Query psy16952
Match_columns 161
No_of_seqs 128 out of 152
Neff 2.9
Searched_HMMs 46136
Date Fri Aug 16 17:53:34 2013
Command hhsearch -i /work/01045/syshi/Psyhhblits/psy16952.a3m -d /work/01045/syshi/HHdatabase/Cdd.hhm -o /work/01045/syshi/hhsearch_cdd/16952hhsearch_cdd -cpu 12 -v 0
No Hit Prob E-value P-value Score SS Cols Query HMM Template HMM
1 KOG1254|consensus 100.0 5E-41 1.1E-45 307.2 4.9 101 1-118 490-596 (600)
2 KOG1254|consensus 100.0 1.2E-33 2.7E-38 258.8 2.7 84 78-161 353-436 (600)
3 PLN02522 ATP citrate (pro-S)-l 99.8 6.5E-21 1.4E-25 176.7 3.5 85 77-161 360-444 (608)
4 PLN02522 ATP citrate (pro-S)-l 99.8 9.7E-20 2.1E-24 169.0 3.0 96 1-113 498-593 (608)
5 cd06102 citrate_synt_like_2 Ci 99.1 1.6E-11 3.4E-16 105.1 2.5 82 77-160 28-140 (282)
6 cd06101 citrate_synt Citrate s 98.9 9.5E-10 2.1E-14 92.6 2.9 77 81-160 22-114 (265)
7 PRK06224 citrate synthase; Pro 98.8 1.6E-09 3.5E-14 90.7 2.7 83 76-160 15-97 (263)
8 cd06100 CCL_ACL-C Citryl-CoA l 98.1 1.5E-06 3.3E-11 71.1 2.7 74 86-160 1-75 (227)
9 cd06100 CCL_ACL-C Citryl-CoA l 97.8 1.7E-05 3.6E-10 65.0 3.8 56 2-62 133-189 (227)
10 cd06099 CS_ACL-C_CCL Citrate s 97.6 3.2E-05 6.9E-10 63.3 1.7 52 2-53 118-174 (213)
11 PRK06224 citrate synthase; Pro 97.5 0.00012 2.5E-09 61.7 4.5 58 2-64 158-216 (263)
12 cd06109 BsCS-I_like Bacillus s 97.0 0.00044 9.6E-09 60.9 3.0 74 78-160 125-198 (349)
13 cd06099 CS_ACL-C_CCL Citrate s 96.9 0.0005 1.1E-08 56.4 2.3 57 103-160 6-62 (213)
14 cd06108 Ec2MCS_like Escherichi 96.8 0.00065 1.4E-08 60.3 2.0 64 96-160 144-207 (363)
15 COG0372 GltA Citrate synthase 96.8 0.00062 1.4E-08 61.4 1.7 66 94-160 159-225 (390)
16 cd06101 citrate_synt Citrate s 96.8 0.00082 1.8E-08 56.9 2.2 59 2-60 170-233 (265)
17 cd06102 citrate_synt_like_2 Ci 96.4 0.0021 4.5E-08 55.5 2.5 78 2-113 194-271 (282)
18 PLN02456 citrate synthase 96.3 0.0023 5.1E-08 58.5 2.4 75 78-160 209-288 (455)
19 PRK14035 citrate synthase; Pro 96.3 0.0025 5.3E-08 56.8 2.2 65 95-160 148-212 (371)
20 cd06109 BsCS-I_like Bacillus s 96.2 0.0048 1E-07 54.4 3.7 50 2-51 252-307 (349)
21 PRK14035 citrate synthase; Pro 96.1 0.0037 8E-08 55.7 2.7 58 2-60 266-326 (371)
22 TIGR01800 cit_synth_II 2-methy 96.1 0.003 6.5E-08 55.8 2.0 64 96-160 146-209 (368)
23 cd06110 BSuCS-II_like Bacillus 96.1 0.0043 9.4E-08 54.4 3.0 58 2-60 263-323 (356)
24 PF00285 Citrate_synt: Citrate 96.1 0.0029 6.4E-08 55.2 1.7 50 2-51 265-319 (356)
25 PRK14032 citrate synthase; Pro 96.0 0.0035 7.6E-08 57.3 1.9 67 94-160 201-268 (447)
26 PRK14034 citrate synthase; Pro 96.0 0.0055 1.2E-07 54.6 3.0 81 2-87 266-360 (372)
27 TIGR01798 cit_synth_I citrate 96.0 0.0061 1.3E-07 55.2 3.3 59 2-60 304-371 (412)
28 PRK14036 citrate synthase; Pro 95.9 0.0066 1.4E-07 54.2 3.1 60 2-61 268-332 (377)
29 cd06118 citrate_synt_like_1 Ci 95.9 0.0043 9.3E-08 54.4 1.8 51 2-52 263-318 (358)
30 cd06110 BSuCS-II_like Bacillus 95.8 0.0047 1E-07 54.2 2.0 63 97-160 147-209 (356)
31 PRK05614 gltA type II citrate 95.6 0.011 2.4E-07 53.5 3.6 66 94-160 191-261 (419)
32 PRK14037 citrate synthase; Pro 95.6 0.0078 1.7E-07 53.7 2.5 66 94-160 147-212 (377)
33 PF00285 Citrate_synt: Citrate 95.6 0.0046 1E-07 54.0 0.9 64 96-160 146-211 (356)
34 cd06118 citrate_synt_like_1 Ci 95.5 0.0066 1.4E-07 53.2 1.7 64 96-160 146-209 (358)
35 PLN02456 citrate synthase 95.4 0.015 3.1E-07 53.5 3.7 50 2-51 342-398 (455)
36 PRK12350 citrate synthase 2; P 95.4 0.01 2.2E-07 52.8 2.6 49 111-160 149-197 (353)
37 cd06113 citrate_synt_like_1_2 95.4 0.0086 1.9E-07 53.9 2.0 67 94-160 171-238 (406)
38 cd06108 Ec2MCS_like Escherichi 95.4 0.015 3.3E-07 51.8 3.5 50 2-52 261-313 (363)
39 TIGR01800 cit_synth_II 2-methy 95.3 0.013 2.7E-07 51.9 2.7 58 2-60 263-323 (368)
40 cd06107 EcCS_AthCS-per_like Es 95.2 0.013 2.9E-07 52.4 2.7 50 2-51 282-338 (382)
41 PRK05614 gltA type II citrate 95.2 0.017 3.8E-07 52.3 3.3 51 2-52 317-375 (419)
42 PRK14036 citrate synthase; Pro 95.2 0.011 2.4E-07 52.8 2.0 66 94-160 149-214 (377)
43 cd06114 EcCS_like Escherichia 95.1 0.013 2.9E-07 52.6 2.4 64 96-160 175-243 (400)
44 TIGR01798 cit_synth_I citrate 95.1 0.029 6.2E-07 50.9 4.3 64 96-160 180-248 (412)
45 cd06116 CaCS_like Chloroflexus 94.9 0.02 4.3E-07 51.4 2.7 51 2-52 275-332 (384)
46 PRK14033 citrate synthase; Pro 94.6 0.024 5.1E-07 50.6 2.5 75 77-160 145-219 (375)
47 PRK12350 citrate synthase 2; P 94.5 0.032 6.8E-07 49.8 3.0 57 2-60 251-313 (353)
48 cd06111 DsCS_like Cold-active 94.4 0.027 5.8E-07 49.9 2.5 64 96-160 146-209 (362)
49 PRK14034 citrate synthase; Pro 94.4 0.027 5.8E-07 50.3 2.3 76 76-160 137-212 (372)
50 cd06112 citrate_synt_like_1_1 94.4 0.029 6.3E-07 49.9 2.5 59 2-60 267-331 (373)
51 PRK09569 type I citrate syntha 94.4 0.043 9.4E-07 50.3 3.7 51 2-52 326-382 (437)
52 PRK14037 citrate synthase; Pro 94.0 0.04 8.8E-07 49.2 2.8 50 2-51 267-322 (377)
53 cd06114 EcCS_like Escherichia 93.7 0.064 1.4E-06 48.4 3.5 50 2-51 299-356 (400)
54 cd06115 AthCS_per_like Arabido 93.7 0.059 1.3E-06 48.9 3.3 51 2-52 302-359 (410)
55 PRK12351 methylcitrate synthas 93.7 0.061 1.3E-06 48.2 3.2 58 2-60 273-333 (378)
56 cd06112 citrate_synt_like_1_1 93.6 0.038 8.3E-07 49.2 1.9 78 74-160 136-213 (373)
57 cd06117 Ec2MCS_like_1 Subgroup 93.4 0.055 1.2E-06 48.2 2.4 58 2-60 264-324 (366)
58 PRK12351 methylcitrate synthas 92.9 0.064 1.4E-06 48.2 2.1 64 96-160 156-219 (378)
59 cd06107 EcCS_AthCS-per_like Es 92.7 0.062 1.3E-06 48.2 1.7 48 112-160 181-228 (382)
60 cd06115 AthCS_per_like Arabido 92.6 0.067 1.5E-06 48.5 1.8 49 111-160 200-248 (410)
61 cd06116 CaCS_like Chloroflexus 92.5 0.094 2E-06 47.1 2.7 66 94-160 151-221 (384)
62 cd06103 ScCS-like Saccharomyce 91.9 0.2 4.2E-06 45.9 3.9 51 2-52 325-381 (426)
63 PRK12349 citrate synthase 3; P 91.5 0.098 2.1E-06 46.6 1.5 64 96-160 152-215 (369)
64 cd06117 Ec2MCS_like_1 Subgroup 91.0 0.12 2.6E-06 46.1 1.7 64 96-160 147-210 (366)
65 COG0372 GltA Citrate synthase 90.6 0.32 6.8E-06 44.3 3.9 75 2-78 280-371 (390)
66 cd06111 DsCS_like Cold-active 89.1 0.31 6.7E-06 43.3 2.6 57 2-59 263-322 (362)
67 cd06113 citrate_synt_like_1_2 89.0 0.36 7.7E-06 43.7 3.0 51 2-52 304-364 (406)
68 PRK09569 type I citrate syntha 88.6 0.28 6.1E-06 45.1 2.0 64 94-160 201-264 (437)
69 cd06103 ScCS-like Saccharomyce 88.5 0.29 6.3E-06 44.8 2.1 73 78-160 192-264 (426)
70 PRK14032 citrate synthase; Pro 88.3 0.4 8.6E-06 44.1 2.8 51 2-52 334-394 (447)
71 cd06105 ScCit1-2_like Saccharo 88.1 0.38 8.3E-06 44.1 2.6 65 94-160 198-262 (427)
72 TIGR01793 cit_synth_euk citrat 87.8 0.59 1.3E-05 42.9 3.7 49 2-50 326-380 (427)
73 PRK12349 citrate synthase 3; P 80.9 1.5 3.2E-05 39.2 2.9 50 2-52 270-322 (369)
74 TIGR01793 cit_synth_euk citrat 79.2 1.5 3.3E-05 40.3 2.5 65 94-160 201-265 (427)
75 PRK14033 citrate synthase; Pro 78.2 2 4.3E-05 38.5 2.9 57 2-59 273-332 (375)
76 cd06106 ScCit3_like Saccharomy 76.0 2 4.3E-05 39.5 2.4 47 114-160 218-264 (428)
77 cd06106 ScCit3_like Saccharomy 75.7 3 6.5E-05 38.4 3.4 49 2-50 325-381 (428)
78 PF08640 U3_assoc_6: U3 small 70.3 4.5 9.9E-05 29.3 2.6 20 51-70 9-28 (83)
79 KOG2617|consensus 66.7 5.6 0.00012 37.6 3.0 47 2-48 345-397 (458)
80 COG1015 DeoB Phosphopentomutas 61.1 2.7 5.8E-05 39.0 -0.1 36 105-140 308-346 (397)
81 cd08785 CARD_CARD9-like Caspas 60.0 8.4 0.00018 28.3 2.4 24 49-72 21-44 (86)
82 cd06105 ScCit1-2_like Saccharo 54.2 16 0.00035 33.7 3.7 48 2-49 323-376 (427)
83 PRK05849 hypothetical protein; 50.1 17 0.00036 36.1 3.3 28 43-70 459-486 (783)
84 cd08810 CARD_BCL10 Caspase act 49.4 17 0.00036 26.8 2.5 21 49-69 21-41 (84)
85 PF10415 FumaraseC_C: Fumarase 48.8 13 0.00028 25.1 1.7 24 47-70 26-49 (55)
86 cd01671 CARD Caspase activatio 45.3 24 0.00051 23.6 2.6 24 48-71 17-40 (80)
87 PF08665 PglZ: PglZ domain; I 44.1 7.8 0.00017 30.4 0.1 31 102-132 142-174 (181)
88 PF00619 CARD: Caspase recruit 43.9 24 0.00053 23.8 2.5 23 48-70 20-42 (85)
89 PF14237 DUF4339: Domain of un 43.6 21 0.00046 22.4 2.0 22 54-75 9-30 (45)
90 PF04418 DUF543: Domain of unk 41.5 10 0.00023 27.4 0.4 16 96-111 36-51 (75)
91 cd08788 CARD_NOD2_2_CARD15 Cas 41.1 17 0.00037 27.2 1.5 21 49-69 19-39 (81)
92 cd00038 CAP_ED effector domain 40.4 25 0.00054 22.7 2.1 37 57-93 3-39 (115)
93 PF14658 EF-hand_9: EF-hand do 39.9 32 0.0007 24.5 2.7 22 49-70 20-43 (66)
94 TIGR02503 type_III_SycN type I 39.3 14 0.00031 29.0 0.9 41 105-145 44-92 (119)
95 PF14112 DUF4284: Domain of un 36.3 34 0.00075 26.0 2.5 75 60-147 11-98 (122)
96 cd00052 EH Eps15 homology doma 36.0 51 0.0011 20.5 2.9 27 42-69 13-40 (67)
97 PF13373 DUF2407_C: DUF2407 C- 35.7 28 0.00061 27.6 2.0 17 51-68 4-20 (140)
98 TIGR01669 phage_XkdX phage unc 35.3 29 0.00062 22.8 1.7 22 52-73 11-32 (45)
99 cd05119 RIO RIO kinase family, 34.2 6.7 0.00015 29.0 -1.6 42 33-78 142-185 (187)
100 PF03808 Glyco_tran_WecB: Glyc 32.0 47 0.001 26.0 2.7 64 54-119 80-154 (172)
101 cd08329 CARD_BIRC2_BIRC3 Caspa 31.9 47 0.001 24.4 2.6 23 49-71 28-50 (94)
102 PRK11753 DNA-binding transcrip 31.9 27 0.00059 26.6 1.4 36 58-93 7-42 (211)
103 PF04695 Pex14_N: Peroxisomal 31.2 44 0.00095 25.8 2.4 20 50-70 27-46 (136)
104 cd08330 CARD_ASC_NALP1 Caspase 30.3 54 0.0012 23.4 2.6 23 49-71 20-42 (82)
105 PRK06310 DNA polymerase III su 30.0 37 0.0008 28.4 1.9 81 46-140 164-246 (250)
106 cd01104 HTH_MlrA-CarA Helix-Tu 29.1 50 0.0011 21.3 2.1 27 58-93 38-64 (68)
107 PF01479 S4: S4 domain; Inter 28.8 68 0.0015 19.7 2.6 23 51-73 5-28 (48)
108 PRK07983 exodeoxyribonuclease 28.0 2.3E+02 0.005 23.4 6.3 69 45-122 143-215 (219)
109 cd08323 CARD_APAF1 Caspase act 27.7 63 0.0014 23.6 2.6 23 49-71 19-41 (86)
110 PF01595 DUF21: Domain of unkn 27.6 55 0.0012 24.6 2.4 25 57-81 159-183 (183)
111 PF00884 Sulfatase: Sulfatase; 27.6 19 0.00042 28.0 -0.1 15 122-136 240-254 (308)
112 smart00812 Alpha_L_fucos Alpha 27.5 33 0.00071 30.9 1.3 28 30-57 296-327 (384)
113 PF09693 Phage_XkdX: Phage unc 27.4 48 0.001 21.0 1.7 19 55-73 9-27 (40)
114 smart00100 cNMP Cyclic nucleot 26.8 47 0.001 21.3 1.7 35 58-92 4-38 (120)
115 PF13407 Peripla_BP_4: Peripla 26.5 2.1E+02 0.0045 22.0 5.4 75 2-77 140-234 (257)
116 cd04448 DEP_PIKfyve DEP (Dishe 25.6 86 0.0019 22.4 2.9 35 43-77 28-63 (81)
117 COG1069 AraB Ribulose kinase [ 25.4 35 0.00075 33.1 1.1 24 101-124 135-168 (544)
118 cd08326 CARD_CASP9 Caspase act 25.4 72 0.0016 23.0 2.5 24 49-72 21-44 (84)
119 COG4003 Uncharacterized protei 25.3 71 0.0015 24.7 2.6 49 10-70 8-56 (98)
120 KOG3340|consensus 24.9 45 0.00098 31.4 1.7 30 30-59 315-348 (454)
121 TIGR00433 bioB biotin syntheta 24.2 47 0.001 27.2 1.6 31 59-90 254-284 (296)
122 cd04371 DEP DEP domain, named 23.9 88 0.0019 20.8 2.6 37 42-78 27-64 (81)
123 PF03767 Acid_phosphat_B: HAD 22.9 30 0.00065 28.6 0.2 46 32-77 70-118 (229)
124 cd04442 DEP_1_DEP6 DEP (Dishev 22.0 96 0.0021 22.6 2.6 38 40-77 25-63 (82)
125 cd00165 S4 S4/Hsp/ tRNA synthe 21.8 1.1E+02 0.0023 18.4 2.5 22 51-72 5-27 (70)
126 PF13344 Hydrolase_6: Haloacid 21.4 1.6E+02 0.0035 21.2 3.7 56 38-96 2-77 (101)
127 PF09868 DUF2095: Uncharacteri 21.3 83 0.0018 25.4 2.4 21 48-70 66-86 (128)
128 cd04450 DEP_RGS7-like DEP (Dis 20.9 1E+02 0.0022 21.9 2.6 29 42-70 27-56 (88)
129 PF03224 V-ATPase_H_N: V-ATPas 20.9 1.2E+02 0.0025 25.7 3.3 60 7-69 18-78 (312)
130 COG4974 XerD Site-specific rec 20.8 60 0.0013 29.3 1.6 67 58-125 114-196 (300)
131 PF10523 BEN: BEN domain; Int 20.7 1.1E+02 0.0024 20.2 2.6 17 2-18 42-58 (79)
132 PRK10475 23S rRNA pseudouridin 20.6 90 0.0019 27.1 2.6 29 48-76 8-38 (290)
133 cd04777 HTH_MerR-like_sg1 Heli 20.5 1.3E+02 0.0027 21.7 3.0 24 46-70 44-67 (107)
134 PF10975 DUF2802: Protein of u 20.4 90 0.0019 22.0 2.1 23 46-69 44-66 (70)
135 PF02796 HTH_7: Helix-turn-hel 20.3 46 0.00099 20.9 0.6 18 82-100 17-34 (45)
136 PF09278 MerR-DNA-bind: MerR, 20.3 1.4E+02 0.003 19.3 2.9 22 48-70 5-26 (65)
137 PF13512 TPR_18: Tetratricopep 20.2 75 0.0016 25.5 1.9 26 4-30 68-93 (142)
138 PF08671 SinI: Anti-repressor 20.1 1.5E+02 0.0033 18.2 2.9 18 52-70 11-28 (30)
No 1
>KOG1254|consensus
Probab=100.00 E-value=5e-41 Score=307.23 Aligned_cols=101 Identities=62% Similarity=0.964 Sum_probs=97.0
Q ss_pred CchhhHHHHHHhhCCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCCHHHHHHHHHhhcccCccCcc
Q psy16952 1 MRVKIIKEFVLQNFPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFTREEAQEYVEMGAINGLFRGQ 80 (161)
Q Consensus 1 ~RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft~eEa~e~i~~G~lNglFRG~ 80 (161)
+||++||+|+++|||+||||||||+||+|||+||||||||||||||++||||||+||+||+|||||||++|+|||||.
T Consensus 490 ~rv~~lk~~~~~~fp~~~~~~yal~ve~~t~~k~~nlilnvdg~i~~~fvd~l~~~g~ft~~e~~e~i~ig~lng~fv-- 567 (600)
T KOG1254|consen 490 KRVEILKAFARKNFPATPLLDYALEVEKITTSKKPNLILNVDGAIAVLFVDLLRNSGMFTKEEADEYINIGALNGLFV-- 567 (600)
T ss_pred cchhhHHHHHHhhCCCchHHHhhhhheeeeccCCCCEEEeccchhHHHHHHHHhccCCccHHHhhhheecccccceEE--
Confidence 599999999999999999999999999999999999999999999999999999999999999999999999999995
Q ss_pred cccccCcchhhhhhcccCcchhhhhhhhhccCC------hhHHH
Q psy16952 81 ELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLP------PYVCK 118 (161)
Q Consensus 81 El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp------~ya~~ 118 (161)
+.+++ |+||+..+||||. ||++.
T Consensus 568 ------------l~rsi---g~igh~~dqkrlkq~lyrhpwdd~ 596 (600)
T KOG1254|consen 568 ------------LGRSI---GFIGHYLDQKRLKQGLYRHPWDDI 596 (600)
T ss_pred ------------eeeec---chhhhhccHhhhhCccccCCchhh
Confidence 99999 7999999999998 67653
No 2
>KOG1254|consensus
Probab=99.97 E-value=1.2e-33 Score=258.84 Aligned_cols=84 Identities=65% Similarity=1.003 Sum_probs=83.4
Q ss_pred CcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhh
Q psy16952 78 RGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSG 157 (161)
Q Consensus 78 RG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sG 157 (161)
||+|++|||+|||.++++++|+||++|+||||||+|+|+++|||||+|++||||||||||||||+++|+|||++|||++|
T Consensus 353 rGaeviYA~~p~~~~~a~elG~gg~~Sllw~~~~lp~Ya~kfie~~~m~~aDhgp~Vsga~ntI~~~ra~kdl~sslv~g 432 (600)
T KOG1254|consen 353 RGAEVIYADVPISLGYASELGNGGVYSLLWFQRRLPQYARKFIEICTMLTADHGPAVSGAGNTIANFRAGKDLFSSLVRG 432 (600)
T ss_pred CCceeeecCchhhhhhHhhccccceEccccccccchHHHHHHHHHHhhccCCCCceeEeccCceEEeccHHHHHHHHHHH
Confidence 89999999999999999999999999999999999999999999999999999999999999999999999999999999
Q ss_pred cccC
Q psy16952 158 LLTI 161 (161)
Q Consensus 158 llti 161 (161)
|+||
T Consensus 433 Llti 436 (600)
T KOG1254|consen 433 LLTI 436 (600)
T ss_pred Hhhh
Confidence 9997
No 3
>PLN02522 ATP citrate (pro-S)-lyase
Probab=99.81 E-value=6.5e-21 Score=176.73 Aligned_cols=85 Identities=67% Similarity=1.120 Sum_probs=82.7
Q ss_pred cCcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhh
Q psy16952 77 FRGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVS 156 (161)
Q Consensus 77 FRG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~s 156 (161)
-||+|+.|+|||||||+++++++|+++.||||+|++|+++++++|++|++.|||||++|+++++.|++++|+|+.+|+++
T Consensus 360 ~~~~~~~~rG~~i~dlig~~~~f~~~~~ll~~g~~p~~~~~~~ld~~Lvl~ADHG~~aSt~~aarv~AStg~dl~savaa 439 (608)
T PLN02522 360 DRGEEPCYAGVPMSSIIEKDYGVGDVISLLWFKRSLPRYCTKFIEMCIMLCADHGPCVSGAHNTIVTARAGKDLVSSLVS 439 (608)
T ss_pred CCCCeeEECCccHHHHhccCCCHHHHHHHHHcCCCCCHHHHHHHHHHHHHhccCCCCccHHHHHHHhhccCCcHHHHHHH
Confidence 47999999999999999999999999999999999999999999999999999999999999999999999999999999
Q ss_pred hcccC
Q psy16952 157 GLLTI 161 (161)
Q Consensus 157 Gllti 161 (161)
|++++
T Consensus 440 Gl~al 444 (608)
T PLN02522 440 GLLTI 444 (608)
T ss_pred HHHhc
Confidence 99874
No 4
>PLN02522 ATP citrate (pro-S)-lyase
Probab=99.77 E-value=9.7e-20 Score=168.98 Aligned_cols=96 Identities=42% Similarity=0.731 Sum_probs=91.5
Q ss_pred CchhhHHHHHHhhCCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCCHHHHHHHHHhhcccCccCcc
Q psy16952 1 MRVKIIKEFVLQNFPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFTREEAQEYVEMGAINGLFRGQ 80 (161)
Q Consensus 1 ~RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft~eEa~e~i~~G~lNglFRG~ 80 (161)
.|+++|++++++++|++++++||++||+++++||.||++||||++|++|+||.+.|++||++||+|||+.|.+||+|-
T Consensus 498 pRa~~L~~~~~~~~~~~~~~~~a~~vE~~~~~~~k~L~~NVDga~a~i~~~lg~p~~~ft~~e~~~~~~~~~~~~lF~-- 575 (608)
T PLN02522 498 KRVELLQKYARTHFPSVKYMEYAVQVETYTLSKANNLVLNVDGAIGSLFLDLLAGSGMFTKQEIDEIVEIGYLNGLFV-- 575 (608)
T ss_pred hhHHHHHHHHHHhccccHHHHHHHHHHHHHhhccCCCCcCcHhHHHHHHHHcCCCcccCccccccccccccccceEEE--
Confidence 499999999999999999999999999999999999999999999999999999999999999999999999999995
Q ss_pred cccccCcchhhhhhcccCcchhhhhhhhhccCC
Q psy16952 81 ELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLP 113 (161)
Q Consensus 81 El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp 113 (161)
+.+.. |.+++.|-|+++.
T Consensus 576 ------------l~R~~---GwiAH~~Eq~~~~ 593 (608)
T PLN02522 576 ------------LARSI---GLIGHTFDQKRLK 593 (608)
T ss_pred ------------eehHH---HHHHHHHHHHHhh
Confidence 77766 7999999999876
No 5
>cd06102 citrate_synt_like_2 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and
Probab=99.14 E-value=1.6e-11 Score=105.07 Aligned_cols=82 Identities=24% Similarity=0.411 Sum_probs=74.8
Q ss_pred cCcccccccCcchhhhhhcccCcchhhhhhhhhccC-------------------------------ChhHHHHhhhhhh
Q psy16952 77 FRGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQL-------------------------------PPYVCKFLEMSLM 125 (161)
Q Consensus 77 FRG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrl-------------------------------p~ya~~fiem~l~ 125 (161)
...+++.|+|+|+++++++. .+++|+.|||+.+.. ++...+.++++++
T Consensus 28 i~~~~~~yRG~da~~L~~~~-~~e~va~LLw~g~~~~~~l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l~~~LV 106 (282)
T cd06102 28 ITEGRLFYRGRDAVELAETA-TLEEVAALLWDGDEAARLLRLLAAALLGAAPSDAPVHRRLARAWGLDPAAADLLRRALV 106 (282)
T ss_pred EeCCeeEEcCccHHHHHhcC-CHHHHHHHHHcCCchHHHHHHHHHHhccCCCCcccHHHHHHHHhcCCHHHHHHHHHHHH
Confidence 34577999999999999886 599999999999966 7889999999999
Q ss_pred hccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 126 VTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 126 ~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.||||+..| .+.+.+++.+|.|+.+++++|+.+
T Consensus 107 L~ADHgln~S-t~aaRv~AStgadl~~avaagl~a 140 (282)
T cd06102 107 LLADHELNAS-TFAARVAASTGASLYAAVLAGLAA 140 (282)
T ss_pred HHhccCCCcH-HHHHHHHhccCCcHHHHHHHHHHh
Confidence 9999999988 779999999999999999999875
No 6
>cd06101 citrate_synt Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the
Probab=98.88 E-value=9.5e-10 Score=92.60 Aligned_cols=77 Identities=27% Similarity=0.445 Sum_probs=65.3
Q ss_pred cccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHh----------------hhhhhhccCCCCcccCccceeeee
Q psy16952 81 ELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFL----------------EMSLMVTADHGPAVSGAHNTIVCA 144 (161)
Q Consensus 81 El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fi----------------em~l~~~aDhGpaVsGahntivta 144 (161)
++.|+|+||.|+.++ .....|+-|||+. +||.|+..|+ ++++++.||||+..| .+.+-+++
T Consensus 22 ~l~yRGy~i~dL~~~-~~f~ev~~LL~~G-~lP~~~~nfl~m~~g~~p~~~~~~~l~~~Lvl~aDHg~naS-T~aaRv~a 98 (265)
T cd06101 22 GLRYRGYPIEELAEN-SSFEEVAYLLLTG-ELPSYAENFLYMLGGEEPDPEFAKAMDLALILHADHEGNAS-TFTARVVG 98 (265)
T ss_pred EEEECCeeHHHHHhc-CCHHHHHHHHHcC-CCCcHHHHHHHHhcCCCCCHHHHHHHHHHHhhhcCCCCchH-HHHHHHHH
Confidence 699999999999976 6889999999995 6875555555 457888999999777 56778999
Q ss_pred ccCCchhHHhhhhccc
Q psy16952 145 RAGKDLVSSLVSGLLT 160 (161)
Q Consensus 145 ragkdlvssl~sGllt 160 (161)
.+|-|+.+|+++|+.+
T Consensus 99 St~ad~~~av~agl~a 114 (265)
T cd06101 99 STLSDPYSAIAAAIAA 114 (265)
T ss_pred ccCCcHHHHHHHHHHh
Confidence 9999999999999875
No 7
>PRK06224 citrate synthase; Provisional
Probab=98.83 E-value=1.6e-09 Score=90.71 Aligned_cols=83 Identities=23% Similarity=0.391 Sum_probs=72.9
Q ss_pred ccCcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhh
Q psy16952 76 LFRGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLV 155 (161)
Q Consensus 76 lFRG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~ 155 (161)
-.+|+|+.|+|+||.|++++ .+..+++-|+|+-+...+-..+.++.+++..|||||. .+++.+-+++-+|.|+.++++
T Consensus 15 ~~~~~~l~yrG~~~~dL~~~-~sf~e~~~lll~G~lP~~~e~r~f~a~Lv~~adHg~~-~St~aar~~ast~~~l~~av~ 92 (263)
T PRK06224 15 DVTPEEIYVRGYDLEDLIGK-LSFTDMIFLLLRGRLPTPNEARLLDAVLVALVDHGLT-PSAAAARMTASGGESLQGAVA 92 (263)
T ss_pred eecCCeeEECCccHHHHhhc-CCHHHHHHHHHcCCCCCHHHHHHHHHHHHHHhccCCC-cHHHHHHHHHhcCccHHHHHH
Confidence 34678899999999999976 6899999999997755566779999999999999999 677888889999999999999
Q ss_pred hhccc
Q psy16952 156 SGLLT 160 (161)
Q Consensus 156 sGllt 160 (161)
+|+++
T Consensus 93 agl~a 97 (263)
T PRK06224 93 AGLLA 97 (263)
T ss_pred HHHhh
Confidence 99875
No 8
>cd06100 CCL_ACL-C Citryl-CoA lyase (CCL), the C-terminal portion of the single-subunit type ATP-citrate lyase (ACL) and the C-terminal portion of the large subunit of the two-subunit type ACL. CCL cleaves citryl-CoA (CiCoA) to acetyl-CoA (AcCoA) and oxaloacetate (OAA). ACL catalyzes an ATP- and a CoA- dependant cleavage of citrate to form AcCoA and OAA in a multistep reaction, the final step of which is likely to involve the cleavage of CiCoA to generate AcCoA and OAA. In fungi, yeast, plants, and animals ACL is cytosolic and generates AcCoA for lipogenesis. ACL may be required for fruiting body maturation in the filamentous fungus Sordaria macrospore. In several groups of autotrophic prokaryotes and archaea, ACL carries out the citrate-cleavage reaction of the reductive tricarboxylic acid (rTCA) cycle. In the family Aquificaceae this latter reaction in the rTCA cycle is carried out via a two enzyme system the second enzyme of which is CCL; the first enzyme is citryl-CoA synthetase (CC
Probab=98.12 E-value=1.5e-06 Score=71.10 Aligned_cols=74 Identities=42% Similarity=0.657 Sum_probs=65.7
Q ss_pred CcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccC-CchhHHhhhhccc
Q psy16952 86 GMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAG-KDLVSSLVSGLLT 160 (161)
Q Consensus 86 G~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtarag-kdlvssl~sGllt 160 (161)
|++|+|++++ .+...++-++|+.+...+...+-++.+++..+||||...+++.+-+++-+| -|+.+++++|+.+
T Consensus 1 G~~~~dL~~~-~sf~e~~~lml~G~~P~~~e~~~f~~~Lvl~adhg~~~~St~aar~~astg~~~~~~~vaag~~a 75 (227)
T cd06100 1 GYDLSDLIGK-ISFGDVLYLLLKGRLPTPYEARLLEALLVALADHGPATPSAHAARLTASAGPEDLQSAVAAGLLG 75 (227)
T ss_pred CCCHHHHHhC-CCHHHHHHHHhCCCCCCHHHHHHHHHHHHHhccCCCCCchHHHHHHHHHcCCccHHHHHHHHHhc
Confidence 7899999974 688999999998776667888999999999999999778888888888888 9999999999876
No 9
>cd06100 CCL_ACL-C Citryl-CoA lyase (CCL), the C-terminal portion of the single-subunit type ATP-citrate lyase (ACL) and the C-terminal portion of the large subunit of the two-subunit type ACL. CCL cleaves citryl-CoA (CiCoA) to acetyl-CoA (AcCoA) and oxaloacetate (OAA). ACL catalyzes an ATP- and a CoA- dependant cleavage of citrate to form AcCoA and OAA in a multistep reaction, the final step of which is likely to involve the cleavage of CiCoA to generate AcCoA and OAA. In fungi, yeast, plants, and animals ACL is cytosolic and generates AcCoA for lipogenesis. ACL may be required for fruiting body maturation in the filamentous fungus Sordaria macrospore. In several groups of autotrophic prokaryotes and archaea, ACL carries out the citrate-cleavage reaction of the reductive tricarboxylic acid (rTCA) cycle. In the family Aquificaceae this latter reaction in the rTCA cycle is carried out via a two enzyme system the second enzyme of which is CCL; the first enzyme is citryl-CoA synthetase (CC
Probab=97.83 E-value=1.7e-05 Score=65.03 Aligned_cols=56 Identities=46% Similarity=0.609 Sum_probs=50.5
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhccCCC-ceeeeccchhhHHHHHhhhhcCCCCHH
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITTSKKP-NLILNVDGVIAVAFVDLLRHSGSFTRE 62 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~Kk~-NLILNVDG~Igv~fvDllr~~G~Ft~e 62 (161)
|++.|++++++..+..|++++|.++|++..+++. ||-.||||.+|+++.|| | |+++
T Consensus 133 Ra~~L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l~~Nvd~~~a~~~~~l----G-~p~~ 189 (227)
T cd06100 133 RVPRLLELARELGPAGPHLDYALAVEKALTAAKGKPLPLNVDGAIAAILLDL----G-FPPG 189 (227)
T ss_pred hHHHHHHHHHHhccCCHHHHHHHHHHHHHHhccCCCCcccHHHHHHHHHHHh----C-CCHH
Confidence 8999999999999999999999999998887755 89999999999999999 4 6654
No 10
>cd06099 CS_ACL-C_CCL Citrate synthase (CS), citryl-CoA lyase (CCL), the C-terminal portion of the single-subunit type ATP-citrate lyase (ACL) and the C-terminal portion of the large subunit of the two-subunit type ACL. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) from citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. Some CS proteins function as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. CCL cleaves citryl-CoA (CiCoA) to AcCoA and OAA. ACLs catalyze an ATP- and a CoA- dependant cleavage of citrate to form AcCoA and OAA; they do this in a multistep reaction, the final step of which is likely to involve the cleavage of CiCoA to generate AcCoA and OAA. The overall CS reaction is thought to proceed through three partial reactions and i
Probab=97.56 E-value=3.2e-05 Score=63.33 Aligned_cols=52 Identities=27% Similarity=0.362 Sum_probs=46.6
Q ss_pred chhhHHHHHHhhCCCC---hhhhhhhhhhhhhccCC--CceeeeccchhhHHHHHhh
Q psy16952 2 RVKIIKEFVLQNFPTT---PLLNYALEVEKITTSKK--PNLILNVDGVIAVAFVDLL 53 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t---~~ldyAl~VE~iTt~Kk--~NLILNVDG~Igv~fvDll 53 (161)
|++.|++++++..+.. |+++.|.++|++..+++ -+|..|||+.+|+++.||=
T Consensus 118 Ra~~L~~~~~~l~~~~~~~~~~~~a~~le~~~~~~~~~r~l~~Nvd~~~a~l~~~lG 174 (213)
T cd06099 118 RATVLKKFAEELLKEDGDDPMFELAAELEKIAEEVLYEKKLYPNVDFYSGVLYKAMG 174 (213)
T ss_pred chHHHHHHHHHHHHhcCCCHHHHHHHHHHHHHHHHhhccCCCCChHHHHHHHHHHcC
Confidence 8999999999987665 99999999999888776 3999999999999999883
No 11
>PRK06224 citrate synthase; Provisional
Probab=97.52 E-value=0.00012 Score=61.67 Aligned_cols=58 Identities=29% Similarity=0.293 Sum_probs=50.1
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhccCC-CceeeeccchhhHHHHHhhhhcCCCCHHHH
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITTSKK-PNLILNVDGVIAVAFVDLLRHSGSFTREEA 64 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~Kk-~NLILNVDG~Igv~fvDllr~~G~Ft~eEa 64 (161)
|++.|++++++..+..|+++.|.+||++-.+++ .+|..||||..|++|.|| | |+.++.
T Consensus 158 Ra~~L~~~~~~~~~~~~~~~~a~~~~~~~~~~~~~~l~~Nvd~~~a~l~~~l----G-~p~~~~ 216 (263)
T PRK06224 158 RAPRLLALAREAGVAGRHCRLAEALEAALAAAKGKPLPLNVDGAIAAILADL----G-FPPALA 216 (263)
T ss_pred hHHHHHHHHHHhccCCHHHHHHHHHHHHHHHhcCCCCCccHHHHHHHHHHHc----C-CChHHH
Confidence 899999999999999999999999999876643 469999999999999998 4 566543
No 12
>cd06109 BsCS-I_like Bacillus subtilis (Bs) citrate synthase CS-I_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains proteins similar to BsCS-I, one of two CS isozymes in the gram-positive B. subtilis. The majority of CS activity in B. subtilis is provided by the other isozyme, BsCS-II (not included in this group). BsCS-
Probab=97.04 E-value=0.00044 Score=60.89 Aligned_cols=74 Identities=19% Similarity=0.225 Sum_probs=59.3
Q ss_pred CcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhh
Q psy16952 78 RGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSG 157 (161)
Q Consensus 78 RG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sG 157 (161)
+|+++.+- ..+.+.+.-+-..++.+...+...+.+++++++.||||...| ++.+-|++-+|-|+.+|+++|
T Consensus 125 ~g~~~~~p--------~~~ls~a~nfl~ml~g~~p~~~~~~~l~~~Lvl~ADHg~n~S-T~aaRv~aSt~ad~~savaag 195 (349)
T cd06109 125 RGKQPIAP--------DPSLSHAADYLRMLTGEPPSEAHVRALDAYLVTVADHGMNAS-TFTARVIASTEADLTSAVLGA 195 (349)
T ss_pred cCCCCcCC--------CCCCCHHHHHHHHhCCCCCChHHHHHHHHHHhHhcccCCCch-hhHHHHHhccCCcHHHHHHHH
Confidence 46665543 445677777777777766667788999999999999999887 667778999999999999999
Q ss_pred ccc
Q psy16952 158 LLT 160 (161)
Q Consensus 158 llt 160 (161)
+.+
T Consensus 196 i~a 198 (349)
T cd06109 196 IGA 198 (349)
T ss_pred HHh
Confidence 864
No 13
>cd06099 CS_ACL-C_CCL Citrate synthase (CS), citryl-CoA lyase (CCL), the C-terminal portion of the single-subunit type ATP-citrate lyase (ACL) and the C-terminal portion of the large subunit of the two-subunit type ACL. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) from citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. Some CS proteins function as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. CCL cleaves citryl-CoA (CiCoA) to AcCoA and OAA. ACLs catalyze an ATP- and a CoA- dependant cleavage of citrate to form AcCoA and OAA; they do this in a multistep reaction, the final step of which is likely to involve the cleavage of CiCoA to generate AcCoA and OAA. The overall CS reaction is thought to proceed through three partial reactions and i
Probab=96.93 E-value=0.0005 Score=56.35 Aligned_cols=57 Identities=18% Similarity=0.289 Sum_probs=48.0
Q ss_pred hhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 103 LSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 103 i~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+-++++-++..+-..+.+++++++.||||+..| ++.+-+++.+|-|+.+|+++|+.+
T Consensus 6 fl~ml~g~~p~~~~~~~l~~~lvl~aDHg~~~S-t~aar~~aSt~ad~~~av~Agl~a 62 (213)
T cd06099 6 FLYMLGGEEPDPEFARAMDLALILHADHEGNAS-TFTARVVGSTGSDPYSAIAAAIGA 62 (213)
T ss_pred HHHHhcCCCCCHHHHHHHHHHHHHhcCCCCchh-hHHHHHHhccCCCHHHHHHHHHHH
Confidence 344555555558889999999999999999766 799999999999999999999865
No 14
>cd06108 Ec2MCS_like Escherichia coli (Ec) 2-methylcitrate synthase (2MCS)_like. 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxalacetate (OAA) to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and OAA to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group contains proteins similar to the E. coli 2MCS, EcPrpC. EcPrpC is one of two CS isozymes in the gram-negative E. coli. EcPrpC is a dimeric (type I ) CS; it is induced during growth on propionate and prefers PrCoA as a substrate though it has partial CS activity with AcCoA. This group also includes Salmonella typhimurium PrpC and Ralstonia eutropha (Re) 2-MCS1 which are also induced during growth on propionate and prefer PrCoA as substrate, but can also use AcCoA. Re 2-MCS1 can use butyryl-CoA and valeryl-CoA at a lower rate. A second Ralstonia eutropha 2MC
Probab=96.80 E-value=0.00065 Score=60.31 Aligned_cols=64 Identities=22% Similarity=0.225 Sum_probs=53.4
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+.+..+-+.++.+...+...+.+++++++.||||...| .+.+-|++.+|-|+.+|+++|+.+
T Consensus 144 ~~s~a~nfl~ml~g~~p~~~~~~~l~~~LvL~ADH~~n~S-t~aaRv~aSt~ad~~sav~agi~a 207 (363)
T cd06108 144 EDSIAGHFLHLLHGKKPGELEIKAMDVSLILYAEHEFNAS-TFAARVTASTLSDFYSAITGAIGT 207 (363)
T ss_pred CCCHHHHHHHHhcCCCCCHHHHHHHHHHhhhhccCCCcch-HHHHHHHhccCCCHHHHHHHHHHh
Confidence 4567776666666666678889999999999999999877 557778889999999999999865
No 15
>COG0372 GltA Citrate synthase [Energy production and conversion]
Probab=96.77 E-value=0.00062 Score=61.43 Aligned_cols=66 Identities=18% Similarity=0.345 Sum_probs=56.7
Q ss_pred hcccCcchhhhhhhhhccCC-hhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQRQLP-PYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkrrlp-~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
.++.+.+.-+-++||-+... +...+.++++|++.|||+ .-.+++.+.|++.+|.|+.||+++|+.+
T Consensus 159 ~~~~s~a~nfL~ml~g~~p~~~~~~~a~d~~LiL~ADHe-~NASTftarvvaST~sd~ys~i~agi~a 225 (390)
T COG0372 159 DPDLSYAENFLYMLFGEPPSPPVEARAMDRALILHADHE-LNASTFTARVVASTGSDLYACIAAGIGA 225 (390)
T ss_pred CCCccHHHHHHHHHcCCCCCcHHHHHHHHHHHHHHhccC-CCcHHHHHHHHHhcCCcHHHHHHHHHHH
Confidence 44566666666777776666 499999999999999999 9999999999999999999999999865
No 16
>cd06101 citrate_synt Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the
Probab=96.75 E-value=0.00082 Score=56.95 Aligned_cols=59 Identities=27% Similarity=0.334 Sum_probs=49.2
Q ss_pred chhhHHHHHHhhCC---CChhhhhhhhhhhhhccCC--CceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQNFP---TTPLLNYALEVEKITTSKK--PNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~fp---~t~~ldyAl~VE~iTt~Kk--~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++..+ ..|+++.|.++|++..+++ .+|-.|||+..|+++.||=-...+||
T Consensus 170 Ra~~L~~~~~~l~~~~~~~~~~~~a~~~e~~~~~~~~~k~l~pNvd~~~a~v~~~lG~p~~~~~ 233 (265)
T cd06101 170 RATVLKKFAEKLLKEKGLDPMFELAAELEKIAPEVLYEKKLYPNVDFYSGVLYKAMGFPTELFT 233 (265)
T ss_pred ChHHHHHHHHHHHHhhCCCHHHHHHHHHHHHHHHHhhccCCCCChHHHHHHHHHHhCCChHhhh
Confidence 88999999999766 5899999999999887775 69999999999999888754444343
No 17
>cd06102 citrate_synt_like_2 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and
Probab=96.40 E-value=0.0021 Score=55.54 Aligned_cols=78 Identities=19% Similarity=0.106 Sum_probs=59.0
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCCHHHHHHHHHhhcccCccCccc
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFTREEAQEYVEMGAINGLFRGQE 81 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft~eEa~e~i~~G~lNglFRG~E 81 (161)
|++.|++++++.+| |++++|.+||++-.+++ ++-.|||+++|+++.+ +| +..+..+++|-
T Consensus 194 Ra~~L~~~~~~~~~--~~~~~a~~ve~~~~~~~-gl~pNvD~a~a~l~~~----lG----------~p~~~~~~lF~--- 253 (282)
T cd06102 194 RAAALLAALRPLGP--AAPPAARALIEAARALT-GARPNIDFALAALTRA----LG----------LPAGAAFALFA--- 253 (282)
T ss_pred cHHHHHHHHHHHhh--HHHHHHHHHHHHHHHHH-CCCCChHHHHHHHHHH----cC----------CChhhcchHHH---
Confidence 89999999999998 99999999999855443 4777999999776554 56 44555677774
Q ss_pred ccccCcchhhhhhcccCcchhhhhhhhhccCC
Q psy16952 82 LLYAGMPISDVLKQNMGIGGVLSLLWFQRQLP 113 (161)
Q Consensus 82 l~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp 113 (161)
+.+-. |.+++.|-|++.+
T Consensus 254 -----------~~R~~---GwiAH~~Eq~~~~ 271 (282)
T cd06102 254 -----------LGRSA---GWIAHALEQRAQG 271 (282)
T ss_pred -----------HHHHH---HHHHHHHHHHhcC
Confidence 55555 6777777776543
No 18
>PLN02456 citrate synthase
Probab=96.30 E-value=0.0023 Score=58.55 Aligned_cols=75 Identities=17% Similarity=0.305 Sum_probs=58.9
Q ss_pred CcccccccCcchhhhhhcccCcchhhhhhhhh-----ccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhH
Q psy16952 78 RGQELLYAGMPISDVLKQNMGIGGVLSLLWFQ-----RQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVS 152 (161)
Q Consensus 78 RG~El~YaG~pIS~V~~~~~GiGgvi~Llwfk-----rrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvs 152 (161)
+|+++.| | ..+.+...-+-..++. .+..+...+.+++++++.||||...|.+|.+++.+.++-|+.+
T Consensus 209 ~g~~~~~---P-----~~~ls~a~Nfl~Ml~~~~~~~~~p~~~~~~~l~~~LiLhADHe~n~ST~aar~~a~St~ad~ys 280 (455)
T PLN02456 209 YGRGPVI---P-----DNSLDYAENFLYMLGSLGDRSYKPDPRLARLLDLYFIIHADHEGGCSTAAARHLVGSSGVDPYT 280 (455)
T ss_pred cCCCCCC---C-----CCCCCHHHHHHHHhcCCCCcCCCCCHHHHHHHHHHHeeeccCCCCchhHHHHHHHhccCCCHHH
Confidence 4666655 3 4456655555554554 3455788999999999999999999999999988789999999
Q ss_pred Hhhhhccc
Q psy16952 153 SLVSGLLT 160 (161)
Q Consensus 153 sl~sGllt 160 (161)
|+++|+.+
T Consensus 281 avaAgi~a 288 (455)
T PLN02456 281 SVAAGVNA 288 (455)
T ss_pred HHHHHhhh
Confidence 99999865
No 19
>PRK14035 citrate synthase; Provisional
Probab=96.26 E-value=0.0025 Score=56.84 Aligned_cols=65 Identities=12% Similarity=0.136 Sum_probs=54.6
Q ss_pred cccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 95 QNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 95 ~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
.+.+.++.+-+..+-+...+...+.+++++++.||||...| ++.+-+++-++-|+.+++++|+.+
T Consensus 148 ~~ls~~~nfl~ml~g~~p~~~~~~~l~~~LvL~ADHg~naS-T~aaRv~aSt~ad~~sav~Agi~a 212 (371)
T PRK14035 148 PDLSYAANFLYMLRGELPTDIEVEAFNKALVLHADHELNAS-TFTARCAVSSLSDMYSGVVAAVGS 212 (371)
T ss_pred CCCCHHHHHHHHhccCCCCHHHHHHHHHHHHHhccCCCCch-HHHHHHHHhcCCcHHHHHHHHHHh
Confidence 35677777777777776667888999999999999998776 677788889999999999999865
No 20
>cd06109 BsCS-I_like Bacillus subtilis (Bs) citrate synthase CS-I_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains proteins similar to BsCS-I, one of two CS isozymes in the gram-positive B. subtilis. The majority of CS activity in B. subtilis is provided by the other isozyme, BsCS-II (not included in this group). BsCS-
Probab=96.20 E-value=0.0048 Score=54.43 Aligned_cols=50 Identities=20% Similarity=0.138 Sum_probs=43.2
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhcc------CCCceeeeccchhhHHHHH
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITTS------KKPNLILNVDGVIAVAFVD 51 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~------Kk~NLILNVDG~Igv~fvD 51 (161)
|.+.|++++++.++..|+++.|.++|++... +.-||..|||+..|+++-+
T Consensus 252 Ra~~L~~~~~~~~~~~~~~~~a~~ie~~~~~~~~~~~~~r~l~pNvD~~sg~l~~~ 307 (349)
T cd06109 252 RADVLKAAAERLGAPDERLEFAEAVEQAALALLREYKPGRPLETNVEFYTALLLEA 307 (349)
T ss_pred CHHHHHHHHHHhccCChHHHHHHHHHHHHHHHHHHhcCCCCCCCCchhhHHHHHHH
Confidence 8999999999999999999999999975422 2359999999999999843
No 21
>PRK14035 citrate synthase; Provisional
Probab=96.15 E-value=0.0037 Score=55.74 Aligned_cols=58 Identities=26% Similarity=0.267 Sum_probs=47.4
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++.. +..++++.|.++|++..++| ||-.|||+..|+++.+|=-...+||
T Consensus 266 Ra~~L~~~~~~l~~~~~~~~~~~~a~~ie~~~~~~k-~l~pNvD~~s~~l~~~lG~p~~~~t 326 (371)
T PRK14035 266 RAKYLREMSRKITKGTGREELFEMSVKIEKRMKEEK-GLIPNVDFYSATVYHVMGIPHDLFT 326 (371)
T ss_pred cHHHHHHHHHHHHhhcCCCHHHHHHHHHHHHHHHhc-CCCCChHHHHHHHHHHcCCChHhhh
Confidence 8899999998864 77899999999999877665 7999999999998877644444443
No 22
>TIGR01800 cit_synth_II 2-methylcitrate synthase/citrate synthase II. Members of this family are dimeric enzymes with activity as 2-methylcitrate synthase, citrate synthase, or both. Many Gram-negative species have a hexameric citrate synthase, termed citrate synthase I (TIGR01798). Members of this family (TIGR01800) appear as a second citrate synthase isozyme but typically are associated with propionate metabolism and synthesize 2-methylcitrate from propionyl-CoA; citrate synthase activity may be incidental. A number of species, including Thermoplasma acidophilum, Pyrococcus furiosus, and the Antarctic bacterium DS2-3R have a bifunctional member of this family as the only citrate synthase isozyme.
Probab=96.12 E-value=0.003 Score=55.84 Aligned_cols=64 Identities=14% Similarity=0.127 Sum_probs=49.5
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+.+..+-+..+.+..++...+.+++++++.||||...|.. .+-|++.+|-|+.+|+++|+.+
T Consensus 146 ~~~~~~n~l~ml~g~~p~~~~~~~l~~~Lvl~ADHg~n~St~-aaRv~aSt~adl~~av~agl~a 209 (368)
T TIGR01800 146 DDSHAANFLYMLHGEEPSKEEEKAMDIALILYAEHEFNASTF-AARVAASTLSDMYSAITAAIGA 209 (368)
T ss_pred CccHHHHHHHHhcCCCCCHHHHHHHHHHHhHhccCCCchHHH-HHHHHhccCCCHHHHHHHHHhh
Confidence 345555433333445556788999999999999999887764 5568888999999999999865
No 23
>cd06110 BSuCS-II_like Bacillus subtilis (Bs) citrate synthase (CS)-II_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains proteins similar to BsCS-II, the major CS of the gram-positive bacterium Bacillus subtilis. A mutation in the gene which encodes BsCS-II (citZ gene) has been described which resulted in a significant loss of CS activity, partial glutamate auxotrophy, and a sporulation deficiency, a
Probab=96.12 E-value=0.0043 Score=54.43 Aligned_cols=58 Identities=22% Similarity=0.148 Sum_probs=47.9
Q ss_pred chhhHHHHHHhh---CCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQN---FPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~---fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++. .+..++++.|.++|++..++| |+-.|||+..|+++.+|=--.++||
T Consensus 263 Ra~~L~~~~~~~~~~~~~~~~~~~~~~ie~~~~~~~-~l~pNvd~~~a~l~~~lg~p~~~~~ 323 (356)
T cd06110 263 RAKHLREMSRRLGKETGEPKWYEMSEAIEQAMRDEK-GLNPNVDFYSASVYYMLGIPVDLFT 323 (356)
T ss_pred hHHHHHHHHHHHHHHcCCCHHHHHHHHHHHHHHHcc-CCCcChHHHHHHHHHHcCcChhhhh
Confidence 889999999886 467899999999999888775 7999999999998877644444443
No 24
>PF00285 Citrate_synt: Citrate synthase; InterPro: IPR002020 Citrate synthase 2.3.3.1 from EC is a member of a small family of enzymes that can directly form a carbon-carbon bond without the presence of metal ion cofactors. It catalyses the first reaction in the Krebs' cycle, namely the conversion of oxaloacetate and acetyl-coenzyme A into citrate and coenzyme A. This reaction is important for energy generation and for carbon assimilation. The reaction proceeds via a non-covalently bound citryl-coenzyme A intermediate in a 2-step process (aldol-Claisen condensation followed by the hydrolysis of citryl-CoA). Citrate synthase enzymes are found in two distinct structural types: type I enzymes (found in eukaryotes, Gram-positive bacteria and archaea) form homodimers and have shorter sequences than type II enzymes, which are found in Gram-negative bacteria and are hexameric in structure. In both types, the monomer is composed of two domains: a large alpha-helical domain consisting of two structural repeats, where the second repeat is interrupted by a small alpha-helical domain. The cleft between these domains forms the active site, where both citrate and acetyl-coenzyme A bind. The enzyme undergoes a conformational change upon binding of the oxaloacetate ligand, whereby the active site cleft closes over in order to form the acetyl-CoA binding site []. The energy required for domain closure comes from the interaction of the enzyme with the substrate. Type II enzymes possess an extra N-terminal beta-sheet domain, and some type II enzymes are allosterically inhibited by NADH []. This entry represents types I and II citrate synthase enzymes, as well as the related enzymes 2-methylcitrate synthase and ATP citrate synthase. 2-methylcitrate (2.3.3.5 from EC) synthase catalyses the conversion of oxaloacetate and propanoyl-CoA into (2R,3S)-2-hydroxybutane-1,2,3-tricarboxylate and coenzyme A. This enzyme is induced during bacterial growth on propionate, while type II hexameric citrate synthase is constitutive []. ATP citrate synthase (2.3.3.8 from EC) (also known as ATP citrate lyase) catalyses the MgATP-dependent, CoA-dependent cleavage of citrate into oxaloacetate and acetyl-CoA, a key step in the reductive tricarboxylic acid pathway of CO2 assimilation used by a variety of autotrophic bacteria and archaea to fix carbon dioxide []. ATP citrate synthase is composed of two distinct subunits. In eukaryotes, ATP citrate synthase is a homotetramer of a single large polypeptide, and is used to produce cytosolic acetyl-CoA from mitochondrial produced citrate [].; GO: 0046912 transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer, 0044262 cellular carbohydrate metabolic process; PDB: 2C6X_D 3L96_B 1OWB_B 1NXG_A 1K3P_A 1OWC_B 3L97_B 1NXE_A 3L98_A 3L99_A ....
Probab=96.07 E-value=0.0029 Score=55.18 Aligned_cols=50 Identities=24% Similarity=0.254 Sum_probs=43.6
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhcc--CCCceeeeccchhhHHHHH
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTS--KKPNLILNVDGVIAVAFVD 51 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~--Kk~NLILNVDG~Igv~fvD 51 (161)
|++.|++++++.. +..|+++.|.++|++..+ ++.+|-.|||+..|+++-+
T Consensus 265 Ra~~l~~~~~~~~~~~~~~~~~~~~~~ie~~~~~~~~~~~l~pNvd~~~a~l~~~ 319 (356)
T PF00285_consen 265 RAEALLALARELGEEFPDGPLVELAEAIEEAAPEDFKERKLYPNVDFYSAALLRA 319 (356)
T ss_dssp HHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHHHHHHHTESB-THHHHHHHHHH
T ss_pred ChHHHHHHHHHhhhccCCCHHHHHHHHHHHHHHHHHhhccccCchhhHHHHHHHH
Confidence 8899999998887 999999999999999998 2337999999999998744
No 25
>PRK14032 citrate synthase; Provisional
Probab=95.99 E-value=0.0035 Score=57.26 Aligned_cols=67 Identities=16% Similarity=0.320 Sum_probs=54.4
Q ss_pred hcccCcchhhhhhhhhc-cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQR-QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkr-rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+.++.+-++.+.+ +.++...+.+++++++.||||+.-.+++-+-|++-++-|+.+|+++|+.+
T Consensus 201 ~~~ls~a~nfl~ml~g~~~p~~~~~~~ld~~LiL~ADHg~~naSTfaaRv~aSt~ad~ysavaagi~a 268 (447)
T PRK14032 201 KPELSTAENILYMLRPDNKYTELEARLLDLALVLHAEHGGGNNSTFTTRVVSSSGTDTYSAIAAAIGS 268 (447)
T ss_pred CCCCCHHHHHHHHhccCCCCCHHHHHHHHHHHHHHhccCCCchhHHHHHHHHccCCcHHHHHHHHHHh
Confidence 55677777555555555 67788899999999999999976566688889999999999999999865
No 26
>PRK14034 citrate synthase; Provisional
Probab=95.97 E-value=0.0055 Score=54.64 Aligned_cols=81 Identities=28% Similarity=0.260 Sum_probs=59.3
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCCH-----------HHHHHH
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFTR-----------EEAQEY 67 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft~-----------eEa~e~ 67 (161)
|.+.|++++++.. +..++++.|.++|++..++| ||-.|||+..|+++.+|=-...+||. .-+.|.
T Consensus 266 Ra~~L~~~~~~~~~~~~~~~~~~~a~~~e~~~~~~k-~l~pNvD~~~a~l~~~lG~p~~~~t~lf~i~R~~Gw~AH~~Eq 344 (372)
T PRK14034 266 RAKHLREMSKRLTVLLGEEKWYNMSIKIEEIVTKEK-GLPPNVDFYSASVYHCLGIDHDLFTPIFAISRMSGWLAHILEQ 344 (372)
T ss_pred CHHHHHHHHHHHHHhcCCCHHHHHHHHHHHHHHHcC-CCCCChHHHHHHHHHHcCCChHhccchhHHHhHHHHHHHHHHH
Confidence 8899999999864 66799999999999887765 79999999999999776544455542 123333
Q ss_pred HHhhcccCccCcccccccCc
Q psy16952 68 VEMGAINGLFRGQELLYAGM 87 (161)
Q Consensus 68 i~~G~lNglFRG~El~YaG~ 87 (161)
.+. |.|+| -...|.|-
T Consensus 345 ~~~---~~l~R-p~~~Y~G~ 360 (372)
T PRK14034 345 YEN---NRLIR-PRADYVGP 360 (372)
T ss_pred Hhc---CCccC-CCceecCC
Confidence 333 55676 35666663
No 27
>TIGR01798 cit_synth_I citrate synthase I (hexameric type). This model describes one of several distinct but closely homologous classes of citrate synthase, the protein that brings carbon (from acetyl-CoA) into the TCA cycle. This form, class I, is known to be hexameric and allosterically inhibited by NADH in Escherichia coli, Acinetobacter anitratum, Azotobacter vinelandii, Pseudomonas aeruginosa, etc. In most species with a class I citrate synthase, a dimeric class II isozyme is found. The class II enzyme may act primarily on propionyl-CoA to make 2-methylcitrate or be bifunctional, may be found among propionate utilization enzymes, and may be constitutive or induced by propionate. Some members of this model group as class I enzymes, and may be hexameric, but have shown regulatory properties more like class II enzymes.
Probab=95.97 E-value=0.0061 Score=55.19 Aligned_cols=59 Identities=27% Similarity=0.376 Sum_probs=46.9
Q ss_pred chhhHHHHHHhh-----CCCChhhhhhhhhhhhhccC----CCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQN-----FPTTPLLNYALEVEKITTSK----KPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~-----fp~t~~ldyAl~VE~iTt~K----k~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++. +++.|+++.|.++|++...+ +.||..|||+..|+++.+|=-...+||
T Consensus 304 Ra~~L~~~a~~l~~~~g~~~~~~~~~a~~~e~~~~~~~~~~~k~l~pNvD~~sa~l~~~lG~p~~~~t 371 (412)
T TIGR01798 304 RAKVMRETCHEVLKELGLHDDPLFKLAMELEKIALNDPYFIERKLYPNVDFYSGIILKAMGIPTSMFT 371 (412)
T ss_pred cHHHHHHHHHHHHHHcCCCccHHHHHHHHHHHHHHhhhhhccCCCCcChHHHHHHHHHHcCCChhhhh
Confidence 889999998663 56789999999999987643 479999999999999977644444433
No 28
>PRK14036 citrate synthase; Provisional
Probab=95.89 E-value=0.0066 Score=54.18 Aligned_cols=60 Identities=22% Similarity=0.315 Sum_probs=50.2
Q ss_pred chhhHHHHHHh---hCCCChhhhhhhhhhhhhccC--CCceeeeccchhhHHHHHhhhhcCCCCH
Q psy16952 2 RVKIIKEFVLQ---NFPTTPLLNYALEVEKITTSK--KPNLILNVDGVIAVAFVDLLRHSGSFTR 61 (161)
Q Consensus 2 RV~~lk~~~~~---~fp~t~~ldyAl~VE~iTt~K--k~NLILNVDG~Igv~fvDllr~~G~Ft~ 61 (161)
|.+.|++++++ +++..++++.|.++|++.... +.||-.|||+..|+++.+|=-...+||.
T Consensus 268 Ra~~L~~~~~~l~~~~~~~~~~~~a~~~e~~~~~~~~~k~l~pNvD~~sa~l~~~lGip~~~~t~ 332 (377)
T PRK14036 268 RATILQKLAEELFARFGHDEYYEIALELERVAEERLGPKGIYPNVDFYSGLVYRKLGIPRDLFTP 332 (377)
T ss_pred cHHHHHHHHHHHHHhcCCcHHHHHHHHHHHHHHHHhccCCCCcChHHHHHHHHHHcCCChhhhhh
Confidence 88999999986 467899999999999998765 4689999999999999877655556653
No 29
>cd06118 citrate_synt_like_1 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and
Probab=95.86 E-value=0.0043 Score=54.39 Aligned_cols=51 Identities=29% Similarity=0.305 Sum_probs=45.7
Q ss_pred chhhHHHHHHhhCC---CChhhhhhhhhhhhhccCC--CceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNFP---TTPLLNYALEVEKITTSKK--PNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~fp---~t~~ldyAl~VE~iTt~Kk--~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++..+ ..|+++.|.++|++..+.+ -|+-.|||+..|+++.+|
T Consensus 263 Ra~~L~~~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~r~l~pNvd~~~~~l~~~l 318 (358)
T cd06118 263 RAKILKELAEELAEEKGDDKLFEIAEELEEIALEVLGEKGIYPNVDFYSGVVYKAL 318 (358)
T ss_pred chHHHHHHHHHHHHhcCCCHHHHHHHHHHHHHHHhhcCCCCCcChHHHHHHHHHHc
Confidence 89999999988876 5899999999999888876 399999999999998776
No 30
>cd06110 BSuCS-II_like Bacillus subtilis (Bs) citrate synthase (CS)-II_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains proteins similar to BsCS-II, the major CS of the gram-positive bacterium Bacillus subtilis. A mutation in the gene which encodes BsCS-II (citZ gene) has been described which resulted in a significant loss of CS activity, partial glutamate auxotrophy, and a sporulation deficiency, a
Probab=95.85 E-value=0.0047 Score=54.24 Aligned_cols=63 Identities=14% Similarity=0.177 Sum_probs=48.4
Q ss_pred cCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 97 MGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 97 ~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
.+.+..+-+..+.+..++-..+.+++++++.||||...|..-.+ |++.+|-|+.+++++|+.+
T Consensus 147 ~~~a~~~l~~l~g~~p~~~~~~~l~~~Lvl~aDHg~n~Stfa~R-v~aSt~ad~~~av~agl~a 209 (356)
T cd06110 147 LSHAANFLYMLTGEKPSEEAARAFDVALILHADHELNASTFAAR-VVASTLSDMYSAVTAAIGA 209 (356)
T ss_pred CCHHHHHHHHhcCCCCCHHHHHHHHHHHHHhccCCCchhHHHHH-HHHhcCCCHHHHHHHHHhh
Confidence 44444443444455566788999999999999999998885444 7888999999999999865
No 31
>PRK05614 gltA type II citrate synthase; Reviewed
Probab=95.63 E-value=0.011 Score=53.54 Aligned_cols=66 Identities=14% Similarity=0.342 Sum_probs=49.1
Q ss_pred hcccCcchhhhhhhhhc-----cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQR-----QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkr-----rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+...-+-+.++-+ ...+...+.+++++++.||||...|..-.+ |++.+|-|+.+|+++|+.+
T Consensus 191 ~~~ls~a~nfl~ml~g~~~~~~~~~~~~~~~ld~~LiL~ADH~~n~STfa~R-vvaSt~adlysav~agi~a 261 (419)
T PRK05614 191 RNDLSYAENFLRMMFATPCEEYEVNPVLVRALDRIFILHADHEQNASTSTVR-LAGSSGANPFACIAAGIAA 261 (419)
T ss_pred CCccCHHHHHHHHHhCCCCccCCCCHHHHHHHHHHHhhhccCCCCcchHHHh-hhhccCCCHHHHHHHHHhh
Confidence 33455545444555433 234667899999999999999887776654 7788999999999999875
No 32
>PRK14037 citrate synthase; Provisional
Probab=95.63 E-value=0.0078 Score=53.71 Aligned_cols=66 Identities=20% Similarity=0.250 Sum_probs=52.5
Q ss_pred hcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+.++-+-++++-+...+...+.+++++++.||||...|- ..+-|++-++-|+.+|+++|+.+
T Consensus 147 ~~~~s~a~nfl~ml~G~~p~~~~~~~l~~~Lil~ADHg~naST-~aarv~aSt~ad~ysav~agi~a 212 (377)
T PRK14037 147 EPSDSFAESFLLASFAREPTAEEIKAMDAALILYTDHEVPAST-TAALVAASTLSDMYSCITAALAA 212 (377)
T ss_pred CCCCCHHHHHHHHHhccCCcHHHHHHHHHHHhHhcccCCchHh-HHHHHhhccCCCHHHHHHHHHHh
Confidence 3356667777666777777788999999999999999986555 45566677899999999999865
No 33
>PF00285 Citrate_synt: Citrate synthase; InterPro: IPR002020 Citrate synthase 2.3.3.1 from EC is a member of a small family of enzymes that can directly form a carbon-carbon bond without the presence of metal ion cofactors. It catalyses the first reaction in the Krebs' cycle, namely the conversion of oxaloacetate and acetyl-coenzyme A into citrate and coenzyme A. This reaction is important for energy generation and for carbon assimilation. The reaction proceeds via a non-covalently bound citryl-coenzyme A intermediate in a 2-step process (aldol-Claisen condensation followed by the hydrolysis of citryl-CoA). Citrate synthase enzymes are found in two distinct structural types: type I enzymes (found in eukaryotes, Gram-positive bacteria and archaea) form homodimers and have shorter sequences than type II enzymes, which are found in Gram-negative bacteria and are hexameric in structure. In both types, the monomer is composed of two domains: a large alpha-helical domain consisting of two structural repeats, where the second repeat is interrupted by a small alpha-helical domain. The cleft between these domains forms the active site, where both citrate and acetyl-coenzyme A bind. The enzyme undergoes a conformational change upon binding of the oxaloacetate ligand, whereby the active site cleft closes over in order to form the acetyl-CoA binding site []. The energy required for domain closure comes from the interaction of the enzyme with the substrate. Type II enzymes possess an extra N-terminal beta-sheet domain, and some type II enzymes are allosterically inhibited by NADH []. This entry represents types I and II citrate synthase enzymes, as well as the related enzymes 2-methylcitrate synthase and ATP citrate synthase. 2-methylcitrate (2.3.3.5 from EC) synthase catalyses the conversion of oxaloacetate and propanoyl-CoA into (2R,3S)-2-hydroxybutane-1,2,3-tricarboxylate and coenzyme A. This enzyme is induced during bacterial growth on propionate, while type II hexameric citrate synthase is constitutive []. ATP citrate synthase (2.3.3.8 from EC) (also known as ATP citrate lyase) catalyses the MgATP-dependent, CoA-dependent cleavage of citrate into oxaloacetate and acetyl-CoA, a key step in the reductive tricarboxylic acid pathway of CO2 assimilation used by a variety of autotrophic bacteria and archaea to fix carbon dioxide []. ATP citrate synthase is composed of two distinct subunits. In eukaryotes, ATP citrate synthase is a homotetramer of a single large polypeptide, and is used to produce cytosolic acetyl-CoA from mitochondrial produced citrate [].; GO: 0046912 transferase activity, transferring acyl groups, acyl groups converted into alkyl on transfer, 0044262 cellular carbohydrate metabolic process; PDB: 2C6X_D 3L96_B 1OWB_B 1NXG_A 1K3P_A 1OWC_B 3L97_B 1NXE_A 3L98_A 3L99_A ....
Probab=95.57 E-value=0.0046 Score=53.96 Aligned_cols=64 Identities=27% Similarity=0.393 Sum_probs=49.8
Q ss_pred ccCcchhhhhhh--hhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLW--FQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llw--fkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+...-+-..| .-+..++...+.++.++++.||||...| ++-+-+++.+|-|+.+|+++|+.+
T Consensus 146 ~~~~~~n~l~~l~~~g~~p~~~~~~~l~~~lvl~aDH~~~~S-t~aaR~~aSt~~~~~~av~agl~a 211 (356)
T PF00285_consen 146 DLSYAENFLYMLGVTGREPDPEEARALDAALVLHADHGLNPS-TFAARVAASTGADLYSAVAAGLAA 211 (356)
T ss_dssp TSSHHHHHHHHHH-HSSB--HHHHHHHHHHHHHHS--SSSHH-HHHHHHHHTTT--HHHHHHHHHHH
T ss_pred chHHHHHHHHHhhccccCCChHHHHHHHHHHHhhcCCCCCcc-chhhhhhhccCcchhHHHHhhhhh
Confidence 367777788888 5567779999999999999999999877 888888899999999999999864
No 34
>cd06118 citrate_synt_like_1 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and
Probab=95.53 E-value=0.0066 Score=53.22 Aligned_cols=64 Identities=19% Similarity=0.321 Sum_probs=52.1
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+....+-+..+.+...+...+.+++++++.||||...| .+-+-+++.+|-|+.+|+++|+.+
T Consensus 146 ~~~~~~~~~~~~~g~~p~~~~~~~l~~~Lvl~aDH~~n~S-tfa~R~~aSt~ad~~~av~agl~a 209 (358)
T cd06118 146 DLSYAENFLYMLFGEEPDPEEAKAMDLALILHADHEGNAS-TFTARVVASTLSDMYSAIAAAIAA 209 (358)
T ss_pred cccHHHHHHHHhcCCCCCHHHHHHHHHHHhhhcCCCCChH-HHHHHHHHccCCCHHHHHHHHHHH
Confidence 3455565555555666778999999999999999999666 577779999999999999999865
No 35
>PLN02456 citrate synthase
Probab=95.45 E-value=0.015 Score=53.47 Aligned_cols=50 Identities=32% Similarity=0.387 Sum_probs=43.5
Q ss_pred chhhHHHHHH---hhCCCChhhhhhhhhhhhhc----cCCCceeeeccchhhHHHHH
Q psy16952 2 RVKIIKEFVL---QNFPTTPLLNYALEVEKITT----SKKPNLILNVDGVIAVAFVD 51 (161)
Q Consensus 2 RV~~lk~~~~---~~fp~t~~ldyAl~VE~iTt----~Kk~NLILNVDG~Igv~fvD 51 (161)
|.+.|+++++ ++++..|+++.|.++|++.. -|+.||--|||...|+++..
T Consensus 342 Ra~~L~~~a~~l~~~~~~~~~~~ia~~le~~~~~~~~~~~r~l~pNVDfysg~l~~~ 398 (455)
T PLN02456 342 RAKCIREFALEVFKHVGDDPLFKVASALEEVALLDEYFKVRKLYPNVDFYSGVLLRA 398 (455)
T ss_pred CHHHHHHHHHHHHHhcCCCHHHHHHHHHHHHHHHHHhcCCCCCCcCcHHHHHHHHHH
Confidence 8899999999 66799999999999999753 35689999999999998843
No 36
>PRK12350 citrate synthase 2; Provisional
Probab=95.45 E-value=0.01 Score=52.83 Aligned_cols=49 Identities=22% Similarity=0.286 Sum_probs=42.4
Q ss_pred cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 111 QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 111 rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..++-..+.+++++++.||||...|. +.+-|++.+|-|+.||+++|+.+
T Consensus 149 ~p~~~~~~~ld~~LiL~ADHg~naST-faaRv~aSt~adlysav~agi~a 197 (353)
T PRK12350 149 EPDPAHVAALDAYWVSAAEHGMNAST-FTARVIASTGADVAAALSGAIGA 197 (353)
T ss_pred CCCHHHHHHHHHHHHHhccCCCCcch-HHHHHHhccCCcHHHHHHHHHhh
Confidence 34467889999999999999999887 45678889999999999999865
No 37
>cd06113 citrate_synt_like_1_2 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) a carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) h
Probab=95.39 E-value=0.0086 Score=53.93 Aligned_cols=67 Identities=16% Similarity=0.314 Sum_probs=54.2
Q ss_pred hcccCcchhhhhhhhh-ccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQ-RQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfk-rrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+.+.-+-++.+. +...+...+.+++++++.||||..-.+++-+-|++-++-|+.+|+++|+.+
T Consensus 171 ~~~ls~a~nfl~ml~g~~~p~~~~~~~l~~~Lvl~ADHg~~naST~aaRv~aSt~ad~~~avaagi~a 238 (406)
T cd06113 171 QPELSTAENILSMLRPDKKYTELEAKLLDLCLVLHAEHGGGNNSTFTTRVVSSSGTDTYSAIAAAIGS 238 (406)
T ss_pred CCCCCHHHHHHHHhccCCCCCHHHHHHHHHHHhhhhccCCCcchHHHHHHHHccCCCHHHHHHHHHHH
Confidence 4456667777767765 466688899999999999999965556677889999999999999999865
No 38
>cd06108 Ec2MCS_like Escherichia coli (Ec) 2-methylcitrate synthase (2MCS)_like. 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxalacetate (OAA) to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and OAA to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group contains proteins similar to the E. coli 2MCS, EcPrpC. EcPrpC is one of two CS isozymes in the gram-negative E. coli. EcPrpC is a dimeric (type I ) CS; it is induced during growth on propionate and prefers PrCoA as a substrate though it has partial CS activity with AcCoA. This group also includes Salmonella typhimurium PrpC and Ralstonia eutropha (Re) 2-MCS1 which are also induced during growth on propionate and prefer PrCoA as substrate, but can also use AcCoA. Re 2-MCS1 can use butyryl-CoA and valeryl-CoA at a lower rate. A second Ralstonia eutropha 2MC
Probab=95.39 E-value=0.015 Score=51.77 Aligned_cols=50 Identities=22% Similarity=0.159 Sum_probs=43.5
Q ss_pred chhhHHHHHHhh---CCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQN---FPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~---fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++. ++..|+++.|.++|++..++ .||-.|||+..|+++-+|
T Consensus 261 Ra~~L~~~a~~l~~~~~~~~~~~~a~~ie~~~~~~-~~l~pNvD~~sa~l~~~l 313 (363)
T cd06108 261 RSDIIKKWSKKLSEEGGDPLLYQISERIEEVMWEE-KKLFPNLDFYSASAYHFC 313 (363)
T ss_pred cHHHHHHHHHHHHHhcCCCHHHHHHHHHHHHHHHh-cCCCcChHHHHHHHHHHc
Confidence 889999998864 67899999999999988765 699999999999997554
No 39
>TIGR01800 cit_synth_II 2-methylcitrate synthase/citrate synthase II. Members of this family are dimeric enzymes with activity as 2-methylcitrate synthase, citrate synthase, or both. Many Gram-negative species have a hexameric citrate synthase, termed citrate synthase I (TIGR01798). Members of this family (TIGR01800) appear as a second citrate synthase isozyme but typically are associated with propionate metabolism and synthesize 2-methylcitrate from propionyl-CoA; citrate synthase activity may be incidental. A number of species, including Thermoplasma acidophilum, Pyrococcus furiosus, and the Antarctic bacterium DS2-3R have a bifunctional member of this family as the only citrate synthase isozyme.
Probab=95.29 E-value=0.013 Score=51.94 Aligned_cols=58 Identities=22% Similarity=0.248 Sum_probs=48.0
Q ss_pred chhhHHHHHHhh---CCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQN---FPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~---fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++. .+..++++.|.++|++-.++| |+-.|||+..|+++.+|=-...+||
T Consensus 263 Ra~~L~~~~~~~~~~~~~~~~~~~~~~i~~~~~~~~-~l~pNvD~~~a~l~~~lg~p~~~~~ 323 (368)
T TIGR01800 263 RAKILKEYAKKLSAKEGDSKWYEIAERLEDVMEKEK-GIYPNVDFYSGSVYYSMGIPTDLFT 323 (368)
T ss_pred hHHHHHHHHHHHHHhhCCCHHHHHHHHHHHHHHHhc-CCCCChHHHHHHHHHHcCcCHHHhh
Confidence 889999998885 478899999999999887765 7999999999999887754444444
No 40
>cd06107 EcCS_AthCS-per_like Escherichia coli (Ec) citrate synthase (CS) gltA and Arabidopsis thaliana (Ath) peroxisomal (Per) CS_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of ide
Probab=95.25 E-value=0.013 Score=52.45 Aligned_cols=50 Identities=30% Similarity=0.450 Sum_probs=42.6
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccC----CCceeeeccchhhHHHHH
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSK----KPNLILNVDGVIAVAFVD 51 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~K----k~NLILNVDG~Igv~fvD 51 (161)
|.+.|++++++.. +..|+++.|.++|++...+ ..+|-.|||+..|+++.+
T Consensus 282 Ra~~L~~~~~~l~~~~~~~~~~~~a~~ie~~~~~~~~~~~k~l~pNvD~~sa~~~~~ 338 (382)
T cd06107 282 RAKVIREILHEVLTEVEKDPLLKVAMELERIALEDEYFVSRKLYPNVDFYSGFIYKA 338 (382)
T ss_pred cHHHHHHHHHHHHHhcCCcHHHHHHHHHHHHHHHHhhhccCCCCcChHHHHHHHHHH
Confidence 8899999998865 4589999999999976654 479999999999998853
No 41
>PRK05614 gltA type II citrate synthase; Reviewed
Probab=95.21 E-value=0.017 Score=52.34 Aligned_cols=51 Identities=31% Similarity=0.448 Sum_probs=43.4
Q ss_pred chhhHHHHHHh---hCC-CChhhhhhhhhhhhhccC----CCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQ---NFP-TTPLLNYALEVEKITTSK----KPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~---~fp-~t~~ldyAl~VE~iTt~K----k~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++ +++ +.|+++.|.++|++...+ +-||-.|||+..|+++-+|
T Consensus 317 Ra~~l~~~a~~l~~~~~~~~~~~~ia~~ie~~~~~~~~~~~r~l~pNvD~~s~~l~~~l 375 (419)
T PRK05614 317 RAKIMRETCHEVLKELGLNDPLLEVAMELEEIALNDEYFIERKLYPNVDFYSGIILKAL 375 (419)
T ss_pred CHHHHHHHHHHHHHHcCCCcHHHHHHHHHHHHHhhhhhhccCCCCcChHHHHHHHHHHc
Confidence 88999999874 565 889999999999987765 3899999999999987544
No 42
>PRK14036 citrate synthase; Provisional
Probab=95.18 E-value=0.011 Score=52.76 Aligned_cols=66 Identities=17% Similarity=0.264 Sum_probs=56.9
Q ss_pred hcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+.++-+-+.++-+...+...+.+++++++.||||...| .+.+-+++-++-|..|++++|+.+
T Consensus 149 ~~~l~~a~nfl~ml~g~~p~~~~~~~l~~~Lil~ADHg~naS-T~aaRv~aSt~ad~ys~v~agi~a 214 (377)
T PRK14036 149 RDDLDYAANFLYMLTEREPDPLAARIFDRCLILHAEHTINAS-TFSARVTASTLTDPYAVIASAVGT 214 (377)
T ss_pred CCCCCHHHHHHHHhcCCCCCHHHHHHHHHHHhhhccCCCCch-HHHHHHHHhcCCcHHHHHHHHHHH
Confidence 456777888888888877779999999999999999998877 568889999999999999998753
No 43
>cd06114 EcCS_like Escherichia coli (Ec) citrate synthase (CS) GltA_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some typ
Probab=95.14 E-value=0.013 Score=52.61 Aligned_cols=64 Identities=22% Similarity=0.370 Sum_probs=49.3
Q ss_pred ccCcchhhhhhhhhc-----cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQR-----QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkr-----rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+...-+-..++-+ ..++...+.+++++++.||||-..|..-.+ |++.+|-|+.+|+++|+.+
T Consensus 175 ~ls~a~nfl~ml~g~~~~~~~p~~~~~~~l~~~LvL~aDH~~n~STfaaR-v~aSt~adl~sav~agl~a 243 (400)
T cd06114 175 DLSYVENFLHMMFAVPYEPYEVDPVVVKALDTILILHADHEQNASTSTVR-MVGSSGANLFASISAGIAA 243 (400)
T ss_pred CcCHHHHHHHHhcCCCCccCCCCHHHHHHHHHHHeeeccCCCcchHHHHH-HHhccCCcHHHHHHHHHHh
Confidence 444444444444434 455788899999999999999888877666 7778999999999999875
No 44
>TIGR01798 cit_synth_I citrate synthase I (hexameric type). This model describes one of several distinct but closely homologous classes of citrate synthase, the protein that brings carbon (from acetyl-CoA) into the TCA cycle. This form, class I, is known to be hexameric and allosterically inhibited by NADH in Escherichia coli, Acinetobacter anitratum, Azotobacter vinelandii, Pseudomonas aeruginosa, etc. In most species with a class I citrate synthase, a dimeric class II isozyme is found. The class II enzyme may act primarily on propionyl-CoA to make 2-methylcitrate or be bifunctional, may be found among propionate utilization enzymes, and may be constitutive or induced by propionate. Some members of this model group as class I enzymes, and may be hexameric, but have shown regulatory properties more like class II enzymes.
Probab=95.07 E-value=0.029 Score=50.92 Aligned_cols=64 Identities=13% Similarity=0.332 Sum_probs=49.3
Q ss_pred ccCcchhhhhhhhhc-----cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQR-----QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkr-----rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+...-+-...+-+ ...+...+-+++++++.||||-..|..- +-|++.+|-|+.+|+++|+.+
T Consensus 180 ~ls~a~Nfl~Ml~g~~~~~~~p~~~~~~~l~~~LiL~aDHg~n~STfa-aRv~aSt~ad~ysav~agi~a 248 (412)
T TIGR01798 180 DLSYAENFLHMMFATPCEDYKVNPVLARAMDRIFILHADHEQNASTST-VRLAGSSGANPFACIAAGIAA 248 (412)
T ss_pred CCCHHHHHHHHhcCCCCccCCCCHHHHHHHHHHHHHhhcCCCCcccce-eeeeecCCCCHHHHHHHHhhh
Confidence 345555555555544 4457788999999999999998766655 558999999999999999875
No 45
>cd06116 CaCS_like Chloroflexus aurantiacus (Ca) citrate synthase (CS)_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group is similar to gram-negative Escherichia coli (Ec) CS (type II, gltA) and Arabidopsis thaliana (Ath) peroxisomal (Per) CS. However EcCS and AthPerCS are not found in this group. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers w
Probab=94.87 E-value=0.02 Score=51.35 Aligned_cols=51 Identities=35% Similarity=0.480 Sum_probs=43.3
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccC----CCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSK----KPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~K----k~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++.. +..++++.|.++|++...+ +.||-.|||+..|+++.+|
T Consensus 275 Ra~~L~~~~~~l~~~~~~~~~~~ia~~~e~~~~~~~~~~~k~l~pNvD~ysa~l~~~l 332 (384)
T cd06116 275 RARIIKKIADEVFEATGRNPLLDIAVELEKIALEDEYFISRKLYPNVDFYSGLIYQAL 332 (384)
T ss_pred HHHHHHHHHHHHHHhhCCCHHHHHHHHHHHHHHHhhhhcccCCCCChHHHHHHHHHHh
Confidence 8899999998874 4569999999999977654 4799999999999998665
No 46
>PRK14033 citrate synthase; Provisional
Probab=94.60 E-value=0.024 Score=50.59 Aligned_cols=75 Identities=20% Similarity=0.265 Sum_probs=55.6
Q ss_pred cCcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhh
Q psy16952 77 FRGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVS 156 (161)
Q Consensus 77 FRG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~s 156 (161)
-+|+++.+- ..+.+.+..+-++.+.+...+...+.+++++++.||||...|-.-. -|++-+|-|+.+|+++
T Consensus 145 ~~g~~~~~p--------~~~~s~a~nfl~ml~g~~p~~~~~~~l~~~Lvl~ADHgln~Stfaa-Rv~aSt~adl~~av~a 215 (375)
T PRK14033 145 RRGLDPIAP--------RSDLGYAENFLHMCFGEVPEPEVVRAFEVSLILYAEHSFNASTFTA-RVITSTLSDIYSAVTG 215 (375)
T ss_pred cCCCCccCC--------CCCCCHHHHHHHHHhCCCCCHHHHHHHHHHHHHHhccCCCcHHHHH-HHHhccCCCHHHHHHH
Confidence 356666642 3355666655555556655577899999999999999988776533 4777799999999999
Q ss_pred hccc
Q psy16952 157 GLLT 160 (161)
Q Consensus 157 Gllt 160 (161)
|+.+
T Consensus 216 gl~a 219 (375)
T PRK14033 216 AIGA 219 (375)
T ss_pred HHhh
Confidence 9865
No 47
>PRK12350 citrate synthase 2; Provisional
Probab=94.50 E-value=0.032 Score=49.80 Aligned_cols=57 Identities=21% Similarity=0.117 Sum_probs=45.7
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhcc----C--CCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITTS----K--KPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~----K--k~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++.. .++++.|.++|++..+ + +-+|..|||+..|+++-+|=--..+||
T Consensus 251 Ra~~L~~~~~~l~--~~~~~ia~~le~~~~~~~~~~~~~r~l~pNVDfysa~v~~~lGip~~~ft 313 (353)
T PRK12350 251 RARVLRATAKRLG--APRYEVAEAVEQAALAELRERRPDRPLETNVEFWAAVLLDFAGVPAHMFT 313 (353)
T ss_pred CHHHHHHHHHHhC--ChHHHHHHHHHHHHHHHHHHhcCCCCCCcChHHHHHHHHHHcCcChhhhc
Confidence 8899999999976 5999999999998866 2 468999999999999866533333443
No 48
>cd06111 DsCS_like Cold-active citrate synthase (CS) from an Antarctic bacterial strain DS2-3R (Ds)-like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2-methylcitrate synthase (2MCS) catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. DsCS, compared with CS from the hyperthermophile Pyrococcus furiosus (not included in this group), has an increase in the size of surface loops, a higher proline content in the loop regions, a more accessible active site, and a highe
Probab=94.45 E-value=0.027 Score=49.95 Aligned_cols=64 Identities=20% Similarity=0.284 Sum_probs=48.1
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+.+..+-++.+.+..++...+.+++++++.||||-..|-.-- -+++-+|-|+.+++++|+.+
T Consensus 146 ~ls~a~nfl~m~~g~~p~~~~~~~l~~~Lvl~ADHg~n~St~aa-R~~aSt~ad~~~av~agl~a 209 (362)
T cd06111 146 DLGIAENFLHMCFGEVPSPEVVRAFDVSLILYAEHSFNASTFTA-RVITSTLSDIYSAITGAIGA 209 (362)
T ss_pred CcCHHHHHHHHhhCCCCCHHHHHHHHHHHHHHhccCCchhHHHH-HHHHccCCCHHHHHHHHHhh
Confidence 45555554444444545577889999999999999988776543 47777999999999999864
No 49
>PRK14034 citrate synthase; Provisional
Probab=94.38 E-value=0.027 Score=50.33 Aligned_cols=76 Identities=13% Similarity=0.220 Sum_probs=57.7
Q ss_pred ccCcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhh
Q psy16952 76 LFRGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLV 155 (161)
Q Consensus 76 lFRG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~ 155 (161)
..+|+++.+- ..+.+.+..+-++.+-+...+...+.++.++++.||||...|.. -+-+++-++-|+.+|++
T Consensus 137 ~~~g~~~~~p--------~~~ls~a~nfl~ml~g~~p~~~~~~~l~~~Lvl~aDHg~n~ST~-aaRv~aSt~~d~ysav~ 207 (372)
T PRK14034 137 IRKGLDPVEP--------RKDLSLAANFLYMLNGEEPDEVEVEAFNKALVLHADHELNASTF-TARVCVATLSDVYSGIT 207 (372)
T ss_pred HHCCCCCCCC--------CCCCCHHHHHHHHhcCCCCCHHHHHHHHHHHhHhccCCCCccHH-HHHHHhccCCcHHHHHH
Confidence 4566665543 44566677776666766666788999999999999999887665 55577778889999999
Q ss_pred hhccc
Q psy16952 156 SGLLT 160 (161)
Q Consensus 156 sGllt 160 (161)
+|+.+
T Consensus 208 agi~a 212 (372)
T PRK14034 208 AAIGA 212 (372)
T ss_pred HHhcc
Confidence 99865
No 50
>cd06112 citrate_synt_like_1_1 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, an
Probab=94.37 E-value=0.029 Score=49.92 Aligned_cols=59 Identities=25% Similarity=0.341 Sum_probs=48.5
Q ss_pred chhhHHHHHHhhCC----CChhhhhhhhhhhhhccC--CCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQNFP----TTPLLNYALEVEKITTSK--KPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~fp----~t~~ldyAl~VE~iTt~K--k~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.++|++++++.++ ..++++.|.++|++.... +.|+-.|||+..|+++-+|=-...+||
T Consensus 267 Ra~~L~~~~~~l~~~~~~~~~~~~i~~~~e~~~~~~~~~k~l~pNvd~~s~~l~~~lG~p~~~~t 331 (373)
T cd06112 267 RATILQKLAEDLFAKMGELSKLYEIALEVERLCEELLGHKGVYPNVDFYSGIVYKELGIPADLFT 331 (373)
T ss_pred HHHHHHHHHHHHHhhcCCccHHHHHHHHHHHHHHHHhCcCCCCcChHHHHHHHHHHhCcChHhhc
Confidence 88999999999875 478999999999987765 468999999999999887755555554
No 51
>PRK09569 type I citrate synthase; Reviewed
Probab=94.37 E-value=0.043 Score=50.25 Aligned_cols=51 Identities=25% Similarity=0.333 Sum_probs=43.9
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhcc------CCCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITTS------KKPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt~------Kk~NLILNVDG~Igv~fvDl 52 (161)
|...|++++++..+..|+++.|.++|++-.+ |+-|+.-|||+..|+++.+|
T Consensus 326 Ra~~L~~~a~~~~~~~~~~~ia~~~e~v~~~~~~~~~~~~~l~pNVD~~sg~l~~~l 382 (437)
T PRK09569 326 RYTAQREFCLKHLPDDPLFKLVAMIFEVAPGVLTEHGKTKNPWPNVDAQSGVIQWYY 382 (437)
T ss_pred chHHHHHHHHHHcCCCHHHHHHHHHHHHHHHHHHHhcccCCCCCChHHHHHHHHHHc
Confidence 8899999999999999999999999986543 44678899999999988654
No 52
>PRK14037 citrate synthase; Provisional
Probab=94.05 E-value=0.04 Score=49.24 Aligned_cols=50 Identities=20% Similarity=0.272 Sum_probs=41.6
Q ss_pred chhhHHHHHHhhC---C-CChhhhhhhhhhhhhccC--CCceeeeccchhhHHHHH
Q psy16952 2 RVKIIKEFVLQNF---P-TTPLLNYALEVEKITTSK--KPNLILNVDGVIAVAFVD 51 (161)
Q Consensus 2 RV~~lk~~~~~~f---p-~t~~ldyAl~VE~iTt~K--k~NLILNVDG~Igv~fvD 51 (161)
|.+.|++++++.+ + ..++++.|.++|++...+ +.||-.|||+..|+++.+
T Consensus 267 Ra~~L~~~~~~~~~~~~~~~~~~~ia~~~e~~~~~~~~~k~l~pNvD~~sa~l~~~ 322 (377)
T PRK14037 267 RAKIFKELAETLIERNSEAKKYFEIAQKLEELGIKQFGSKGIYPNTDFYSGIVFYA 322 (377)
T ss_pred cHHHHHHHHHHHHHhcCCccHHHHHHHHHHHHHHHHhhccCCCCChHHHHHHHHHH
Confidence 8899999999875 3 578999999999986533 359999999999999844
No 53
>cd06114 EcCS_like Escherichia coli (Ec) citrate synthase (CS) GltA_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of identical subunits (approximated as a trimer of dimers). Some typ
Probab=93.75 E-value=0.064 Score=48.35 Aligned_cols=50 Identities=30% Similarity=0.384 Sum_probs=41.2
Q ss_pred chhhHHHHHHhh---C-CCChhhhhhhhhhhhhccC----CCceeeeccchhhHHHHH
Q psy16952 2 RVKIIKEFVLQN---F-PTTPLLNYALEVEKITTSK----KPNLILNVDGVIAVAFVD 51 (161)
Q Consensus 2 RV~~lk~~~~~~---f-p~t~~ldyAl~VE~iTt~K----k~NLILNVDG~Igv~fvD 51 (161)
|.+.|++++++. + ++.++++.|.++|++...+ +-|+..|||+..|+++-+
T Consensus 299 Ra~~L~~~~~~l~~~~~~~~~~~~~~~~ie~~~~~~~~~~~~~l~pNvD~~~a~l~~~ 356 (400)
T cd06114 299 RAKILKKTCDEVLAELGKDDPLLEIAMELEEIALKDDYFIERKLYPNVDFYSGIILRA 356 (400)
T ss_pred cHHHHHHHHHHHHHHhCCCcHHHHHHHHHHHHHHHhhhhcccCCCCChHHHHHHHHHH
Confidence 889999998653 4 4578999999999986654 489999999999998843
No 54
>cd06115 AthCS_per_like Arabidopsis thaliana (Ath) peroxisomal (Per) CS_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains three Arabidopsis peroxisomal CS proteins, CYS1, -2, and -3 which are involved in the glyoxylate cycle. AthCYS1, in addition to a peroxisomal targeting sequence, has a predicted secretory signal peptide; it may be targeted to both the secretory pathway and the peroxisomes and is thought to be located in the extracellular matrix. AthCSY1 is expr
Probab=93.74 E-value=0.059 Score=48.89 Aligned_cols=51 Identities=33% Similarity=0.440 Sum_probs=42.7
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccC----CCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSK----KPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~K----k~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++.. +..|+++.|.++|++...+ +-+|-.|||+..|+++-+|
T Consensus 302 Ra~~L~~~~~~l~~~~~~~~~~~~a~~~e~~~~~~~~~~~k~l~pNVD~ysa~l~~~l 359 (410)
T cd06115 302 RAKIIKKLADEVFEIVGKDPLIEIAVALEKAALSDEYFVKRKLYPNVDFYSGLIYRAM 359 (410)
T ss_pred cHHHHHHHHHHHHhhcCCcHHHHHHHHHHHHHHhhhhhcccCCCCChHHHHHHHHHHc
Confidence 8899999998864 4679999999999987654 3689999999999987443
No 55
>PRK12351 methylcitrate synthase; Provisional
Probab=93.68 E-value=0.061 Score=48.25 Aligned_cols=58 Identities=28% Similarity=0.300 Sum_probs=46.6
Q ss_pred chhhHHHHHHh---hCCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQ---NFPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~---~fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++ +.+..++++.|.++|++-..+| ||--|||+..|+++-+|=-...+||
T Consensus 273 Ra~~L~~~~~~l~~~~~~~~~~~~a~~ie~~~~~~k-~l~pNvD~ysg~l~~~lG~p~~~~t 333 (378)
T PRK12351 273 RNKVIKEVAKKLSKEAGDTKLYDIAERLETVMWEEK-KMFPNLDWFSAVSYHMMGVPTAMFT 333 (378)
T ss_pred cHHHHHHHHHHHHHhcCCCHHHHHHHHHHHHHHHHh-CCCCChHHHHHHHHHHcCCCHHhhh
Confidence 88999999987 4567799999999999776655 8999999999999866543444444
No 56
>cd06112 citrate_synt_like_1_1 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, an
Probab=93.65 E-value=0.038 Score=49.19 Aligned_cols=78 Identities=17% Similarity=0.263 Sum_probs=61.4
Q ss_pred cCccCcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHH
Q psy16952 74 NGLFRGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSS 153 (161)
Q Consensus 74 NglFRG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvss 153 (161)
+-..+|+++.+- ..+.+.++.+-+.++.+..++-..+.+++++++.||||...|- +-+-+++-++-|+.||
T Consensus 136 ~r~~~g~~~~~p--------~~~ls~~~nfl~ml~g~~p~~~~~~~l~~~Lil~aDHg~n~ST-faaRvvaSt~ad~~s~ 206 (373)
T cd06112 136 ARIRNGDDPIEP--------RPDLDYAENFLYMLFGEEPDPATAKILDACLILHAEHTMNAST-FSALVTGSTLADPYAV 206 (373)
T ss_pred HHHHCCCCCcCC--------CCCCCHHHHHHHHHhCCCCCHHHHHHHHHHHhhcccCCCCchH-HHHHHHHhcCCcHHHH
Confidence 345677665443 3456777888788888777788899999999999999987665 6777888889999999
Q ss_pred hhhhccc
Q psy16952 154 LVSGLLT 160 (161)
Q Consensus 154 l~sGllt 160 (161)
+++|+.+
T Consensus 207 ~~aai~a 213 (373)
T cd06112 207 ISSAIGT 213 (373)
T ss_pred HHHHHHh
Confidence 9998754
No 57
>cd06117 Ec2MCS_like_1 Subgroup of Escherichia coli (Ec) 2-methylcitrate synthase (2MCS)_like. 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxalacetate (OAA) to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and OAA to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group contains proteins similar to the E. coli 2MCS, EcPrpC. EcPrpC is one of two CS isozymes in the gram-negative E. coli. EcPrpC is a dimeric (type I ) CS; it is induced during growth on propionate and prefers PrCoA as a substrate, but has a partial CS activity with AcCoA. This group also includes Salmonella typhimurium PrpC and Ralstonia eutropha (Re) 2-MCS1 which are also induced during growth on propionate, prefer PrCoA as substrate, but can also can use AcCoA. Re 2-MCS1 at a low rate can use butyryl-CoA and valeryl-CoA. A second Ralstonia eu
Probab=93.37 E-value=0.055 Score=48.24 Aligned_cols=58 Identities=24% Similarity=0.259 Sum_probs=46.2
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCC
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFT 60 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft 60 (161)
|.+.|++++++.. +..++++.|.++|++-..+| ||-.|||+..|+++.+|=-...+||
T Consensus 264 Ra~~L~~~~~~l~~~~~~~~~~~~~~~ie~~~~~~k-~l~pNvD~~s~~l~~~lG~p~~~~t 324 (366)
T cd06117 264 RNQVIKEVAKQLSKEGGDMKMFDIAERLETVMWEEK-KMFPNLDWFSAVSYHMMGVPTAMFT 324 (366)
T ss_pred hHHHHHHHHHHHHHhcCCcHHHHHHHHHHHHHHHHh-CCCcCcHHHHHHHHHHcCcChhhhh
Confidence 8899999998864 56788999999999876655 8999999999998877643444444
No 58
>PRK12351 methylcitrate synthase; Provisional
Probab=92.88 E-value=0.064 Score=48.16 Aligned_cols=64 Identities=23% Similarity=0.270 Sum_probs=51.4
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+.++-+-++.+.+...+...+-+++++++.||||...|-. -+-+++-+|-|+.+|+++|+.+
T Consensus 156 ~ls~a~Nfl~ml~g~~p~~~~~~~l~~~LvL~ADH~~naST~-aaRvvaSt~ad~~sav~agi~a 219 (378)
T PRK12351 156 DDSIGGHFLHLLHGKKPSESWVKAMHTSLILYAEHEFNASTF-TARVIAGTGSDMYSAITGAIGA 219 (378)
T ss_pred cCCHHHHHHHHhcCCCCCHHHHHHHHHHHHHhcccCCchHHH-HHHHHhccCCCHHHHHHHHHHh
Confidence 467777776777766666888999999999999999876654 4457777999999999999864
No 59
>cd06107 EcCS_AthCS-per_like Escherichia coli (Ec) citrate synthase (CS) gltA and Arabidopsis thaliana (Ath) peroxisomal (Per) CS_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the active site. Type II CSs are unique to gram-negative bacteria and are homohexamers of ide
Probab=92.68 E-value=0.062 Score=48.23 Aligned_cols=48 Identities=17% Similarity=0.209 Sum_probs=41.3
Q ss_pred CChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 112 LPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 112 lp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+...+.+++++++.||||...|.. .+-|++-++-|+.||+++|+.+
T Consensus 181 p~~~~~~~l~~~LiL~aDHg~n~ST~-aaRv~aSt~ad~~s~v~aai~a 228 (382)
T cd06107 181 PNPRLARALDRLWILHADHEMNCSTS-AARHTGSSLADPISCMAAAIAA 228 (382)
T ss_pred CCHHHHHHHHHHHHHhcccCCcchhH-HHHHHHhcCCcHHHHHHHHHhh
Confidence 44788899999999999999987665 6668999999999999998754
No 60
>cd06115 AthCS_per_like Arabidopsis thaliana (Ath) peroxisomal (Per) CS_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. This group contains three Arabidopsis peroxisomal CS proteins, CYS1, -2, and -3 which are involved in the glyoxylate cycle. AthCYS1, in addition to a peroxisomal targeting sequence, has a predicted secretory signal peptide; it may be targeted to both the secretory pathway and the peroxisomes and is thought to be located in the extracellular matrix. AthCSY1 is expr
Probab=92.60 E-value=0.067 Score=48.55 Aligned_cols=49 Identities=18% Similarity=0.303 Sum_probs=41.8
Q ss_pred cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 111 QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 111 rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
...+...+.+++++++.||||-..|-...+++ +-++-|+.+|+++|+.+
T Consensus 200 ~p~~~~~~~l~~~liL~ADH~~naSTfaarv~-aSt~ad~ysav~agi~a 248 (410)
T cd06115 200 KPNPRLARALDILFILHAEHEMNCSTAAVRHL-ASSGVDVYTAVAGAVGA 248 (410)
T ss_pred CCCHHHHHHHHHHHHHhhccCCCchHHHHHHH-HhcCCCHHHHHHHHHhh
Confidence 34467789999999999999999888887775 66899999999999864
No 61
>cd06116 CaCS_like Chloroflexus aurantiacus (Ca) citrate synthase (CS)_like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group is similar to gram-negative Escherichia coli (Ec) CS (type II, gltA) and Arabidopsis thaliana (Ath) peroxisomal (Per) CS. However EcCS and AthPerCS are not found in this group. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers w
Probab=92.54 E-value=0.094 Score=47.10 Aligned_cols=66 Identities=15% Similarity=0.278 Sum_probs=48.1
Q ss_pred hcccCcchhhhhhhhhc-----cCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQR-----QLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkr-----rlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+.++=+-..++.+ ..++...+.+++++++.||||...|..-.+ |++-.+-|+.||+++|+.+
T Consensus 151 ~~~ls~a~Nfl~Ml~g~~~~~~~p~~~~~~~l~~~LiL~ADH~~n~STfaar-v~aSt~ad~ysav~agi~a 221 (384)
T cd06116 151 DNDLSYTGNFLSMLFKMTEPKYEPNPVLAKALDVLFILHADHEQNCSTSAMR-SVGSSRADPYTAVAAAVAA 221 (384)
T ss_pred CCCCCHHHHHHHHhCCCCCCCCCCCHHHHHHHHHHHhhhccCCCCchhHHHh-hhhccCCCHHHHHHHHHHh
Confidence 44456556555556554 455778899999999999999877664444 5555777999999999864
No 62
>cd06103 ScCS-like Saccharomyces cerevisiae (Sc) citrate synthase (CS)-like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). Some CS proteins function as 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homo
Probab=91.86 E-value=0.2 Score=45.86 Aligned_cols=51 Identities=29% Similarity=0.410 Sum_probs=42.7
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhc------cCCCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITT------SKKPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt------~Kk~NLILNVDG~Igv~fvDl 52 (161)
|...|++++++..+..++++.|.++|++-. .++-|+.-|||...|+++-.|
T Consensus 325 Ra~~L~~~~~~~~~~~~~~~~a~~ie~~~~~~~~~~~~~k~l~pNVDfysa~v~~~l 381 (426)
T cd06103 325 RFTCQREFALKHLPDDPLFKLVAQCYKIIPGVLKEHGKVKNPYPNVDAHSGVLLQHY 381 (426)
T ss_pred chHHHHHHHHHHhcCCHHHHHHHHHHHHHHHHHHHhcccCCCCCChHhHHHHHHHHc
Confidence 889999999999999999999999998543 344578999999999987653
No 63
>PRK12349 citrate synthase 3; Provisional
Probab=91.47 E-value=0.098 Score=46.57 Aligned_cols=64 Identities=16% Similarity=0.204 Sum_probs=50.3
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+.+.-+-++.+.++.++...+-++.++++.||||-.-| .+-+-|++-+|-|+.+++++|+.+
T Consensus 152 ~l~~a~nfl~ml~g~~p~~~~~~~~~~~Lvl~ADH~lnaS-tfa~Rv~aSt~ad~~~av~agl~a 215 (369)
T PRK12349 152 ELSYSANFLYMLTGKKPTELEEKIFDRSLVLYSEHEMPNS-TFTARVIASTQSDLYGALTGAVAS 215 (369)
T ss_pred CCCHHHHHHHHHhCCCCCHHHHHHHHHHHHHHhCcCccHH-HHHHHHHHccCccHHHHHHHHHHh
Confidence 4555565555555666678899999999999999998654 466668888999999999999865
No 64
>cd06117 Ec2MCS_like_1 Subgroup of Escherichia coli (Ec) 2-methylcitrate synthase (2MCS)_like. 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxalacetate (OAA) to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and OAA to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). This group contains proteins similar to the E. coli 2MCS, EcPrpC. EcPrpC is one of two CS isozymes in the gram-negative E. coli. EcPrpC is a dimeric (type I ) CS; it is induced during growth on propionate and prefers PrCoA as a substrate, but has a partial CS activity with AcCoA. This group also includes Salmonella typhimurium PrpC and Ralstonia eutropha (Re) 2-MCS1 which are also induced during growth on propionate, prefer PrCoA as substrate, but can also can use AcCoA. Re 2-MCS1 at a low rate can use butyryl-CoA and valeryl-CoA. A second Ralstonia eu
Probab=91.02 E-value=0.12 Score=46.08 Aligned_cols=64 Identities=23% Similarity=0.259 Sum_probs=50.3
Q ss_pred ccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 96 NMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+.+.+.-+-.+.+-+...+...+-+++++++.||||-..|-. -+-+++-++-|+.+|+++|+.+
T Consensus 147 ~~s~a~Nfl~ml~g~~p~~~~~~~l~~~LvL~ADHg~n~ST~-aarv~aSt~ad~~sav~agi~a 210 (366)
T cd06117 147 DDSIGGHFLHLLHGEKPSESWEKAMHISLILYAEHEFNASTF-TARVIAGTGSDMYSAITGAIGA 210 (366)
T ss_pred cCCHHHHHHHHhcCCCCCHHHHHHHHHHHHHhcccCCchHHH-HHHHHHccCCcHHHHHHHHHHh
Confidence 356666666666666666888999999999999999876654 5557777999999999999864
No 65
>COG0372 GltA Citrate synthase [Energy production and conversion]
Probab=90.55 E-value=0.32 Score=44.29 Aligned_cols=75 Identities=28% Similarity=0.253 Sum_probs=58.1
Q ss_pred chhhHHHHHHhhCC---CChhhhhhhhhhhhhccCC---CceeeeccchhhHHHHHhhhhcCCCCH-----------HHH
Q psy16952 2 RVKIIKEFVLQNFP---TTPLLNYALEVEKITTSKK---PNLILNVDGVIAVAFVDLLRHSGSFTR-----------EEA 64 (161)
Q Consensus 2 RV~~lk~~~~~~fp---~t~~ldyAl~VE~iTt~Kk---~NLILNVDG~Igv~fvDllr~~G~Ft~-----------eEa 64 (161)
|.+++|+|+++.++ ..++++-|.+||++-.... -+|-=|||.+-|+++=.|=---.+||. .-+
T Consensus 280 Ra~~lk~~a~~l~~~~g~~~~~~~a~~~e~~~l~~~~~~k~l~PNvDfysg~v~~~lGiP~~~fT~lFaiaR~~GW~AH~ 359 (390)
T COG0372 280 RAKVLKELAEKLGKELGDLKLYEIAEELEEIALEDLGFEKKLYPNVDFYSGIVYRALGIPTDMFTPLFAIARTVGWIAHW 359 (390)
T ss_pred hHHHHHHHHHHHHhhcCchhHHHHHHHHHHHHHHhhhcccCCCCccccchHHHHHHcCCCHHhhhhhhhhhhHHHHHHHH
Confidence 88999999999854 4579999999999988744 568899999999987554322224553 367
Q ss_pred HHHHHhhcccCccC
Q psy16952 65 QEYVEMGAINGLFR 78 (161)
Q Consensus 65 ~e~i~~G~lNglFR 78 (161)
-|..+.| |-|+|
T Consensus 360 ~Eq~~~~--~riiR 371 (390)
T COG0372 360 IEQKEDG--NKIIR 371 (390)
T ss_pred HHHHhcc--CCccC
Confidence 7777777 88888
No 66
>cd06111 DsCS_like Cold-active citrate synthase (CS) from an Antarctic bacterial strain DS2-3R (Ds)-like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). 2-methylcitrate synthase (2MCS) catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and coenzyme A (CoA) during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. DsCS, compared with CS from the hyperthermophile Pyrococcus furiosus (not included in this group), has an increase in the size of surface loops, a higher proline content in the loop regions, a more accessible active site, and a highe
Probab=89.07 E-value=0.31 Score=43.35 Aligned_cols=57 Identities=16% Similarity=0.056 Sum_probs=43.0
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCC
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSF 59 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~F 59 (161)
|.+.|++.+++-. ...++++.|.++|+.-..+| |+-.|||+..|+++-+|=--..+|
T Consensus 263 Ra~~L~~~l~~l~~~~~~~~~~~~~~~i~~~~~~~~-~l~pNvD~~~a~l~~~lG~p~~~~ 322 (362)
T cd06111 263 RVPTMEKALRRVAAVHDGQKWLAMYDALEDAMVAAK-GIKPNLDFPAGPAYYLMGFDIDFF 322 (362)
T ss_pred hHHHHHHHHHHHHhhcCccHHHHHHHHHHHHHHHhc-CCCCChHHHHHHHHHHcCcChhhh
Confidence 7788888766443 45699999999999877665 699999999999877654333333
No 67
>cd06113 citrate_synt_like_1_2 Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) and oxalacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the oxidative citric acid cycle (TCA or Krebs cycle). Peroxisomal CS is involved in the glyoxylate cycle. This group also includes CS proteins which functions as a 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-CoA (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. This group contains proteins which functions exclusively as either a CS or a 2MCS, as well as those with relaxed specificity which have dual functions as both a CS and a 2MCS. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) a carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) h
Probab=88.97 E-value=0.36 Score=43.70 Aligned_cols=51 Identities=14% Similarity=0.143 Sum_probs=41.0
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhc-------cCCCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITT-------SKKPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt-------~Kk~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++.+ +..++++.|.++|++.. .|.-||-.|||+..|+++-+|
T Consensus 304 Ra~~L~~~~~~l~~~~~~~~~~~~~~~ie~~~~~~~~~~~~~~r~l~pNvD~~sa~l~~~l 364 (406)
T cd06113 304 RAVVLKKYARSLAKEKGREEEFALYERIERLAPEVIAEERGIGKTVCANVDFYSGFVYKML 364 (406)
T ss_pred cHHHHHHHHHHHHHhcCcchHHHHHHHHHHHHHHHHHHhhccCCCCCCChHHHHHHHHHHc
Confidence 8899999998775 44678999999998652 345699999999999987654
No 68
>PRK09569 type I citrate synthase; Reviewed
Probab=88.56 E-value=0.28 Score=45.07 Aligned_cols=64 Identities=25% Similarity=0.298 Sum_probs=47.9
Q ss_pred hcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+...-+-..|+.. |++ .+-+++++++.||||..-.+++-+-|++-++-|+.+|+++|+.+
T Consensus 201 ~~~ls~a~NFl~Ml~~~--~~~-~~~l~~~LiL~ADHe~~naSTfaaRvvaSt~ad~ysav~Agi~a 264 (437)
T PRK09569 201 DPELDYGANFAHMIGQP--KPY-KDVARMYFILHSDHESGNVSAHTTHLVASALSDAYYSYSAGLNG 264 (437)
T ss_pred CCCcCHHHHHHHHhcCC--chH-HHHHHHHHhhhhccCCCcchHHHHHHHhccCCCHHHHHHHHHHh
Confidence 55566667777777754 444 57899999999999953344555557777999999999999864
No 69
>cd06103 ScCS-like Saccharomyces cerevisiae (Sc) citrate synthase (CS)-like. CS catalyzes the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). Some CS proteins function as 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homo
Probab=88.52 E-value=0.29 Score=44.76 Aligned_cols=73 Identities=15% Similarity=0.140 Sum_probs=54.6
Q ss_pred CcccccccCcchhhhhhcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhh
Q psy16952 78 RGQELLYAGMPISDVLKQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSG 157 (161)
Q Consensus 78 RG~El~YaG~pIS~V~~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sG 157 (161)
+|+++.+ | ..+.+...-+-..|+.+ |+-..+-+++++++.||||-.-.+.+-+-|++-++-|+.||+++|
T Consensus 192 ~g~~~~~---p-----~~~ls~aeNfl~ml~~~--~~~~~~~l~~~LiL~ADHe~~NaSTfaaRvvaSt~ad~ysav~ag 261 (426)
T cd06103 192 KGGEIGA---I-----DSKLDWSANFAHMLGYE--DEEFTDLMRLYLTLHSDHEGGNVSAHTSHLVGSALSDPYLSFSAA 261 (426)
T ss_pred CCCCccC---C-----CCCcCHHHHHHHHhCCC--CHHHHHHHHHHHhhhhccCCccchHHHHHHHhccCCCHHHHHHHH
Confidence 5777664 2 45567777777777543 356678999999999999943345666778888999999999999
Q ss_pred ccc
Q psy16952 158 LLT 160 (161)
Q Consensus 158 llt 160 (161)
+-+
T Consensus 262 i~a 264 (426)
T cd06103 262 LNG 264 (426)
T ss_pred Hhh
Confidence 754
No 70
>PRK14032 citrate synthase; Provisional
Probab=88.29 E-value=0.4 Score=44.09 Aligned_cols=51 Identities=22% Similarity=0.182 Sum_probs=40.8
Q ss_pred chhhHHHHHHhhC---CCChhhhhhhhhhhhhc-------cCCCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQNF---PTTPLLNYALEVEKITT-------SKKPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~f---p~t~~ldyAl~VE~iTt-------~Kk~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++++++.. +.+++++.|.++|++-. .++-+|-.|||+..|+++-+|
T Consensus 334 Ra~~L~~~~~~l~~~~g~~~~~~~~~~~e~~~~~~~~~~~~~~k~l~pNVDfysa~i~~~l 394 (447)
T PRK14032 334 RAVILKKFAEKLAKEKGREEEFNLYEKIEKLAPELIAEERGIYKGVSANVDFYSGFVYDML 394 (447)
T ss_pred cHHHHHHHHHHHHHHcCCchHHHHHHHHHHHHHHHHHHhhccCCCCCcChhhHHHHHHHHc
Confidence 8899999988764 55778888999997643 334699999999999987654
No 71
>cd06105 ScCit1-2_like Saccharomyces cerevisiae (Sc) citrate synthases Cit1-2_like. Citrate synthases (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). Some CS proteins function as 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-neg
Probab=88.09 E-value=0.38 Score=44.08 Aligned_cols=65 Identities=17% Similarity=0.197 Sum_probs=49.3
Q ss_pred hcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+++...=+-..|+.. ++-..+-+++++++.||||-.-..+|-+-|++-++-|+.+|+++|+.+
T Consensus 198 d~~ls~a~Nfl~Ml~~~--~~~~~~~l~~~lvLhADHeg~NaSTfaarvvaSt~ad~ysav~agi~a 262 (427)
T cd06105 198 DSNLDWSANFANMLGYT--DPQFTELMRLYLTIHSDHEGGNVSAHTTHLVGSALSDPYLSFAAAMNG 262 (427)
T ss_pred CCCcCHHHHHHHHhcCC--CHHHHHHHHHHHhhhccccCccchHHHHHHHhccCCCHHHHHHHHHhh
Confidence 45566666666666643 366778899999999999943345666777889999999999999854
No 72
>TIGR01793 cit_synth_euk citrate (Si)-synthase, eukaryotic. This model includes both mitochondrial and peroxisomal forms of citrate synthase. Citrate synthase is the entry point to the TCA cycle from acetyl-CoA. Peroxisomal forms, such as SP:P08679 from yeast (recognized by the C-terminal targeting motif SKL) act in the glyoxylate cycle. Eukaryotic homologs excluded by the high trusted cutoff of this model include a Tetrahymena thermophila citrate synthase that doubles as a filament protein, a putative citrate synthase from Plasmodium falciparum (no TCA cycle), and a methylcitrate synthase from Aspergillus nidulans.
Probab=87.85 E-value=0.59 Score=42.91 Aligned_cols=49 Identities=31% Similarity=0.389 Sum_probs=42.1
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhh------ccCCCceeeeccchhhHHHH
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKIT------TSKKPNLILNVDGVIAVAFV 50 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iT------t~Kk~NLILNVDG~Igv~fv 50 (161)
|..++++|++++.+..|+++.+.++|++. ..|.-|+.-|||...|+++-
T Consensus 326 Ra~~l~~~~~~~~~~~~~~~~~~~~~~~a~~~l~~~~~~~~~~pNVD~~sg~l~~ 380 (427)
T TIGR01793 326 RYICQREFALKHLPDDPLFKLVSNLYKIVPGILTELGKVKNPWPNVDAHSGVLLQ 380 (427)
T ss_pred CcHHHHHHHHHHcCCChHHHHHHHHHHHHHHHHHHhhcccCCCCCcHHHHHHHHH
Confidence 78899999999999999999999999864 24556788899999999863
No 73
>PRK12349 citrate synthase 3; Provisional
Probab=80.87 E-value=1.5 Score=39.21 Aligned_cols=50 Identities=28% Similarity=0.193 Sum_probs=39.3
Q ss_pred chhhHHHHHHhh---CCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHh
Q psy16952 2 RVKIIKEFVLQN---FPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDL 52 (161)
Q Consensus 2 RV~~lk~~~~~~---fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDl 52 (161)
|.+.|++.+++- .+..++.+.+.++|++-...| +|-.|||+..|+++.+|
T Consensus 270 Ra~~l~~~~~~l~~~~~~~~~~~~~~~~e~~~~~~~-gl~pNvD~~~a~l~~~l 322 (369)
T PRK12349 270 RALMMKEALKQLCDVKGDYTLYEMCEAGEKIMEKEK-GLYPNLDYYAAPVYWML 322 (369)
T ss_pred cHHHHHHHHHHHHHHcCchHHHHHHHHHHHHHHHhc-CCCCCcHHHHHHHHHHc
Confidence 788888877553 345678888888988776554 69999999999998876
No 74
>TIGR01793 cit_synth_euk citrate (Si)-synthase, eukaryotic. This model includes both mitochondrial and peroxisomal forms of citrate synthase. Citrate synthase is the entry point to the TCA cycle from acetyl-CoA. Peroxisomal forms, such as SP:P08679 from yeast (recognized by the C-terminal targeting motif SKL) act in the glyoxylate cycle. Eukaryotic homologs excluded by the high trusted cutoff of this model include a Tetrahymena thermophila citrate synthase that doubles as a filament protein, a putative citrate synthase from Plasmodium falciparum (no TCA cycle), and a methylcitrate synthase from Aspergillus nidulans.
Probab=79.18 E-value=1.5 Score=40.33 Aligned_cols=65 Identities=15% Similarity=0.138 Sum_probs=49.9
Q ss_pred hcccCcchhhhhhhhhccCChhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 94 KQNMGIGGVLSLLWFQRQLPPYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 94 ~~~~GiGgvi~Llwfkrrlp~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
..+.+.+.=+-..|+. -.+-..+-+++++++.||||-.=..+|-+-|++-++-|+.+|+++|+.+
T Consensus 201 ~~~l~~a~Nfl~Ml~~--~~~~~~~~l~~~LiLhADHeg~NaSTfaarvvaSt~ad~y~~v~Agi~a 265 (427)
T TIGR01793 201 DDSKDYSANFAHMLGY--DSPSFQELMRLYLTIHSDHEGGNVSAHTGHLVGSALSDPYLSFAAALNG 265 (427)
T ss_pred CCCccHHHHHHHHhcC--CCHHHHHHHHHHHhhhcccccccchhHHHHHhhccCCCHHHHHHHHHhh
Confidence 4555656666666653 2356678899999999999944456777888999999999999999754
No 75
>PRK14033 citrate synthase; Provisional
Probab=78.21 E-value=2 Score=38.54 Aligned_cols=57 Identities=18% Similarity=0.068 Sum_probs=41.3
Q ss_pred chhhHHHHHHhh---CCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCC
Q psy16952 2 RVKIIKEFVLQN---FPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSF 59 (161)
Q Consensus 2 RV~~lk~~~~~~---fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~F 59 (161)
|.+.|++.+++- .+..++++.|.++|+.-..+ -|+-.|||+..|+++-+|=-...+|
T Consensus 273 Ra~~L~~~l~~l~~~~~~~~~~~~~~~i~~~~~~~-~gl~pNvD~~~a~l~~~lGip~~~~ 332 (375)
T PRK14033 273 RVPTMKAALRRVAAVRDGQRWLDIYEALEKAMAEA-TGIKPNLDFPAGPAYYLMGFDIDFF 332 (375)
T ss_pred hHHHHHHHHHHHHHhcCccHHHHHHHHHHHHHHHH-hCCCCCcHHHHHHHHHHcCcCchhh
Confidence 677777766443 35678999999999977655 4599999999999776653333333
No 76
>cd06106 ScCit3_like Saccharomyces cerevisiae (Sc) 2-methylcitrate synthase Cit3-like. 2-methylcitrate synthase (2MCS) catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxaloacetate (OAA) to form 2-methylcitrate and CoA. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) with OAA to form citrate and CoA, the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the a
Probab=76.02 E-value=2 Score=39.49 Aligned_cols=47 Identities=23% Similarity=0.258 Sum_probs=37.8
Q ss_pred hhHHHHhhhhhhhccCCCCcccCccceeeeeccCCchhHHhhhhccc
Q psy16952 114 PYVCKFLEMSLMVTADHGPAVSGAHNTIVCARAGKDLVSSLVSGLLT 160 (161)
Q Consensus 114 ~ya~~fiem~l~~~aDhGpaVsGahntivtaragkdlvssl~sGllt 160 (161)
+...+-+++++++.||||-.-...+-+-|++-++-|+.||+++|+-+
T Consensus 218 ~~~~~~l~~~LiL~ADHeg~NaSTfaarvvaST~ad~ysav~agi~a 264 (428)
T cd06106 218 LDFVDLLRLYIALHGDHEGGNVSAHTTHLVGSALSDPYLSYSAGLMG 264 (428)
T ss_pred hHHHHHHHHHHhhhcccCCccchHHHHHHHhccCCCHHHHHHHHHHh
Confidence 45568899999999999943345666667899999999999999754
No 77
>cd06106 ScCit3_like Saccharomyces cerevisiae (Sc) 2-methylcitrate synthase Cit3-like. 2-methylcitrate synthase (2MCS) catalyzes the condensation of propionyl-coenzyme A (PrCoA) and oxaloacetate (OAA) to form 2-methylcitrate and CoA. Citrate synthase (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) with OAA to form citrate and CoA, the first step in the citric acid cycle (TCA or Krebs cycle). The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-negative bacteria and are homodimers with both subunits participating in the a
Probab=75.74 E-value=3 Score=38.39 Aligned_cols=49 Identities=24% Similarity=0.363 Sum_probs=39.5
Q ss_pred chhhHHHHHHhhC--CCChhhhhhhhhhhhhcc------CCCceeeeccchhhHHHH
Q psy16952 2 RVKIIKEFVLQNF--PTTPLLNYALEVEKITTS------KKPNLILNVDGVIAVAFV 50 (161)
Q Consensus 2 RV~~lk~~~~~~f--p~t~~ldyAl~VE~iTt~------Kk~NLILNVDG~Igv~fv 50 (161)
|.++|++++++.. ...++++.|.++|++... ++-|+-=|||...|+++-
T Consensus 325 Ra~~l~~~~~~l~~~~~~~~~~~a~~ie~~~~~~l~~~~~~~~l~pNVDfysg~v~~ 381 (428)
T cd06106 325 RFTALMEFAQTRPELENDPVVQLVQKLSEIAPGVLTEHGKTKNPFPNVDAASGVLFY 381 (428)
T ss_pred CcHHHHHHHHHHHhccCCHHHHHHHHHHHHHHHHHHHhccccCCCCCchhHHHHHHH
Confidence 8899999998764 457999999999987542 345788899999999863
No 78
>PF08640 U3_assoc_6: U3 small nucleolar RNA-associated protein 6; InterPro: IPR013949 This entry represents U3 nucleolar RNA-associated proteins which are involved in nucleolar processing of pre-18S ribosomal RNA [].
Probab=70.28 E-value=4.5 Score=29.34 Aligned_cols=20 Identities=40% Similarity=0.576 Sum_probs=17.1
Q ss_pred HhhhhcCCCCHHHHHHHHHh
Q psy16952 51 DLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 51 Dllr~~G~Ft~eEa~e~i~~ 70 (161)
+-|...|.||++|++++++-
T Consensus 9 e~l~~~~lFt~~EI~~Ivkk 28 (83)
T PF08640_consen 9 EDLERKGLFTKEEIREIVKK 28 (83)
T ss_pred HHHHHhCCCCHHHHHHHHHH
Confidence 45788999999999999863
No 79
>KOG2617|consensus
Probab=66.68 E-value=5.6 Score=37.58 Aligned_cols=47 Identities=34% Similarity=0.455 Sum_probs=42.6
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhh------ccCCCceeeeccchhhHH
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKIT------TSKKPNLILNVDGVIAVA 48 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iT------t~Kk~NLILNVDG~Igv~ 48 (161)
|+..+++|+.+|+|..|+..-+...+++. .-|+.|.-=|||-.-|++
T Consensus 345 R~~~~~efA~k~~~~d~l~~l~~~l~~~~p~vl~e~gk~knp~PNVD~~SGvl 397 (458)
T KOG2617|consen 345 RYKVQREFALKHLPDDPLFLLVSALYKIAPGVLTEHGKVKNPYPNVDAHSGVL 397 (458)
T ss_pred hhhHHHHHHHhcCCCCcchhhhHHHHHhChHHHHHhcccCCCCCcHHHHHHHH
Confidence 78899999999999999999999999987 568899999999888874
No 80
>COG1015 DeoB Phosphopentomutase [Carbohydrate transport and metabolism]
Probab=61.09 E-value=2.7 Score=39.03 Aligned_cols=36 Identities=42% Similarity=0.652 Sum_probs=22.9
Q ss_pred hhhhhccCChhHHHHhh-hhhhhccCCC--CcccCccce
Q psy16952 105 LLWFQRQLPPYVCKFLE-MSLMVTADHG--PAVSGAHNT 140 (161)
Q Consensus 105 Llwfkrrlp~ya~~fie-m~l~~~aDhG--paVsGahnt 140 (161)
|--|-||||......=| -+|++||||| |-.-|-+||
T Consensus 308 Le~FD~rL~e~~~~l~edDlLiiTADHGnDPT~~gTdHT 346 (397)
T COG1015 308 LEEFDRRLPELIENLREDDLLIITADHGNDPTWGGTDHT 346 (397)
T ss_pred HHHHHHHHHHHHHhcCCCCEEEEecCCCCCCCCCCCCcc
Confidence 33455555544444322 4679999999 777777766
No 81
>cd08785 CARD_CARD9-like Caspase activation and recruitment domain of CARD9 and related proteins. Caspase activation and recruitment domain (CARD) found in CARD9, CARD14 (CARMA2), CARD10 (CARMA3), CARD11 (CARMA1) and BCL10. BCL10 (B-cell lymphoma 10), together with Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1), are integral components of the CBM signalosome. They associate with CARD9 to form M-CBM (CBM complex in myeloid immune cells), and with CARD11 to form L-CBM (CBM complex in lymphoid immune cells), which mediates activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. BCL10/Malt1 also associates with CARD10, which is more widely expressed and is not restricted to hematopoietic cells, to play a role in GPCR-induced NF-kB activation. CARD14 has also been shown to associate with BCL10. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inf
Probab=60.03 E-value=8.4 Score=28.29 Aligned_cols=24 Identities=13% Similarity=0.260 Sum_probs=20.9
Q ss_pred HHHhhhhcCCCCHHHHHHHHHhhc
Q psy16952 49 FVDLLRHSGSFTREEAQEYVEMGA 72 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~~G~ 72 (161)
..|-|+++|.||+++++|+...++
T Consensus 21 l~d~L~q~~VLt~~d~EeI~~~~t 44 (86)
T cd08785 21 LTPYLRQCKVLDEQDEEEVLSSPR 44 (86)
T ss_pred HHHHHHhcCCCCHHHHHHHhCCCc
Confidence 679999999999999999876554
No 82
>cd06105 ScCit1-2_like Saccharomyces cerevisiae (Sc) citrate synthases Cit1-2_like. Citrate synthases (CS) catalyzes the condensation of acetyl coenzyme A (AcCoA) with oxaloacetate (OAA) to form citrate and coenzyme A (CoA), the first step in the citric acid cycle (TCA or Krebs cycle). Some CS proteins function as 2-methylcitrate synthase (2MCS). 2MCS catalyzes the condensation of propionyl-coenzyme A (PrCoA) and OAA to form 2-methylcitrate and CoA during propionate metabolism. The overall CS reaction is thought to proceed through three partial reactions and involves both closed and open conformational forms of the enzyme: a) the carbanion or equivalent is generated from AcCoA by base abstraction of a proton, b) the nucleophilic attack of this carbanion on OAA to generate citryl-CoA, and c) the hydrolysis of citryl-CoA to produce citrate and CoA. There are two types of CSs: type I CS and type II CSs. Type I CSs are found in eukarya, gram-positive bacteria, archaea, and in some gram-neg
Probab=54.23 E-value=16 Score=33.70 Aligned_cols=48 Identities=31% Similarity=0.450 Sum_probs=40.7
Q ss_pred chhhHHHHHHhhCCCChhhhhhhhhhhhhc------cCCCceeeeccchhhHHH
Q psy16952 2 RVKIIKEFVLQNFPTTPLLNYALEVEKITT------SKKPNLILNVDGVIAVAF 49 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ldyAl~VE~iTt------~Kk~NLILNVDG~Igv~f 49 (161)
|..+||+++.+..+..|+++.|.++|++-. -++-|+-=|||=.-|+++
T Consensus 323 Ra~~lk~~~~~~~~~~~~~~~~~~ie~~a~~~l~~~~~~~~l~pNVDfysg~l~ 376 (427)
T cd06105 323 RYTCQREFALKHLPNDPLFKLVSQLYKIVPPVLTEQGKAKNPWPNVDAHSGVLL 376 (427)
T ss_pred CcHHHHHHHHHHcCCCHHHHHHHHHHHHHHHHHHHhccCCCCCCChhHHHHHHH
Confidence 889999999999999999999999998632 334689999998888764
No 83
>PRK05849 hypothetical protein; Provisional
Probab=50.07 E-value=17 Score=36.11 Aligned_cols=28 Identities=18% Similarity=0.414 Sum_probs=25.6
Q ss_pred chhhHHHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 43 GVIAVAFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 43 G~Igv~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
|+||+.|+.=|.+.|.||++|.++|+..
T Consensus 459 ~Fva~~~l~sl~~~g~~s~~~~~~f~~s 486 (783)
T PRK05849 459 AFVATQLLKSLVEIGALSQEELDAFLNS 486 (783)
T ss_pred HHHHHHHHHHHHHcCCCCHHHHHHHHHH
Confidence 7899999999999999999999999853
No 84
>cd08810 CARD_BCL10 Caspase activation and recruitment domain of B-cell lymphoma 10. Caspase activation and recruitment domain (CARD) similar to that found in BCL10 (B-cell lymphoma 10). BCL10 and Malt1 (mucosa-associated lymphoid tissue-lymphoma-translocation gene 1) are the integral components of CBM signalosomes. They associate with CARD9 to form M-CBM (CBM complex in myeloid immune cells) and with CARMA1 to form L-CBM (CBM complex in lymphoid immune cells), to mediate activation of NF-kB and MAPK by ITAM-coupled receptors expressed on immune cells. Both CARMA1 and CARD9 associate with BCL10 via a CARD-CARD interaction. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by asso
Probab=49.36 E-value=17 Score=26.80 Aligned_cols=21 Identities=29% Similarity=0.417 Sum_probs=18.9
Q ss_pred HHHhhhhcCCCCHHHHHHHHH
Q psy16952 49 FVDLLRHSGSFTREEAQEYVE 69 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~ 69 (161)
..|-|+++|.||+++++|+-.
T Consensus 21 l~d~L~s~~ILt~~d~EeI~~ 41 (84)
T cd08810 21 HFDYLRSKRILTRDDCEEISC 41 (84)
T ss_pred HHHHHHHcCCCCHHHHHHHhc
Confidence 679999999999999999765
No 85
>PF10415 FumaraseC_C: Fumarase C C-terminus; InterPro: IPR018951 Fumarase C catalyses the stereo-specific interconversion of fumarate to L-malate as part of the Krebs cycle. The full-length protein forms a tetramer with visible globular shape. FumaraseC_C is the C-terminal 65 residues referred to as domain 3. The core of the molecule consists of a bundle of 20 alpha-helices from the five-helix bundle of domain 2. The projections from the core of the tetramer are generated from domains 1 and 3 of each subunit []. This entry does not appear to be part of either the active site or the activation site but is helical in structure forming a little bundle. ; GO: 0016829 lyase activity, 0006099 tricarboxylic acid cycle; PDB: 3RRP_A 3OCE_D 3OCF_D 3E04_B 3GTD_A 3R6V_F 3R6Q_F 1J3U_B 1FUR_A 1YFE_A ....
Probab=48.84 E-value=13 Score=25.09 Aligned_cols=24 Identities=21% Similarity=0.333 Sum_probs=18.5
Q ss_pred HHHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 47 VAFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 47 v~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
...-|+....|.+|+||++++++-
T Consensus 26 ~svre~v~~~g~lt~ee~d~ll~p 49 (55)
T PF10415_consen 26 RSVREVVLEEGLLTEEELDELLDP 49 (55)
T ss_dssp --HHHHHHHTTSS-HHHHHHHTSH
T ss_pred CCHHHHHHHcCCCCHHHHHHHcCH
Confidence 356789999999999999998764
No 86
>cd01671 CARD Caspase activation and recruitment domain: a protein-protein interaction domain. Caspase activation and recruitment domains (CARDs) are death domains (DDs) found associated with caspases. Caspases are aspartate-specific cysteine proteases with functions in apoptosis, immune signaling, inflammation, and host-defense mechanisms. In addition to caspases, proteins containing CARDs include adaptor proteins such as RAIDD, CARD9, and RIG-I-like helicases, which can form mutliprotein complexes and play important roles in mediating the signals to induce immune and inflammatory responses. In general, DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They serve as adaptors in signaling pathways and can recruit other proteins into signaling complexes.
Probab=45.31 E-value=24 Score=23.63 Aligned_cols=24 Identities=25% Similarity=0.291 Sum_probs=20.1
Q ss_pred HHHHhhhhcCCCCHHHHHHHHHhh
Q psy16952 48 AFVDLLRHSGSFTREEAQEYVEMG 71 (161)
Q Consensus 48 ~fvDllr~~G~Ft~eEa~e~i~~G 71 (161)
-++|-|.+.|.+|.||.+++-...
T Consensus 17 ~il~~L~~~~vlt~~e~~~i~~~~ 40 (80)
T cd01671 17 DVLDHLLSDGVLTEEEYEKIRSES 40 (80)
T ss_pred HHHHHHHHcCCCCHHHHHHHHcCC
Confidence 467899999999999999876653
No 87
>PF08665 PglZ: PglZ domain; InterPro: IPR013973 This entry is a member of the Alkaline phosphatase clan.
Probab=44.14 E-value=7.8 Score=30.41 Aligned_cols=31 Identities=26% Similarity=0.635 Sum_probs=18.5
Q ss_pred hhhhhhhhccCChhHHHHhh--hhhhhccCCCC
Q psy16952 102 VLSLLWFQRQLPPYVCKFLE--MSLMVTADHGP 132 (161)
Q Consensus 102 vi~Llwfkrrlp~ya~~fie--m~l~~~aDhGp 132 (161)
.|...||+..|.+--.+-.+ .-+.+|||||-
T Consensus 142 ~i~~~~~~~~L~~li~~l~~~~~~V~ITsDHG~ 174 (181)
T PF08665_consen 142 AIELWWFEHELRSLIKELRNAGRRVVITSDHGF 174 (181)
T ss_pred HHhhhhhhHHHHHHHHHHHhcCceEEEECCCCC
Confidence 45566666655533333322 35688999995
No 88
>PF00619 CARD: Caspase recruitment domain; InterPro: IPR001315 The caspase recruitment domain domain (CARD) is a homotypic protein interaction module composed of a bundle of six alpha-helices. CARD is related in sequence and structure to the death domain (DD, see IPR000488 from INTERPRO) and the death effector domain (DED, see IPR001875 from INTERPRO), which work in similar pathways and show similar interaction properties []. The CARD domain typically associates with other CARD-containing proteins, forming either dimers or trimers. CARD domains can be found in isolation, or in combination with other domains. Domains associated with CARD include: NACHT (IPR007111 from INTERPRO) (in Nal1 and Bir1), NB-ARC (IPR002182 from INTERPRO) (in Apaf-1), pyrin/dapin domains (IPR004020 from INTERPRO) (in Nal1), leucine-rich repeats () (in Nal1), WD repeats (IPR001680 from INTERPRO) (in Apaf1), Src homology domains (IPR001452 from INTERPRO), PDZ (IPR001478 from INTERPRO), RING, kinase and DD domains []. CARD-containing proteins are involved in apoptosis through their regulation of caspases that contain CARDs in their N-terminal pro-domains, including human caspases 1, 2, 9, 11 and 12 []. CARD-containing proteins are also involved in inflammation through their regulation of NF-kappaB []. The mechanisms by which CARDs activate caspases and NF-kappaB involve the assembly of multi-protein complexes, which can facilitate dimerisation or serve as scaffolds on which proteases and kinases are assembled and activated.; GO: 0005515 protein binding, 0042981 regulation of apoptosis, 0005622 intracellular; PDB: 2NSN_A 2NZ7_B 2DBD_A 4E9M_C 2B1W_A 3YGS_P 2KN6_A 3CRD_A 1DGN_A 3KAT_A ....
Probab=43.93 E-value=24 Score=23.77 Aligned_cols=23 Identities=30% Similarity=0.335 Sum_probs=20.1
Q ss_pred HHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 48 AFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 48 ~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
..+|-|.+.|.||++|.+++-..
T Consensus 20 ~ild~L~~~~vlt~~e~e~I~~~ 42 (85)
T PF00619_consen 20 DILDHLLSRGVLTEEEYEEIRSE 42 (85)
T ss_dssp HHHHHHHHTTSSSHHHHHHHHTS
T ss_pred HHHHHHHHCCCCCHHHHHHHHcc
Confidence 47899999999999999998763
No 89
>PF14237 DUF4339: Domain of unknown function (DUF4339)
Probab=43.62 E-value=21 Score=22.42 Aligned_cols=22 Identities=27% Similarity=0.584 Sum_probs=19.2
Q ss_pred hhcCCCCHHHHHHHHHhhcccC
Q psy16952 54 RHSGSFTREEAQEYVEMGAING 75 (161)
Q Consensus 54 r~~G~Ft~eEa~e~i~~G~lNg 75 (161)
.+.|=||.+|..+.++.|.++.
T Consensus 9 ~~~GP~s~~el~~l~~~g~i~~ 30 (45)
T PF14237_consen 9 QQQGPFSLEELRQLISSGEIDP 30 (45)
T ss_pred eEECCcCHHHHHHHHHcCCCCC
Confidence 3578999999999999998874
No 90
>PF04418 DUF543: Domain of unknown function (DUF543); InterPro: IPR007512 This family of short eukaryotic proteins has no known function. Most of the members of this family are only 80 amino acid residues long. However the Arabidopsis homologue is over 300 residues long. These proteins contain a conserved N-terminal cysteine and a conserved motif GXGXGXG in the carboxy terminal half that may be functionally important.
Probab=41.50 E-value=10 Score=27.44 Aligned_cols=16 Identities=56% Similarity=1.036 Sum_probs=13.7
Q ss_pred ccCcchhhhhhhhhcc
Q psy16952 96 NMGIGGVLSLLWFQRQ 111 (161)
Q Consensus 96 ~~GiGgvi~Llwfkrr 111 (161)
++++|.+.|++.||||
T Consensus 36 G~~~G~~~s~l~frrR 51 (75)
T PF04418_consen 36 GFGIGVVFSLLFFRRR 51 (75)
T ss_pred hhhHHHHHHHHHHccc
Confidence 4778899999999985
No 91
>cd08788 CARD_NOD2_2_CARD15 Caspase activation and recruitment domain of NOD2, repeat 2. Caspase activation and recruitment domain (CARD) similar to that found in human NOD2 (CARD15), repeat 2. NOD2 is a member of the Nod-like receptor (NLR) family, which plays a central role in the innate immune response. NLRs typically contain an N-terminal effector domain, a central nucleotide-binding domain and a C-terminal ligand-binding region of several leucine-rich repeats (LRRs). In NOD2, as well as NOD1, the N-terminal effector domain is a CARD. NOD2 contains two N-terminal CARD repeats. Mutations in NOD2 have been associated with Crohns disease and Blau syndrome. Nod2-CARDs have been shown to interact with the CARD domain of the downstream effector RICK (RIP2, CARDIAK), a serine/threonine kinase. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are pr
Probab=41.08 E-value=17 Score=27.20 Aligned_cols=21 Identities=24% Similarity=0.305 Sum_probs=19.1
Q ss_pred HHHhhhhcCCCCHHHHHHHHH
Q psy16952 49 FVDLLRHSGSFTREEAQEYVE 69 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~ 69 (161)
|+|.|-..|.||++|.+++.+
T Consensus 19 ~Ld~ll~~G~is~~Ecd~Ir~ 39 (81)
T cd08788 19 ALELLLTRGFFSSYDCDEIRL 39 (81)
T ss_pred HHHHHHHcCCccHhhcchhhc
Confidence 679999999999999999876
No 92
>cd00038 CAP_ED effector domain of the CAP family of transcription factors; members include CAP (or cAMP receptor protein (CRP)), which binds cAMP, FNR (fumarate and nitrate reduction), which uses an iron-sulfur cluster to sense oxygen) and CooA, a heme containing CO sensor. In all cases binding of the effector leads to conformational changes and the ability to activate transcription. Cyclic nucleotide-binding domain similar to CAP are also present in cAMP- and cGMP-dependent protein kinases (cAPK and cGPK) and vertebrate cyclic nucleotide-gated ion-channels. Cyclic nucleotide-monophosphate binding domain; proteins that bind cyclic nucleotides (cAMP or cGMP) share a structural domain of about 120 residues; the best studied is the prokaryotic catabolite gene activator, CAP, where such a domain is known to be composed of three alpha-helices and a distinctive eight-stranded, antiparallel beta-barrel structure; three conserved glycine residues are thought to be essential for maintenance of
Probab=40.39 E-value=25 Score=22.65 Aligned_cols=37 Identities=16% Similarity=0.262 Sum_probs=32.2
Q ss_pred CCCCHHHHHHHHHhhcccCccCcccccccCcchhhhh
Q psy16952 57 GSFTREEAQEYVEMGAINGLFRGQELLYAGMPISDVL 93 (161)
Q Consensus 57 G~Ft~eEa~e~i~~G~lNglFRG~El~YaG~pIS~V~ 93 (161)
..+++++++.+.+....-.+-+|+-+.+.|.|.+.++
T Consensus 3 ~~l~~~~~~~l~~~~~~~~~~~g~~l~~~~~~~~~~~ 39 (115)
T cd00038 3 SGLDDEELEELADALEERRFPAGEVIIRQGDPADSLY 39 (115)
T ss_pred ccCCHHHHHHHHhhceeeeeCCCCEEEcCCCCCCeEE
Confidence 3588999999999999999999999999999877643
No 93
>PF14658 EF-hand_9: EF-hand domain
Probab=39.85 E-value=32 Score=24.50 Aligned_cols=22 Identities=18% Similarity=0.271 Sum_probs=18.3
Q ss_pred HHHhhhhcCC--CCHHHHHHHHHh
Q psy16952 49 FVDLLRHSGS--FTREEAQEYVEM 70 (161)
Q Consensus 49 fvDllr~~G~--Ft~eEa~e~i~~ 70 (161)
++++||++|. .+++|.+++...
T Consensus 20 l~~~Lra~~~~~p~e~~Lq~l~~e 43 (66)
T PF14658_consen 20 LITYLRAVTGRSPEESELQDLINE 43 (66)
T ss_pred HHHHHHHHcCCCCcHHHHHHHHHH
Confidence 6899999997 778888888764
No 94
>TIGR02503 type_III_SycN type III secretion chaperone SycN. Members of this protein family are part of the machinery of bacterial type III secretion in a number of bacteria that target animal cells. In the well-studied system from Yersinia, a complex of this protein (SycN) and YscB (pfam07329) acts as a chaperone for the export of YopN (PubMed:10094626). YopN then acts to control effector protein secretion, in response to calcium levels, so that secretion occurs only after contact with the targeted eukaryotic cell.
Probab=39.25 E-value=14 Score=29.03 Aligned_cols=41 Identities=32% Similarity=0.588 Sum_probs=32.6
Q ss_pred hhhhhccCChhHH-HHhhhhhhhc-cCCCCcc------cCccceeeeec
Q psy16952 105 LLWFQRQLPPYVC-KFLEMSLMVT-ADHGPAV------SGAHNTIVCAR 145 (161)
Q Consensus 105 Llwfkrrlp~ya~-~fiem~l~~~-aDhGpaV------sGahntivtar 145 (161)
+||.-|++|.+.+ +-++..+-+| ++||+.. +|..+-+.++|
T Consensus 44 ~L~LAr~~p~hq~~~~~~raL~L~h~~~~~~~plr~G~~ge~~lvl~~~ 92 (119)
T TIGR02503 44 LLWLARSLEWHQAEEALKRALTLCHAQRGGALPLRAGLLGEQQLVLCTR 92 (119)
T ss_pred EEEEeccCChhhhhHHHHHHHHHhccccCCCcceEeeecCCCcEEEEEE
Confidence 7999999999998 9999999999 9998764 34445555554
No 95
>PF14112 DUF4284: Domain of unknown function (DUF4284)
Probab=36.27 E-value=34 Score=26.03 Aligned_cols=75 Identities=15% Similarity=0.207 Sum_probs=50.7
Q ss_pred CHHHHHHHHHhhcccCccCcccccccCcchhhhhhcccCcc----hhhhhhhhhccC-C--------hhHHHHhhhhhhh
Q psy16952 60 TREEAQEYVEMGAINGLFRGQELLYAGMPISDVLKQNMGIG----GVLSLLWFQRQL-P--------PYVCKFLEMSLMV 126 (161)
Q Consensus 60 t~eEa~e~i~~G~lNglFRG~El~YaG~pIS~V~~~~~GiG----gvi~Llwfkrrl-p--------~ya~~fiem~l~~ 126 (161)
|++|.++|+++-+ -=-|-.++.=|.+++||+ +.+..-|..... + +|+.++|+.....
T Consensus 11 s~~el~~Y~e~~Y----------dedgd~i~s~F~~df~i~~yDeDfie~~~~~~~~~~l~~ll~~~Sy~~~~i~~~~~~ 80 (122)
T PF14112_consen 11 SEDELEEYFEIDY----------DEDGDSIPSQFCKDFGIDYYDEDFIEIIFYEESEVSLEELLEGFSYDESIIPKIKEK 80 (122)
T ss_pred CHHHHHHHhCccc----------cCCCCcccChHHHHcCCCccCchhcEEEEccCCccCHHHHHhcCCccHHHHHHHHHH
Confidence 7899999998833 015666666688889987 567766766643 2 6888888887766
Q ss_pred ccCCCCcccCccceeeeeccC
Q psy16952 127 TADHGPAVSGAHNTIVCARAG 147 (161)
Q Consensus 127 ~aDhGpaVsGahntivtarag 147 (161)
+...++ ...|+|+---.-
T Consensus 81 ~~~~~~---~~~Naii~~yn~ 98 (122)
T PF14112_consen 81 CKEKLI---KKYNAIILYYNF 98 (122)
T ss_pred HHhhcC---CCccEEEEEECC
Confidence 654443 566777654433
No 96
>cd00052 EH Eps15 homology domain; found in proteins implicated in endocytosis, vesicle transport, and signal transduction. The alignment contains a pair of EF-hand motifs, typically one of them is canonical and binds to Ca2+, while the other may not bind to Ca2+. A hydrophobic binding pocket is formed by residues from both EF-hand motifs. The EH domain binds to proteins containing NPF (class I), [WF]W or SWG (class II), or H[TS]F (class III) sequence motifs.
Probab=35.98 E-value=51 Score=20.48 Aligned_cols=27 Identities=26% Similarity=0.357 Sum_probs=17.4
Q ss_pred cchhhHH-HHHhhhhcCCCCHHHHHHHHH
Q psy16952 42 DGVIAVA-FVDLLRHSGSFTREEAQEYVE 69 (161)
Q Consensus 42 DG~Igv~-fvDllr~~G~Ft~eEa~e~i~ 69 (161)
||.|-.- +..+|+..| +++++++++++
T Consensus 13 ~G~i~~~el~~~l~~~g-~~~~~~~~i~~ 40 (67)
T cd00052 13 DGLISGDEARPFLGKSG-LPRSVLAQIWD 40 (67)
T ss_pred CCcCcHHHHHHHHHHcC-CCHHHHHHHHH
Confidence 4555443 566677777 47777777765
No 97
>PF13373 DUF2407_C: DUF2407 C-terminal domain
Probab=35.70 E-value=28 Score=27.59 Aligned_cols=17 Identities=41% Similarity=0.573 Sum_probs=14.1
Q ss_pred HhhhhcCCCCHHHHHHHH
Q psy16952 51 DLLRHSGSFTREEAQEYV 68 (161)
Q Consensus 51 Dllr~~G~Ft~eEa~e~i 68 (161)
|=|++.| ||+||+++.=
T Consensus 4 DRLl~~G-FS~~eI~~LR 20 (140)
T PF13373_consen 4 DRLLSAG-FSPEEIQDLR 20 (140)
T ss_pred hHHHHcC-CCHHHHHHHH
Confidence 6788888 9999998754
No 98
>TIGR01669 phage_XkdX phage uncharacterized protein, XkdX family. This model represents a family of small (about 50 amino acid) phage proteins, found in at least 12 different phage and prophage regions of Gram-positive bacteria. In a number of these phage, the gene for this protein is found near the holin and endolysin genes.
Probab=35.32 E-value=29 Score=22.84 Aligned_cols=22 Identities=23% Similarity=0.365 Sum_probs=16.8
Q ss_pred hhhhcCCCCHHHHHHHHHhhcc
Q psy16952 52 LLRHSGSFTREEAQEYVEMGAI 73 (161)
Q Consensus 52 llr~~G~Ft~eEa~e~i~~G~l 73 (161)
.+-+-|+||.|...+|++.|.+
T Consensus 11 ~~Y~~g~~t~e~v~~~V~~~~I 32 (45)
T TIGR01669 11 TYYLWGYYSNEDVNKFVEKKLI 32 (45)
T ss_pred HHHHcCCCCHHHHHHHhhcCcc
Confidence 3446688888888888888765
No 99
>cd05119 RIO RIO kinase family, catalytic domain. The RIO kinase catalytic domain family is part of a larger superfamily, that includes the catalytic domains of other kinases such as the typical serine/threonine/tyrosine protein kinases (PKs), aminoglycoside phosphotransferase, choline kinase, and phosphoinositide 3-kinase (PI3K). RIO kinases are atypical protein serine kinases present in archaea, bacteria and eukaryotes. Serine kinases catalyze the transfer of the gamma-phosphoryl group from ATP to serine residues in protein substrates. RIO kinases contain a kinase catalytic signature, but otherwise show very little sequence similarity to typical PKs. The RIO catalytic domain is truncated compared to the catalytic domains of typical PKs, with deletions of the loops responsible for substrate binding. Most organisms contain at least two RIO kinases, RIO1 and RIO2. A third protein, RIO3, is present in multicellular eukaryotes. In yeast, RIO1 and RIO2 are essential for survival. They funct
Probab=34.25 E-value=6.7 Score=29.04 Aligned_cols=42 Identities=24% Similarity=0.567 Sum_probs=31.8
Q ss_pred CCCceeeeccchhhHHHHHhhhhcCCCCHHHHHHHH--HhhcccCccC
Q psy16952 33 KKPNLILNVDGVIAVAFVDLLRHSGSFTREEAQEYV--EMGAINGLFR 78 (161)
Q Consensus 33 Kk~NLILNVDG~Igv~fvDllr~~G~Ft~eEa~e~i--~~G~lNglFR 78 (161)
|-.|++++ ||-+. ++|+ ..+.-++.+++.+|+ ++..+|..|+
T Consensus 142 ~p~Nili~-~~~~~--liDf-g~a~~~~~~~~~~~~~~~~~~~~~~~~ 185 (187)
T cd05119 142 SEYNILVD-DGKVY--IIDV-PQAVEIDHPNAEEFLRRDVENINRFFR 185 (187)
T ss_pred ChhhEEEE-CCcEE--EEEC-cccccccCcchHHHHHHHHHHHHHHhh
Confidence 56799999 87654 4665 555667888999998 7788888885
No 100
>PF03808 Glyco_tran_WecB: Glycosyl transferase WecB/TagA/CpsF family; InterPro: IPR004629 The WecG member of this superfamily, believed to be UDP-N-acetyl-D-mannosaminuronic acid transferase, plays a role in Enterobacterial common antigen (eca) synthesis in Escherichia coli. Another family member, the Bacillus subtilis TagA protein, is involved in the biosynthesis of the cell wall polymer poly(glycerol phosphate). The third family member, CpsF, CMP-N-acetylneuraminic acid synthetase has a role in the capsular polysaccharide biosynthesis pathway.; GO: 0009058 biosynthetic process
Probab=32.00 E-value=47 Score=26.03 Aligned_cols=64 Identities=22% Similarity=0.387 Sum_probs=38.8
Q ss_pred hhcCCCCHHHHHHHHHhhcccCccCcccccccCcchhhhhhc----------ccCcchhhhhhhhh-ccCChhHHHH
Q psy16952 54 RHSGSFTREEAQEYVEMGAINGLFRGQELLYAGMPISDVLKQ----------NMGIGGVLSLLWFQ-RQLPPYVCKF 119 (161)
Q Consensus 54 r~~G~Ft~eEa~e~i~~G~lNglFRG~El~YaG~pIS~V~~~----------~~GiGgvi~Llwfk-rrlp~ya~~f 119 (161)
.+.|.|+++|.+++++ .+|..=-.==++.-|+|-.|.+-. -+|+||.+-.+=-+ +|.|+|..+.
T Consensus 80 ~~~g~f~~~~~~~i~~--~I~~~~pdiv~vglG~PkQE~~~~~~~~~l~~~v~i~vG~~~d~~aG~~~raP~w~~~~ 154 (172)
T PF03808_consen 80 YHHGYFDEEEEEAIIN--RINASGPDIVFVGLGAPKQERWIARHRQRLPAGVIIGVGGAFDFLAGKVKRAPKWMRRL 154 (172)
T ss_pred ecCCCCChhhHHHHHH--HHHHcCCCEEEEECCCCHHHHHHHHHHHHCCCCEEEEECchhhhhccCcCccCHHHHHc
Confidence 3567788888887775 233211101124567777776632 27888888755544 8888887663
No 101
>cd08329 CARD_BIRC2_BIRC3 Caspase activation and recruitment domain found in Baculoviral IAP repeat-containing proteins, BIRC2 (c-IAP1) and BIRC3 (c-IAP2). Caspase activation and recruitment domain (CARD) similar to those found in Baculoviral IAP repeat (BIR)-containing protein 2 (BIRC2) or cellular Inhibitor of Apoptosis Protein 1 (c-IAP1), and BIRC3 (or c-IAP2). IAPs are anti-apoptotic proteins that contain at least one BIR domain. Most IAPs also contain a C-terminal RING domain. In addition, both BIRC2 and BIRC3 contain a CARD. BIRC2 and BIRC3, through their binding with TRAF (TNF receptor-associated factor) 2, are recruited to TNFR-1/2 signaling complexes, where they regulate caspase-8 activity. They also play important roles in pro-survival NF-kB signaling pathways. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interac
Probab=31.93 E-value=47 Score=24.38 Aligned_cols=23 Identities=17% Similarity=0.151 Sum_probs=18.7
Q ss_pred HHHhhhhcCCCCHHHHHHHHHhh
Q psy16952 49 FVDLLRHSGSFTREEAQEYVEMG 71 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~~G 71 (161)
++|-|.+.|.+|+||.+++-...
T Consensus 28 ilD~Ll~~~Vlt~ee~e~I~~~~ 50 (94)
T cd08329 28 ILDSLLSANVITEQEYDVIKQKT 50 (94)
T ss_pred HHHHHHHcCCCCHHHHHHHHcCC
Confidence 47899999999999998875533
No 102
>PRK11753 DNA-binding transcriptional dual regulator Crp; Provisional
Probab=31.92 E-value=27 Score=26.56 Aligned_cols=36 Identities=14% Similarity=0.090 Sum_probs=32.4
Q ss_pred CCCHHHHHHHHHhhcccCccCcccccccCcchhhhh
Q psy16952 58 SFTREEAQEYVEMGAINGLFRGQELLYAGMPISDVL 93 (161)
Q Consensus 58 ~Ft~eEa~e~i~~G~lNglFRG~El~YaG~pIS~V~ 93 (161)
-+++++++++.+.+..--+-+|+.+.+.|-|.+.++
T Consensus 7 ~~~~~~~~~l~~~~~~~~~~kg~~l~~~g~~~~~~y 42 (211)
T PRK11753 7 PQTDPTLEWFLSHCHIHKYPAKSTLIHAGEKAETLY 42 (211)
T ss_pred CCCHHHHHHHHhhCeEEEeCCCCEEEeCCCCCCeEE
Confidence 378999999999999999999999999999887654
No 103
>PF04695 Pex14_N: Peroxisomal membrane anchor protein (Pex14p) conserved region; InterPro: IPR006785 This conserved region defines a group of peroxisomal membrane anchor proteins which bind the PTS1 (peroxisomal targeting signal) receptor and are required for the import of PTS1-containing proteins into peroxisomes. Loss of functional Pex14p results in defects in both the PTS1 and PTS2-dependent import pathways. Deletion analysis of this conserved region implicates it in selective peroxisome degradation. In the majority of members this region is situated at the N terminus of the protein [, ].; GO: 0005777 peroxisome, 0016020 membrane; PDB: 2W85_A 2W84_A 3FF5_B.
Probab=31.24 E-value=44 Score=25.80 Aligned_cols=20 Identities=30% Similarity=0.478 Sum_probs=15.5
Q ss_pred HHhhhhcCCCCHHHHHHHHHh
Q psy16952 50 VDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 50 vDllr~~G~Ft~eEa~e~i~~ 70 (161)
+..|++-| .|+|||+|-++.
T Consensus 27 ~~FL~sKG-Lt~~EI~~al~~ 46 (136)
T PF04695_consen 27 IAFLESKG-LTEEEIDEALGR 46 (136)
T ss_dssp HHHHHHCT---HHHHHHHHHH
T ss_pred HHHHHcCC-CCHHHHHHHHHh
Confidence 56899999 999999998875
No 104
>cd08330 CARD_ASC_NALP1 Caspase activation and recruitment domain found in Human ASC, NALP1, and similar proteins. Caspase activation and recruitment domain (CARD) similar to those found in human ASC (Apoptosis-associated speck-like protein containing a CARD) and NALP1 (CARD7, NLRP1). ASC, an adaptor molecule, and NALP1, a member of the Nod-like receptor (NLR) family, are involved in the assembly of the 'inflammasome', a multiprotein platform, which is responsible for caspase-1 activation and regulation of IL-1beta maturation. In general, CARDs are death domains (DDs) associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effector Domain). They se
Probab=30.34 E-value=54 Score=23.37 Aligned_cols=23 Identities=22% Similarity=0.180 Sum_probs=20.1
Q ss_pred HHHhhhhcCCCCHHHHHHHHHhh
Q psy16952 49 FVDLLRHSGSFTREEAQEYVEMG 71 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~~G 71 (161)
+.|-|.+.|.+|+||.+++-.-+
T Consensus 20 ilD~L~~~~Vit~e~~~~I~a~~ 42 (82)
T cd08330 20 ILDKLHGKKVITQEQYSEVRAEK 42 (82)
T ss_pred HHHHHHHCCCCCHHHHHHHHcCC
Confidence 58999999999999999987654
No 105
>PRK06310 DNA polymerase III subunit epsilon; Validated
Probab=30.03 E-value=37 Score=28.40 Aligned_cols=81 Identities=16% Similarity=0.176 Sum_probs=49.5
Q ss_pred hHHHHHhhhhcCCCCHHHHHHHHHhhc-ccCccCcccccccCcchhhhhhcccCcchhhhhhhh-hccCChhHHHHhhhh
Q psy16952 46 AVAFVDLLRHSGSFTREEAQEYVEMGA-INGLFRGQELLYAGMPISDVLKQNMGIGGVLSLLWF-QRQLPPYVCKFLEMS 123 (161)
Q Consensus 46 gv~fvDllr~~G~Ft~eEa~e~i~~G~-lNglFRG~El~YaG~pIS~V~~~~~GiGgvi~Llwf-krrlp~ya~~fiem~ 123 (161)
+-+|.-++..++ +-|+.-++.+... ++-+.=| =|.|+++++|= ++ -+-|+ +..+|++..+=+...
T Consensus 164 ~~vl~~l~~~~~--~~~~l~~~~~~~~~~~~~~fG---K~kG~~~~~~~-~~-------y~~w~~~~~~~~~~~~~~~~~ 230 (250)
T PRK06310 164 IKVFKHLCKRFR--TLEQLKQILSKPIKMKYMPLG---KHKGRLFSEIP-LE-------YLQWASKMDFDQDLLFSIRSE 230 (250)
T ss_pred HHHHHHHHHhcc--cHHHHHHHhhcCcccccccCc---ccCCCCcccCC-HH-------HHHHHHhCCCCcchHHHHHHH
Confidence 445556665554 4455555555322 2222222 38999999992 22 37788 556888876666665
Q ss_pred hhhccCCCCcccCccce
Q psy16952 124 LMVTADHGPAVSGAHNT 140 (161)
Q Consensus 124 l~~~aDhGpaVsGahnt 140 (161)
+. ...||-..|-|.|-
T Consensus 231 l~-~~~~~~~~~~~~~~ 246 (250)
T PRK06310 231 IK-HRKKGTGFSQANNP 246 (250)
T ss_pred HH-HhhccCccccccCc
Confidence 54 46788888877774
No 106
>cd01104 HTH_MlrA-CarA Helix-Turn-Helix DNA binding domain of the transcription regulators MlrA and CarA. Helix-turn-helix (HTH) transcription regulator MlrA (merR-like regulator A), N-terminal domain. The MlrA protein, also known as YehV, has been shown to control cell-cell aggregation by co-regulating the expression of curli and extracellular matrix production in Escherichia coli and Salmonella typhimurium. Its close homolog, CarA from Myxococcus xanthus, is involved in activation of the carotenoid biosynthesis genes by light. These proteins belong to the MerR superfamily of transcription regulators that promote expression of several stress regulon genes by reconfiguring the spacer between the -35 and -10 promoter elements. Their conserved N-terminal domains contain predicted HTH motifs that mediate DNA binding, while the dissimilar C-terminal domains bind specific coactivator molecules. Many MlrA- and CarA-like proteins in this group appear to lack the long dimerization helix seen i
Probab=29.13 E-value=50 Score=21.27 Aligned_cols=27 Identities=15% Similarity=0.238 Sum_probs=18.2
Q ss_pred CCCHHHHHHHHHhhcccCccCcccccccCcchhhhh
Q psy16952 58 SFTREEAQEYVEMGAINGLFRGQELLYAGMPISDVL 93 (161)
Q Consensus 58 ~Ft~eEa~e~i~~G~lNglFRG~El~YaG~pIS~V~ 93 (161)
.||++|++.+..+= ++...|||++++-
T Consensus 38 ~yt~~~v~~l~~i~---------~l~~~g~~l~~i~ 64 (68)
T cd01104 38 LYSEADVARLRLIR---------RLTSEGVRISQAA 64 (68)
T ss_pred ecCHHHHHHHHHHH---------HHHHCCCCHHHHH
Confidence 47888777776653 3455788887764
No 107
>PF01479 S4: S4 domain; InterPro: IPR002942 Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ]. The S4 domain is a small domain consisting of 60-65 amino acid residues that was detected in the bacterial ribosomal protein S4, eukaryotic ribosomal S9, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterised, small proteins that may be involved in translation regulation []. The S4 domain probably mediates binding to RNA.; GO: 0003723 RNA binding; PDB: 3BBU_A 1DM9_B 2K6P_A 3U5G_E 3U5C_E 3IZB_D 2XZM_D 2XZN_D 3O30_E 3O2Z_E ....
Probab=28.76 E-value=68 Score=19.68 Aligned_cols=23 Identities=26% Similarity=0.489 Sum_probs=18.4
Q ss_pred HhhhhcCCC-CHHHHHHHHHhhcc
Q psy16952 51 DLLRHSGSF-TREEAQEYVEMGAI 73 (161)
Q Consensus 51 Dllr~~G~F-t~eEa~e~i~~G~l 73 (161)
.+|..+|.. |+.||+++|+.|..
T Consensus 5 ~~L~~~~~~~sr~~a~~~I~~g~V 28 (48)
T PF01479_consen 5 KFLSRLGLASSRSEARRLIKQGRV 28 (48)
T ss_dssp HHHHHTTSSSSHHHHHHHHHTTTE
T ss_pred HHHHHcCCcCCHHHHHHhcCCCEE
Confidence 356667877 59999999999953
No 108
>PRK07983 exodeoxyribonuclease X; Provisional
Probab=28.01 E-value=2.3e+02 Score=23.40 Aligned_cols=69 Identities=26% Similarity=0.449 Sum_probs=46.8
Q ss_pred hhHHHHHhhhhcCCCCHHHHHHHHHhhcccCccCcccc-cccCcchhhhhhcccCcchhhhhhhhhcc---CChhHHHHh
Q psy16952 45 IAVAFVDLLRHSGSFTREEAQEYVEMGAINGLFRGQEL-LYAGMPISDVLKQNMGIGGVLSLLWFQRQ---LPPYVCKFL 120 (161)
Q Consensus 45 Igv~fvDllr~~G~Ft~eEa~e~i~~G~lNglFRG~El-~YaG~pIS~V~~~~~GiGgvi~Llwfkrr---lp~ya~~fi 120 (161)
.+-+|.-+++..| ++.||.-++-+ =..+|+=-.+ -|.|.+|+++.+++.+ -|-|.-+. +.++..+-+
T Consensus 143 ta~ll~~l~~~~~-~~~~~l~~~~~---~~~~~~~~~fGk~kg~~~~~~~~~~~~-----yl~wl~~~~~d~~~~l~~~~ 213 (219)
T PRK07983 143 TAALLIDIMNTSG-WTAEEMADITG---RPSLLTTFTFGKYRGKAVSDVAERDPG-----YLRWLFNNLDDMSPELRLTL 213 (219)
T ss_pred HHHHHHHHHHHcC-CCHHHHHHHhc---CCccCCCccccCccCcchhhhhhcchH-----HHHHHHhcccccCHHHHHHH
Confidence 4677888898888 46666655554 3566665556 7999999999987753 46676555 556655544
Q ss_pred hh
Q psy16952 121 EM 122 (161)
Q Consensus 121 em 122 (161)
+.
T Consensus 214 ~~ 215 (219)
T PRK07983 214 KH 215 (219)
T ss_pred HH
Confidence 43
No 109
>cd08323 CARD_APAF1 Caspase activation and recruitment domain similar to that found in Apoptotic Protease-Activating Factor 1. Caspase activation and recruitment domain (CARD) similar to that found in apoptotic protease-activating factor 1 (APAF-1), which is an activator of caspase-9. APAF-1 contains WD-40 repeats, a CARD, and an ATPase domain. Upon stimulation, APAF-1, together with caspase-9, forms the heptameric 'apoptosome', which leads to the processing and activation of caspase-9, starting a caspase cascade which leads to apoptosis. In general, CARDs are death domains (DDs) found associated with caspases. They are known to be important in the signaling pathways for apoptosis, inflammation, and host-defense mechanisms. DDs are protein-protein interaction domains found in a variety of domain architectures. Their common feature is that they form homodimers by self-association or heterodimers by associating with other members of the DD superfamily including PYRIN and DED (Death Effect
Probab=27.70 E-value=63 Score=23.59 Aligned_cols=23 Identities=17% Similarity=0.287 Sum_probs=19.0
Q ss_pred HHHhhhhcCCCCHHHHHHHHHhh
Q psy16952 49 FVDLLRHSGSFTREEAQEYVEMG 71 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~~G 71 (161)
+.|-|-+.|.||.+|.+++-..+
T Consensus 19 ild~L~~~gvlt~~~~e~I~~~~ 41 (86)
T cd08323 19 IMDHMISDGVLTLDEEEKVKSKA 41 (86)
T ss_pred HHHHHHhcCCCCHHHHHHHHcCC
Confidence 67889999999999999876544
No 110
>PF01595 DUF21: Domain of unknown function DUF21; InterPro: IPR002550 This transmembrane region has no known function. Many of the sequences in this family are annotated as hemolysins, however this is due to a similarity to Q54318 from SWISSPROT that does not contain this domain. This domain is found in the N terminus of the proteins adjacent to two intracellular CBS domains (IPR000644 from INTERPRO).
Probab=27.62 E-value=55 Score=24.65 Aligned_cols=25 Identities=28% Similarity=0.445 Sum_probs=21.6
Q ss_pred CCCCHHHHHHHHHhhcccCccCccc
Q psy16952 57 GSFTREEAQEYVEMGAINGLFRGQE 81 (161)
Q Consensus 57 G~Ft~eEa~e~i~~G~lNglFRG~E 81 (161)
..+|+||+++.++.|.=+|.+.-+|
T Consensus 159 ~~~s~eel~~lv~~~~e~G~i~~~E 183 (183)
T PF01595_consen 159 PAVSEEELRSLVEEGEEEGVIEEEE 183 (183)
T ss_pred CCCCHHHHHHHHHhHHHCCCCCCCC
Confidence 4699999999999999999886555
No 111
>PF00884 Sulfatase: Sulfatase; InterPro: IPR000917 Sulphatases 3.1.6. from EC are enzymes that hydrolyze various sulphate esters. The sequence of different types of sulphatases are available and have shown to be structurally related [, , ]; these include: arylsulphatase A 3.1.6.8 from EC (ASA), a lysosomal enzyme which hydrolyses cerebroside sulphate; arylsulphatase B 3.1.6.12 from EC (ASB), which hydrolyses the sulphate ester group from N-acetylgalactosamine 4-sulphate residues of dermatan sulphate; arylsulphatase C (ASD) and E (ASE); steryl-sulphatase 3.1.6.2 from EC (STS), a membrane bound microsomal enzyme which hydrolyses 3-beta-hydroxy steroid sulphates; iduronate 2-sulphatase precursor 3.1.6.13 from EC (IDS), a lysosomal enzyme that hydrolyses the 2-sulphate groups from non-reducing-terminal iduronic acid residues in dermatan sulphate and heparan sulphate; N-acetylgalactosamine-6-sulphatase 3.1.6.4 from EC, which hydrolyses the 6-sulphate groups of the N-acetyl-d-galactosamine 6-sulphate units of chondroitin sulphate and the D-galactose 6-sulphate units of keratan sulphate; glucosamine-6-sulphatase 3.1.6.14 from EC (G6S), which hydrolyses the N-acetyl-D-glucosamine 6-sulphate units of heparan sulphate and keratan sulphate; N-sulphoglucosamine sulphohydrolase 3.10.1.1 from EC (sulphamidase), the lysosomal enzyme that catalyses the hydrolysis of N-sulpho-d-glucosamine into glucosamine and sulphate; sea urchin embryo arylsulphatase 3.1.6.1 from EC; green algae arylsulphatase 3.1.6.1 from EC, which plays an important role in the mineralisation of sulphates; and arylsulphatase 3.1.6.1 from EC from Escherichia coli (aslA), Klebsiella aerogenes (gene atsA) and Pseudomonas aeruginosa (gene atsA). ; GO: 0008484 sulfuric ester hydrolase activity, 0008152 metabolic process; PDB: 1P49_A 1FSU_A 2QZU_A 2W5Q_A 2W5T_A 2W5S_A 2W5R_A 3LXQ_A 1HDH_B 1E33_P ....
Probab=27.61 E-value=19 Score=28.02 Aligned_cols=15 Identities=27% Similarity=0.605 Sum_probs=11.6
Q ss_pred hhhhhccCCCCcccC
Q psy16952 122 MSLMVTADHGPAVSG 136 (161)
Q Consensus 122 m~l~~~aDhGpaVsG 136 (161)
..|++++|||+....
T Consensus 240 TiiiitsDHG~~~~e 254 (308)
T PF00884_consen 240 TIIIITSDHGESFGE 254 (308)
T ss_dssp EEEEEEESSSSSTGG
T ss_pred ceeEEecCcCccccc
Confidence 346888999998843
No 112
>smart00812 Alpha_L_fucos Alpha-L-fucosidase. O-Glycosyl hydrolases (EC 3.2.1.-) are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycosyl hydrolases, based on sequence similarity, has led to the definition of 85 different families. This classification is available on the CAZy (CArbohydrate-Active EnZymes) web site PUBMED:. Because the fold of proteins is better conserved than their sequences, some of the families can be grouped in 'clans'. Family 29 encompasses alpha-L-fucosidases, which is a lysosomal enzyme responsible for hydrolyzing the alpha-1,6-linked fucose joined to the reducing-end N-acetylglucosamine of the carbohydrate moieties of glycoproteins. Deficiency of alpha-L-fucosidase results in the lysosomal storage disease fucosidosis.
Probab=27.46 E-value=33 Score=30.88 Aligned_cols=28 Identities=43% Similarity=0.469 Sum_probs=18.9
Q ss_pred hccCCCceeeec----cchhhHHHHHhhhhcC
Q psy16952 30 TTSKKPNLILNV----DGVIAVAFVDLLRHSG 57 (161)
Q Consensus 30 Tt~Kk~NLILNV----DG~Igv~fvDllr~~G 57 (161)
+.+|-.||+||| ||.|--..++.|+.-|
T Consensus 296 ~Vsk~GnlLLNVgP~~dG~ip~~~~~~L~~iG 327 (384)
T smart00812 296 IVSKGGNLLLNVGPKADGTIPEEEEERLLEIG 327 (384)
T ss_pred hcCCCceEEEccCCCCCCCCCHHHHHHHHHHH
Confidence 467888999999 6666555555554333
No 113
>PF09693 Phage_XkdX: Phage uncharacterised protein (Phage_XkdX); InterPro: IPR010022 This entry is represented by Bacteriophage 69, Orf86. The characteristics of the protein distribution suggest prophage matches in addition to the phage matches. This entry identifies a family of small (about 50 amino acid) phage proteins, found in at least 12 different phage and prophage regions of Gram-positive bacteria. In a number of these phage, the gene for this protein is found near the holin and endolysin genes.
Probab=27.44 E-value=48 Score=21.03 Aligned_cols=19 Identities=37% Similarity=0.686 Sum_probs=11.2
Q ss_pred hcCCCCHHHHHHHHHhhcc
Q psy16952 55 HSGSFTREEAQEYVEMGAI 73 (161)
Q Consensus 55 ~~G~Ft~eEa~e~i~~G~l 73 (161)
.-|++|++....+++.|.+
T Consensus 9 ~~g~~t~~~v~~~V~~g~I 27 (40)
T PF09693_consen 9 DWGLYTKEDVKNFVEAGWI 27 (40)
T ss_pred HcCCCCHHHHHHHhhcCeE
Confidence 3456666666666666544
No 114
>smart00100 cNMP Cyclic nucleotide-monophosphate binding domain. Catabolite gene activator protein (CAP) is a prokaryotic homologue of eukaryotic cNMP-binding domains, present in ion channels, and cNMP-dependent kinases.
Probab=26.79 E-value=47 Score=21.32 Aligned_cols=35 Identities=14% Similarity=0.091 Sum_probs=31.4
Q ss_pred CCCHHHHHHHHHhhcccCccCcccccccCcchhhh
Q psy16952 58 SFTREEAQEYVEMGAINGLFRGQELLYAGMPISDV 92 (161)
Q Consensus 58 ~Ft~eEa~e~i~~G~lNglFRG~El~YaG~pIS~V 92 (161)
.+++++++++.+....--+-+|+-+...|-|.+.+
T Consensus 4 ~l~~~~~~~l~~~~~~~~~~~g~~l~~~g~~~~~~ 38 (120)
T smart00100 4 NLDAEELRELADALEPVRYPAGEVIIRQGDVGDSF 38 (120)
T ss_pred CCCHHHHHHHHHhceEEEeCCCCEEEeCCCcCCcE
Confidence 47899999999999998888999999999998874
No 115
>PF13407 Peripla_BP_4: Periplasmic binding protein domain; PDB: 3BRS_B 3GBP_A 3GA5_A 1GCG_A 1GCA_A 3H75_A 3D02_A 3L49_B 3EJW_B 3T95_A ....
Probab=26.46 E-value=2.1e+02 Score=22.03 Aligned_cols=75 Identities=16% Similarity=0.309 Sum_probs=53.2
Q ss_pred chhhHHHHHHhhCCCChhhh-----------hhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCC---------H
Q psy16952 2 RVKIIKEFVLQNFPTTPLLN-----------YALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFT---------R 61 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~~ld-----------yAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft---------~ 61 (161)
|.+-+++.+++ +|...++. ..-.++++-.+.+.+.|+..+.-.+...++.|+..|.-. .
T Consensus 140 r~~g~~~~l~~-~~~~~~~~~~~~~~~~~~~a~~~~~~~l~~~~~~~i~~~~~~~~~g~~~al~~~g~~~~~~v~g~d~~ 218 (257)
T PF13407_consen 140 RLEGFRDALKE-YPGVEIVDEYEYTDWDPEDARQAIENLLQANPVDAIIACNDGMALGAAQALQQAGRAGKVIVVGFDGS 218 (257)
T ss_dssp HHHHHHHHHHH-CTTEEEEEEEEECTTSHHHHHHHHHHHHHHTTEEEEEESSHHHHHHHHHHHHHTTCTTTSEEEEEECH
T ss_pred HHHHHHHHHhh-cceeeeeeeeeccCCCHHHHHHHHHHhhhcCCceEEEeCCChHHHHHHHHHHHcCCcccceeecCCCC
Confidence 66677777777 44444333 233445554544578899998888999999999988632 3
Q ss_pred HHHHHHHHhhcccCcc
Q psy16952 62 EEAQEYVEMGAINGLF 77 (161)
Q Consensus 62 eEa~e~i~~G~lNglF 77 (161)
++..+.|+.|.+++..
T Consensus 219 ~~~~~~i~~g~~~a~v 234 (257)
T PF13407_consen 219 PEALEAIKDGNITATV 234 (257)
T ss_dssp HHHHHHHHTTSSSEEE
T ss_pred HHHHHHHHCCCCeEEE
Confidence 6888999999998665
No 116
>cd04448 DEP_PIKfyve DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in fungal RhoGEF (GDP/GTP exchange factor) PIKfyve-like proteins. PIKfyve contains N-terminal Fyve finger and DEP domains, a central chaperonin-like domain and a C-terminal PIPK (phosphatidylinositol phosphate kinase) domain. PIKfyve-like proteins are important phosphatidylinositol (3)-monophosphate (PtdIns(3)P)-5-kinases, producing PtdIns(3,5)P2, which plays a major role in multivesicular body (MVB) sorting and control of retrograde traffic from the vacuole back to the endosome and/or Golgi. PIKfyve itself has been shown to be play a role in regulating early-endosome-to-trans-Golgi network (TGN) retrograde trafficking.
Probab=25.63 E-value=86 Score=22.40 Aligned_cols=35 Identities=20% Similarity=0.184 Sum_probs=24.8
Q ss_pred chhhHHHHHhhhhcC-CCCHHHHHHHHHhhcccCcc
Q psy16952 43 GVIAVAFVDLLRHSG-SFTREEAQEYVEMGAINGLF 77 (161)
Q Consensus 43 G~Igv~fvDllr~~G-~Ft~eEa~e~i~~G~lNglF 77 (161)
=++|.-+||-|-..+ +-|++||-.+-+.=.-+|++
T Consensus 28 cF~GselVdWL~~~~~~~~R~eAv~~gq~Ll~~g~i 63 (81)
T cd04448 28 CILGKELVNWLIRQGKAATRVQAIAIGQALLDAGWI 63 (81)
T ss_pred ccChHHHHHHHHHcCCCCCHHHHHHHHHHHHHCCCE
Confidence 469999999887666 68999987665443334444
No 117
>COG1069 AraB Ribulose kinase [Energy production and conversion]
Probab=25.44 E-value=35 Score=33.08 Aligned_cols=24 Identities=25% Similarity=0.718 Sum_probs=18.5
Q ss_pred hhhh-------hhhhhccCC---hhHHHHhhhhh
Q psy16952 101 GVLS-------LLWFQRQLP---PYVCKFLEMSL 124 (161)
Q Consensus 101 gvi~-------Llwfkrrlp---~ya~~fiem~l 124 (161)
|++| ++|++|+.| .-+..|+|.+=
T Consensus 135 G~~SpEm~~PKlmwl~~~~p~~~~~a~~~fdl~D 168 (544)
T COG1069 135 GKISPEMMIPKLMWLKREAPAVWERAAHIFDLAD 168 (544)
T ss_pred CccChhhhHHHHHHHHhhChHHHHHhhhhhhHHH
Confidence 6666 899999999 45667777654
No 118
>cd08326 CARD_CASP9 Caspase activation and recruitment domain of Caspase-9. Caspase activation and recruitment domain (CARD) similar to that found in caspase-9 (CASP9, MCH6, APAF3), which interacts with the CARD of apoptotic protease-activating factor 1 (APAF-1). Caspases are aspartate-specific cysteine proteases with functions in apoptosis and immune signaling. Initiator caspases are the first to be activated following death- or inflammation-inducing signals. Caspase-9 is the initiator caspase associated with the intrinsic or mitochondrial pathway of apoptosis, induced by many pro-apoptotic signals. Together with APAF-1, it forms the heptameric 'apoptosome' in response to the release of cytochrome c from mitochondria. Activated caspase-9 cleaves and activates downstream effector caspases, like caspase-3, caspase-6, and caspase-7, resulting in apoptosis. In general, CARDs are death domains (DDs) associated with caspases. They are known to be important in the signaling pathways for apopt
Probab=25.36 E-value=72 Score=23.04 Aligned_cols=24 Identities=29% Similarity=0.387 Sum_probs=19.9
Q ss_pred HHHhhhhcCCCCHHHHHHHHHhhc
Q psy16952 49 FVDLLRHSGSFTREEAQEYVEMGA 72 (161)
Q Consensus 49 fvDllr~~G~Ft~eEa~e~i~~G~ 72 (161)
..|-|-+.|.||+++.+++-..++
T Consensus 21 v~~~L~~~~Vlt~~~~e~I~~~~t 44 (84)
T cd08326 21 LWDHLLSRGVFTPDMIEEIQAAGS 44 (84)
T ss_pred HHHHHHhcCCCCHHHHHHHHcCCC
Confidence 578899999999999998876553
No 119
>COG4003 Uncharacterized protein conserved in archaea [Function unknown]
Probab=25.32 E-value=71 Score=24.68 Aligned_cols=49 Identities=33% Similarity=0.476 Sum_probs=32.6
Q ss_pred HHhhCCCChhhhhhhhhhhhhccCCCceeeeccchhhHHHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 10 VLQNFPTTPLLNYALEVEKITTSKKPNLILNVDGVIAVAFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 10 ~~~~fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG~Igv~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
.++.||+ -|-++|.+..-.|..+- |- --...|.||.|- |+|||-|+|+.
T Consensus 8 fkk~fp~-----l~~eleg~~l~~~~~~~----gy-~PtV~D~L~rCd--T~EEAlEii~y 56 (98)
T COG4003 8 FKKKFPA-----LAKELEGIRLEPKIDFS----GY-NPTVIDFLRRCD--TEEEALEIINY 56 (98)
T ss_pred HHHHhHH-----HHHHhhcccccccCCcC----CC-CchHHHHHHHhC--cHHHHHHHHHH
Confidence 3455663 47778877775553321 11 124679999997 99999999874
No 120
>KOG3340|consensus
Probab=24.88 E-value=45 Score=31.43 Aligned_cols=30 Identities=47% Similarity=0.663 Sum_probs=26.5
Q ss_pred hccCCCceeeec----cchhhHHHHHhhhhcCCC
Q psy16952 30 TTSKKPNLILNV----DGVIAVAFVDLLRHSGSF 59 (161)
Q Consensus 30 Tt~Kk~NLILNV----DG~Igv~fvDllr~~G~F 59 (161)
|.|--.||.||| ||.|-..|=|=||.-|.+
T Consensus 315 Tvsc~GN~LlNvGPt~~G~I~~iFeeRL~~vGrw 348 (454)
T KOG3340|consen 315 TVSCNGNLLLNVGPTKDGTIPPIFEERLREVGRW 348 (454)
T ss_pred hEeeCCeEEEeecCCcCCcccHHHHHHHHHhhhh
Confidence 457789999998 999999999999988865
No 121
>TIGR00433 bioB biotin synthetase. Catalyzes the last step of the biotin biosynthesis pathway.
Probab=24.23 E-value=47 Score=27.22 Aligned_cols=31 Identities=23% Similarity=0.310 Sum_probs=24.2
Q ss_pred CCHHHHHHHHHhhcccCccCcccccccCcchh
Q psy16952 59 FTREEAQEYVEMGAINGLFRGQELLYAGMPIS 90 (161)
Q Consensus 59 Ft~eEa~e~i~~G~lNglFRG~El~YaG~pIS 90 (161)
|.+.+.+--+..| .|+++.|+=|+|.|.|+.
T Consensus 254 ~~~~~~~~~l~~G-~n~i~~g~~~~~~g~~~~ 284 (296)
T TIGR00433 254 MRELQQAMCFMAG-ANSIFVGDYLTTTGNPEE 284 (296)
T ss_pred hhhhHHHHHHHhc-CceEEEcCcccCCCCCCc
Confidence 3333333357888 899999999999999998
No 122
>cd04371 DEP DEP domain, named after Dishevelled, Egl-10, and Pleckstrin, where this domain was first discovered. The function of this domain is still not clear, but it is believed to be important for the membrane association of the signaling proteins in which it is present. New studies show that the DEP domain of Sst2, a yeast RGS protein is necessary and sufficient for receptor interaction.
Probab=23.93 E-value=88 Score=20.81 Aligned_cols=37 Identities=30% Similarity=0.279 Sum_probs=28.4
Q ss_pred cchhhHHHHHhhhhcCC-CCHHHHHHHHHhhcccCccC
Q psy16952 42 DGVIAVAFVDLLRHSGS-FTREEAQEYVEMGAINGLFR 78 (161)
Q Consensus 42 DG~Igv~fvDllr~~G~-Ft~eEa~e~i~~G~lNglFR 78 (161)
+-+.|.-+||-|..+.. .+++||.++-+.=--+|+++
T Consensus 27 ~~F~G~e~v~WL~~~~~~~~r~ea~~~~~~ll~~g~i~ 64 (81)
T cd04371 27 NCFTGSELVDWLLDNLEAITREEAVELGQALLKHGLIH 64 (81)
T ss_pred ceeEcHHHHHHHHHhCCCCCHHHHHHHHHHHHHCCCEE
Confidence 55789999998888776 89999988776544555553
No 123
>PF03767 Acid_phosphat_B: HAD superfamily, subfamily IIIB (Acid phosphatase); InterPro: IPR005519 This family of class B acid phosphatases also contains a number of vegetative storage proteins (VPS25). The acid phosphatase activity of VPS has been experimentally demonstrated [].; GO: 0003993 acid phosphatase activity; PDB: 3PCT_C 2I34_A 2I33_A 1Z5U_D 1Z5G_A 2AUT_C 1Z88_B 3OCV_A 3OCZ_A 3OCX_A ....
Probab=22.85 E-value=30 Score=28.59 Aligned_cols=46 Identities=22% Similarity=0.421 Sum_probs=37.1
Q ss_pred cCCCceeeeccchh---hHHHHHhhhhcCCCCHHHHHHHHHhhcccCcc
Q psy16952 32 SKKPNLILNVDGVI---AVAFVDLLRHSGSFTREEAQEYVEMGAINGLF 77 (161)
Q Consensus 32 ~Kk~NLILNVDG~I---gv~fvDllr~~G~Ft~eEa~e~i~~G~lNglF 77 (161)
.|++..|+.+|+++ --.+..+..+...|+++.++++++.|.--++.
T Consensus 70 ~~~~avv~DIDeTvLsn~~y~~~~~~~~~~~~~~~w~~wv~~~~~~aip 118 (229)
T PF03767_consen 70 DKPPAVVFDIDETVLSNSPYYAYLIFGGESFSPEDWDEWVASGKAPAIP 118 (229)
T ss_dssp TSEEEEEEESBTTTEEHHHHHHHHHHHTHHH-CCHHHHHHHCTGGEEET
T ss_pred CCCcEEEEECCcccccCHHHHHHHhhccCCCChHHHHHHHhcccCcccH
Confidence 68999999999996 23456677788889999999999999876665
No 124
>cd04442 DEP_1_DEP6 DEP (Dishevelled, Egl-10, and Pleckstrin) domain 1 found in DEP6-like proteins. DEP6 proteins contain two DEP and a PDZ domain. Their function is unknown.
Probab=21.98 E-value=96 Score=22.56 Aligned_cols=38 Identities=13% Similarity=0.127 Sum_probs=26.6
Q ss_pred eccchhhHHHHHhhhhcC-CCCHHHHHHHHHhhcccCcc
Q psy16952 40 NVDGVIAVAFVDLLRHSG-SFTREEAQEYVEMGAINGLF 77 (161)
Q Consensus 40 NVDG~Igv~fvDllr~~G-~Ft~eEa~e~i~~G~lNglF 77 (161)
==+=++|.-+||-|-..| .-|++||-.+-+.=--+|+|
T Consensus 25 y~~cF~GselVdWL~~~~~~~sR~eAv~lgq~Ll~~gvi 63 (82)
T cd04442 25 YPNCFVGKELIDWLIEHKEASDRETAIKIMQKLLDHSII 63 (82)
T ss_pred cCceeEcHHHHHHHHHcCCCCCHHHHHHHHHHHHHCCCE
Confidence 345589999999777766 57999997765543344444
No 125
>cd00165 S4 S4/Hsp/ tRNA synthetase RNA-binding domain; The domain surface is populated by conserved, charged residues that define a likely RNA-binding site; Found in stress proteins, ribosomal proteins and tRNA synthetases; This may imply a hitherto unrecognized functional similarity between these three protein classes.
Probab=21.77 E-value=1.1e+02 Score=18.44 Aligned_cols=22 Identities=23% Similarity=0.342 Sum_probs=18.3
Q ss_pred Hhhhhc-CCCCHHHHHHHHHhhc
Q psy16952 51 DLLRHS-GSFTREEAQEYVEMGA 72 (161)
Q Consensus 51 Dllr~~-G~Ft~eEa~e~i~~G~ 72 (161)
++|..+ +..|+.+++..+..|.
T Consensus 5 ~~l~~~~~~~sr~~~~~~i~~g~ 27 (70)
T cd00165 5 KILARLGLAPSRSEARQLIKHGH 27 (70)
T ss_pred HHHHHhccccCHHHHHHHHHcCC
Confidence 567777 5689999999999885
No 126
>PF13344 Hydrolase_6: Haloacid dehalogenase-like hydrolase; PDB: 2HO4_B 1YV9_A 1WVI_B 3EPR_A 2P27_A 2OYC_A 2CFT_A 2P69_A 2CFS_A 2CFR_A ....
Probab=21.37 E-value=1.6e+02 Score=21.16 Aligned_cols=56 Identities=36% Similarity=0.636 Sum_probs=34.6
Q ss_pred eeeccchh---------hHHHHHhhhhcC----------CCCHHHHHHHHH-hhcccCccCcccccccCcchhhhhhcc
Q psy16952 38 ILNVDGVI---------AVAFVDLLRHSG----------SFTREEAQEYVE-MGAINGLFRGQELLYAGMPISDVLKQN 96 (161)
Q Consensus 38 ILNVDG~I---------gv~fvDllr~~G----------~Ft~eEa~e~i~-~G~lNglFRG~El~YaG~pIS~V~~~~ 96 (161)
++.+||++ ++-+++-||..| ..|++|..+.++ +| ++ +.=++.+=+|+++.+.+++.
T Consensus 2 l~D~dGvl~~g~~~ipga~e~l~~L~~~g~~~~~lTNns~~s~~~~~~~L~~~G-i~--~~~~~i~ts~~~~~~~l~~~ 77 (101)
T PF13344_consen 2 LFDLDGVLYNGNEPIPGAVEALDALRERGKPVVFLTNNSSRSREEYAKKLKKLG-IP--VDEDEIITSGMAAAEYLKEH 77 (101)
T ss_dssp EEESTTTSEETTEE-TTHHHHHHHHHHTTSEEEEEES-SSS-HHHHHHHHHHTT-TT----GGGEEEHHHHHHHHHHHH
T ss_pred EEeCccEeEeCCCcCcCHHHHHHHHHHcCCCEEEEeCCCCCCHHHHHHHHHhcC-cC--CCcCEEEChHHHHHHHHHhc
Confidence 56778776 567888888876 588776655554 44 33 23356666666666666653
No 127
>PF09868 DUF2095: Uncharacterized protein conserved in archaea (DUF2095); InterPro: IPR018662 This domain, found in various hypothetical prokaryotic proteins, has no known function.
Probab=21.34 E-value=83 Score=25.43 Aligned_cols=21 Identities=38% Similarity=0.529 Sum_probs=17.0
Q ss_pred HHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 48 AFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 48 ~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
..+|-||.|- |.|||-|+|+.
T Consensus 66 tViD~lrRC~--T~EEALEVIny 86 (128)
T PF09868_consen 66 TVIDYLRRCK--TDEEALEVINY 86 (128)
T ss_pred hHHHHHHHhC--cHHHHHHHHHH
Confidence 3579999997 89999888763
No 128
>cd04450 DEP_RGS7-like DEP (Dishevelled, Egl-10, and Pleckstrin) domain found in RGS (regulator of G-protein signaling) proteins of the subfamily R7. This subgroup contains RGS7, RGS6, RGS9 and RGS11. They share a common domain architecture, containing, beside the RGS domain, a DEP domain and a GGL (G-protein gamma subunit-like ) domain. RGS proteins are GTPase-activating (GAP) proteins of heterotrimeric G proteins by increasing the rate of GTP hydrolysis of the alpha subunit. The fungal homologs, like yeast Sst2, share a related common domain architecture, containing RGS and DEP domains. Sst2 has been identified as the principal regulator of mating pheromone signaling and recently the DEP domain of Sst2 has been shown to be necessary and sufficient to mediate receptor interaction.
Probab=20.89 E-value=1e+02 Score=21.92 Aligned_cols=29 Identities=21% Similarity=0.172 Sum_probs=21.6
Q ss_pred cchhhHHHHHhhhhcCC-CCHHHHHHHHHh
Q psy16952 42 DGVIAVAFVDLLRHSGS-FTREEAQEYVEM 70 (161)
Q Consensus 42 DG~Igv~fvDllr~~G~-Ft~eEa~e~i~~ 70 (161)
.=+.|...||-|..|.. -+++||.++-+.
T Consensus 27 ~~F~G~~~v~WL~~~~~~~~~~EA~~~~~~ 56 (88)
T cd04450 27 YAFTGKAIVQWLMDCTDVVDPSEALEIAAL 56 (88)
T ss_pred ceeEhHHHHHHHHHCCCCCCHHHHHHHHHH
Confidence 44789999996666654 899999876443
No 129
>PF03224 V-ATPase_H_N: V-ATPase subunit H; InterPro: IPR004908 ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [, ]. The different types include: F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts). V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles. A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases). P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes. E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP. V-ATPases (also known as V1V0-ATPase or vacuolar ATPase) (3.6.3.14 from EC) are found in the eukaryotic endomembrane system, and in the plasma membrane of prokaryotes and certain specialised eukaryotic cells. V-ATPases hydrolyse ATP to drive a proton pump, and are involved in a variety of vital intra- and inter-cellular processes such as receptor mediated endocytosis, protein trafficking, active transport of metabolites, homeostasis and neurotransmitter release []. V-ATPases are composed of two linked complexes: the V1 complex (subunits A-H) contains the catalytic core that hydrolyses ATP, while the V0 complex (subunits a, c, c', c'', d) forms the membrane-spanning pore. V-ATPases may have an additional role in membrane fusion through binding to t-SNARE proteins []. This entry represents subunit H (also known as Vma13p) found in the V1 complex of V-ATPases. This subunit has a regulatory function, being responsible for activating ATPase activity and coupling ATPase activity to proton flow []. The yeast enzyme contains five motifs similar to the HEAT or Armadillo repeats seen in the importins, and can be divided into two distinct domains: a large N-terminal domain consisting of stacked alpha helices, and a smaller C-terminal alpha-helical domain with a similar superhelical topology to an armadillo repeat []. More information about this protein can be found at Protein of the Month: ATP Synthases [].; GO: 0046961 proton-transporting ATPase activity, rotational mechanism, 0015991 ATP hydrolysis coupled proton transport, 0000221 vacuolar proton-transporting V-type ATPase, V1 domain; PDB: 1HO8_A.
Probab=20.86 E-value=1.2e+02 Score=25.71 Aligned_cols=60 Identities=20% Similarity=0.355 Sum_probs=31.5
Q ss_pred HHHHHhhCCCChhhhhhhhhhhhhccCCCceeeeccc-hhhHHHHHhhhhcCCCCHHHHHHHHH
Q psy16952 7 KEFVLQNFPTTPLLNYALEVEKITTSKKPNLILNVDG-VIAVAFVDLLRHSGSFTREEAQEYVE 69 (161)
Q Consensus 7 k~~~~~~fp~t~~ldyAl~VE~iTt~Kk~NLILNVDG-~Igv~fvDllr~~G~Ft~eEa~e~i~ 69 (161)
..|++...=+..=++....+|+....++..++ --|| -.+-.|+.+|+++ .++++.-.|+=
T Consensus 18 ~~~~ra~~is~~~~~~ik~~~~~~~~~~~~~~-~~~~~~~~~~~l~lL~~~--~~~~d~v~yvL 78 (312)
T PF03224_consen 18 DGYVRAGLISEEDLSLIKKLDKQSKEERRELL-EEDGDQYASLFLNLLNKL--SSNDDTVQYVL 78 (312)
T ss_dssp HHHHHTTSS-HHHHHHHHHHHHHHH--------------------HHHHHH-----HHHHHHHH
T ss_pred HHHHHhCCCCHHHHHHHHHHHCCCHHHHHHHH-HhchhhHHHHHHHHHHHc--cCcHHHHHHHH
Confidence 56777777777778888999999999988866 4455 6677999999999 88998888763
No 130
>COG4974 XerD Site-specific recombinase XerD [DNA replication, recombination, and repair]
Probab=20.83 E-value=60 Score=29.27 Aligned_cols=67 Identities=27% Similarity=0.334 Sum_probs=38.2
Q ss_pred CCCHHHHHHHHHhhcccCcc--Cc---cccccc-Ccchhhhhhcc-------cCcchhhhhhhhh-ccCC--hhHHHHhh
Q psy16952 58 SFTREEAQEYVEMGAINGLF--RG---QELLYA-GMPISDVLKQN-------MGIGGVLSLLWFQ-RQLP--PYVCKFLE 121 (161)
Q Consensus 58 ~Ft~eEa~e~i~~G~lNglF--RG---~El~Ya-G~pIS~V~~~~-------~GiGgvi~Llwfk-rrlp--~ya~~fie 121 (161)
.+|+||++..++.-..+... |- =||+|| ||.+||++.=. .|.==|+| =-.| |-.| ++|+.+++
T Consensus 114 ~Ls~~eve~Ll~~~~~~~p~~LRdrAmlELLYATGlRVSElv~L~l~dv~~~~~~v~V~G-KG~KeR~VP~g~~A~~~l~ 192 (300)
T COG4974 114 FLSEEEVEALLEAPDEDTPLGLRDRAMLELLYATGLRVSELVGLTLSDVDLRQGVVRVRG-KGNKERLVPFGEEAVEALE 192 (300)
T ss_pred ccCHHHHHHHHhCCCCCCcHhHHHHHHHHHHHHcCChHHHHhcCcHhhhccccCeEEEEc-cCCceeeeechHHHHHHHH
Confidence 37888999888844443311 11 189997 89999887421 22222334 2223 3345 67777776
Q ss_pred hhhh
Q psy16952 122 MSLM 125 (161)
Q Consensus 122 m~l~ 125 (161)
.-+.
T Consensus 193 ~Yl~ 196 (300)
T COG4974 193 KYLE 196 (300)
T ss_pred HHHH
Confidence 5553
No 131
>PF10523 BEN: BEN domain; InterPro: IPR018379 The BEN domain is found in diverse proteins including: SMAR1 (Scaffold/Matrix attachment region-binding protein 1; also known as BANP), a tumour-suppressor MAR-binding protein that down-regulates Cyclin D1 expression by recruiting HDAC1-mSin3A co-repressor complex at Cyclin D1 promoter locus; SMAR1 is the target of prostaglandin A2 (PGA2) induced growth arrest [, ]. NAC1, a novel member of the POZ/BTB (Pox virus and Zinc finger/Bric-a-bracTramtrack Broad complex), but which varies from other proteins of this class in that it lacks the characteristic DNA-binding motif []. Mod(mdg4) isoform C, the modifier of the mdg4 locus in Drosophila melanogaster (Fruit fly), where mdg4 encodes chromatin proteins which are involved in position effect variegation, establishment of chromatin boundaries, nerve path finding, meiotic chromosome pairing and apoptosis []. Trans-splicing of Mod(mdg4) produces at least 26 transcripts. E5R protein from Chordopoxvirus virosomes, which is found in cytoplasmic sites of viral DNA replication []. Several proteins of polydnaviruses. The BEN domain is predicted to function as an adaptor for the higher-order structuring of chromatin, and recruitment of chromatin modifying factors in transcriptional regulation. It has been suggested to mediate protein-DNA and protein-protein interactions during chromatin organisation and transcription. The presence of BEN domains in a poxviral early virosomal protein and in polydnaviral proteins also suggests a possible role in the organisation of viral DNA during replication or transcription. They are generally linked to other globular domains with functions related to transcriptional regulation and chromatin structure, such as BTB, C4DM, and C2H2 fingers []. This domain is predicted to form an all-alpha fold with four conserved helices. Its conservation pattern revealed several conserved residues, most of which have hydrophobic side-chains and are likely to stabilise the fold through helix-helix packing [].
Probab=20.66 E-value=1.1e+02 Score=20.25 Aligned_cols=17 Identities=24% Similarity=0.677 Sum_probs=15.6
Q ss_pred chhhHHHHHHhhCCCCh
Q psy16952 2 RVKIIKEFVLQNFPTTP 18 (161)
Q Consensus 2 RV~~lk~~~~~~fp~t~ 18 (161)
+|+.+++|+..+||..+
T Consensus 42 kl~~I~~~v~~~~~~~~ 58 (79)
T PF10523_consen 42 KLSAIRNYVEERFPSEK 58 (79)
T ss_pred HHHHHHHHHHHHCCcch
Confidence 58899999999999988
No 132
>PRK10475 23S rRNA pseudouridine synthase F; Provisional
Probab=20.60 E-value=90 Score=27.14 Aligned_cols=29 Identities=38% Similarity=0.608 Sum_probs=24.3
Q ss_pred HHHHhhhhcCCCCHHHHHHHHHhh--cccCc
Q psy16952 48 AFVDLLRHSGSFTREEAQEYVEMG--AINGL 76 (161)
Q Consensus 48 ~fvDllr~~G~Ft~eEa~e~i~~G--~lNgl 76 (161)
-.-++|.++|..|+.||+.+|+.| .+||-
T Consensus 8 RL~k~La~~g~~SRr~a~~lI~~G~V~VNGk 38 (290)
T PRK10475 8 RLNKYISESGICSRREADRYIEQGNVFINGK 38 (290)
T ss_pred HHHHHHHhCCCCCHHHHHHHHHCCcEEECCE
Confidence 345678889999999999999999 67774
No 133
>cd04777 HTH_MerR-like_sg1 Helix-Turn-Helix DNA binding domain of putative transcription regulators from the MerR superfamily. Putative helix-turn-helix (HTH) MerR-like transcription regulators (subgroup 1), N-terminal domain. Based on sequence similarity, these proteins are predicted to function as transcription regulators that mediate responses to stress in eubacteria. They belong to the MerR superfamily of transcription regulators that promote transcription of various stress regulons by reconfiguring the operator sequence located between the -35 and -10 promoter elements. A typical MerR regulator is comprised of two distinct domains that harbor the regulatory (effector-binding) site and the active (DNA-binding) site. Their N-terminal domains are homologous and contain a DNA-binding winged HTH motif, while the C-terminal domains are often dissimilar and bind specific coactivator molecules such as metal ions, drugs, and organic substrates.
Probab=20.48 E-value=1.3e+02 Score=21.72 Aligned_cols=24 Identities=25% Similarity=0.339 Sum_probs=20.2
Q ss_pred hHHHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 46 AVAFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 46 gv~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
-+-|+=.||+.| ||=+|+.++++.
T Consensus 44 ~l~~I~~lr~~G-~sL~eI~~~l~~ 67 (107)
T cd04777 44 DLEFILELKGLG-FSLIEIQKIFSY 67 (107)
T ss_pred HHHHHHHHHHCC-CCHHHHHHHHHh
Confidence 456777899999 999999999875
No 134
>PF10975 DUF2802: Protein of unknown function (DUF2802); InterPro: IPR021244 This bacterial family of proteins has no known function.
Probab=20.38 E-value=90 Score=22.02 Aligned_cols=23 Identities=22% Similarity=0.465 Sum_probs=18.8
Q ss_pred hHHHHHhhhhcCCCCHHHHHHHHH
Q psy16952 46 AVAFVDLLRHSGSFTREEAQEYVE 69 (161)
Q Consensus 46 gv~fvDllr~~G~Ft~eEa~e~i~ 69 (161)
|+..=++.++|| .|+.||+-.+.
T Consensus 44 Ga~~~el~~~Cg-L~~aEAeLl~~ 66 (70)
T PF10975_consen 44 GASVEELMEECG-LSRAEAELLLS 66 (70)
T ss_pred CCCHHHHHHHcC-CCHHHHHHHHH
Confidence 455668999999 99999998764
No 135
>PF02796 HTH_7: Helix-turn-helix domain of resolvase; InterPro: IPR006120 Site-specific recombination plays an important role in DNA rearrangement in prokaryotic organisms. Two types of site-specific recombination are known to occur: Recombination between inverted repeats resulting in the reversal of a DNA segment. Recombination between repeat sequences on two DNA molecules resulting in their cointegration, or between repeats on one DNA molecule resulting in the excision of a DNA fragment. Site-specific recombination is characterised by a strand exchange mechanism that requires no DNA synthesis or high energy cofactor; the phosphodiester bond energy is conserved in a phospho-protein linkage during strand cleavage and re-ligation. Two unrelated families of recombinases are currently known []. The first, called the 'phage integrase' family, groups a number of bacterial phage and yeast plasmid enzymes. The second [], called the 'resolvase' family, groups enzymes which share the following structural characteristics: an N-terminal catalytic and dimerization domain that contains a conserved serine residue involved in the transient covalent attachment to DNA IPR006119 from INTERPRO, and a C-terminal helix-turn-helix DNA-binding domain. ; GO: 0000150 recombinase activity, 0003677 DNA binding, 0006310 DNA recombination; PDB: 1ZR2_A 2GM4_B 1RES_A 1ZR4_A 1RET_A 1GDT_B 2R0Q_C 1JKP_C 1IJW_C 1JJ6_C ....
Probab=20.34 E-value=46 Score=20.87 Aligned_cols=18 Identities=39% Similarity=0.748 Sum_probs=11.1
Q ss_pred ccccCcchhhhhhcccCcc
Q psy16952 82 LLYAGMPISDVLKQNMGIG 100 (161)
Q Consensus 82 l~YaG~pIS~V~~~~~GiG 100 (161)
|+=.|+|++++.++ +||+
T Consensus 17 l~~~G~si~~IA~~-~gvs 34 (45)
T PF02796_consen 17 LYAEGMSIAEIAKQ-FGVS 34 (45)
T ss_dssp HHHTT--HHHHHHH-TTS-
T ss_pred HHHCCCCHHHHHHH-HCcC
Confidence 45578999998876 6664
No 136
>PF09278 MerR-DNA-bind: MerR, DNA binding; InterPro: IPR015358 This entry represents a family of DNA-binding domains that are predominantly found in the prokaryotic transcriptional regulator MerR. They adopt a structure consisting of a core of three alpha helices, with an architecture that is similar to that of the 'winged helix' fold []. ; PDB: 3QAO_A 1R8D_B 1JBG_A 2VZ4_A 2ZHH_A 2ZHG_A 1Q09_A 1Q08_B 1Q0A_B 1Q07_A ....
Probab=20.31 E-value=1.4e+02 Score=19.28 Aligned_cols=22 Identities=41% Similarity=0.712 Sum_probs=16.1
Q ss_pred HHHHhhhhcCCCCHHHHHHHHHh
Q psy16952 48 AFVDLLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 48 ~fvDllr~~G~Ft~eEa~e~i~~ 70 (161)
.|+=-+|+.| ||=+|+.++++.
T Consensus 5 ~~I~~~r~lG-fsL~eI~~~l~l 26 (65)
T PF09278_consen 5 QFIRRLRELG-FSLEEIRELLEL 26 (65)
T ss_dssp HHHHHHHHTT---HHHHHHHHHH
T ss_pred HHHHHHHHcC-CCHHHHHHHHhc
Confidence 4566688899 999999999954
No 137
>PF13512 TPR_18: Tetratricopeptide repeat
Probab=20.20 E-value=75 Score=25.46 Aligned_cols=26 Identities=23% Similarity=0.483 Sum_probs=19.7
Q ss_pred hhHHHHHHhhCCCChhhhhhhhhhhhh
Q psy16952 4 KIIKEFVLQNFPTTPLLNYALEVEKIT 30 (161)
Q Consensus 4 ~~lk~~~~~~fp~t~~ldyAl~VE~iT 30 (161)
...++|++-| |.+|-+|||+=...++
T Consensus 68 a~~~rFirLh-P~hp~vdYa~Y~~gL~ 93 (142)
T PF13512_consen 68 AAYDRFIRLH-PTHPNVDYAYYMRGLS 93 (142)
T ss_pred HHHHHHHHhC-CCCCCccHHHHHHHHH
Confidence 4567788775 9999999998665544
No 138
>PF08671 SinI: Anti-repressor SinI; InterPro: IPR010981 The SinR repressor is part of a group of Sin (sporulation inhibition) proteins in Bacillus subtilis that regulate the commitment to sporulation in response to extreme adversity []. SinR is a tetrameric repressor protein that binds to the promoters of genes essential for entry into sporulation and prevents their transcription. This repression is overcome through the activity of SinI, which disrupts the SinR tetramer through the formation of a SinI-SinR heterodimer, thereby allowing sporulation to proceed. The SinR structure consists of two domains: a dimerisation domain stabilised by a hydrophobic core, and a DNA-binding domain that is identical to domains of the bacteriophage 434 CI and Cro proteins that regulate prophage induction. The dimerisation domain is a four-helical bundle formed from two helices from the C-terminal residues of SinR and two helices from the central residues of SinI. These regions in SinR and SinI are similar in both structure and sequence. The interaction of SinR monomers to form tetramers is weaker than between SinR and SinI, since SinI can effectively disrupt SinR tetramers. This entry represents the dimerisation domain in both SinI and SinR proteins.; GO: 0005488 binding, 0006355 regulation of transcription, DNA-dependent; PDB: 1B0N_A 2YAL_A.
Probab=20.15 E-value=1.5e+02 Score=18.21 Aligned_cols=18 Identities=33% Similarity=0.698 Sum_probs=12.3
Q ss_pred hhhhcCCCCHHHHHHHHHh
Q psy16952 52 LLRHSGSFTREEAQEYVEM 70 (161)
Q Consensus 52 llr~~G~Ft~eEa~e~i~~ 70 (161)
--+.+| .|.||+++|++-
T Consensus 11 eA~~~G-ls~eeir~FL~~ 28 (30)
T PF08671_consen 11 EAKESG-LSKEEIREFLEF 28 (30)
T ss_dssp HHHHTT---HHHHHHHHHH
T ss_pred HHHHcC-CCHHHHHHHHHh
Confidence 346778 899999999863
Done!