten conserved motifs are arranged in the same order []. Motif I (a glycine-rich or closely related consensus sequence; FAGxGG in M.HhaI []), shared by other AdoMet-Mtases [], is part of the cofactor binding site and motif IV (PCQ) is part of the catalytic site. In contrast, sequence comparison among N-6-adenine and N-4-cytosine Mtases indicated two of the conserved segments [], although more conserved segments may be present. One of them corresponds to motif I in C-5-cytosine Mtases, and the other is named (D/N/S)PP(Y/F). Crystal structures are known for a number of Mtases [, , , ]. The cofactor binding sites are almost identical and the essential catalytic amino acids coincide. The comparable protein folding and the existence of equivalent amino acids in similar secondary and tertiary positions indicate that many (if not all) AdoMet-Mtases have a common catalytic domain structure. This permits tertiary structure prediction of other DNA, RNA, protein, and small-molecule AdoMet-Mtases from their amino acid sequences []. This entry represents a set of bacterial AdoMet-dependent tRNA (mo5U34)-methyltransferases. These enzymes catalyse the conversion of 5-hydroxyuridine (ho5U) to 5-methoxyuridine (mo5U) at the wobble position (34) of tRNA []. The 5-methoxyuridine is subsequently converted to uridine-5-oxyacetic acid, a modified nucleoside that is apparently necessary for the efficient decoding of G-ending Pro, Ala, and Val codons in these organisms [].; GO: 0016300 tRNA (uracil) methyltransferase activity, 0002098 tRNA wobble uridine modification
Probab=21.72  E-value=92  Score=24.85  Aligned_cols=45  Identities=18%  Similarity=0.163  Sum_probs=37.3

Q ss_pred             EEecCccHHHHHHHhhcccceeEeecCCCCCccccceecCCCccc
Q psy15627         15 LFIQPEAAYSSVSTLGEAGIVQFRDEERPMCVSSSRVDWNTSHAF   59 (77)
Q Consensus        15 Liip~E~A~d~V~eLGeLGlVQF~DLN~~v~afqR~y~~~~~~~~   59 (77)
                      -+||+-.|-..+.+=.-.-.|..+|.++--..=||+-+|-+.+..
T Consensus       243 ~FiPs~~~L~~wl~r~gF~~v~~v~~~~Tt~~EQR~T~Wm~~~SL  287 (315)
T PF08003_consen  243 WFIPSVAALKNWLERAGFKDVRCVDVSPTTIEEQRKTDWMDFQSL  287 (315)
T ss_pred             EEeCCHHHHHHHHHHcCCceEEEecCccCCHHHhccCCCcCcccH
Confidence            367888887777776667789999999999999999999887754


Done!