RPS-BLAST 2.2.26 [Sep-21-2011]

Database: CDD.v3.10 
           44,354 sequences; 10,937,602 total letters

Searching..................................................done

Query= psy322
         (182 letters)



>gnl|CDD|214567 smart00220, S_TKc, Serine/Threonine protein kinases, catalytic
           domain.  Phosphotransferases. Serine or
           threonine-specific kinase subfamily.
          Length = 254

 Score = 44.1 bits (105), Expect = 1e-05
 Identities = 18/73 (24%), Positives = 33/73 (45%), Gaps = 9/73 (12%)

Query: 69  RQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMA 128
            +Y A E++  K +   +DIWS   + +EL+TG     PF        +  +L++ + + 
Sbjct: 160 PEYMAPEVLLGKGYGKAVDIWSLGVILYELLTG---KPPFP------GDDQLLELFKKIG 210

Query: 129 EIPPNLMDNERCI 141
           +  P     E  I
Sbjct: 211 KPKPPFPPPEWDI 223


>gnl|CDD|215690 pfam00069, Pkinase, Protein kinase domain. 
          Length = 260

 Score = 39.2 bits (92), Expect = 5e-04
 Identities = 22/84 (26%), Positives = 36/84 (42%), Gaps = 6/84 (7%)

Query: 71  YKAVELI-YTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKII--QLM 127
           Y A E++     +  K+D+WS   + +EL+TG     PF  +        I +I+   L 
Sbjct: 164 YMAPEVLLGGNGYGPKVDVWSLGVILYELLTG---KPPFSGENILDQLQLIRRILGPPLE 220

Query: 128 AEIPPNLMDNERCIRNIKVLLERD 151
            + P     +E     IK  L +D
Sbjct: 221 FDEPKWSSGSEEAKDLIKKCLNKD 244


>gnl|CDD|173672 cd05581, STKc_PDK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Phosphoinositide-dependent
           kinase 1.  Serine/Threonine Kinases (STKs),
           Phosphoinositide-dependent kinase 1 (PDK1) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PDK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase (PI3K). PDK1
           carries an N-terminal catalytic domain and a C-terminal
           pleckstrin homology (PH) domain that binds
           phosphoinositides. It phosphorylates the activation loop
           of AGC kinases that are regulated by PI3K such as PKB,
           SGK, and PKC, among others, and is crucial for their
           activation. Thus, it contributes in regulating many
           processes including metabolism, growth, proliferation,
           and survival. PDK1 also has the ability to
           autophosphorylate and is constitutively active in
           mammalian cells. PDK1 is essential for normal embryo
           development and is important in regulating cell volume.
          Length = 280

 Score = 38.3 bits (90), Expect = 0.001
 Identities = 22/82 (26%), Positives = 37/82 (45%), Gaps = 8/82 (9%)

Query: 70  QYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAE 129
           +Y + EL+  K      D+W+  C+ ++++TG   F    ++Y T       KI++L   
Sbjct: 187 EYVSPELLNEKPAGKSSDLWALGCIIYQMLTGKPPFRG-SNEYLTFQ-----KILKLEYS 240

Query: 130 IPPNLMDNERCIRNIKVLLERD 151
            PPN          I+ LL  D
Sbjct: 241 FPPN--FPPDAKDLIEKLLVLD 260


>gnl|CDD|173691 cd05600, STKc_Sid2p_Dbf2p, Catalytic domain of Fungal Sid2p- and
           Dbf2p-like Protein Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), ROCK- and NDR-like
           subfamily, fungal Sid2p- and Dbf2p-like proteins,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Sid2p- and
           Dbf2p-like group is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This group contains fungal kinases including
           Schizosaccharomyces pombe Sid2p and Saccharomyces
           cerevisiae Dbf2p. Group members show similarity to NDR
           kinases in that they contain an N-terminal regulatory
           (NTR) domain and an insert within the catalytic domain
           that contains an auto-inhibitory sequence. Sid2p plays a
           crucial role in the septum initiation network (SIN) and
           in the initiation of cytokinesis. Dbf2p is important in
           regulating the mitotic exit network (MEN) and in
           cytokinesis.
          Length = 333

 Score = 38.2 bits (89), Expect = 0.001
 Identities = 14/38 (36%), Positives = 21/38 (55%), Gaps = 3/38 (7%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPF 108
           Y A E++  K +D  +D WS  C+ +E + G   F PF
Sbjct: 164 YMAPEVLRGKGYDFTVDYWSLGCMLYEFLCG---FPPF 198


>gnl|CDD|173765 cd08225, STKc_Nek5, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 5.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 5 (Nek5) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek5 subfamily is
           one of a family of 11 different Neks (Nek1-11). The Nek
           family is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Neks are involved in the regulation of
           downstream processes following the activation of Cdc2,
           and many of their functions are cell cycle-related. They
           play critical roles in microtubule dynamics during
           ciliogenesis and mitosis. The specific function of Nek5
           is unknown.
          Length = 257

 Score = 37.2 bits (86), Expect = 0.002
 Identities = 29/90 (32%), Positives = 44/90 (48%), Gaps = 8/90 (8%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQ-LMAE 129
           Y + E+   + ++ K DIWS  C+ +EL T   + +PFE          +LKI Q   A 
Sbjct: 168 YLSPEICQNRPYNNKTDIWSLGCVLYELCT---LKHPFEGNNL---HQLVLKICQGYFAP 221

Query: 130 IPPNL-MDNERCIRNIKVLLERDQHNITSM 158
           I PN   D    I  +  +  RD+ +ITS+
Sbjct: 222 ISPNFSRDLRSLISQLFKVSPRDRPSITSI 251


>gnl|CDD|173728 cd06614, STKc_PAK, Catalytic domain of the Protein Serine/Threonine
           Kinase, p21-activated kinase.  Serine/threonine kinases
           (STKs), p21-activated kinase (PAK) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PAK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. PAKs are Rho
           family GTPase-regulated kinases that serve as important
           mediators in the function of Cdc42 (cell division cycle
           42) and Rac. PAKs are implicated in the regulation of
           many cellular processes including growth factor
           receptor-mediated proliferation, cell polarity, cell
           motility, cell death and survival, and actin
           cytoskeleton organization. PAK deregulation is
           associated with tumor development. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           Group I PAKs contain a PBD (p21-binding domain)
           overlapping with an AID (autoinhibitory domain), a
           C-terminal catalytic domain, SH3 binding sites and a
           non-classical SH3 binding site for PIX (PAK-interacting
           exchange factor). Group II PAKs contain a PBD and a
           catalytic domain, but lack other motifs found in group I
           PAKs. Since group II PAKs do not contain an obvious AID,
           they may be regulated differently from group I PAKs.
           Group I PAKs interact with the SH3 containing proteins
           Nck, Grb2 and PIX; no such binding has been demonstrated
           for group II PAKs.
          Length = 286

 Score = 36.4 bits (85), Expect = 0.004
 Identities = 13/38 (34%), Positives = 21/38 (55%), Gaps = 3/38 (7%)

Query: 73  AVELIYTKEFDMKIDIWSTACLTFELVTGD--YM-FNP 107
           A E+I  K++  K+DIWS   +  E+  G+  Y+   P
Sbjct: 184 APEVIKRKDYGPKVDIWSLGIMCIEMAEGEPPYLREPP 221


>gnl|CDD|143361 cd07856, STKc_Sty1_Hog1, Catalytic domain of the Serine/Threonine
           Kinases, Fungal Mitogen-Activated Protein Kinases Sty1
           and Hog1.  Serine/Threonine Kinases (STKs), Fungal
           Mitogen-Activated Protein Kinase (MAPK) Sty1/Hog1
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           Sty1/Hog1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of the MAPKs Sty1
           from Schizosaccharomyces pombe, Hog1 from Saccharomyces
           cerevisiae, and similar proteins. MAPKs are important
           mediators of cellular responses to extracellular
           signals. Sty1 and Hog1 are stress-activated MAPKs that
           partipate in transcriptional regulation in response to
           stress. Sty1 is activated in response to oxidative
           stress, osmotic stress, and UV radiation. Sty1 is
           regulated by the MAP2K Wis1, which is activated by the
           MAP3Ks Wis4 and Win1, which receive signals of the
           stress condition from membrane-spanning histidine
           kinases Mak1-3. Activated Sty1 stabilizes the Atf1
           transcription factor and induces transcription of
           Atf1-dependent genes of the core environmetal stress
           response (CESR). Hog1 is the key element in the high
           osmolarity glycerol (HOG) pathway and is activated upon
           hyperosmotic stress. Activated Hog1 accumulates in the
           nucleus and regulates stress-induced transcription. The
           HOG pathway is mediated by two transmembrane
           osmosensors, Sln1 and Sho1.
          Length = 328

 Score = 35.2 bits (81), Expect = 0.011
 Identities = 14/38 (36%), Positives = 27/38 (71%), Gaps = 1/38 (2%)

Query: 69  RQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDYMF 105
           R Y+A E++ T +++D+++DIWS  C+  E++ G  +F
Sbjct: 169 RYYRAPEIMLTWQKYDVEVDIWSAGCIFAEMLEGKPLF 206


>gnl|CDD|132991 cd06917, STKc_NAK1_like, Catalytic domain of Fungal Nak1-like
           Protein Serine/Threonine Kinases.  Serine/threonine
           kinases (STKs), Nak1 subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The Nak1 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. This subfamily is composed of
           Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae
           Kic1p (kinase that interacts with Cdc31p) and related
           proteins. Nak1 (also known as N-rich kinase 1), is
           required by fission yeast for polarizing the tips of
           actin cytoskeleton and is involved in cell growth, cell
           separation, cell morphology and cell-cycle progression.
           Kic1p is required by budding yeast for cell integrity
           and morphogenesis. Kic1p interacts with Cdc31p, the
           yeast homologue of centrin, and phosphorylates
           substrates in a Cdc31p-dependent manner.
          Length = 277

 Score = 34.7 bits (80), Expect = 0.015
 Identities = 19/60 (31%), Positives = 26/60 (43%), Gaps = 11/60 (18%)

Query: 80  KEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI-PPNLMDNE 138
           K +D K DIWS     +E+ TG    NP  S           + + L+ +  PP L DN 
Sbjct: 177 KYYDTKADIWSLGITIYEMATG----NPPYSD------VDAFRAMMLIPKSKPPRLEDNG 226


>gnl|CDD|173668 cd05577, STKc_GRK, Catalytic domain of the Protein Serine/Threonine
           Kinase, G protein-coupled Receptor Kinase.
           Serine/Threonine Kinases (STKs), G protein-coupled
           Receptor Kinase (GRK) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The GRK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. GRKs phosphorylate and
           regulate G protein-coupled receptors (GPCRs), the
           largest superfamily of cell surface receptors, which
           regulate some part of nearly all physiological
           functions. Phosphorylated GPCRs bind to arrestins, which
           prevents further G protein signaling despite the
           presence of activating ligand. GRKs contain a central
           catalytic domain, flanked by N- and C-terminal
           extensions. The N-terminus contains an RGS (regulator of
           G protein signaling) homology (RH) domain and several
           motifs. The C-terminus diverges among different groups
           of GRKs. There are seven types of GRKs, named GRK1 to
           GRK7. They are subdivided into three main groups: visual
           (GRK1/7); beta-adrenergic receptor kinases (GRK2/3); and
           GRK4-like (GRK4/5/6). Expression of GRK2/3/5/6 is
           widespread while GRK1/4/7 show a limited tissue
           distribution. The substrate spectrum of the widely
           expressed GRKs partially overlaps. GRKs play important
           roles in the cardiovascular, immune, respiratory,
           skeletal, and nervous systems.
          Length = 277

 Score = 34.4 bits (79), Expect = 0.019
 Identities = 16/82 (19%), Positives = 40/82 (48%), Gaps = 6/82 (7%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           Y A E++  + +D  +D ++  C  +E++ G    +PF  +   +++  + +    MA  
Sbjct: 160 YMAPEVLQGEVYDFSVDWFALGCTLYEMIAGR---SPFRQRKEKVEKEELKRRTLEMAVE 216

Query: 131 PPNLMDNERCIRNI-KVLLERD 151
            P+        +++ + LL++D
Sbjct: 217 YPD--KFSPEAKDLCEALLQKD 236


>gnl|CDD|173741 cd07843, STKc_CDC2L1, Catalytic domain of the Serine/Threonine
           Kinase, Cell Division Cycle 2-like 1.  Serine/Threonine
           Kinases (STKs), Cell Division Cycle 2-like 1 (CDC2L1)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CDC2L1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDC2L1, also
           called PITSLRE, exists in different isoforms which are
           named using the alias CDK11(p). The CDC2L1 gene produces
           two protein products, CDK11(p110) and CDK11(p58). CDC2L1
           is also represented by the caspase-processed CDK11(p46).
           CDK11(p110), the major isoform, associates with cyclin L
           and is expressed throughout the cell cycle. It is
           involved in RNA processing and the regulation of
           transcription. CDK11(p58) associates with cyclin D3 and
           is expressed during the G2/M phase of the cell cycle. It
           plays roles in spindle morphogenesis, centrosome
           maturation, sister chromatid cohesion, and the
           completion of mitosis. CDK11(p46) is formed from the
           larger isoforms by caspases during TNFalpha- and
           Fas-induced apoptosis. It functions as a downstream
           effector kinase in apoptotic signaling pathways and
           interacts with eukaryotic initiation factor 3f (eIF3f), 
           p21-activated kinase (PAK1), and Ran-binding protein
           (RanBPM).
          Length = 293

 Score = 34.5 bits (80), Expect = 0.020
 Identities = 15/37 (40%), Positives = 22/37 (59%), Gaps = 1/37 (2%)

Query: 71  YKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMFN 106
           Y+A EL+   KE+   ID+WS  C+  EL+T   +F 
Sbjct: 172 YRAPELLLGAKEYSTAIDMWSVGCIFAELLTKKPLFP 208


>gnl|CDD|143381 cd07876, STKc_JNK2, Catalytic domain of the Serine/Threonine
           Kinase, c-Jun N-terminal Kinase 2.  Serine/Threonine
           Kinases (STKs), c-Jun N-terminal kinase 2 (JNK2)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           JNK2 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. JNKs are mitogen-activated protein kinases
           (MAPKs) that are involved in many stress-activated
           responses including those during inflammation,
           neurodegeneration, apoptosis, and persistent pain
           sensitization, among others. Vetebrates harbor three
           different JNK genes (Jnk1, Jnk2, and Jnk3). JNK1, like
           JNK2, is expressed in every cell and tissue type.
           Initially it was thought that JNK1 and JNK2 were
           functionally redundant as mice deficient in either genes
           (Jnk1 or Jnk2) could survive but disruption of both
           genes resulted in lethality. However, recent studies
           have shown that JNK1 and JNK2 perform distinct functions
           through specific binding partners and substrates.  JNK2
           is specifically translocated to the mitochondria during
           dopaminergic cell death. Specific substrates include the
           microtubule-associated proteins DCX and Tau, as well as
           TIF-IA which is involved in ribosomal RNA synthesis
           regulation. Mice deficient in Jnk2 show protection
           against arthritis, type 1 diabetes, atherosclerosis,
           abdominal aortic aneurysm, cardiac cell death,
           TNF-induced liver damage, and tumor growth, indicating
           that JNK2 may play roles in the pathogenesis of these
           diseases.
          Length = 359

 Score = 34.6 bits (79), Expect = 0.021
 Identities = 15/39 (38%), Positives = 22/39 (56%)

Query: 67  IHRQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           + R Y+A E+I    +   +DIWS  C+  ELV G  +F
Sbjct: 184 VTRYYRAPEVILGMGYKENVDIWSVGCIMGELVKGSVIF 222


>gnl|CDD|223589 COG0515, SPS1, Serine/threonine protein kinase [General function
           prediction only / Signal transduction mechanisms /
           Transcription / DNA replication, recombination, and
           repair].
          Length = 384

 Score = 34.3 bits (77), Expect = 0.023
 Identities = 26/106 (24%), Positives = 43/106 (40%), Gaps = 9/106 (8%)

Query: 69  RQYKAVELI---YTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQ 125
             Y A E++            DIWS     +EL+TG     PFE +  +      LKII 
Sbjct: 172 PGYMAPEVLLGLSLAYASSSSDIWSLGITLYELLTG---LPPFEGEKNSSATSQTLKIIL 228

Query: 126 LMAEIPPNLMDNERCIRNIKVLLERDQHNITSMNAKDNFYRILAKS 171
              E+P   + +     N +++ +     +  + AKD   R+ + S
Sbjct: 229 ---ELPTPSLASPLSPSNPELISKAASDLLKKLLAKDPKNRLSSSS 271


>gnl|CDD|173743 cd07846, STKc_CDKL2_3, Catalytic domain of the Serine/Threonine
           Kinases, Cyclin-Dependent protein Kinase Like 2 and 3.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase like 2 (CDKL2) and CDKL3 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDKL2 and CDKL3
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDKL2, also called
           p56 KKIAMRE, is expressed in testis, kidney, lung, and
           brain. It functions mainly in mature neurons and plays
           an important role in learning and memory. Inactivation
           of CDKL3, also called NKIAMRE (NKIATRE in rat), by
           translocation is associated with mild mental
           retardation. It has been reported that CDKL3 is lost in
           leukemic cells having a chromosome arm 5q deletion, and
           may contribute to the transformed phenotype.
          Length = 286

 Score = 34.3 bits (79), Expect = 0.024
 Identities = 23/59 (38%), Positives = 37/59 (62%), Gaps = 8/59 (13%)

Query: 69  RQYKAVELIY--TKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDE-HHILKII 124
           R Y+A EL+   TK +   +DIW+  CL  E++TG+ +F P +S    ID+ +HI+K +
Sbjct: 164 RWYRAPELLVGDTK-YGRAVDIWAVGCLVTEMLTGEPLF-PGDSD---IDQLYHIIKCL 217


>gnl|CDD|173733 cd07829, STKc_CDK_like, Catalytic domain of Cyclin-Dependent
           protein Kinase-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase (CDK)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDKs are partly
           regulated by their subcellular localization, which
           defines substrate phosphorylation and the resulting
           specific function. CDK1, CDK2, CDK4, and CDK6 have
           well-defined functions in the cell cycle, such as the
           regulation of the early G1 phase by CDK4 or CDK6, the
           G1/S phase transition by CDK2, or the entry of mitosis
           by CDK1. They also exhibit overlapping cyclin
           specificity and functions in certain conditions.
           Knockout mice with a single CDK deleted remain viable
           with specific phenotypes, showing that some CDKs can
           compensate for each other. For example, CDK4 can
           compensate for the loss of CDK6, however, double
           knockout mice with both CDK4 and CDK6 deleted die in
           utero. CDK8 and CDK9 are mainly involved in
           transcription while CDK5 is implicated in neuronal
           function. CDK7 plays essential roles in both the cell
           cycle as a CDK-Activating Kinase (CAK) and in
           transcription as a component of the general
           transcription factor TFIIH.
          Length = 282

 Score = 34.0 bits (79), Expect = 0.024
 Identities = 22/71 (30%), Positives = 39/71 (54%), Gaps = 11/71 (15%)

Query: 71  YKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLM-- 127
           Y+A E++  +K +   +DIWS  C+  E++TG  +F P +S+   ID+  + KI Q++  
Sbjct: 164 YRAPEILLGSKHYSTAVDIWSVGCIFAEMITGKPLF-PGDSE---IDQ--LFKIFQILGT 217

Query: 128 --AEIPPNLMD 136
              E  P +  
Sbjct: 218 PTEESWPGVTK 228


>gnl|CDD|173660 cd05123, STKc_AGC, Catalytic domain of AGC family Protein
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), AGC (Protein Kinases A, G and C) family,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The AGC family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and Phosphoinositide 3-Kinase (PI3K). Members of
           this family include cAMP-dependent Protein Kinase (PKA),
           cGMP-dependent Protein Kinase (PKG), Protein Kinase C
           (PKC), Protein Kinase B (PKB), G protein-coupled
           Receptor Kinase (GRK), Serum- and Glucocorticoid-induced
           Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase
           (p70S6K or S6K), among others. AGC kinases share an
           activation mechanism based on the phosphorylation of up
           to three sites: the activation loop (A-loop), the
           hydrophobic motif (HM) and the turn motif.
           Phosphorylation at the A-loop is required of most AGC
           kinases, which results in a disorder-to-order transition
           of the A-loop. The ordered conformation results in the
           access of substrates and ATP to the active site. A
           subset of AGC kinases with C-terminal extensions
           containing the HM also requires phosphorylation at this
           site. Phosphorylation at the HM allows the C-terminal
           extension to form an ordered structure that packs into
           the hydrophobic pocket of the catalytic domain, which
           then reconfigures the kinase into an active bi-lobed
           state. In addition, growth factor-activated AGC kinases
           such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require
           phosphorylation at the turn motif (also called tail or
           zipper site), located N-terminal to the HM at the
           C-terminal extension. AGC kinases regulate many cellular
           processes including division, growth, survival,
           metabolism, motility, and differentiation. Many are
           implicated in the development of various human diseases.
          Length = 250

 Score = 34.0 bits (79), Expect = 0.025
 Identities = 29/112 (25%), Positives = 45/112 (40%), Gaps = 18/112 (16%)

Query: 46  IVITDL-----EYVRPENDETICREDIHRQYKAVELIYTKEFDMKIDIWSTACLTFELVT 100
           I +TD               T C      +Y A E++  K +   +D WS   L +E++T
Sbjct: 132 IKLTDFGLAKELSSEGSRTNTFCGT---PEYLAPEVLLGKGYGKAVDWWSLGVLLYEMLT 188

Query: 101 GDYMFNPFESKYYTIDEHHIL-KIIQLMAEIPPNLMDNERCIRNIKVLLERD 151
           G     PF ++    D   I  KI++     P  L    R +  I  LL++D
Sbjct: 189 GKP---PFYAE----DRKEIYEKILKDPLRFPEFLSPEARDL--ISGLLQKD 231


>gnl|CDD|143354 cd07849, STKc_ERK1_2_like, Catalytic domain of Extracellular
           signal-Regulated Kinase 1 and 2-like Serine/Threonine
           Kinases.  Serine/Threonine Kinases (STKs), Extracellular
           signal-regulated kinases 1 and 2 (ERK1/2) and Fus3
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. This
           ERK1/2-like subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. This subfamily is composed of
           the mitogen-activated protein kinases (MAPKs) ERK1,
           ERK2, baker's yeast Fus3, and similar proteins. MAPK
           pathways are important mediators of cellular responses
           to extracellular signals. ERK1/2 activation is
           preferentially by mitogenic factors, differentiation
           stimuli, and cytokines, through a kinase cascade
           involving the MAPK kinases MEK1/2 and a MAPK kinase
           kinase from the Raf family. ERK1/2 have numerous
           substrates, many of which are nuclear and participate in
           transcriptional regulation of many cellular processes.
           They regulate cell growth, cell proliferation, and cell
           cycle progression from G1 to S phase. Although the
           distinct roles of ERK1 and ERK2 have not been fully
           determined, it is known that ERK2 can maintain most
           functions in the absence of ERK1, and that the deletion
           of ERK2 is embryonically lethal. The MAPK, Fus3,
           regulates yeast mating processes including
           mating-specific gene expression, G1 arrest, mating
           projection, and cell fusion.
          Length = 336

 Score = 33.4 bits (77), Expect = 0.042
 Identities = 20/78 (25%), Positives = 38/78 (48%), Gaps = 10/78 (12%)

Query: 69  RQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLM 127
           R Y+A E++   K +   IDIWS  C+  E+++   +   F  K Y    + IL ++   
Sbjct: 173 RWYRAPEIMLNSKGYTKAIDIWSVGCILAEMLSNRPL---FPGKDYLHQLNLILGVLG-- 227

Query: 128 AEIPPNLMDNERCIRNIK 145
               P+  ++  CI +++
Sbjct: 228 ---TPS-QEDLNCIISLR 241


>gnl|CDD|143333 cd05118, STKc_CMGC, Catalytic domain of CMGC family
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), CMGC family, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CMGC family is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The CMGC family consists of Cyclin-Dependent
           protein Kinases (CDKs), Mitogen-activated protein
           kinases (MAPKs) such as Extracellular signal-regulated
           kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38,
           and similar proteins. CDKs belong to a large subfamily
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. MAPKs
           serve as important mediators of cellular responses to
           extracellular signals. They control critical cellular
           functions including differentiation, proliferation,
           migration, and apoptosis. They are also implicated in
           the pathogenesis of many diseases including multiple
           types of cancer, stroke, diabetes, and chronic
           inflammation.
          Length = 283

 Score = 33.1 bits (76), Expect = 0.056
 Identities = 14/38 (36%), Positives = 22/38 (57%), Gaps = 1/38 (2%)

Query: 69  RQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDYMF 105
           R Y+A EL+   K +   +DIWS  C+  EL++   +F
Sbjct: 162 RWYRAPELLLGDKGYSTPVDIWSVGCIFAELLSRRPLF 199


>gnl|CDD|173745 cd07848, STKc_CDKL5, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase Like 5.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase like 5 (CDKL5) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDKL5 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. Mutations in the gene encoding CDKL5,
           previously called STK9, are associated with early onset
           epilepsy and severe mental retardation [X-linked
           infantile spasm syndrome (ISSX) or West syndrome]. In
           addition, CDKL5 mutations also sometimes cause a
           phenotype similar to Rett syndrome (RTT), a progressive
           neurodevelopmental disorder. These pathogenic mutations
           are located in the N-terminal portion of the protein
           within the kinase domain.
          Length = 287

 Score = 33.1 bits (75), Expect = 0.057
 Identities = 20/67 (29%), Positives = 35/67 (52%), Gaps = 6/67 (8%)

Query: 69  RQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMA 128
           R Y++ EL+    +   +D+WS  C+  EL  G  +F P ES+   ID+  +  I +++ 
Sbjct: 165 RWYRSPELLLGAPYGKAVDMWSVGCILGELSDGQPLF-PGESE---IDQ--LFTIQKVLG 218

Query: 129 EIPPNLM 135
            +P   M
Sbjct: 219 PLPAEQM 225


>gnl|CDD|173675 cd05584, STKc_p70S6K, Catalytic domain of the Protein
           Serine/Threonine Kinase, 70 kDa ribosomal protein S6
           kinase.  Serine/Threonine Kinases (STKs), 70 kDa
           ribosomal protein S6 kinase (p70S6K) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The p70S6K subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. p70S6K (or S6K)
           contains only one catalytic kinase domain, unlike p90
           ribosomal S6 kinases (RSKs). It acts as a downstream
           effector of the STK mTOR (mammalian Target of Rapamycin)
           and plays a role in the regulation of the translation
           machinery during protein synthesis. p70S6K also plays a
           pivotal role in regulating cell size and glucose
           homeostasis. Its targets include S6, the translation
           initiation factor eIF3, and the insulin receptor
           substrate IRS-1, among others. Mammals contain two
           isoforms of p70S6K, named S6K1 and S6K2 (or S6K-beta).
          Length = 323

 Score = 32.8 bits (75), Expect = 0.063
 Identities = 35/128 (27%), Positives = 55/128 (42%), Gaps = 34/128 (26%)

Query: 46  IVITDLEYVRPEN------------DETICREDIHR-----------QYKAVELIYTKEF 82
           I+  DL   +PEN            D  +C+E IH            +Y A E++     
Sbjct: 121 IIYRDL---KPENILLDAQGHVKLTDFGLCKESIHEGTVTHTFCGTIEYMAPEILMRSGH 177

Query: 83  DMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEIPPNLMDNERCIR 142
              +D WS   L ++++TG   F   E++  TID     KI++    +PP L    R + 
Sbjct: 178 GKAVDWWSLGALMYDMLTGAPPFTA-ENRKKTID-----KILKGKLNLPPYLTPEARDL- 230

Query: 143 NIKVLLER 150
            +K LL+R
Sbjct: 231 -LKKLLKR 237


>gnl|CDD|173719 cd05630, STKc_GRK6, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 6.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK6
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK6 is widely expressed in many tissues.
           t is expressed as multiple splice variants with
           different domain architectures. It is
           post-translationally palmitoylated and localized in the
           membrane. GRK6 plays important roles in the regulation
           of dopamine, M3 muscarinic, opioid, and chemokine
           receptor signaling. It also plays maladaptive roles in
           addiction and Parkinson's disease. GRK6-deficient mice
           exhibit altered dopamine receptor regulation, decreased
           lymphocyte chemotaxis, and increased acute inflammation
           and neutrophil chemotaxis.
          Length = 285

 Score = 33.1 bits (75), Expect = 0.066
 Identities = 31/114 (27%), Positives = 52/114 (45%), Gaps = 15/114 (13%)

Query: 17  IVITDLEYVRPENDETICREDIHSHPNIEIVITDLEY-VRPENDETICREDIHRQYKAVE 75
           IV  DL   +PEN   I  +D H H    I I+DL   V     +TI        Y A E
Sbjct: 123 IVYRDL---KPEN---ILLDD-HGH----IRISDLGLAVHVPEGQTIKGRVGTVGYMAPE 171

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAE 129
           ++  + +    D W+  CL +E++ G    +PF+ +   I    + ++++ + E
Sbjct: 172 VVKNERYTFSPDWWALGCLLYEMIAGQ---SPFQQRKKKIKREEVERLVKEVQE 222


>gnl|CDD|173764 cd08224, STKc_Nek6_Nek7, Catalytic domain of the Protein
           Serine/Threonine Kinases, Never In Mitosis gene
           A-related kinase 6 and 7.  Serine/Threonine Kinases
           (STKs), Never In Mitosis gene A (NIMA)-related kinase 6
           (Nek6) and Nek7 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The Nek6/7 subfamily is part of a family of 11 different
           Neks (Nek1-11) that are involved in cell cycle control.
           The Nek family is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Nek6 and Nek7 are the shortest Neks,
           consisting only of the catalytic domain and a very short
           N-terminal extension. They show distinct expression
           patterns and both appear to be downstream substrates of
           Nek9. They are required for mitotic spindle formation
           and cytokinesis. They may also be regulators of the p70
           ribosomal S6 kinase.
          Length = 267

 Score = 32.8 bits (75), Expect = 0.077
 Identities = 11/28 (39%), Positives = 17/28 (60%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFEL 98
           Y + E I+   ++ K DIWS  CL +E+
Sbjct: 172 YMSPERIHENGYNFKSDIWSLGCLLYEM 199


>gnl|CDD|173746 cd07850, STKc_JNK, Catalytic domain of the Serine/Threonine Kinase,
           c-Jun N-terminal Kinase.  Serine/Threonine Kinases
           (STKs), c-Jun N-terminal kinase (JNK) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The JNK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. JNKs are
           mitogen-activated protein kinases (MAPKs) that are
           involved in many stress-activated responses including
           those during inflammation, neurodegeneration, apoptosis,
           and persistent pain sensitization, among others. They
           are also essential regulators of physiological and
           pathological processes and are involved in the
           pathogenesis of several diseases such as diabetes,
           atherosclerosis, stroke, Parkinson's and Alzheimer's.
           Vetebrates harbor three different JNK genes (Jnk1, Jnk2,
           and Jnk3) that are alternatively spliced to produce at
           least 10 isoforms. JNKs are specifically activated by
           the MAPK kinases MKK4 and MKK7, which are in turn
           activated by upstream MAPK kinase kinases as a result of
           different stimuli including stresses such as ultraviolet
           (UV) irradiation, hyperosmolarity, heat shock, or
           cytokines. JNKs activate a large number of different
           substrates based on specific stimulus, cell type, and
           cellular condition, and may be implicated in seemingly
           contradictory functions.
          Length = 353

 Score = 32.8 bits (75), Expect = 0.078
 Identities = 19/68 (27%), Positives = 31/68 (45%), Gaps = 6/68 (8%)

Query: 69  RQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMA 128
           R Y+A E+I    +   +DIWS  C+  E++ G  +F         ID+ +  KII+ + 
Sbjct: 181 RYYRAPEVILGMGYKENVDIWSVGCIMGEMIRGTVLF----PGTDHIDQWN--KIIEQLG 234

Query: 129 EIPPNLMD 136
                 M 
Sbjct: 235 TPSDEFMS 242


>gnl|CDD|173772 cd08530, STKc_CNK2-like, Catalytic domain of the Protein
           Serine/Threonine Kinase, Chlamydomonas reinhardtii CNK2,
            and similar domains.  Serine/Threonine Kinases (STKs),
           Chlamydomonas reinhardtii Never In Mitosis gene A
           (NIMA)-related kinase 1 (CNK2)-like subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Chlamydomonas
           reinhardtii CNK2-like subfamily belongs to the
           (NIMA)-related kinase (Nek) family. The Nek family
           includes seven different Chlamydomonas Neks (CNKs 1-6
           and Fa2). This subfamily includes CNK1, and -2.  The Nek
           family is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase.  Chlamydomonas reinhardtii CNK2 has both
           cilliary and cell cycle functions. It influences
           flagellar length through promoting flagellar
           disassembly, and it regulates cell size, through
           influencing the size threshold at which cells commit to
           mitosis.
          Length = 256

 Score = 32.4 bits (74), Expect = 0.081
 Identities = 15/41 (36%), Positives = 22/41 (53%), Gaps = 3/41 (7%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           Y A E+   + +  K DIWS  CL +E+ T      PFE++
Sbjct: 167 YMAPEVWKGRPYSYKSDIWSLGCLLYEMATFAP---PFEAR 204


>gnl|CDD|132940 cd06609, STKc_MST3_like, Catalytic domain of Mammalian Ste20-like
           protein kinase 3-like Protein Serine/Threonine Kinases. 
           Serine/threonine kinases (STKs), mammalian Ste20-like
           protein kinase 3 (MST3)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MST3-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of MST3, MST4,
           STK25, Schizosaccharomyces pombe Nak1 and Sid1,
           Saccharomyces cerevisiae sporulation-specific protein 1
           (SPS1), and related proteins. Nak1 is required by
           fission yeast for polarizing the tips of actin
           cytoskeleton and is involved in cell growth, cell
           separation, cell morphology and cell-cycle progression.
           Sid1 is a component in the septation initiation network
           (SIN) signaling pathway, and plays a role in
           cytokinesis. SPS1 plays a role in regulating proteins
           required for spore wall formation. MST4 plays a role in
           mitogen-activated protein kinase (MAPK) signaling during
           cytoskeletal rearrangement, morphogenesis, and
           apoptosis. MST3 phosphorylates the STK NDR and may play
           a role in cell cycle progression and cell morphology.
           STK25 may play a role in the regulation of cell
           migration and polarization.
          Length = 274

 Score = 32.6 bits (75), Expect = 0.089
 Identities = 12/30 (40%), Positives = 15/30 (50%)

Query: 73  AVELIYTKEFDMKIDIWSTACLTFELVTGD 102
           A E+I    +D K DIWS      EL  G+
Sbjct: 166 APEVIKQSGYDEKADIWSLGITAIELAKGE 195


>gnl|CDD|173667 cd05576, STKc_RPK118_like, Catalytic domain of the Protein
           Serine/Threonine Kinases, RPK118 and similar proteins.
           Serine/Threonine Kinases (STKs), RPK118-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The RPK118-like
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this subfamily show similarity to
           human RPK118, which contains an N-terminal Phox homology
           (PX) domain, a Microtubule Interacting and Trafficking
           (MIT) domain, and a kinase domain containing a long
           insert. Also included in the family is human RPK60 (or
           ribosomal protein S6 kinase-like 1), which also contains
           MIT and kinase domains but lacks a PX domain. RPK118
           binds sphingosine kinase, a key enzyme in the synthesis
           of sphingosine 1-phosphate (SPP), a lipid messenger
           involved in many cellular events. RPK118 may be involved
           in transmitting SPP-mediated signaling. RPK118 also
           binds the antioxidant peroxiredoxin-3 (PRDX3). RPK118
           may be involved in the transport of PRDX3 from the
           cytoplasm to its site of function in the mitochondria.
          Length = 237

 Score = 32.5 bits (74), Expect = 0.092
 Identities = 20/76 (26%), Positives = 35/76 (46%), Gaps = 11/76 (14%)

Query: 33  ICREDIHSHPNIEIVITDLEYVR-------PENDETICREDIHRQYKAVELIYTKEFDMK 85
           +CR+    +PN  I++ D  +++        E +++   E +   Y A E+    E    
Sbjct: 107 VCRD---LNPN-NILLDDRGHIQLTYFSRWSEVEDSCDGEAVENMYCAPEVGGISEETEA 162

Query: 86  IDIWSTACLTFELVTG 101
            D WS   + FEL+TG
Sbjct: 163 CDWWSLGAILFELLTG 178


>gnl|CDD|143384 cd07879, STKc_p38delta_MAPK13, Catalytic domain of the
           Serine/Threonine Kinase, p38delta Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38delta subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38delta subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38delta, also called MAPK13, is found in
           skeletal muscle, heart, lung, testis, pancreas, and
           small intestine. It regulates microtubule function by
           phosphorylating Tau. It activates the c-jun promoter and
           plays a role in G2 cell cycle arrest. It also controls
           the degration of c-Myb, which is associated with myeloid
           leukemia and poor prognosis in colorectal cancer.
           p38delta is the main isoform involved in regulating the
           differentiation and apoptosis of keratinocytes.
          Length = 342

 Score = 32.6 bits (74), Expect = 0.10
 Identities = 19/58 (32%), Positives = 31/58 (53%), Gaps = 4/58 (6%)

Query: 67  IHRQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKI 123
           + R Y+A E+I     ++  +DIWS  C+  E++TG  +   F+ K Y      ILK+
Sbjct: 176 VTRWYRAPEVILNWMHYNQTVDIWSVGCIMAEMLTGKTL---FKGKDYLDQLTQILKV 230


>gnl|CDD|173702 cd05611, STKc_Rim15_like, Catalytic domain of fungal Rim15-like
           Protein Serine/Threonine Kinases.  Serine/Threonine
           Kinases (STKs), Microtubule-associated serine/threonine
           (MAST) kinase subfamily, fungal Rim15-like kinases,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAST kinase
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include Saccharomyces
           cerevisiae Rim15, Schizosaccharomyces pombe cek1, and
           similar fungal proteins. They contain a central
           catalytic domain, which contains an insert relative to
           MAST kinases. In addition, Rim15 contains a C-terminal
           signal receiver (REC) domain while cek1 contains an
           N-terminal PAS domain. Rim15 (or Rim15p) functions as a
           regulator of meiosis. It acts as a downstream effector
           of PKA and regulates entry into stationary phase (G0).
           Thus, it plays a crucial role in regulating yeast
           proliferation, differentiation, and aging. Cek1 may
           facilitate progression of mitotic anaphase.
          Length = 260

 Score = 32.1 bits (73), Expect = 0.12
 Identities = 14/40 (35%), Positives = 18/40 (45%), Gaps = 3/40 (7%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFES 110
           Y A E I     D   D WS  C+ FE + G   + PF +
Sbjct: 159 YLAPETILGVGDDKMSDWWSLGCVIFEFLFG---YPPFHA 195


>gnl|CDD|132962 cd06631, STKc_YSK4, Catalytic domain of the Protein
           Serine/Threonine Kinase, Yeast Sps1/Ste20-related kinase
           4.  Serine/threonine kinases (STKs), yeast
           Sps1/Ste20-related kinase 4 (YSK4) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The YSK4 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. YSK4 is a
           putative MAPKKK, whose mammalian gene has been isolated.
           MAPKKKs (MKKKs or MAP3Ks) phosphorylate and activate
           MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals.
          Length = 265

 Score = 32.2 bits (73), Expect = 0.12
 Identities = 25/86 (29%), Positives = 36/86 (41%), Gaps = 11/86 (12%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGD---YMFNPFESKYYTIDEHHILKIIQLM 127
           + A E+I    +  K DIWS  C  FE+ TG       +   + +Y I  H       LM
Sbjct: 174 WMAPEVINESGYGRKSDIWSIGCTVFEMATGKPPLASMDRLAAMFY-IGAHR-----GLM 227

Query: 128 AEIPPNLMDNERCIRNIKVLLERDQH 153
             +P +   +   I  +   L RDQH
Sbjct: 228 PRLPDSF--SAAAIDFVTSCLTRDQH 251


>gnl|CDD|173666 cd05575, STKc_SGK, Catalytic domain of the Protein Serine/Threonine
           Kinase, Serum- and Glucocorticoid-induced Kinase.
           Serine/Threonine Kinases (STKs), Serum- and
           Glucocorticoid-induced Kinase (SGK) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The SGK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. There are three
           isoforms of SGK, named SGK1, SGK2, and SGK3 (also called
           cytokine-independent survival kinase CISK). SGKs are
           activated by insulin and growth factors via
           phosphoinositide 3-kinase and PDK1. They activate ion
           channels, ion carriers, and the Na-K-ATPase, as well as
           regulate the activity of enzymes and transcription
           factors. SGKs play important roles in transport, hormone
           release, neuroexcitability, cell proliferation, and
           apoptosis.
          Length = 323

 Score = 32.1 bits (73), Expect = 0.14
 Identities = 36/154 (23%), Positives = 66/154 (42%), Gaps = 41/154 (26%)

Query: 38  IHSHPNIEIVITDLEYVRPEN------------DETICREDIHR-----------QYKAV 74
           +HS   + I+  DL   +PEN            D  +C+E I             +Y A 
Sbjct: 112 LHS---LNIIYRDL---KPENILLDSQGHVVLTDFGLCKEGIEHSKTTSTFCGTPEYLAP 165

Query: 75  ELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHIL-KIIQLMAEIPPN 133
           E++  + +D  +D W    + +E++ G     PF S+    D   +   I+     + PN
Sbjct: 166 EVLRKQPYDRTVDWWCLGAVLYEMLYG---LPPFYSR----DTAEMYDNILNKPLRLKPN 218

Query: 134 LMDNERCIRNIKVLLERDQHNITSMNAKDNFYRI 167
           +  + R +  ++ LL++D+     + AKD+F  I
Sbjct: 219 ISVSARHL--LEGLLQKDRTK--RLGAKDDFLEI 248


>gnl|CDD|143341 cd07836, STKc_Pho85, Catalytic domain of the Serine/Threonine
           Kinase, Fungal Cyclin-Dependent protein Kinase Pho85.
           Serine/Threonine Kinases (STKs), Pho85 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Pho85 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Pho85 is a
           multifunctional Cyclin-Dependent protein Kinase (CDK) in
           yeast. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. Pho85 is regulated
           by 10 different cyclins (Pcls) and plays a role in G1
           progression, cell polarity, phosphate and glycogen
           metabolism, gene expression, and in signaling changes in
           the environment. It is not essential for yeast viability
           and is the functional homolog of mammalian CDK5, which
           plays a role in central nervous system development.
          Length = 284

 Score = 32.1 bits (73), Expect = 0.14
 Identities = 19/58 (32%), Positives = 33/58 (56%), Gaps = 7/58 (12%)

Query: 71  YKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLM 127
           Y+A + L+ ++ +   IDIWS  C+  E++TG  +F        T +E  +LKI ++M
Sbjct: 166 YRAPDVLLGSRTYSTSIDIWSVGCIMAEMITGRPLFPG------TNNEDQLLKIFRIM 217


>gnl|CDD|143380 cd07875, STKc_JNK1, Catalytic domain of the Serine/Threonine
           Kinase, c-Jun N-terminal Kinase 1.  Serine/Threonine
           Kinases (STKs), c-Jun N-terminal kinase 1 (JNK1)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           JNK1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. JNKs are mitogen-activated protein kinases
           (MAPKs) that are involved in many stress-activated
           responses including those during inflammation,
           neurodegeneration, apoptosis, and persistent pain
           sensitization, among others. Vetebrates harbor three
           different JNK genes (Jnk1, Jnk2, and Jnk3). JNK1, like
           JNK2, is expressed in every cell and tissue type.
           Initially it was thought that JNK1 and JNK2 were
           functionally redundant as mice deficient in either genes
           (Jnk1 or Jnk2) could survive but disruption of both
           genes resulted in lethality. However, recent studies
           have shown that JNK1 and JNK2 perform distinct functions
           through specific binding partners and substrates. JNK1
           specifically binds with JAMP (JNK1-associated membrane
           protein), which regulates the duration of JNK1 activity
           in response to stimuli. Specific JNK1 substrates include
           Itch and SG10, which are implicated in Th2 responses and
           airway inflammation, and microtubule dynamics and
           axodendritic length, respectively. Mice deficient in
           Jnk1 are protected against arthritis, obesity, type 2
           diabetes, cardiac cell death, and non-alcoholic liver
           disease, suggesting that JNK1 may play roles in the
           pathogenesis of these diseases.
          Length = 364

 Score = 31.9 bits (72), Expect = 0.16
 Identities = 13/41 (31%), Positives = 22/41 (53%)

Query: 65  EDIHRQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
             + R Y+A E+I    +   +DIWS  C+  E++ G  +F
Sbjct: 185 YVVTRYYRAPEVILGMGYKENVDIWSVGCIMGEMIKGGVLF 225


>gnl|CDD|173659 cd05122, PKc_STE, Catalytic domain of STE family Protein Kinases.
           Protein Kinases (PKs), STE family, catalytic (c) domain.
           PKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine or tyrosine residues on
           protein substrates. The STE family is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases (STKs), protein
           tyrosine kinases (PTKs), RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase (PI3K). This family is composed of STKs, and
           some dual-specificity PKs that phosphorylate both
           threonine and tyrosine residues of target proteins. Most
           members are kinases involved in mitogen-activated
           protein kinase (MAPK) signaling cascades, acting as MAPK
           kinases (MAPKKs), MAPK kinase kinases (MAPKKKs), or MAPK
           kinase kinase kinases (MAP4Ks). The MAPK signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising of the MAPK, which is
           phosphorylated and activated by a MAPKK, which itself is
           phosphorylated and activated by a MAPKKK. Each MAPK
           cascade is activated either by a small GTP-binding
           protein or by an adaptor protein, which transmits the
           signal either directly to a MAPKKK to start the triple
           kinase core cascade or indirectly through a mediator
           kinase, a MAP4K. Other STE family members include
           p21-activated kinases (PAKs) and class III myosins,
           among others. PAKs are Rho family GTPase-regulated
           kinases that serve as important mediators in the
           function of Cdc42 (cell division cycle 42) and Rac.
           Class III myosins are motor proteins containing an
           N-terminal kinase catalytic domain and a C-terminal
           actin-binding domain, which can phosphorylate several
           cytoskeletal proteins, conventional myosin regulatory
           light chains, as well as autophosphorylate the
           C-terminal motor domain. They play an important role in
           maintaining the structural integrity of photoreceptor
           cell microvilli.
          Length = 253

 Score = 31.8 bits (73), Expect = 0.16
 Identities = 18/63 (28%), Positives = 25/63 (39%), Gaps = 10/63 (15%)

Query: 70  QYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAE 129
            + A E+I  K +D K DIWS      EL  G     P+        E   +K +  +A 
Sbjct: 162 YWMAPEVINGKPYDYKADIWSLGITAIELAEGKP---PYS-------ELPPMKALFKIAT 211

Query: 130 IPP 132
             P
Sbjct: 212 NGP 214


>gnl|CDD|143382 cd07877, STKc_p38alpha_MAPK14, Catalytic domain of the
           Serine/Threonine Kinase, p38alpha Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38alpha subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38alpha subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38alpha, also called MAPK14, is expressed in
           most tissues and is the major isoform involved in the
           immune and inflammatory response. It is the central p38
           MAPK involved in myogenesis. It plays a role in
           regulating cell cycle check-point transition and
           promoting cell differentiation. p38alpha also regulates
           cell proliferation and death through crosstalk with the
           JNK pathway. Its substrates include MAPK activated
           protein kinase 2 (MK2), MK5, and the transcription
           factors ATF2 and Mitf.
          Length = 345

 Score = 31.9 bits (72), Expect = 0.17
 Identities = 20/62 (32%), Positives = 32/62 (51%), Gaps = 2/62 (3%)

Query: 45  EIVITDLEYVRPENDETICREDIHRQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDY 103
           E+ I D    R  +DE +      R Y+A E++     ++  +DIWS  C+  EL+TG  
Sbjct: 158 ELKILDFGLARHTDDE-MTGYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRT 216

Query: 104 MF 105
           +F
Sbjct: 217 LF 218


>gnl|CDD|173693 cd05602, STKc_SGK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Serum- and
           Glucocorticoid-induced Kinase 1.  Serine/Threonine
           Kinases (STKs), Serum- and Glucocorticoid-induced Kinase
           (SGK) subfamily, SGK1 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The SGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. There are three isoforms of
           SGK, named SGK1, SGK2, and SGK3. SGK1 is ubiquitously
           expressed and is under transcriptional control of
           numerous stimuli including cell stress (cell shrinkage),
           serum, hormones (gluco- and mineralocorticoids),
           gonadotropins, growth factors, interleukin-6, and other
           cytokines. It plays roles in sodium retention and
           potassium elimination in the kidney, nutrient transport,
           salt sensitivity, memory consolidation, and cardiac
           repolarization. A common SGK1 variant is associated with
           increased blood pressure and body weight. SGK1 may also
           contribute to tumor growth, neurodegeneration, fibrosing
           disease, and ischemia.
          Length = 325

 Score = 31.5 bits (71), Expect = 0.17
 Identities = 38/149 (25%), Positives = 69/149 (46%), Gaps = 38/149 (25%)

Query: 43  NIEIVITDLEYVRPEN------------DETICREDIHR-----------QYKAVELIYT 79
           ++ IV  DL   +PEN            D  +C+E+I             +Y A E+++ 
Sbjct: 114 SLNIVYRDL---KPENILLDSQGHIVLTDFGLCKENIEHNGTTSTFCGTPEYLAPEVLHK 170

Query: 80  KEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHIL-KIIQLMAEIPPNLMDNE 138
           + +D  +D W    + +E++   Y   PF S+       +IL K +QL     PN+ ++ 
Sbjct: 171 QPYDRTVDWWCLGAVLYEML---YGLPPFYSRNTAEMYDNILNKPLQL----KPNITNSA 223

Query: 139 RCIRNIKVLLERDQHNITSMNAKDNFYRI 167
           R +  ++ LL++D+     + AKD+F  I
Sbjct: 224 RHL--LEGLLQKDR--TKRLGAKDDFMEI 248


>gnl|CDD|173663 cd05572, STKc_cGK_PKG, Catalytic domain of the Protein
           Serine/Threonine Kinase, cGMP-dependent protein kinase. 
           Serine/Threonine Kinases (STKs), cGMP-dependent protein
           kinase (cGK or PKG) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The cGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Mammals have two cGK isoforms
           from different genes, cGKI and cGKII. cGKI exists as two
           splice variants, cGKI-alpha and cGKI-beta. cGK consists
           of an N-terminal regulatory domain containing a
           dimerization and an autoinhibitory pseudosubstrate
           region, two cGMP-binding domains, and a C-terminal
           catalytic domain. Binding of cGMP to both binding sites
           releases the inhibition of the catalytic center by the
           pseudosubstrate region, allowing autophosphorylation and
           activation of the kinase. cGKI is a  soluble protein
           expressed in all smooth muscles, platelets, cerebellum,
           and kidney. It is also expressed at lower concentrations
           in other tissues. cGKII is a membrane-bound protein that
           is most abundantly expressed in the intestine. It is
           also present in the brain nuclei, adrenal cortex,
           kidney, lung, and prostate. cGKI is involved in the
           regulation of smooth muscle tone, smooth cell
           proliferation, and platelet activation. cGKII plays a
           role in the regulation of secretion, such as renin
           secretion by the kidney and aldosterone secretion by the
           adrenal. It also regulates bone growth and the circadian
           rhythm.
          Length = 262

 Score = 31.4 bits (72), Expect = 0.20
 Identities = 14/32 (43%), Positives = 20/32 (62%)

Query: 70  QYKAVELIYTKEFDMKIDIWSTACLTFELVTG 101
           +Y A E+I  K +D  +D WS   L +EL+TG
Sbjct: 157 EYVAPEIILNKGYDFSVDYWSLGILLYELLTG 188


>gnl|CDD|173736 cd07832, STKc_CCRK, Catalytic domain of the Serine/Threonine
           Kinase, Cell Cycle-Related Kinase.  Serine/Threonine
           Kinases (STKs), Cell Cycle-Related Kinase (CCRK) p42
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CCRK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CCRK was previously called p42. It is a
           Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK)
           which is essential for the activation of CDK2. It is
           indispensable for cell growth and has been implicated in
           the progression of glioblastoma multiforme. In the
           heart, a splice variant of CCRK with a different
           C-terminal half is expressed, this variant promotes
           cardiac cell growth and survival and is significantly
           down-regulated during the development of heart failure.
          Length = 286

 Score = 31.5 bits (72), Expect = 0.20
 Identities = 14/38 (36%), Positives = 25/38 (65%), Gaps = 1/38 (2%)

Query: 69  RQYKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMF 105
           R Y+A EL+Y  +++D  +D+W+  C+  EL+ G  +F
Sbjct: 164 RWYRAPELLYGARKYDPGVDLWAVGCIFAELLNGSPLF 201


>gnl|CDD|143376 cd07871, STKc_PCTAIRE3, Catalytic domain of the Serine/Threonine
           Kinase, PCTAIRE-3 kinase.  Serine/Threonine Kinases
           (STKs), PCTAIRE-3 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PCTAIRE-3 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PCTAIRE-3 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PCTAIRE-3 shows a
           restricted pattern of expression and is present in
           brain, kidney, and intestine. It is elevated in
           Alzheimer's disease (AD) and has been shown to associate
           with paired helical filaments (PHFs) and stimulate Tau
           phosphorylation. As AD progresses, phosphorylated Tau
           aggregates and forms PHFs, which leads to the formation
           of neurofibrillary tangles (NFTs). In human glioma
           cells, PCTAIRE-3 induces cell cycle arrest and cell
           death.
          Length = 288

 Score = 31.5 bits (71), Expect = 0.20
 Identities = 11/30 (36%), Positives = 18/30 (60%)

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           L+ + E+   ID+W   C+ +E+ TG  MF
Sbjct: 175 LLGSTEYSTPIDMWGVGCILYEMATGRPMF 204


>gnl|CDD|173763 cd08223, STKc_Nek4, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 4.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 4 (Nek4) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek4 subfamily is
           one of a family of 11 different Neks (Nek1-11). The Nek
           family is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Neks are involved in the regulation of
           downstream processes following the activation of Cdc2,
           and many of their functions are cell cycle-related. They
           play critical roles in microtubule dynamics during
           ciliogenesis and mitosis. Nek4 is highly abundant in the
           testis. Its specific function is unknown.
          Length = 257

 Score = 31.5 bits (71), Expect = 0.21
 Identities = 12/36 (33%), Positives = 20/36 (55%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFN 106
           Y + EL   K ++ K D+W+  C  +E+ T  + FN
Sbjct: 168 YMSPELFSNKPYNYKSDVWALGCCVYEMATLKHAFN 203


>gnl|CDD|173750 cd07857, STKc_MPK1, Catalytic domain of the Serine/Threonine
           Kinase, Fungal Mitogen-Activated Protein Kinase MPK1.
           Serine/Threonine Kinases (STKs), Fungal
           Mitogen-Activated Protein Kinase (MAPK) MPK1 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MPK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This subfamily is
           composed of the MAPKs MPK1 from Saccharomyces
           cerevisiae, Pmk1 from Schizosaccharomyces pombe, and
           similar proteins. MAPKs are important mediators of
           cellular responses to extracellular signals. MPK1 (also
           called Slt2) and Pmk1 (also called Spm1) are
           stress-activated MAPKs that regulate the cell wall
           integrity (CWI) pathway, and are therefore important in
           the maintainance of cell shape, cell wall construction,
           morphogenesis, and ion homeostasis. MPK1 is activated in
           response to cell wall stress including heat stimulation,
           osmotic shock, UV irradiation, and any agents that
           interfere with cell wall biogenesis such as chitin
           antagonists, caffeine, or zymolase. MPK1 is regulated by
           the MAP2Ks Mkk1/2, which are regulated by the MAP3K
           Bck1. Pmk1 is also activated by multiple stresses
           including elevated temperatures, hyper- or hypotonic
           stress, glucose deprivation, exposure to cell-wall
           damaging compounds, and oxidative stress. It is
           regulated by the MAP2K Pek1, which is regulated by the
           MAP3K Mkh1.
          Length = 332

 Score = 31.2 bits (71), Expect = 0.23
 Identities = 19/72 (26%), Positives = 33/72 (45%), Gaps = 15/72 (20%)

Query: 69  RQYKAVELI-----YTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKI 123
           R Y+A E++     YTK     ID+WS  C+  EL+    +   F+ K Y      + +I
Sbjct: 173 RWYRAPEIMLSFQSYTK----AIDVWSVGCILAELLGRKPV---FKGKDYV---DQLNQI 222

Query: 124 IQLMAEIPPNLM 135
           +Q++       +
Sbjct: 223 LQVLGTPDEETL 234


>gnl|CDD|143356 cd07851, STKc_p38, Catalytic domain of the Serine/Threonine Kinase,
           p38 Mitogen-Activated Protein Kinase.  Serine/Threonine
           Kinases (STKs), p38 subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The p38 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. p38 kinases are
           mitogen-activated protein kinases (MAPKs), serving as
           important mediators of cellular responses to
           extracellular signals. They function in the regulation
           of the cell cycle, cell development, cell
           differentiation, senescence, tumorigenesis, apoptosis,
           pain development and pain progression, and immune
           responses. p38 kinases are activated by the MAPK kinases
           MKK3 and MKK6, which in turn are activated by upstream
           MAPK kinase kinases including TAK1, ASK1, and MLK3, in
           response to cellular stresses or inflammatory cytokines.
           p38 substrates include other protein kinases and factors
           that regulate transcription, nuclear export, mRNA
           stability and translation. p38 kinases are drug targets
           for the inflammatory diseases psoriasis, rheumatoid
           arthritis, and chronic pulmonary disease. Vertebrates
           contain four isoforms of p38, named alpha, beta, gamma,
           and delta, which show varying substrate specificity and
           expression patterns. p38alpha and p38beta are
           ubiquitously expressed, p38gamma is predominantly found
           in skeletal muscle, and p38delta is found in the heart,
           lung, testis, pancreas, and small intestine.
          Length = 343

 Score = 31.5 bits (72), Expect = 0.23
 Identities = 14/38 (36%), Positives = 23/38 (60%), Gaps = 1/38 (2%)

Query: 69  RQYKAVELIYTK-EFDMKIDIWSTACLTFELVTGDYMF 105
           R Y+A E++     ++  +DIWS  C+  EL+TG  +F
Sbjct: 179 RWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGKTLF 216


>gnl|CDD|216364 pfam01206, SirA, SirA-like protein. 
          Length = 70

 Score = 29.4 bits (67), Expect = 0.24
 Identities = 12/54 (22%), Positives = 25/54 (46%), Gaps = 5/54 (9%)

Query: 120 ILKIIQLMAEIPPN-----LMDNERCIRNIKVLLERDQHNITSMNAKDNFYRIL 168
           +LK  + + ++ P      L D+   + +I    ++  H +  +  +D  YRIL
Sbjct: 14  LLKTKKALKKLKPGEVLEVLADDPGAVEDIPRWAKKTGHEVLEVEEEDGEYRIL 67


>gnl|CDD|173737 cd07834, STKc_MAPK, Catalytic domain of the Serine/Threonine
           Kinase, Mitogen-Activated Protein Kinase.
           Serine/Threonine Kinases (STKs), Mitogen-Activated
           Protein Kinase (MAPK) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The MAPK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. MAPKs serve as important
           mediators of cellular responses to extracellular
           signals. They control critical cellular functions
           including differentiation, proliferation, migration, and
           apoptosis. They are also implicated in the pathogenesis
           of many diseases including multiple types of cancer,
           stroke, diabetes, and chronic inflammation. Typical MAPK
           pathways involve a triple kinase core cascade comprising
           of the MAPK, which is phosphorylated and activated by a
           MAPK kinase (MAP2K or MKK), which itself is
           phosphorylated and activated by a MAPK kinase kinase
           (MAP3K or MKKK). Each cascade is activated either by a
           small GTP-binding protein or by an adaptor protein,
           which transmits the signal either directly to a MAP3K to
           start the triple kinase core cascade or indirectly
           through a mediator kinase, a MAP4K. There are three main
           typical MAPK subfamilies: Extracellular signal-Regulated
           Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38.
           Some MAPKs are atypical in that they are not regulated
           by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7.
          Length = 330

 Score = 31.3 bits (72), Expect = 0.25
 Identities = 17/40 (42%), Positives = 22/40 (55%), Gaps = 9/40 (22%)

Query: 67  IHRQYKAVELI-----YTKEFDMKIDIWSTACLTFELVTG 101
           + R Y+A EL+     YTK     IDIWS  C+  EL+T 
Sbjct: 168 VTRWYRAPELLLSSSRYTKA----IDIWSVGCIFAELLTR 203


>gnl|CDD|173724 cd06606, STKc_MAPKKK, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen-Activated Protein
           Kinase Kinase Kinase.  Serine/threonine kinases (STKs),
           mitogen-activated protein kinase (MAPK) kinase kinase
           (MAPKKK) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MAPKKK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAPKKKs (MKKKs or MAP3Ks) are also called
           MAP/ERK kinase kinases (MEKKs) in some cases. They
           phosphorylate and activate MAPK kinases (MAPKKs or MKKs
           or MAP2Ks), which in turn phosphorylate and activate
           MAPKs during signaling cascades that are important in
           mediating cellular responses to extracellular signals.
           This subfamily is composed of the Apoptosis
           Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or
           MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant
           and fungal MAPKKKs. Also included in this subfamily are
           the cell division control proteins Schizosaccharomyces
           pombe Cdc7 and Saccharomyces cerevisiae Cdc15.
          Length = 260

 Score = 31.0 bits (71), Expect = 0.25
 Identities = 12/31 (38%), Positives = 17/31 (54%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTG 101
           + A E+I  +E+    DIWS  C   E+ TG
Sbjct: 169 WMAPEVIRGEEYGRAADIWSLGCTVIEMATG 199


>gnl|CDD|173771 cd08529, STKc_FA2-like, Catalytic domain of the Protein
           Serine/Threonine Kinase, Chlamydomonas reinhardtii FA2
           and similar domains.  Serine/Threonine Kinases (STKs),
           Chlamydomonas reinhardtii FA2-like subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Chlamydomonas
           reinhardtii FA2-like subfamily belongs to the
           (NIMA)-related kinase (Nek) family. The Nek family
           includes seven different Chlamydomonas Neks (CNKs 1-6
           and Fa2). This subfamily includes FA2 and CNK4.  The Nek
           family is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase.  Chlamydomonas reinhardtii FA2 was discovered
           in a genetic screen for deflagellation-defective
           mutants. It is essential for
           basal-body/centriole-associated microtubule severing,
           and plays a role in cell cycle progression. No cellular
           function has yet been ascribed to CNK4.
          Length = 256

 Score = 30.9 bits (70), Expect = 0.25
 Identities = 11/36 (30%), Positives = 20/36 (55%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFN 106
           Y + EL   K ++ K D+W+   + +E  TG + F+
Sbjct: 167 YLSPELCEDKPYNEKSDVWALGVVLYECCTGKHPFD 202


>gnl|CDD|143385 cd07880, STKc_p38gamma_MAPK12, Catalytic domain of the
           Serine/Threonine Kinase, p38gamma Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38gamma subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38gamma subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38gamma, also called MAPK12, is predominantly
           expressed in skeletal muscle. Unlike p38alpha and
           p38beta, p38gamma is insensitive to pyridinylimidazoles.
           It displays an antagonizing function compared to
           p38alpha. p38gamma inhibits, while p38alpha stimulates,
           c-Jun phosphorylation and AP-1 mediated transcription.
           p38gamma also plays a role in the signaling between Ras
           and the estrogen receptor and has been implicated to
           increase cell invasion and breast cancer progression. In
           Xenopus, p38gamma is critical in the meiotic maturation
           of oocytes.
          Length = 343

 Score = 31.1 bits (70), Expect = 0.26
 Identities = 19/62 (30%), Positives = 31/62 (50%), Gaps = 2/62 (3%)

Query: 45  EIVITDLEYVRPENDETICREDIHRQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDY 103
           E+ I D    R + D  +    + R Y+A E+I     +   +DIWS  C+  E++TG  
Sbjct: 156 ELKILDFGLAR-QTDSEMTGYVVTRWYRAPEVILNWMHYTQTVDIWSVGCIMAEMLTGKP 214

Query: 104 MF 105
           +F
Sbjct: 215 LF 216


>gnl|CDD|143378 cd07873, STKc_PCTAIRE1, Catalytic domain of the Serine/Threonine
           Kinase, PCTAIRE-1 kinase.  Serine/Threonine Kinases
           (STKs), PCTAIRE-1 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PCTAIRE-1 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PCTAIRE-1 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PCTAIRE-1 is
           expressed ubiquitously and is localized in the
           cytoplasm. Its kinase activity is cell cycle dependent
           and peaks at the S and G2 phases. PCTAIRE-1 is highly
           expressed in the brain and may play a role in regulating
           neurite outgrowth. It can also associate with Trap
           (Tudor repeat associator with PCTAIRE-2), a
           physiological partner of PCTAIRE-2; with p11, a small
           dimeric protein with similarity to S100; and with 14-3-3
           proteins, mediators of phosphorylation-dependent
           interactions in many different proteins.
          Length = 301

 Score = 31.1 bits (70), Expect = 0.30
 Identities = 18/66 (27%), Positives = 34/66 (51%), Gaps = 8/66 (12%)

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDE--HHILKIIQL-MAEIPP 132
           L+ + ++  +ID+W   C+ +E+ TG  +F        T++E  H I +I+     E  P
Sbjct: 176 LLGSTDYSTQIDMWGVGCIFYEMSTGRPLF-----PGSTVEEQLHFIFRILGTPTEETWP 230

Query: 133 NLMDNE 138
            ++ NE
Sbjct: 231 GILSNE 236


>gnl|CDD|173759 cd08219, STKc_Nek3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 3.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 3 (Nek3) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek3 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek3 is primarily
           localized in the cytoplasm and shows no cell
           cycle-dependent changes in its activity. It is present
           in the axons of neurons and affects morphogenesis and
           polarity through its regulation of microtubule
           acetylation. Nek3 modulates the signaling of the
           prolactin receptor through its activation of Vav2 and
           contributes to prolactin-mediated motility of breast
           cancer cells.
          Length = 255

 Score = 30.7 bits (69), Expect = 0.33
 Identities = 15/44 (34%), Positives = 27/44 (61%), Gaps = 6/44 (13%)

Query: 82  FDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQ 125
           ++ K DIWS  C+ +EL T   + +PF++  +   ++ ILK+ Q
Sbjct: 177 YNNKSDIWSLGCILYELCT---LKHPFQANSW---KNLILKVCQ 214


>gnl|CDD|173732 cd06628, STKc_MAPKKK_Byr2_like, Catalytic domain of fungal
           Byr2-like MAP Kinase Kinase Kinases.  Serine/threonine
           kinases (STKs), mitogen-activated protein kinase (MAPK)
           kinase kinase (MAPKKK) subfamily, fungal Byr2-like
           proteins, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MAPKKK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include the MAPKKKs
           Schizosaccharomyces pombe Byr2, Saccharomyces cerevisiae
           and Cryptococcus neoformans Ste11, and related proteins.
           They contain an N-terminal SAM (sterile alpha-motif)
           domain, which mediates protein-protein interaction, and
           a C-terminal catalytic domain. MAPKKKs phosphorylate and
           activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which
           in turn phosphorylate and activate MAPKs during
           signaling cascades that are important in mediating
           cellular responses to extracellular signals. Fission
           yeast Byr2 is regulated by Ras1. It responds to
           pheromone signaling and controls mating through the MAPK
           pathway. Budding yeast Ste11 functions in MAPK cascades
           that regulate mating, high osmolarity glycerol, and
           filamentous growth responses.
          Length = 267

 Score = 30.6 bits (69), Expect = 0.34
 Identities = 13/33 (39%), Positives = 19/33 (57%)

Query: 73  AVELIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           A E++    +  K DIWS  CL  E++TG + F
Sbjct: 180 APEVVKQTSYTRKADIWSLGCLVVEMLTGKHPF 212


>gnl|CDD|140307 PTZ00284, PTZ00284, protein kinase; Provisional.
          Length = 467

 Score = 30.7 bits (69), Expect = 0.36
 Identities = 16/59 (27%), Positives = 28/59 (47%), Gaps = 10/59 (16%)

Query: 69  RQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLM 127
           R Y++ E++    +    D+WS  C+ +EL TG  ++          D H  L+ + LM
Sbjct: 309 RHYRSPEVVLGLGWMYSTDMWSMGCIIYELYTGKLLY----------DTHDNLEHLHLM 357


>gnl|CDD|173502 PTZ00266, PTZ00266, NIMA-related protein kinase; Provisional.
          Length = 1021

 Score = 30.9 bits (69), Expect = 0.39
 Identities = 11/28 (39%), Positives = 18/28 (64%)

Query: 79  TKEFDMKIDIWSTACLTFELVTGDYMFN 106
           TK +D K D+W+  C+ +EL +G   F+
Sbjct: 217 TKSYDDKSDMWALGCIIYELCSGKTPFH 244


>gnl|CDD|143364 cd07859, STKc_TDY_MAPK_plant, Catalytic domain of the
           Serine/Threonine Kinases, TDY Mitogen-Activated Protein
           Kinases from Plants.  Serine/Threonine Kinases (STKs),
           Plant TDY Mitogen-Activated Protein Kinase (MAPK)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The TDY
           MAPK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAPKs are important mediators of cellular
           responses to extracellular signals. In plants, MAPKs are
           associated with physiological, developmental, hormonal,
           and stress responses. Some plants show numerous gene
           duplications of MAPKs. Arabidopsis thaliana harbors at
           least 20 MAPKs, named AtMPK1-20. Oryza sativa contains
           at least 17 MAPKs. There are two subtypes of plant MAPKs
           based on the conserved phosphorylation motif present in
           the activation loop, TEY and TDY. Arabidopsis thaliana
           contains more TEY-type MAPKs than TDY-type, whereas the
           reverse is true for Oryza sativa. This subfamily
           represents the TDY subtype and is composed of Group D
           plant MAPKs including Arabidopsis thaliana MPK18
           (AtMPK18), Oryza sativa Blast- and Wound-induced MAPK1
           (OsBWMK1), OsWJUMK1 (Wound- and JA-Uninducible MAPK1),
           Zea mays MPK6, and the Medicago sativa TDY1 gene
           product. OsBWMK1 enhances resistance to pathogenic
           infections. It mediates stress-activated defense
           responses by activating a transcription factor that
           affects the expression of stress-related genes. AtMPK18
           is involved in microtubule-related functions.
          Length = 338

 Score = 30.1 bits (68), Expect = 0.54
 Identities = 16/40 (40%), Positives = 24/40 (60%), Gaps = 4/40 (10%)

Query: 69  RQYKAVEL---IYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           R Y+A EL    ++K +   IDIWS  C+  E++TG  +F
Sbjct: 170 RWYRAPELCGSFFSK-YTPAIDIWSIGCIFAEVLTGKPLF 208


>gnl|CDD|143383 cd07878, STKc_p38beta_MAPK11, Catalytic domain of the
           Serine/Threonine Kinase, p38beta Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38beta subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38beta subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38beta, also called MAPK11, is widely expressed
           in tissues and shows more similarity with p38alpha than
           with the other isoforms. Both are sensitive to
           pyridinylimidazoles and share some common substrates
           such as MAPK activated protein kinase 2 (MK2) and the
           transcription factors ATF2, c-Fos and, ELK-1. p38beta is
           involved in regulating the activation of the
           cyclooxygenase-2 promoter and the expression of
           TGFbeta-induced alpha-smooth muscle cell actin.
          Length = 343

 Score = 30.0 bits (67), Expect = 0.56
 Identities = 19/62 (30%), Positives = 31/62 (50%), Gaps = 2/62 (3%)

Query: 45  EIVITDLEYVRPENDETICREDIHRQYKAVELIYT-KEFDMKIDIWSTACLTFELVTGDY 103
           E+ I D    R  +DE +      R Y+A E++     ++  +DIWS  C+  EL+ G  
Sbjct: 156 ELRILDFGLARQADDE-MTGYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLKGKA 214

Query: 104 MF 105
           +F
Sbjct: 215 LF 216


>gnl|CDD|143379 cd07874, STKc_JNK3, Catalytic domain of the Serine/Threonine
           Kinase, c-Jun N-terminal Kinase 3.  Serine/Threonine
           Kinases (STKs), c-Jun N-terminal kinase 3 (JNK3)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           JNK3 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. JNKs are mitogen-activated protein kinases
           (MAPKs) that are involved in many stress-activated
           responses including those during inflammation,
           neurodegeneration, apoptosis, and persistent pain
           sensitization, among others. Vetebrates harbor three
           different JNK genes (Jnk1, Jnk2, and Jnk3). JNK3 is
           expressed primarily in the brain, and to a lesser extent
           in the heart and testis. Mice deficient in Jnk3 are
           protected against kainic acid-induced seizures, stroke,
           sciatic axotomy neural death, and neuronal death due to
           NGF deprivation, oxidative stress, or exposure to
           beta-amyloid peptide. This suggests that JNK3 may play
           roles in the pathogenesis of these diseases.
          Length = 355

 Score = 30.1 bits (67), Expect = 0.56
 Identities = 13/39 (33%), Positives = 21/39 (53%)

Query: 67  IHRQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           + R Y+A E+I    +   +DIWS  C+  E+V    +F
Sbjct: 180 VTRYYRAPEVILGMGYKENVDIWSVGCIMGEMVRHKILF 218


>gnl|CDD|173674 cd05583, STKc_MSK_N, N-terminal catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen and stress-activated
           kinase.  Serine/Threonine Kinases (STKs), Mitogen and
           stress-activated kinase (MSK) subfamily, N-terminal
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MSK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MSKs contain an
           N-terminal kinase domain (NTD) from the AGC family and a
           C-terminal kinase domain (CTD) from the CAMK family,
           similar to 90 kDa ribosomal protein S6 kinases (RSKs).
           MSKs are activated by two major signaling cascades, the
           Ras-MAPK and p38 stress kinase pathways, in response to
           various stimuli such as growth factors, hormones,
           neurotransmitters, cellular stress, and pro-inflammatory
           cytokines. This triggers phosphorylation in the
           activation loop (A-loop) of the CTD of MSK. The active
           CTD phosphorylates the hydrophobic motif (HM) in the
           C-terminal extension of NTD, which facilitates the
           phosphorylation of the A-loop and activates the NTD,
           which in turn phosphorylates downstream targets. MSKs
           are predominantly nuclear proteins. They are widely
           expressed in many tissues including heart, brain, lung,
           liver, kidney, and pancreas. There are two isoforms of
           MSK, called MSK1 and MSK2.
          Length = 288

 Score = 29.8 bits (67), Expect = 0.63
 Identities = 15/34 (44%), Positives = 19/34 (55%), Gaps = 2/34 (5%)

Query: 70  QYKAVELIYTKE--FDMKIDIWSTACLTFELVTG 101
           +Y A E+I       D  +D WS   LTFEL+TG
Sbjct: 171 EYMAPEVIRGGSGGHDKAVDWWSLGVLTFELLTG 204


>gnl|CDD|143373 cd07868, STKc_CDK8, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 8.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 8 (CDK8) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK8 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK8
           can act as a negative or positive regulator of
           transcription, depending on the scenario. Together with
           its regulator, cyclin C, it reversibly associates with
           the multi-subunit core Mediator complex, a cofactor that
           is involved in regulating RNA polymerase II (RNAP
           II)-dependent transcription. CDK8 phosphorylates cyclin
           H, a subunit of the general transcription factor TFIIH,
           which results in the inhibition of TFIIH-dependent
           phosphorylation of the C-terminal domain (CTD) of RNAP
           II, facilitating the inhibition of transcription. It has
           also been shown to promote transcription by a mechanism
           that is likely to involve RNAP II phosphorylation. CDK8
           also functions as a stimulus-specific positive
           coregulator of p53 transcriptional responses.
          Length = 317

 Score = 30.0 bits (67), Expect = 0.70
 Identities = 15/50 (30%), Positives = 28/50 (56%), Gaps = 1/50 (2%)

Query: 71  YKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHH 119
           Y+A EL+   + +   IDIW+  C+  EL+T + +F+  +    T + +H
Sbjct: 181 YRAPELLLGARHYTKAIDIWAIGCIFAELLTSEPIFHCRQEDIKTSNPYH 230


>gnl|CDD|177649 PLN00009, PLN00009, cyclin-dependent kinase A; Provisional.
          Length = 294

 Score = 29.8 bits (67), Expect = 0.72
 Identities = 19/58 (32%), Positives = 34/58 (58%), Gaps = 7/58 (12%)

Query: 71  YKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLM 127
           Y+A E L+ ++ +   +DIWS  C+  E+V    +F P +S+   IDE  + KI +++
Sbjct: 169 YRAPEILLGSRHYSTPVDIWSVGCIFAEMVNQKPLF-PGDSE---IDE--LFKIFRIL 220


>gnl|CDD|173758 cd08218, STKc_Nek1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 1.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 1 (Nek1) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek1 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek1 is
           associated with centrosomes throughout the cell cycle.
           It is involved in the formation of primary cilium and in
           the maintenance of centrosomes. It cycles through the
           nucleus and may be capable of relaying signals between
           the cilium and the nucleus. Nek1 is implicated in the
           development of polycystic kidney disease, which is
           characterized by benign polycystic tumors formed by
           abnormal overgrowth of renal epithelial cells. It
           appears also to be involved in DNA damage response, and
           may be important for both correct DNA damage checkpoint
           activation and DNA repair.
          Length = 256

 Score = 29.8 bits (67), Expect = 0.73
 Identities = 23/91 (25%), Positives = 43/91 (47%), Gaps = 9/91 (9%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           Y + E+   + ++ K DIW+  C+ +E+ T  + F     K      + +LKII+     
Sbjct: 167 YLSPEICENRPYNNKSDIWALGCVLYEMCTLKHAFEAGNMK------NLVLKIIR--GSY 218

Query: 131 PPNLMDNERCIRN-IKVLLERDQHNITSMNA 160
           PP        +RN +  L +R+  +  S+N+
Sbjct: 219 PPVSSHYSYDLRNLVSQLFKRNPRDRPSVNS 249


>gnl|CDD|143345 cd07840, STKc_CDK9_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 9-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 9 (CDK9)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK9-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. This subfamily is
           composed of CDK9 and CDK12 from higher eukaryotes, yeast
           BUR1, C-type plant CDKs (CdkC), and similar proteins.
           CDK9, BUR1, and CdkC are functionally equivalent. They
           act as a kinase for the C-terminal domain of RNA
           polymerase II and participate in regulating mutliple
           steps of gene expression including transcription
           elongation and RNA processing. CDK9 and CdkC associate
           with T-type cyclins while BUR1 associates with the
           cyclin BUR2. CDK12 is a unique CDK that contains an
           arginine/serine-rich (RS) domain, which is predominantly
           found in splicing factors. CDK12 interacts with cyclins
           L1 and L2, and participates in regulating transcription
           and alternative splicing.
          Length = 287

 Score = 29.4 bits (67), Expect = 0.80
 Identities = 11/36 (30%), Positives = 19/36 (52%), Gaps = 1/36 (2%)

Query: 71  YKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMF 105
           Y+  EL+     +  ++D+WS  C+  EL  G  +F
Sbjct: 167 YRPPELLLGATRYGPEVDMWSVGCILAELFLGKPIF 202


>gnl|CDD|173755 cd08215, STKc_Nek, Catalytic domain of the Protein Serine/Threonine
           Kinase, Never In Mitosis gene A-related kinase.
           Serine/Threonine Kinases (STKs), Never In Mitosis gene A
           (NIMA)-related kinase (Nek) family, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. The Nek family is
           composed of 11 different mammalian members (Nek1-11)
           with similarity to the catalytic domain of Aspergillus
           nidulans NIMA kinase, the founding member of the Nek
           family which was identified in a screen for cell cycle
           mutants that were prevented from entering mitosis. Neks
           contain a conserved N-terminal catalytic domain and a
           more divergent C-terminal regulatory region of various
           sizes and structures. They are involved in the
           regulation of downstream processes following the
           activation of Cdc2, and many of their functions are cell
           cycle-related. They play critical roles in microtubule
           dynamics during ciliogenesis and mitosis.
          Length = 258

 Score = 29.4 bits (67), Expect = 0.82
 Identities = 16/41 (39%), Positives = 23/41 (56%), Gaps = 3/41 (7%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           Y + EL   K ++ K DIWS  C+ +EL T  +   PFE +
Sbjct: 169 YLSPELCQNKPYNYKSDIWSLGCVLYELCTLKH---PFEGE 206


>gnl|CDD|173729 cd06617, PKc_MKK3_6, Catalytic domain of the dual-specificity
           Protein Kinases, MAP kinase kinases 3 and 6.  Protein
           kinases (PKs), MAP kinase kinase 3 (MKK3) and MKK6
           subfamily, catalytic (c) domain. PKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MKK3 and MKK6 subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein serine/threonine kinases, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The mitogen-activated protein (MAP) kinase
           signaling pathways are important mediators of cellular
           responses to extracellular signals. The pathways involve
           a triple kinase core cascade comprising the MAP kinase
           (MAPK), which is phosphorylated and activated by a MAPK
           kinase (MAPKK or MKK), which itself is phosphorylated
           and activated by a MAPK kinase kinase (MAPKKK or MKKK).
           MKK3 and MKK6 are dual-specificity PKs that
           phosphorylate and activate their downstream target, p38
           MAPK, on specific threonine and tyrosine residues.
           MKK3/6 plays roles in the regulation of cell cycle
           progression, cytokine- and stress-induced apoptosis,
           oncogenic transformation, and adult tissue regeneration.
           In addition, MKK6 plays a critical role in osteoclast
           survival in inflammatory disease while MKK3 is
           associated with tumor invasion, progression, and poor
           patient survival in glioma.
          Length = 283

 Score = 29.3 bits (66), Expect = 0.92
 Identities = 16/49 (32%), Positives = 23/49 (46%), Gaps = 8/49 (16%)

Query: 69  RQYKAVELI----YTKEFDMKIDIWSTACLTFELVTGDYMF----NPFE 109
           + Y A E I      K +D+K D+WS      EL TG + +     PF+
Sbjct: 167 KPYMAPERINPELNQKGYDVKSDVWSLGITMIELATGRFPYDSWKTPFQ 215


>gnl|CDD|173761 cd08221, STKc_Nek9, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 9.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 9 (Nek9) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek9 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek9, also called
           Nercc1, is primarily a cytoplasmic protein but can also
           localize in the nucleus. It is involved in modulating
           chromosome alignment and splitting during mitosis. It
           interacts with the gamma-tubulin ring complex and the
           Ran GTPase, and is implicated in microtubule
           organization. Nek9 associates with FACT (FAcilitates
           Chromatin Transcription) and modulates interphase
           progression. It also interacts with Nek6, and Nek7,
           during mitosis, resulting in their activation.
          Length = 256

 Score = 29.3 bits (66), Expect = 0.96
 Identities = 11/30 (36%), Positives = 19/30 (63%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVT 100
           Y + EL    +++ K DIW+  C+ +EL+T
Sbjct: 167 YMSPELCQGVKYNFKSDIWALGCVLYELLT 196


>gnl|CDD|143377 cd07872, STKc_PCTAIRE2, Catalytic domain of the Serine/Threonine
           Kinase, PCTAIRE-2 kinase.  Serine/Threonine Kinases
           (STKs), PCTAIRE-2 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PCTAIRE-2 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PCTAIRE-2 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PCTAIRE-2 is
           specifically expressed in neurons in the central nervous
           system, mainly in terminally differentiated neurons. It
           associates with Trap (Tudor repeat associator with
           PCTAIRE-2) and could play a role in regulating
           mitochondrial function in neurons.
          Length = 309

 Score = 29.6 bits (66), Expect = 0.96
 Identities = 10/30 (33%), Positives = 19/30 (63%)

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           L+ + E+  +ID+W   C+ FE+ +G  +F
Sbjct: 176 LLGSSEYSTQIDMWGVGCIFFEMASGRPLF 205


>gnl|CDD|173673 cd05582, STKc_RSK_N, N-terminal catalytic domain of the Protein
           Serine/Threonine Kinase, 90 kDa ribosomal protein S6
           kinase.  Serine/Threonine Kinases (STKs), 90 kDa
           ribosomal protein S6 kinase (RSK) subfamily, N-terminal
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The RSK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. RSKs contain an
           N-terminal kinase domain (NTD) from the AGC family and a
           C-terminal kinase domain (CTD) from the CAMK family.
           They are activated by signaling inputs from
           extracellular regulated kinase (ERK) and
           phosphoinositide dependent kinase 1 (PDK1). ERK
           phosphorylates and activates the CTD of RSK, serving as
           a docking site for PDK1, which phosphorylates and
           activates the NTD, which in turn phosphorylates all
           known RSK substrates. RSKs act as downstream effectors
           of mitogen-activated protein kinase (MAPK) and play key
           roles in mitogen-activated cell growth, differentiation,
           and survival. Mammals possess four RSK isoforms (RSK1-4)
           from distinct genes. RSK proteins are also referred to
           as MAP kinase-activated protein kinases (MAPKAPKs),
           p90-RSKs, or p90S6Ks.
          Length = 318

 Score = 29.4 bits (66), Expect = 1.0
 Identities = 25/96 (26%), Positives = 38/96 (39%), Gaps = 30/96 (31%)

Query: 39  HSHPNIEIVITDLEYVRPEN------------DETICREDIHR-----------QYKAVE 75
           H H ++ I+  DL   +PEN            D  + +E I             +Y A E
Sbjct: 113 HLH-SLGIIYRDL---KPENILLDEEGHIKLTDFGLSKESIDHEKKAYSFCGTVEYMAPE 168

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           ++  +      D WS   L FE++TG     PF+ K
Sbjct: 169 VVNRRGHTQSADWWSFGVLMFEMLTGSL---PFQGK 201


>gnl|CDD|132987 cd06656, STKc_PAK3, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 3.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 3, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK3 belongs to group I. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). PAK3 is
           highly expressed in the brain. It is implicated in
           neuronal plasticity, synapse formation, dendritic spine
           morphogenesis, cell cycle progression, neuronal
           migration, and apoptosis. Inactivating mutations in the
           PAK3 gene cause X-linked non-syndromic mental
           retardation, the severity of which depends on the site
           of the mutation.
          Length = 297

 Score = 29.3 bits (65), Expect = 1.1
 Identities = 14/45 (31%), Positives = 24/45 (53%), Gaps = 3/45 (6%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF---NPFESKY 112
           + A E++  K +  K+DIWS   +  E+V G+  +   NP  + Y
Sbjct: 181 WMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPLRALY 225


>gnl|CDD|173721 cd05632, STKc_GRK5, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 5.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK5
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK5 is widely expressed in many tissues.
           It associates with the membrane though an N-terminal
           PIP2 binding domain and also binds phospholipids via its
           C-terminus. GRK5 deficiency is associated with early
           Alzheimer's disease in humans and mouse models. GRK5
           also plays a crucial role in the pathogenesis of
           sporadic Parkinson's disease. It participates in the
           regulation and desensitization of PDGFRbeta, a receptor
           tyrosine kinase involved in a variety of downstream
           cellular effects including cell growth, chemotaxis,
           apoptosis, and angiogenesis. GRK5 also regulates
           Toll-like receptor 4, which is involved in innate and
           adaptive immunity.
          Length = 285

 Score = 29.2 bits (65), Expect = 1.1
 Identities = 12/60 (20%), Positives = 27/60 (45%), Gaps = 3/60 (5%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           Y A E++  + + +  D W   CL +E++ G    +PF  +   +    + + +    E+
Sbjct: 167 YMAPEVLNNQRYTLSPDYWGLGCLIYEMIEGQ---SPFRGRKEKVKREEVDRRVLETEEV 223


>gnl|CDD|132986 cd06655, STKc_PAK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 2.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 2, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK2 belongs to group I. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). PAK2 plays a
           role in pro-apoptotic signaling. It is cleaved and
           activated by caspases leading to morphological changes
           during apoptosis. PAK2 is also activated in response to
           a variety of stresses including DNA damage,
           hyperosmolarity, serum starvation, and contact
           inhibition, and may play a role in coordinating the
           stress response. PAK2 also contributes to cancer cell
           invasion through a mechanism distinct from that of PAK1.
          Length = 296

 Score = 29.3 bits (65), Expect = 1.2
 Identities = 14/45 (31%), Positives = 24/45 (53%), Gaps = 3/45 (6%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF---NPFESKY 112
           + A E++  K +  K+DIWS   +  E+V G+  +   NP  + Y
Sbjct: 181 WMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPLRALY 225


>gnl|CDD|173748 cd07853, STKc_NLK, Catalytic domain of the Serine/Threonine Kinase,
           Nemo-Like Kinase.  Serine/Threonine Kinases (STKs),
           Nemo-Like Kinase (NLK) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The NLK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Mitogen-activated protein
           kinases (MAPKs) are important mediators of cellular
           responses to extracellular signals. NLK is an atypical
           MAPK that is not regulated by a MAPK kinase. It
           functions downstream of the MAPK kinase kinase Tak1,
           which also plays a role in activating the JNK and p38
           MAPKs. The Tak1/NLK pathways are regulated by Wnts, a
           family of secreted proteins that is critical in the
           control of asymmetric division and cell polarity. NLK
           can phosphorylate transcription factors from the TCF/LEF
           family, inhibiting their ability to activate the
           transcription of target genes. In prostate cancer cells,
           NLK is involved in regulating androgen receptor-mediated
           transcription and its expression is altered during
           cancer progression.
          Length = 372

 Score = 28.9 bits (65), Expect = 1.3
 Identities = 17/67 (25%), Positives = 32/67 (47%), Gaps = 4/67 (5%)

Query: 43  NIEIVITDLEYVRPENDETIC---REDIHRQYKAVELIY-TKEFDMKIDIWSTACLTFEL 98
           N  + I D    R E  +      +E + + Y+A E++  ++ +   +DIWS  C+  EL
Sbjct: 139 NCVLKICDFGLARVEEPDESKHMTQEVVTQYYRAPEILMGSRHYTSAVDIWSVGCIFAEL 198

Query: 99  VTGDYMF 105
           +    +F
Sbjct: 199 LGRRILF 205


>gnl|CDD|173757 cd08217, STKc_Nek2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 2.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 2 (Nek2) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek2 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. The Nek2
           subfamily includes Aspergillus nidulans NIMA kinase, the
           founding member of the Nek family, which was identified
           in a screen for cell cycle mutants prevented from
           entering mitosis. NIMA is essential for mitotic entry
           and progression through mitosis, and its degradation is
           essential for mitotic exit. NIMA is involved in nuclear
           membrane fission. Vertebrate Nek2 is a cell
           cycle-regulated STK, localized in centrosomes and
           kinetochores, that regulates centrosome splitting at the
           G2/M phase. It also interacts with other mitotic kinases
           such as Polo-like kinase 1 and may play a role in
           spindle checkpoint. An increase in the expression of the
           human NEK2 gene is strongly associated with the
           progression of non-Hodgkin lymphoma.
          Length = 265

 Score = 28.8 bits (65), Expect = 1.3
 Identities = 14/43 (32%), Positives = 20/43 (46%), Gaps = 3/43 (6%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYY 113
           Y + E +    +D K DIWS  CL +EL        PF ++  
Sbjct: 176 YMSPEQLNHMSYDEKSDIWSLGCLIYELCALS---PPFTARNQ 215


>gnl|CDD|173623 cd00180, PKc, Catalytic domain of Protein Kinases.  Protein Kinases
           (PKs), catalytic (c) domain. PKs catalyze the transfer
           of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The PK family is part of a larger
           superfamily that includes the catalytic domains of RIO
           kinases, aminoglycoside phosphotransferase, choline
           kinase, phosphoinositide 3-kinase (PI3K), and
           actin-fragmin kinase. PKs make up a large family of
           serine/threonine kinases, protein tyrosine kinases
           (PTKs), and dual-specificity PKs that phosphorylate both
           serine/threonine and tyrosine residues of target
           proteins. Majority of protein phosphorylation, about
           95%, occurs on serine residues while only 1% occurs on
           tyrosine residues. Protein phosphorylation is a
           mechanism by which a wide variety of cellular proteins,
           such as enzymes and membrane channels, are reversibly
           regulated in response to certain stimuli. PKs often
           function as components of signal transduction pathways
           in which one kinase activates a second kinase, which in
           turn, may act on other kinases; this sequential action
           transmits a signal from the cell surface to target
           proteins, which results in cellular responses. The PK
           family is one of the largest known protein families with
           more than 100 homologous yeast enzymes and 550 human
           proteins. A fraction of PK family members are
           pseudokinases that lack crucial residues for catalytic
           activity. The mutiplicity of kinases allows for specific
           regulation according to substrate, tissue distribution,
           and cellular localization. PKs regulate many cellular
           processes including proliferation, division,
           differentiation, motility, survival, metabolism,
           cell-cycle progression, cytoskeletal rearrangement,
           immunity, and neuronal functions. Many kinases are
           implicated in the development of various human diseases
           including different types of cancer.
          Length = 215

 Score = 28.7 bits (65), Expect = 1.3
 Identities = 13/62 (20%), Positives = 24/62 (38%), Gaps = 3/62 (4%)

Query: 40  SHPNIEIVITDLEYVRPENDETICREDIH--RQYKAVELI-YTKEFDMKIDIWSTACLTF 96
              N ++ + D    +    +    + I     Y A E++     +  K DIWS   + +
Sbjct: 126 DSDNGKVKLADFGLSKLLTSDKSLLKTIVGTPAYMAPEVLLGKGYYSEKSDIWSLGVILY 185

Query: 97  EL 98
           EL
Sbjct: 186 EL 187


>gnl|CDD|132954 cd06623, PKc_MAPKK_plant_like, Catalytic domain of Plant
           dual-specificity MAP kinase kinases and similar
           proteins.  Protein kinases (PKs), MAP kinase kinase
           (MAPKK) subfamily, Plant MAPKKs and similar proteins,
           catalytic (c) domain. PKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine or
           tyrosine residues on protein substrates. The MAPKK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein serine/threonine
           kinases, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. The mitogen-activated protein
           (MAP) kinase signaling pathways are important mediators
           of cellular responses to extracellular signals. The
           pathways involve a triple kinase core cascade comprising
           of the MAP kinase (MAPK), which is phosphorylated and
           activated by a MAPK kinase (MAPKK or MKK), which itself
           is phosphorylated and activated by a MAPK kinase kinase
           (MAPKKK or MKKK). Members of this group include MAPKKs
           from plants, kinetoplastids, alveolates, and mycetozoa.
           The MAPKK, LmxPK4, from Leishmania mexicana, is
           important in differentiation and virulence.
           Dictyostelium discoideum MEK1 is required for proper
           chemotaxis. MEK1 null mutants display severe defects in
           cell polarization and directional movement. Plants
           contain multiple MAPKKs like other eukaryotes. The
           Arabidopsis genome encodes for 10 MAPKKs while poplar
           and rice contain 13 MAPKKs each. The functions of these
           proteins have not been fully elucidated. There is
           evidence to suggest that MAPK cascades are involved in
           plant stress responses. In Arabidopsis, MKK3 plays a
           role in pathogen signaling, MKK2 is involved in cold and
           salt stress signaling, MKK4/MKK5 participates in innate
           immunity, and MKK7 regulates basal and systemic acquired
           resistance.
          Length = 264

 Score = 28.7 bits (65), Expect = 1.3
 Identities = 15/56 (26%), Positives = 18/56 (32%), Gaps = 14/56 (25%)

Query: 87  DIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI----PPNLMDNE 138
           DIWS      E   G + F P                 +LM  I    PP+L   E
Sbjct: 182 DIWSLGLTLLECALGKFPFLPPGQ----------PSFFELMQAICDGPPPSLPAEE 227


>gnl|CDD|173742 cd07845, STKc_CDK10, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 10.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein Kinase 10 (CDK10) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK10 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDK10, also called PISSLRE, is essential for
           cell growth and proliferation, and acts through the G2/M
           phase of the cell cycle. CDK10 has also been identified
           as an important factor in endocrine therapy resistance
           in breast cancer. CDK10 silencing increases the
           transcription of c-RAF and the activation of the p42/p44
           MAPK pathway, which leads to antiestrogen resistance.
           Patients who express low levels of CDK10 relapse early
           on tamoxifen.
          Length = 309

 Score = 28.9 bits (65), Expect = 1.4
 Identities = 10/36 (27%), Positives = 18/36 (50%), Gaps = 1/36 (2%)

Query: 71  YKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMF 105
           Y+A EL+     +   ID+W+  C+  EL+    + 
Sbjct: 174 YRAPELLLGCTTYTTAIDMWAVGCILAELLAHKPLL 209


>gnl|CDD|143363 cd07858, STKc_TEY_MAPK_plant, Catalytic domain of the
           Serine/Threonine Kinases, TEY Mitogen-Activated Protein
           Kinases from Plants.  Serine/Threonine Kinases (STKs),
           Plant TEY Mitogen-Activated Protein Kinase (MAPK)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The TEY
           MAPK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAPKs are important mediators of cellular
           responses to extracellular signals. In plants, MAPKs are
           associated with physiological, developmental, hormonal,
           and stress responses. Some plants show numerous gene
           duplications of MAPKs. Arabidopsis thaliana harbors at
           least 20 MAPKs, named AtMPK1-20. There are two subtypes
           of plant MAPKs based on the conserved phosphorylation
           motif present in the activation loop, TEY and TDY. This
           subfamily represents the TEY subtype and is further
           subdivided into three groups (A, B, and C). Group A is
           represented by AtMPK3, AtMPK6, Nicotiana tabacum BTF4
           (NtNTF4), among others. They are mostly involved in
           environmental and hormonal responses. AtMPK3 and  AtMPK6
           are also key regulators for stomatal development and
           patterning. Group B is represented by AtMPK4, AtMPK13,
           and NtNTF6, among others. They may be involved in both
           cell division and environmental stress response. AtMPK4
           also participates in regulating innate immunity. Group C
           is represented by AtMPK1, AtMPK2, NtNTF3, Oryza sativa
           MAPK4 (OsMAPK4), among others. They may also be involved
           in stress responses. AtMPK1 and AtMPK2 are activated
           following mechanical injury and in the presence of
           stress chemicals such as jasmonic acid, hydrogen
           peroxide and abscisic acid. OsMAPK4 is also called
           OsMSRMK3 for Multiple Stress-Responsive MAPK3.
          Length = 337

 Score = 28.9 bits (65), Expect = 1.5
 Identities = 19/66 (28%), Positives = 31/66 (46%), Gaps = 3/66 (4%)

Query: 43  NIEIVITDLEYVRP--ENDETICREDIHRQYKAVELIYT-KEFDMKIDIWSTACLTFELV 99
           N ++ I D    R   E  + +    + R Y+A EL+    E+   ID+WS  C+  EL+
Sbjct: 144 NCDLKICDFGLARTTSEKGDFMTEYVVTRWYRAPELLLNCSEYTTAIDVWSVGCIFAELL 203

Query: 100 TGDYMF 105
               +F
Sbjct: 204 GRKPLF 209


>gnl|CDD|173762 cd08222, STKc_Nek11, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 11.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 11 (Nek11)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           Nek11 subfamily is one of a family of 11 different Neks
           (Nek1-11) that are involved in cell cycle control. The
           Nek family is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Nek11 is involved, through direct
           phosphorylation, in regulating the degradation of Cdc25A
           (Cell Division Cycle 25 homolog A), which plays a role
           in cell cycle progression and in activating cyclin
           dependent kinases. Nek11 is activated by CHK1
           (CHeckpoint Kinase 1) and may be involved in the G2/M
           checkpoint. Nek11 may also play a role in the S-phase
           checkpoint as well as in DNA replication and genotoxic
           stress responses.
          Length = 260

 Score = 28.7 bits (64), Expect = 1.5
 Identities = 11/35 (31%), Positives = 19/35 (54%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           Y + E +  + +D K DIWS  C+ +E+    + F
Sbjct: 171 YMSPEALKHQGYDSKSDIWSLGCILYEMCCLAHAF 205


>gnl|CDD|143372 cd07867, STKc_CDC2L6, Catalytic domain of Serine/Threonine Kinase,
           Cell Division Cycle 2-like 6.  Serine/Threonine Kinases
           (STKs), Cell Division Cycle 2-like 6 (CDC2L6) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDC2L6 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDC2L6 is also called CDK8-like and was
           previously referred to as CDK11. However, this is a
           confusing nomenclature as CDC2L6 is distinct from
           CDC2L1, which is represented by the two protein products
           from its gene, called CDK11(p110) and CDK11(p58), as
           well as the caspase-processed CDK11(p46). CDK11(p110),
           CDK11(p58), and CDK11(p46)do not belong to this
           subfamily. CDC2L6 is an associated protein of Mediator,
           a multiprotein complex that provides a platform to
           connect transcriptional and chromatin regulators and
           cofactors, in order to activate and mediate RNA
           polymerase II transcription. CDC2L6 is localized mainly
           in the nucleus amd exerts an opposing effect to CDK8 in
           VP16-dependent transcriptional activation by being a
           negative regulator.
          Length = 317

 Score = 28.9 bits (64), Expect = 1.7
 Identities = 15/50 (30%), Positives = 27/50 (54%), Gaps = 1/50 (2%)

Query: 71  YKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHH 119
           Y+A EL+   + +   IDIW+  C+  EL+T + +F+  +    T +  H
Sbjct: 181 YRAPELLLGARHYTKAIDIWAIGCIFAELLTSEPIFHCRQEDIKTSNPFH 230


>gnl|CDD|132985 cd06654, STKc_PAK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 1.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 1, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK1 belongs to group I. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). PAK1 is
           important in the regulation of many cellular processes
           including cytoskeletal dynamics, cell motility, growth,
           and proliferation. Although PAK1 has been regarded
           mainly as a cytosolic protein, recent reports indicate
           that PAK1 also exists in significant amounts in the
           nucleus, where it is involved in transcription
           modulation and in cell cycle regulatory events. PAK1 is
           also involved in transformation and tumorigenesis. Its
           overexpression, hyperactivation and increased nuclear
           accumulation is correlated to breast cancer invasiveness
           and progression. Nuclear accumulation is also linked to
           tamoxifen resistance in breast cancer cells.
          Length = 296

 Score = 28.5 bits (63), Expect = 1.7
 Identities = 13/45 (28%), Positives = 24/45 (53%), Gaps = 3/45 (6%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF---NPFESKY 112
           + A E++  K +  K+DIWS   +  E++ G+  +   NP  + Y
Sbjct: 182 WMAPEVVTRKAYGPKVDIWSLGIMAIEMIEGEPPYLNENPLRALY 226


>gnl|CDD|173333 PTZ00036, PTZ00036, glycogen synthase kinase; Provisional.
          Length = 440

 Score = 28.8 bits (64), Expect = 1.7
 Identities = 22/77 (28%), Positives = 38/77 (49%), Gaps = 15/77 (19%)

Query: 69  RQYKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQL- 126
           R Y+A EL+     +   ID+WS  C+  E++ G     P  S   ++D+  +++IIQ+ 
Sbjct: 234 RFYRAPELMLGATNYTTHIDLWSLGCIIAEMILG----YPIFSGQSSVDQ--LVRIIQVL 287

Query: 127 -------MAEIPPNLMD 136
                  + E+ PN  D
Sbjct: 288 GTPTEDQLKEMNPNYAD 304


>gnl|CDD|132988 cd06657, STKc_PAK4, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 4.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 4, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK4 belongs to group II. Group II PAKs contain a PBD
           (p21-binding domain) and a C-terminal catalytic domain,
           but do not harbor an AID (autoinhibitory domain) or SH3
           binding sites. PAK4 regulates cell morphology and
           cytoskeletal organization. It is essential for embryonic
           viability and proper neural development. Mice lacking
           PAK4 die due to defects in the fetal heart. In addition,
           their spinal cord motor neurons showed failure to
           differentiate and migrate. PAK4 also plays a role in
           cell survival and tumorigenesis. It is overexpressed in
           many primary tumors including colon, esophageal, and
           mammary tumors. PAK4 has also been implicated in viral
           and bacterial infection pathways.
          Length = 292

 Score = 28.5 bits (63), Expect = 1.8
 Identities = 21/80 (26%), Positives = 37/80 (46%), Gaps = 9/80 (11%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           + A ELI    +  ++DIWS   +  E+V G       E  Y+       +K+I+    +
Sbjct: 182 WMAPELISRLPYGPEVDIWSLGIMVIEMVDG-------EPPYFNEPPLKAMKMIR--DNL 232

Query: 131 PPNLMDNERCIRNIKVLLER 150
           PP L +  +   ++K  L+R
Sbjct: 233 PPKLKNLHKVSPSLKGFLDR 252


>gnl|CDD|173749 cd07855, STKc_ERK5, Catalytic domain of the Serine/Threonine
           Kinase,  Extracellular signal-Regulated Kinase 5.
           Serine/Threonine Kinases (STKs), Extracellular
           signal-Regulated Kinase 5 (ERK5) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The ERK5 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MAPKs are
           important mediators of cellular responses to
           extracellular signals. ERK5, also called Big MAPK1
           (BMK1) or MAPK7, has a unique C-terminal extension,
           making it approximately twice as big as other MAPKs.
           This extension contains transcriptional activation
           capability which is inhibited by the N-terminal half.
           ERK5 is activated in response to growth factors and
           stress by a cascade that leads to its phosphorylation by
           the MAP2K MEK5, which in turn is regulated by the MAP3Ks
           MEKK2 and MEKK3. Activated ERK5 phosphorylates its
           targets including myocyte enhancer factor 2 (MEF2),
           Sap1a, c-Myc, and RSK. It plays a role in EGF-induced
           cell proliferation during the G1/S phase transition.
           Studies on knockout mice revealed that ERK5 is essential
           for cardiovascular development and plays an important
           role in angiogenesis. It is also critical for neural
           differentiation and survival. The ERK5 pathway has been
           implicated in the pathogenesis of many diseases
           including cancer, cardiac hypertrophy, and
           atherosclerosis.
          Length = 334

 Score = 28.8 bits (65), Expect = 1.8
 Identities = 12/32 (37%), Positives = 20/32 (62%), Gaps = 1/32 (3%)

Query: 69  RQYKAVELIYT-KEFDMKIDIWSTACLTFELV 99
           R Y+A EL+ +  E+   ID+WS  C+  E++
Sbjct: 175 RWYRAPELLLSLPEYTTAIDMWSVGCIFAEML 206


>gnl|CDD|133189 cd05058, PTKc_Met_Ron, Catalytic domain of the Protein Tyrosine
           Kinases, Met and Ron.  Protein Tyrosine Kinase (PTK)
           family; Met and Ron; catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Met and
           Ron are receptor tyr kinases (RTKs) composed of an
           alpha-beta heterodimer. The extracellular alpha chain is
           disulfide linked to the beta chain, which contains an
           extracellular ligand-binding region with a sema domain,
           a PSI domain and four IPT repeats, a transmembrane
           segment, and an intracellular catalytic domain. Binding
           to their ligands leads to receptor dimerization,
           autophosphorylation, activation, and intracellular
           signaling. Met binds to the ligand, hepatocyte growth
           factor/scatter factor (HGF/SF), and is also called the
           HGF receptor. HGF/Met signaling plays a role in growth,
           transformation, cell motility, invasion, metastasis,
           angiogenesis, wound healing, and tissue regeneration.
           Aberrant expression of Met through mutations or gene
           amplification is associated with many human cancers
           including hereditary papillary renal and gastric
           carcinomas. The ligand for Ron is macrophage stimulating
           protein (MSP). Ron signaling is important in regulating
           cell motility, adhesion, proliferation, and apoptosis.
           Aberrant Ron expression is implicated in tumorigenesis
           and metastasis.
          Length = 262

 Score = 28.6 bits (64), Expect = 1.8
 Identities = 19/59 (32%), Positives = 26/59 (44%), Gaps = 15/59 (25%)

Query: 48  ITDLEYVRPENDETICREDIHRQYK------AVELIYTKEFDMKIDIWSTACLTFELVT 100
           I D EY    N         H   K      A+E + T++F  K D+WS   L +EL+T
Sbjct: 148 IYDKEYYSVHN---------HTGAKLPVKWMALESLQTQKFTTKSDVWSFGVLLWELMT 197


>gnl|CDD|173734 cd07830, STKc_MAK_like, Catalytic domain of Male germ
           cell-Associated Kinase-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Male germ
           cell-Associated Kinase (MAK)-like subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of human MAK and
           MAK-related kinase (MRK), Saccharomyces cerevisiae
           Ime2p, Schizosaccharomyces pombe Mei4-dependent protein
           3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5,
           Arabidopsis thaliana MHK, and similar proteins. These
           proteins play important roles during meiosis. MAK is
           highly expressed in testicular cells specifically in the
           meiotic phase, but is not essential for spermatogenesis
           and fertility. It functions as a coactivator of the
           androgen receptor in prostate cells. MRK, also called
           Intestinal Cell Kinase (ICK), is expressed ubiquitously,
           with highest expression in the ovary and uterus. A
           missense mutation in MRK causes
           endocrine-cerebro-osteodysplasia (ECO), suggesting that
           this protein plays an important role in the development
           of many organs. MAK and MRK may be involved in
           regulating cell cycle and cell fate. Ime2p is a
           meiosis-specific kinase that is important during meiotic
           initiation and during the later stages of meiosis. Mde3
           functions downstream of the transcription factor Mei-4
           which is essential for meiotic prophase I.
          Length = 283

 Score = 28.3 bits (64), Expect = 1.9
 Identities = 13/40 (32%), Positives = 20/40 (50%), Gaps = 5/40 (12%)

Query: 69  RQYKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMFNP 107
           R Y+A E L+ +  +   +DIW+  C+  EL    Y   P
Sbjct: 162 RWYRAPEILLRSTSYSSPVDIWALGCIMAEL----YTLRP 197


>gnl|CDD|173751 cd07860, STKc_CDK2_3, Catalytic domain of the Serine/Threonine
           Kinases, Cyclin-Dependent protein Kinase 2 and 3.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase 2 (CDK2) and CDK3 subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK2/3 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDK2 is regulated by cyclin E or cyclin A.
           Upon activation by cyclin E, it phosphorylates the
           retinoblastoma (pRb) protein which activates E2F
           mediated transcription and allows cells to move into S
           phase. The CDK2/cyclin A complex plays a role in
           regulating DNA replication. CDK2, together with CDK4,
           also regulates embryonic cell proliferation. Despite
           these important roles, mice deleted for the cdk2 gene
           are viable and normal except for being sterile. This may
           be due to compensation provided by CDK1 (also called
           Cdc2), which can also bind cyclin E and drive the G1 to
           S phase transition. CDK3 is regulated by cyclin C and it
           phosphorylates pRB specifically during the G0/G1
           transition. This phosphorylation is required for cells
           to exit G0 efficiently and enter the G1 phase.
          Length = 284

 Score = 28.2 bits (63), Expect = 2.0
 Identities = 14/36 (38%), Positives = 21/36 (58%), Gaps = 1/36 (2%)

Query: 71  YKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           Y+A E L+  K +   +DIWS  C+  E+VT   +F
Sbjct: 166 YRAPEILLGCKYYSTAVDIWSLGCIFAEMVTRRALF 201


>gnl|CDD|173738 cd07835, STKc_CDK1_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 1-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 1 (CDK1)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. This subfamily is composed of CDK1 from higher
           eukaryotes, plants, and yeasts, as well as CDK2 and
           CDK3. CDK1 is also called Cell division control protein
           2 (Cdc2) or p34 protein kinase, and is regulated by
           cyclins A, B, and E. The CDK1/cyclin A complex controls
           G2 phase entry and progression while the CDK1/cyclin B
           complex is critical for G2 to M phase transition. CDK2
           is regulated by cyclin E or cyclin A. Upon activation by
           cyclin E, it phosphorylates the retinoblastoma (pRb)
           protein which activates E2F mediated transcription and
           allows cells to move into S phase. The CDK2/cyclin A
           complex plays a role in regulating DNA replication.
           Studies in knockout mice revealed that CDK1 can
           compensate for the loss of the cdk2 gene as it can also
           bind cyclin E and drive G1 to S phase transition. CDK3
           is regulated by cyclin C and it phosphorylates pRB
           specifically during the G0/G1 transition. This
           phosphorylation is required for cells to exit G0
           efficiently and enter the G1 phase.
          Length = 283

 Score = 28.4 bits (64), Expect = 2.1
 Identities = 17/58 (29%), Positives = 34/58 (58%), Gaps = 7/58 (12%)

Query: 71  YKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLM 127
           Y+A E L+ ++++   +DIWS  C+  E+V    +F P +S+   ID+  + +I + +
Sbjct: 165 YRAPEILLGSRQYSTPVDIWSIGCIFAEMVNRRPLF-PGDSE---IDQ--LFRIFRTL 216


>gnl|CDD|173768 cd08228, STKc_Nek6, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 6.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 6 (Nek6) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek6 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek6 is required
           for the transition from metaphase to anaphase. It also
           plays important roles in mitotic spindle formation and
           cytokinesis.  Activated by Nek9 during mitosis, Nek6
           phosphorylates Eg5, a kinesin that is important for
           spindle bipolarity. Nek6 localizes to spindle
           microtubules during metaphase and anaphase, and to the
           midbody during cytokinesis.
          Length = 267

 Score = 28.5 bits (63), Expect = 2.1
 Identities = 11/28 (39%), Positives = 17/28 (60%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFEL 98
           Y + E I+   ++ K DIWS  CL +E+
Sbjct: 172 YMSPERIHENGYNFKSDIWSLGCLLYEM 199


>gnl|CDD|173731 cd06627, STKc_Cdc7_like, Catalytic domain of Cell division control
           protein 7-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs),  (Cdc7)-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Cdc7-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this subfamily include
           Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae
           Cdc15, Arabidopsis thaliana mitogen-activated protein
           kinase (MAPK) kinase kinase (MAPKKK) epsilon, and
           related proteins. MAPKKKs phosphorylate and activate
           MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals. Fission yeast Cdc7
           is essential for cell division by playing a key role in
           the initiation of septum formation and cytokinesis.
           Budding yeast Cdc15 functions to coordinate mitotic exit
           with cytokinesis. Arabidopsis MAPKKK epsilon is required
           for pollen development in the plasma membrane.
          Length = 254

 Score = 28.4 bits (64), Expect = 2.2
 Identities = 19/54 (35%), Positives = 25/54 (46%), Gaps = 8/54 (14%)

Query: 73  AVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHIL-KIIQ 125
           A E+I         DIWS  C   EL+TG    NP    YY ++    L +I+Q
Sbjct: 167 APEVIEMSGASTASDIWSLGCTVIELLTG----NP---PYYDLNPMAALFRIVQ 213


>gnl|CDD|132978 cd06647, STKc_PAK_I, Catalytic domain of the Protein
           Serine/Threonine Kinase, Group I p21-activated kinase.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) subfamily, Group I, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PAK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs are
           implicated in the regulation of many cellular processes
           including growth factor receptor-mediated proliferation,
           cell polarity, cell motility, cell death and survival,
           and actin cytoskeleton organization. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           Group I PAKs, also called conventional PAKs, include
           PAK1, PAK2, and PAK3. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). They interact
           with the SH3 domain containing proteins Nck, Grb2 and
           PIX. Binding of group I PAKs to activated GTPases leads
           to conformational changes that destabilize the AID,
           allowing autophosphorylation and full activation of the
           kinase domain. Known group I PAK substrates include
           MLCK, Bad, Raf, MEK1, LIMK, Merlin, Vimentin, Myc,
           Stat5a, and Aurora A, among others.
          Length = 293

 Score = 28.3 bits (63), Expect = 2.2
 Identities = 14/45 (31%), Positives = 24/45 (53%), Gaps = 3/45 (6%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF---NPFESKY 112
           + A E++  K +  K+DIWS   +  E+V G+  +   NP  + Y
Sbjct: 181 WMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPLRALY 225


>gnl|CDD|173769 cd08229, STKc_Nek7, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 7.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 7 (Nek7) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek7 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek7 is required
           for mitotic spindle formation and cytokinesis. It is
           enriched in the centrosome and is critical for
           microtubule nucleation. Nek7 is activated by Nek9 during
           mitosis, and may regulate the p70 ribosomal S6 kinase.
          Length = 267

 Score = 28.1 bits (62), Expect = 2.3
 Identities = 11/28 (39%), Positives = 17/28 (60%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFEL 98
           Y + E I+   ++ K DIWS  CL +E+
Sbjct: 172 YMSPERIHENGYNFKSDIWSLGCLLYEM 199


>gnl|CDD|133240 cd05109, PTKc_HER2, Catalytic domain of the Protein Tyrosine
           Kinase, HER2.  Protein Tyrosine Kinase (PTK) family;
           HER2 (ErbB2, HER2/neu); catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. HER2 is a
           member of the EGFR (HER, ErbB) subfamily of proteins,
           which are receptor tyr kinases (RTKs) containing an
           extracellular EGF-related ligand-binding region, a
           transmembrane helix, and a cytoplasmic region with a tyr
           kinase domain and a regulatory C-terminal tail. Unlike
           other tyr kinases, phosphorylation of the activation
           loop of EGFR proteins is not critical to their
           activation. Instead, they are activated by
           ligand-induced dimerization, leading to the
           phosphorylation of tyr residues in the C-terminal tail,
           which serve as binding sites for downstream signaling
           molecules. HER2 does not bind to any known EGFR
           subfamily ligands, but contributes to the kinase
           activity of all possible heterodimers. It acts as the
           preferred partner with other ligand-bound EGFR proteins
           and functions as a signal amplifier, with the HER2-HER3
           heterodimer being the most potent pair in mitogenic
           signaling. HER2 plays an important role in cell
           development, proliferation, survival and motility.
           Overexpression of HER2 results in its activation and
           downstream signaling, even in the absence of ligand.
           HER2 overexpression, mainly due to gene amplification,
           has been shown in a variety of human cancers. Its role
           in breast cancer is especially well-documented. HER2 is
           up-regulated in about 25% of breast tumors and is
           associated with increases in tumor aggressiveness,
           recurrence and mortality. HER2 is a target for
           monoclonal antibodies and small molecule inhibitors,
           which are being developed as treatments for cancer. The
           first humanized antibody approved for clinical use is
           Trastuzumab (Herceptin), which is being used in
           combination with other therapies to improve the survival
           rates of patients with HER2-overexpressing breast
           cancer.
          Length = 279

 Score = 28.1 bits (62), Expect = 2.4
 Identities = 26/96 (27%), Positives = 45/96 (46%), Gaps = 7/96 (7%)

Query: 19  ITDLEYVRPENDETICREDIHSHPNIEIVITDLEYVRPEN-DETICRED---IHRQYKAV 74
           ++ LE VR  + +   R  +   PN  + ITD    R  + DET    D   +  ++ A+
Sbjct: 122 MSYLEEVRLVHRDLAARNVLVKSPN-HVKITDFGLARLLDIDETEYHADGGKVPIKWMAL 180

Query: 75  ELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFES 110
           E I  + F  + D+WS     +EL+T  +   P++ 
Sbjct: 181 ESILHRRFTHQSDVWSYGVTVWELMT--FGAKPYDG 214


>gnl|CDD|173723 cd06605, PKc_MAPKK, Catalytic domain of the dual-specificity
           Protein Kinase, Mitogen-Activated Protein Kinase Kinase.
            Protein kinases (PKs), MAP kinase kinase (MAPKK)
           subfamily, catalytic (c) domain. PKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MAPKK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK or MAP2K), which itself is phosphorylated
           and activated by a MAPK kinase kinase (MAPKKK or MKKK or
           MAP3K). MAPKKs are dual-specificity PKs that
           phosphorylate their downstream targets, MAPKs, at
           specific threonine and tyrosine residues. There are
           three MAPK subfamilies: extracellular signal-regulated
           kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In
           mammalian cells, there are seven MAPKKs (named MKK1-7)
           and 20 MAPKKKs. Each MAPK subfamily can be activated by
           at least two cognate MAPKKs and by multiple MAPKKKs.
          Length = 265

 Score = 28.1 bits (63), Expect = 2.6
 Identities = 15/47 (31%), Positives = 20/47 (42%)

Query: 69  RQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTI 115
             Y A E I   ++ +K DIWS      EL TG + + P       I
Sbjct: 163 SSYMAPERIQGNDYSVKSDIWSLGLSLIELATGRFPYPPENDPPDGI 209


>gnl|CDD|226718 COG4268, McrC, McrBC 5-methylcytosine restriction system component
           [Defense mechanisms].
          Length = 439

 Score = 28.2 bits (63), Expect = 2.9
 Identities = 10/36 (27%), Positives = 17/36 (47%)

Query: 35  REDIHSHPNIEIVITDLEYVRPENDETICREDIHRQ 70
           R DI+     + +I D +Y + E  E +  E I + 
Sbjct: 329 RPDIYLRNGEQKIILDTKYKKLEFSEKMGTEGIAQA 364


>gnl|CDD|173709 cd05619, STKc_nPKC_theta, Catalytic domain of the Protein
           Serine/Threonine Kinase, Novel Protein Kinase C theta.
           Serine/Threonine Kinases (STKs), Novel Protein Kinase C
           (nPKC), theta isoform, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The nPKC subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PKCs are classified into three groups
           (classical, atypical, and novel) depending on their mode
           of activation and the structural characteristics of
           their regulatory domain. nPKCs are calcium-independent,
           but require DAG (1,2-diacylglycerol) and
           phosphatidylserine (PS) for activity. There are four
           nPKC isoforms, delta, epsilon, eta, and theta. PKC-theta
           is selectively expressed in T-cells and plays an
           important and non-redundant role in several aspects of
           T-cell biology. Although T-cells also express other PKC
           isoforms, PKC-theta is unique in that upon antigen
           stimulation, it is translocated to the plasma membrane
           at the immunological synapse, where it mediates signals
           essential for T-cell activation. It is essential for
           TCR-induced proliferation, cytokine production, T-cell
           survival, and the differentiation and effector function
           of T-helper (Th) cells, particularly Th2 and Th17.
           PKC-theta is being developed as a therapeutic target for
           Th2-mediated allergic inflammation and Th17-mediated
           autoimmune diseases.
          Length = 316

 Score = 28.0 bits (62), Expect = 3.0
 Identities = 15/68 (22%), Positives = 33/68 (48%), Gaps = 7/68 (10%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           Y A E++  ++++  +D WS   L +E++ G       +S ++  DE  + + I++    
Sbjct: 162 YIAPEILLGQKYNTSVDWWSFGVLLYEMLIG-------QSPFHGHDEEELFQSIRMDNPC 214

Query: 131 PPNLMDNE 138
            P  +  E
Sbjct: 215 YPRWLTRE 222


>gnl|CDD|173697 cd05606, STKc_beta_ARK, Catalytic domain of the Protein
           Serine/Threonine Kinase, beta-adrenergic receptor
           kinase.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily,
           beta-adrenergic receptor kinase (beta-ARK) group,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The GRK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. GRKs
           phosphorylate and regulate G protein-coupled receptors
           (GPCRs), the largest superfamily of cell surface
           receptors which regulate some part of nearly all
           physiological functions. Phosphorylated GPCRs bind to
           arrestins, which prevents further G protein signaling
           despite the presence of activating ligand. There are
           seven types of GRKs, named GRK1 to GRK7. The beta-ARK
           group is composed of GRK2, GRK3, and similar proteins.
           GRK2 and GRK3 are both widely expressed in many tissues,
           although GRK2 is present at higher levels. They contain
           an N-terminal RGS homology (RH) domain, a central
           catalytic domain, and C-terminal pleckstrin homology
           (PH) domain that mediates PIP2 and G protein
           betagamma-subunit translocation to the membrane. GRK2
           (also called beta-ARK or beta-ARK1) is important in
           regulating several cardiac receptor responses. It plays
           a role in cardiac development and in hypertension.
           Deletion of GRK2 in mice results in embryonic lethality,
           caused by hypoplasia of the ventricular myocardium. GRK2
           also plays important roles in the liver (as a regulator
           of portal blood pressure), in immune cells, and in the
           nervous system. Altered GRK2 expression has been
           reported in several disorders including major
           depression, schizophrenia, bipolar disorder, and
           Parkinsonism.
          Length = 278

 Score = 28.0 bits (62), Expect = 3.2
 Identities = 20/70 (28%), Positives = 34/70 (48%), Gaps = 5/70 (7%)

Query: 82  FDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEIPPNLMDNERCI 141
           +D   D +S  C+ F+L+ G   F   ++K    D+H I ++   MA   P+    E   
Sbjct: 173 YDSSADWFSLGCMLFKLLRGHSPFRQHKTK----DKHEIDRMTLTMAVELPDSFSPE-LR 227

Query: 142 RNIKVLLERD 151
             ++ LL+RD
Sbjct: 228 SLLEGLLQRD 237


>gnl|CDD|173698 cd05607, STKc_GRK7, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 7.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK7
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors, which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK7, also called iodopsin kinase, belongs
           to the visual group of GRKs. It is primarily found in
           the retina and plays a role in the regulation of opsin
           light receptors. GRK7 is located in retinal cone outer
           segments and plays an important role in regulating
           photoresponse of the cones.
          Length = 277

 Score = 28.0 bits (62), Expect = 3.2
 Identities = 10/41 (24%), Positives = 20/41 (48%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           Y A E++  + +   +D ++  C  +E+V G   F   + K
Sbjct: 160 YMAPEILKEEPYSYPVDWFAMGCSIYEMVAGRTPFKDHKEK 200


>gnl|CDD|173740 cd07842, STKc_CDK8_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 8-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 8 (CDK8)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK8-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. This subfamily is
           composed of CDK8, CDC2L6, and similar proteins. CDK8
           functions as a negative or positive regulator of
           transcription, depending on the scenario. Together with
           its regulator, cyclin C, it reversibly associates with
           the multi-subunit core Mediator complex, a cofactor that
           is involved in regulating RNA polymerase II (RNAP
           II)-dependent transcription. CDC2L6 also associates with
           Mediator in complexes lacking CDK8. In VP16-dependent
           transcriptional activation, CDK8 and CDC2L6 exerts
           opposing effects by positive and negative regulation,
           respectively, in similar conditions.
          Length = 316

 Score = 28.0 bits (63), Expect = 3.2
 Identities = 15/35 (42%), Positives = 20/35 (57%), Gaps = 9/35 (25%)

Query: 71  YKAVELI-----YTKEFDMKIDIWSTACLTFELVT 100
           Y+A EL+     YTK     IDIW+  C+  EL+T
Sbjct: 181 YRAPELLLGARHYTK----AIDIWAIGCIFAELLT 211


>gnl|CDD|132960 cd06629, STKc_MAPKKK_Bck1_like, Catalytic domain of fungal
           Bck1-like MAP Kinase Kinase Kinases.  Serine/threonine
           kinases (STKs), mitogen-activated protein kinase (MAPK)
           kinase kinase (MAPKKK) subfamily, fungal Bck1-like
           proteins, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MAPKKK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include the MAPKKKs
           Saccharomyces cerevisiae Bck1 and Schizosaccharomyces
           pombe Mkh1, and related proteins. MAPKKKs phosphorylate
           and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks),
           which in turn phosphorylate and activate MAPKs during
           signaling cascades that are important in mediating
           cellular responses to extracellular signals. Budding
           yeast Bck1 is part of the cell integrity MAPK pathway,
           which is activated by stresses and aggressions to the
           cell wall. The MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and
           the MAPK Slt2 make up the cascade that is important in
           the maintenance of cell wall homeostasis. Fission yeast
           Mkh1 is involved in MAPK cascades regulating cell
           morphology, cell wall integrity, salt resistance, and
           filamentous growth in response to stress.
          Length = 272

 Score = 27.8 bits (62), Expect = 3.3
 Identities = 11/31 (35%), Positives = 18/31 (58%), Gaps = 2/31 (6%)

Query: 73  AVELIYTKE--FDMKIDIWSTACLTFELVTG 101
           A E+I++    +  K+DIWS  C+  E+  G
Sbjct: 178 APEVIHSYSQGYSAKVDIWSLGCVVLEMFAG 208


>gnl|CDD|173720 cd05631, STKc_GRK4, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 4.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK4
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK4 has a limited tissue distribution. It
           is mainly found in the testis, but is also present in
           the cerebellum and kidney. It is expressed as multiple
           splice variants with different domain architectures. It
           is post-translationally palmitoylated and localized in
           the membrane. GRK4 polymorphisms are associated with
           hypertension and salt sensitivity, as they cause
           hyperphosphorylation, desensitization, and
           internalization of the dopamine 1 (D1) receptor while
           increasing the expression of the angiotensin II type 1
           receptor. GRK4 plays a crucial role in the D1 receptor
           regulation of sodium excretion and blood pressure.
          Length = 285

 Score = 27.6 bits (61), Expect = 3.4
 Identities = 11/41 (26%), Positives = 20/41 (48%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           Y A E+I  +++    D W   CL +E++ G   F   + +
Sbjct: 167 YMAPEVINNEKYTFSPDWWGLGCLIYEMIQGQSPFRKRKER 207


>gnl|CDD|143338 cd07833, STKc_CDKL, Catalytic domain of Cyclin-Dependent protein
           Kinase Like Serine/Threonine Kinases.  Serine/Threonine
           Kinases (STKs), Cyclin-dependent protein kinase like
           (CDKL) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CDKL subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. This subfamily is
           composed of CDKL1-5 and similar proteins. Some CDKLs,
           like CDKL1 and CDKL3, may be implicated in
           transformation and others, like CDKL3 and CDKL5, are
           associated with mental retardation when impaired. CDKL2
           plays a role in learning and memory.
          Length = 288

 Score = 27.7 bits (62), Expect = 3.4
 Identities = 18/58 (31%), Positives = 32/58 (55%), Gaps = 6/58 (10%)

Query: 69  RQYKAVELIY-TKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDE-HHILKII 124
           R Y+A EL+     +   +D+W+  C+  EL+ G+ +F P +S    ID+ + I K +
Sbjct: 165 RWYRAPELLVGDTNYGKPVDVWAIGCIMAELLDGEPLF-PGDSD---IDQLYLIQKCL 218


>gnl|CDD|143349 cd07844, STKc_PCTAIRE_like, Catalytic domain of PCTAIRE-like
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), PCTAIRE-like subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The PCTAIRE-like subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein STKs, protein tyrosine kinases, RIO
           kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Members of this
           subfamily share sequence similarity with
           Cyclin-Dependent Kinases (CDKs), which belong to a large
           family of STKs that are regulated by their cognate
           cyclins. Together, CDKs and cyclins are involved in the
           control of cell-cycle progression, transcription, and
           neuronal function. The association of PCTAIRE-like
           proteins with cyclins has not been widely studied,
           although PFTAIRE-1 has been shown to function as a CDK
           which is regulated by cyclin D3 as well as the
           membrane-associated cyclin Y. PCTAIRE-like proteins show
           unusual expression patterns with high levels in
           post-mitotic tissues, suggesting that they may be
           involved in regulating post-mitotic cellular events.
          Length = 291

 Score = 27.7 bits (62), Expect = 3.4
 Identities = 9/30 (30%), Positives = 18/30 (60%)

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           L+ + E+   +D+W   C+ +E+ TG  +F
Sbjct: 175 LLGSTEYSTSLDMWGVGCIFYEMATGRPLF 204


>gnl|CDD|143359 cd07854, STKc_MAPK4_6, Catalytic domain of the Serine/Threonine
           Kinases, Mitogen-Activated Protein Kinases 4 and 6.
           Serine/Threonine Kinases (STKs), Mitogen-Activated
           Protein Kinase 4 (MAPK4) and MAPK6 subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAPK4/6 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MAPKs are
           important mediators of cellular responses to
           extracellular signals. MAPK4 is also called ERK4 or
           p63MAPK, while MAPK6 is also called ERK3 or p97MAPK.
           MAPK4 and MAPK6 are atypical MAPKs that are not
           regulated by MAP2Ks. MAPK6 is expressed ubiquitously
           with highest amounts in brain and skeletal muscle. It
           may be involved in the control of cell differentiation
           by negatively regulating cell cycle progression in
           certain conditions. It may also play a role in
           glucose-induced insulin secretion. MAPK6 and MAPK4
           cooperate to regulate the activity of MAPK-activated
           protein kinase 5 (MK5), leading to its relocation to the
           cytoplasm and exclusion from the nucleus. The MAPK6/MK5
           and MAPK4/MK5 pathways may play critical roles in
           embryonic and post-natal development.
          Length = 342

 Score = 27.8 bits (62), Expect = 3.4
 Identities = 20/76 (26%), Positives = 33/76 (43%), Gaps = 16/76 (21%)

Query: 78  YTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEIPPNLMDN 137
           YTK  DM    W+  C+  E++TG  +F             H L+ +QL+ E  P + + 
Sbjct: 196 YTKAIDM----WAAGCIFAEMLTGKPLFA----------GAHELEQMQLILESVPVVREE 241

Query: 138 ER--CIRNIKVLLERD 151
           +R   +  I   +  D
Sbjct: 242 DRNELLNVIPSFVRND 257


>gnl|CDD|173696 cd05605, STKc_GRK4_like, Catalytic domain of G protein-coupled
           Receptor Kinase 4-like Protein Serine/Threonine Kinases.
            Serine/Threonine Kinases (STKs), G protein-coupled
           Receptor Kinase (GRK) subfamily, GRK4-like group,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The GRK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. GRKs
           phosphorylate and regulate G protein-coupled receptors
           (GPCRs), the largest superfamily of cell surface
           receptors which regulate some part of nearly all
           physiological functions. Phosphorylated GPCRs bind to
           arrestins, which prevents further G protein signaling
           despite the presence of activating ligand. There are
           seven types of GRKs, named GRK1 to GRK7. Members of the
           GRK4-like group include GRK4, GRK5, GRK6, and similar
           GRKs. GRKs in this group contain an N-terminal RGS
           homology (RH) domain and a catalytic domain, but lack a
           G protein betagamma-subunit binding domain. They are
           localized to the plasma membrane through
           post-translational lipid modification or direct binding
           to PIP2.
          Length = 285

 Score = 27.5 bits (61), Expect = 3.7
 Identities = 29/96 (30%), Positives = 41/96 (42%), Gaps = 12/96 (12%)

Query: 17  IVITDLEYVRPENDETICREDIHSHPNIEIVITDLEY-VRPENDETICREDIHRQYKAVE 75
           IV  DL   +PEN   I  +D + H    I I+DL   V     ETI        Y A E
Sbjct: 123 IVYRDL---KPEN---ILLDD-YGH----IRISDLGLAVEIPEGETIRGRVGTVGYMAPE 171

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           ++  + +    D W   CL +E++ G   F   + K
Sbjct: 172 VVKNERYTFSPDWWGLGCLIYEMIEGKSPFRQRKEK 207


>gnl|CDD|173703 cd05612, STKc_PRKX_like, Catalytic domain of PRKX-like Protein
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), cAMP-dependent protein kinase (PKA) subfamily,
           PRKX-like kinases, catalytic (c) subunit. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PKA
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include human PRKX (X
           chromosome-encoded protein kinase), Drosophila DC2, and
           similar proteins. PRKX is present in many tissues
           including fetal and adult brain, kidney, and lung. The
           PRKX gene is located in the Xp22.3 subregion and has a
           homolog called PRKY on the Y chromosome. An abnormal
           interchange between PRKX aand PRKY leads to the sex
           reversal disorder of XX males and XY females. PRKX is
           implicated in granulocyte/macrophage lineage
           differentiation, renal cell epithelial migration, and
           tubular morphogenesis in the developing kidney.
          Length = 291

 Score = 27.4 bits (61), Expect = 3.8
 Identities = 29/103 (28%), Positives = 43/103 (41%), Gaps = 30/103 (29%)

Query: 31  ETICR-EDIHSHPNIEIVITDLEYVRPEN------------DETICREDIHR-------- 69
           E +C  E +HS    EIV  DL   +PEN            D    ++   R        
Sbjct: 109 EIVCALEYLHSK---EIVYRDL---KPENILLDKEGHIKLTDFGFAKKLRDRTWTLCGTP 162

Query: 70  QYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMF---NPFE 109
           +Y A E+I +K  +  +D W+   L +E++ G   F   NPF 
Sbjct: 163 EYLAPEVIQSKGHNKAVDWWALGILIYEMLVGYPPFFDDNPFG 205


>gnl|CDD|173669 cd05578, STKc_Yank1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Yank1.  Serine/Threonine
           Kinases (STKs), Yank1 or STK32A subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Yank1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This subfamily
           contains uncharacterized STKs with similarity to the
           human protein designated Yank1 or STK32A.
          Length = 258

 Score = 27.7 bits (62), Expect = 3.8
 Identities = 23/92 (25%), Positives = 34/92 (36%), Gaps = 5/92 (5%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           Y A E++  + + + +D WS     +E + G     P+     TI +    K        
Sbjct: 165 YMAPEVLCRQGYSVAVDWWSLGVTAYECLRGK---RPYRGHSRTIRDQIRAKQETADVLY 221

Query: 131 PPNLMDNERCIRNIKVLLERDQHNITSMNAKD 162
           P     +   I  I  LLERD       N KD
Sbjct: 222 PAT--WSTEAIDAINKLLERDPQKRLGDNLKD 251


>gnl|CDD|132990 cd06659, STKc_PAK6, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 6.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 6, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK6 belongs to group II. Group II PAKs contain a PBD
           (p21-binding domain) and a C-terminal catalytic domain,
           but do not harbor an AID (autoinhibitory domain) or SH3
           binding sites. PAK6 may play a role in stress responses
           through its activation by the mitogen-activated protein
           kinase (MAPK) p38 and MAPK kinase 6 (MKK6) pathway. PAK6
           is highly expressed in the brain. It is not required for
           viability, but together with PAK5, it is required for
           normal levels of locomotion and activity, and for
           learning and memory. Increased expression of PAK6 is
           found in primary and metastatic prostate cancer. PAK6
           may play a role in the regulation of motility.
          Length = 297

 Score = 27.7 bits (61), Expect = 3.9
 Identities = 19/80 (23%), Positives = 36/80 (45%), Gaps = 9/80 (11%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           + A E+I    +  ++DIWS   +  E+V G       E  Y++  +  +  + +L    
Sbjct: 183 WMAPEVISRTPYGTEVDIWSLGIMVIEMVDG-------EPPYFS--DSPVQAMKRLRDSP 233

Query: 131 PPNLMDNERCIRNIKVLLER 150
           PP L +  +    ++  LER
Sbjct: 234 PPKLKNAHKISPVLRDFLER 253


>gnl|CDD|173753 cd07864, STKc_CDK12, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 12.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 12 (CDK12) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK12 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDK12 is also called Cdc2-related protein
           kinase 7 (CRK7) or Cdc2-related kinase
           arginine/serine-rich (CrkRS). It is a unique CDK that
           contains an arginine/serine-rich (RS) domain, which is
           predominantly found in splicing factors. CDK12 is widely
           expressed in tissues. It interacts with cyclins L1 and
           L2, and plays roles in regulating transcription and
           alternative splicing.
          Length = 302

 Score = 27.4 bits (61), Expect = 4.0
 Identities = 13/37 (35%), Positives = 20/37 (54%), Gaps = 1/37 (2%)

Query: 71  YKAVELIYTKE-FDMKIDIWSTACLTFELVTGDYMFN 106
           Y+  EL+  +E +   ID+WS  C+  EL T   +F 
Sbjct: 183 YRPPELLLGEERYGPAIDVWSCGCILGELFTKKPIFQ 219


>gnl|CDD|173658 cd05114, PTKc_Tec_Rlk, Catalytic domain of the Protein Tyrosine
           Kinases, Tyrosine kinase expressed in hepatocellular
           carcinoma and Resting lymphocyte kinase.  Protein
           Tyrosine Kinase (PTK) family; Tyrosine kinase expressed
           in hepatocellular carcinoma (Tec) and Resting lymphocyte
           kinase (Rlk); catalytic (c) domain. The PTKc family is
           part of a larger superfamily, that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Tec and
           Rlk (also named Txk) are members of the Tec subfamily of
           proteins, which are cytoplasmic (or nonreceptor) tyr
           kinases with similarity to Src kinases in that they
           contain Src homology protein interaction domains (SH3,
           SH2) N-terminal to the catalytic tyr kinase domain.
           Unlike Src kinases, most Tec subfamily members (except
           Rlk) also contain an N-terminal pleckstrin homology (PH)
           domain, which binds the products of PI3K and allows
           membrane recruitment and activation. Instead of PH, Rlk
           contains an N-terminal cysteine-rich region. In addition
           to PH, Tec also contains the Tec homology (TH) domain
           with proline-rich and zinc-binding regions. Tec kinases
           are expressed mainly by haematopoietic cells. Tec is
           more widely-expressed than other Tec subfamily kinases.
           It is found in endothelial cells, both B- and T-cells,
           and a variety of myeloid cells including mast cells,
           erythroid cells, platelets, macrophages and neutrophils.
           Rlk is expressed in T-cells and mast cell lines. Tec and
           Rlk are both key components of T-cell receptor (TCR)
           signaling. They are important in TCR-stimulated
           proliferation, IL-2 production and phopholipase C-gamma1
           activation.
          Length = 256

 Score = 27.5 bits (61), Expect = 4.1
 Identities = 13/37 (35%), Positives = 19/37 (51%), Gaps = 2/37 (5%)

Query: 75  ELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           E+    ++  K D+WS   L +E+ T   M  PFE K
Sbjct: 171 EVFNFSKYSSKSDVWSFGVLMWEVFTEGKM--PFEKK 205


>gnl|CDD|132983 cd06652, STKc_MEKK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, MAP/ERK kinase kinase 2.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 2
           (MEKK2) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MEKK2 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MEKK2 is a mitogen-activated protein kinase
           (MAPK) kinase kinase (MAPKKK or MKKK or MAP3K), that
           phosphorylates and activates the MAPK kinase MEK5 (or
           MKK5), which in turn phosphorylates and activates
           extracellular signal-regulated kinase 5 (ERK5). The ERK5
           cascade plays roles in promoting cell proliferation,
           differentiation, neuronal survival, and neuroprotection.
           MEKK2 also activates ERK1/2, c-Jun N-terminal kinase
           (JNK) and p38 through their respective MAPKKs MEK1/2,
           JNK-activating kinase 2 (JNKK2), and MKK3/6. MEKK2 plays
           roles in T cell receptor signaling, immune synapse
           formation, cytokine gene expression, as well as in EGF
           and FGF receptor signaling.
          Length = 265

 Score = 27.3 bits (60), Expect = 4.1
 Identities = 12/36 (33%), Positives = 19/36 (52%)

Query: 75  ELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFES 110
           E+I  + +  K DIWS  C   E++T    +  FE+
Sbjct: 179 EVISGEGYGRKADIWSVGCTVVEMLTEKPPWAEFEA 214


>gnl|CDD|238180 cd00291, SirA_YedF_YeeD, SirA, YedF, and YeeD. Two-layered
           alpha/beta sandwich domain.  SirA (also known as UvrY,
           and YhhP) belongs to a family of bacterial two-component
           response regulators that controls secondary metabolism
           and virulence. The other member of this two-component
           system is a sensor kinase called BarA which
           phosphorylates SirA.  A variety of microorganisms have
           similar proteins, all of which contain a common CPxP
           sequence motif in the N-terminal region. YhhP is
           suggested to be important for normal cell division and
           growth in rich nutrient medium.  Moreover, despite a low
           primary sequence similarity,  the YccP structure closely
           resembles the non-homologous C-terminal RNA-binding
           domain of E. coli translation initiation factor IF3. The
           signature CPxP motif serves to stabilize the N-terminal
           helix as part of the N-capping box and might be
           important in mRNA-binding.
          Length = 69

 Score = 26.0 bits (58), Expect = 4.2
 Identities = 10/54 (18%), Positives = 23/54 (42%), Gaps = 5/54 (9%)

Query: 120 ILKIIQLMAEIPPN-----LMDNERCIRNIKVLLERDQHNITSMNAKDNFYRIL 168
           +LK  + + ++        L+D+   + +I    +   H +  +  +   YRIL
Sbjct: 13  VLKTKKALEKLKSGEVLEVLLDDPGAVEDIPAWAKETGHEVLEVEEEGGVYRIL 66


>gnl|CDD|132980 cd06649, PKc_MEK2, Catalytic domain of the dual-specificity Protein
           Kinase, MAP/ERK Kinase 2.  Protein kinases (PKs),
           MAP/ERK Kinase (MEK) 2 subfamily, catalytic (c) domain.
           PKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine or tyrosine residues on
           protein substrates. The MEK subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein serine/threonine kinases, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The mitogen-activated protein (MAP) kinase
           signaling pathways are important mediators of cellular
           responses to extracellular signals. The pathways involve
           a triple kinase core cascade comprising the MAP kinase
           (MAPK), which is phosphorylated and activated by a MAPK
           kinase (MAPKK or MKK), which itself is phosphorylated
           and activated by a MAPK kinase kinase (MAPKKK or MKKK).
           MEK2 is a dual-specificity PK that phosphorylates and
           activates the downstream targets, extracellular
           signal-regulated kinase (ERK) 1 and ERK2, on specific
           threonine and tyrosine residues. The ERK cascade starts
           with extracellular signals including growth factors,
           hormones, and neurotransmitters, which act through
           receptors and ion channels to initiate intracellular
           signaling that leads to the activation at the MAPKKK
           (Raf-1 or MOS) level, which leads to the transmission of
           signals to MEK2, and finally to ERK1/2. The ERK cascade
           plays an important role in cell proliferation,
           differentiation, oncogenic transformation, and cell
           cycle control, as well as in apoptosis and cell survival
           under certain conditions. Gain-of-function mutations in
           genes encoding  ERK cascade proteins, including MEK2,
           cause cardiofaciocutaneous (CFC) syndrome, a condition
           leading to multiple congenital anomalies and mental
           retardation in patients.
          Length = 331

 Score = 27.3 bits (60), Expect = 4.5
 Identities = 13/43 (30%), Positives = 20/43 (46%)

Query: 69  RQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK 111
           R Y + E +    + ++ DIWS      EL  G Y   P ++K
Sbjct: 166 RSYMSPERLQGTHYSVQSDIWSMGLSLVELAIGRYPIPPPDAK 208


>gnl|CDD|132952 cd06621, PKc_MAPKK_Pek1_like, Catalytic domain of fungal Pek1-like
           dual-specificity MAP kinase kinases.  Protein kinases
           (PKs), MAP kinase kinase(MAPKK) subfamily, fungal
           Pek1-like proteins, catalytic (c) domain. PKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MAPKK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising of the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK), which itself is phosphorylated and
           activated by a MAPK kinase kinase (MAPKKK or MKKK).
           Members of this group include the MAPKKs Pek1/Skh1 from
           Schizosaccharomyces pombe and MKK2 from Saccharomyces
           cerevisiae, and related proteins. Both fission yeast
           Pek1 and baker's yeast MKK2 are components of the cell
           integrity MAPK pathway. In fission yeast, Pek1
           phosphorylates and activates the MAPK Pmk1/Spm1 and is
           regulated by the MAPKKK Mkh1. In baker's yeast, the
           pathway involves the MAPK Slt2, the MAPKKs MKK1 and
           MKK2, and the MAPKKK Bck1. The cell integrity MAPK
           cascade is activated by multiple stress conditions, and
           is essential  in cell wall construction, morphogenesis,
           cytokinesis, and ion homeostasis.
          Length = 287

 Score = 27.4 bits (61), Expect = 4.6
 Identities = 23/93 (24%), Positives = 33/93 (35%), Gaps = 20/93 (21%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEI 130
           Y A E I  K + +  D+WS      E+    + F P        +    L  I+L++ I
Sbjct: 169 YMAPERIQGKPYSITSDVWSLGLTLLEVAQNRFPFPP--------EGEPPLGPIELLSYI 220

Query: 131 ----PPNLMDNERCIRN--------IKVLLERD 151
                P L D               IK  LE+D
Sbjct: 221 VNMPNPELKDEPGNGIKWSEEFKDFIKQCLEKD 253


>gnl|CDD|173735 cd07831, STKc_MOK, Catalytic domain of the Serine/Threonine Kinase,
           MAPK/MAK/MRK Overlapping Kinase.  Serine/Threonine
           Kinases (STKs), MAPK/MAK/MRK Overlapping Kinase (MOK)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The MOK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MOK, also called Renal tumor antigen 1
           (RAGE-1), is widely expressed and is enriched in testis,
           kidney, lung, and brain. It is expressed in
           approximately 50% of renal cell carcinomas (RCC) and is
           a potential target for immunotherapy. MOK is stabilized
           by its association with the HSP90 molecular chaperone.
           It is induced by the transcription factor Cdx2 and may
           be involved in regulating intestinal epithelial
           development and differentiation.
          Length = 282

 Score = 27.2 bits (61), Expect = 4.6
 Identities = 12/33 (36%), Positives = 21/33 (63%), Gaps = 1/33 (3%)

Query: 69  RQYKAVELIYTKEF-DMKIDIWSTACLTFELVT 100
           R Y+A E + T  +   K+DIW+  C+ FE+++
Sbjct: 162 RWYRAPECLLTDGYYGPKMDIWAVGCVFFEILS 194


>gnl|CDD|132970 cd06639, STKc_myosinIIIB, Catalytic domain of the Protein
           Serine/Threonine Kinase, Class IIIB myosin.
           Serine/threonine kinases (STKs), class IIIB myosin
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           class III myosin subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Class III myosins are motor
           proteins containing an N-terminal kinase catalytic
           domain and a C-terminal actin-binding domain. Class III
           myosins may play an important role in maintaining the
           structural integrity of photoreceptor cell microvilli.
           They may also function as cargo carriers during
           light-dependent translocation, in photoreceptor cells,
           of proteins such as transducin and arrestin. Class IIIB
           myosin is expressed highly in retina. It is also present
           in the brain and testis. The human class IIIB myosin
           gene maps to a region that overlaps the locus for
           Bardet-Biedl syndrome, which is characterized by
           dysmorphic extremities, retinal dystrophy, obesity, male
           hypogenitalism, and renal abnormalities.
          Length = 291

 Score = 27.3 bits (60), Expect = 4.7
 Identities = 19/70 (27%), Positives = 28/70 (40%), Gaps = 9/70 (12%)

Query: 73  AVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEIPP 132
           A E  Y   +D + D+WS      EL  GD    P        D H +  + ++    PP
Sbjct: 201 ACEQQYDYSYDARCDVWSLGITAIELGDGD---PPL------FDMHPVKTLFKIPRNPPP 251

Query: 133 NLMDNERCIR 142
            L+  E+  R
Sbjct: 252 TLLHPEKWCR 261


>gnl|CDD|132951 cd06620, PKc_MAPKK_Byr1_like, Catalytic domain of fungal Byr1-like
           dual-specificity MAP kinase kinases.  Protein kinases
           (PKs), MAP kinase kinase (MAPKK) subfamily, fungal
           Byr1-like proteins, catalytic (c) domain. PKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MAPKK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising of the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK), which itself is phosphorylated and
           activated by a MAPK kinase kinase (MAPKKK or MKKK).
           Members of this group include the MAPKKs Byr1 from
           Schizosaccharomyces pombe, FUZ7 from Ustilago maydis,
           and related proteins. Byr1 phosphorylates its downstream
           target, the MAPK Spk1, and is regulated by the MAPKKK
           Byr2. The Spk1 cascade is pheromone-responsive and is
           essential for sporulation and sexual differentiation in
           fission yeast. FUZ7 phosphorylates and activates its
           target, the MAPK Crk1, which is required in mating and
           virulence in U. maydis.
          Length = 284

 Score = 27.5 bits (61), Expect = 4.7
 Identities = 19/66 (28%), Positives = 29/66 (43%), Gaps = 2/66 (3%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFN-PFESKYYTIDEHHILKIIQ-LMA 128
           Y + E I   ++ +K D+WS      EL  G + F           D   IL ++Q ++ 
Sbjct: 168 YMSPERIQGGKYTVKSDVWSLGISIIELALGKFPFAFSNIDDDGQDDPMGILDLLQQIVQ 227

Query: 129 EIPPNL 134
           E PP L
Sbjct: 228 EPPPRL 233


>gnl|CDD|173752 cd07861, STKc_CDK1_euk, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 1 from higher
           eukaryotes-like.  Serine/Threonine Kinases (STKs),
           Cyclin-Dependent protein Kinase 1 (CDK1) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. This subfamily is composed of CDK1 from higher
           eukaryotes. CDK1 is also called Cell division control
           protein 2 (Cdc2) or p34 protein kinase, and is regulated
           by cyclins A, B, and E. The CDK1/cyclin A complex
           controls G2 phase entry and progression. CDK1/cyclin A2
           has also been implicated as an important regulator of S
           phase events. The CDK1/cyclin B complex is critical for
           G2 to M phase transition. It induces mitosis by
           activating nuclear enzymes that regulate chromatin
           condensation, nuclear membrane degradation,
           mitosis-specific microtubule and cytoskeletal
           reorganization. CDK1 also associates with cyclin E and
           plays a role in the entry into S phase. CDK1
           transcription is stable throughout the cell cycle but is
           modulated in some pathological conditions. It may play a
           role in regulating apoptosis under these conditions. In
           breast cancer cells, HER2 can mediate apoptosis by
           inactivating CDK1. Activation of CDK1 may contribute to
           HIV-1 induced apoptosis and neuronal apoptosis in
           neurodegenerative diseases.
          Length = 285

 Score = 27.4 bits (61), Expect = 4.7
 Identities = 11/36 (30%), Positives = 19/36 (52%), Gaps = 1/36 (2%)

Query: 71  YKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           Y+A E L+ +  +   +DIWS   +  E+ T   +F
Sbjct: 167 YRAPEVLLGSPRYSTPVDIWSIGTIFAEMATKKPLF 202


>gnl|CDD|132984 cd06653, STKc_MEKK3_like_1, Catalytic domain of MAP/ERK kinase
           kinase 3-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 3
           (MEKK3)-like subfamily, catalytic (c) domain,
           functionally uncharacterized subgroup 1. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MEKK3-like subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. The MEKK3-like subfamily is
           composed of MEKK3, MEKK2, and related proteins, all
           containing an N-terminal PB1 domain, which mediates
           oligomerization, and a C-terminal catalytic domain.
           MEKK2 and MEKK3 are mitogen-activated protein kinase
           (MAPK) kinase kinases (MAPKKKs or MKKKs or MAP3Ks),
           proteins that phosphorylate and activate MAPK kinases
           (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate
           and activate MAPKs during signaling cascades that are
           important in mediating cellular responses to
           extracellular signals. MEKK2 and MEKK3 activate MEK5
           (also called MKK5), which activates extracellular
           signal-regulated kinase 5 (ERK5). The ERK5 cascade plays
           roles in promoting cell proliferation, differentiation,
           neuronal survival, and neuroprotection. MEKK3 plays an
           essential role in embryonic angiogenesis and early heart
           development. MEKK2 and MEKK3 can also activate the
           MAPKs, c-Jun N-terminal kinase (JNK) and p38, through
           their respective MAPKKs.
          Length = 264

 Score = 27.3 bits (60), Expect = 4.8
 Identities = 11/36 (30%), Positives = 20/36 (55%)

Query: 75  ELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFES 110
           E+I  + +  K D+WS AC   E++T    +  +E+
Sbjct: 179 EVISGEGYGRKADVWSVACTVVEMLTEKPPWAEYEA 214


>gnl|CDD|173695 cd05604, STKc_SGK3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Serum- and
           Glucocorticoid-induced Kinase 3.  Serine/Threonine
           Kinases (STKs), Serum- and Glucocorticoid-induced Kinase
           (SGK) subfamily, SGK3 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The SGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. There are three isoforms of
           SGK, named SGK1, SGK2, and SGK3 (also called
           cytokine-independent survival kinase CISK). SGK3 is
           expressed in most tissues and is most abundant in the
           embryo and adult heart and spleen. It was originally
           discovered in a screen for antiapoptotic genes. It
           phosphorylates and inhibits the proapoptotic proteins,
           Bad and FKHRL1. SGK3 also regulates many transporters,
           ion channels, and receptors. It plays a critical role in
           hair follicle morphogenesis and hair cycling.
          Length = 325

 Score = 27.3 bits (60), Expect = 4.8
 Identities = 36/149 (24%), Positives = 60/149 (40%), Gaps = 38/149 (25%)

Query: 43  NIEIVITDLEYVRPEN------------DETICREDIHR-----------QYKAVELIYT 79
           +I IV  DL   +PEN            D  +C+E I +           +Y A E+I  
Sbjct: 114 SINIVYRDL---KPENILLDSQGHVVLTDFGLCKEGIAQSDTTTTFCGTPEYLAPEVIRK 170

Query: 80  KEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHIL-KIIQLMAEIPPNLMDNE 138
           + +D  +D W    + +E++   Y   PF    Y  D   +   I+     + P      
Sbjct: 171 QPYDNTVDWWCLGAVLYEML---YGLPPF----YCRDVAEMYDNILHKPLVLRPGASLTA 223

Query: 139 RCIRNIKVLLERDQHNITSMNAKDNFYRI 167
             I  ++ LLE+D+     + AK++F  I
Sbjct: 224 WSI--LEELLEKDRQR--RLGAKEDFLEI 248


>gnl|CDD|143342 cd07837, STKc_CdkB_plant, Catalytic domain of the Serine/Threonine
           Kinase, Plant B-type Cyclin-Dependent protein Kinase.
           Serine/Threonine Kinases (STKs), Plant B-type
           Cyclin-Dependent protein Kinase (CdkB) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CdkB subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. The plant-specific B-type CDKs are expressed
           from the late S to the M phase of the cell cycle. They
           are characterized by the cyclin binding motif
           PPT[A/T]LRE. They play a role in controlling mitosis and
           integrating developmental pathways, such as stomata and
           leaf development. CdkB has been shown to associate with
           both cyclin B, which controls G2/M transition, and
           cyclin D, which acts as a mediator in linking
           extracellular signals to the cell cycle.
          Length = 295

 Score = 27.1 bits (60), Expect = 4.9
 Identities = 16/55 (29%), Positives = 29/55 (52%), Gaps = 4/55 (7%)

Query: 71  YKAVE-LIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKII 124
           Y+A E L+ +  +   +DIWS  C+  E+     +F P +S+   +   HI K++
Sbjct: 177 YRAPEVLLGSTHYSTPVDIWSVGCIFAEMSRKQPLF-PGDSELQQL--LHIFKLL 228


>gnl|CDD|132956 cd06625, STKc_MEKK3_like, Catalytic domain of MAP/ERK kinase kinase
           3-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 3
           (MEKK3)-like subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The MEKK3-like subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. This subfamily is composed of
           MEKK3, MEKK2, and related proteins, all containing an
           N-terminal PB1 domain, which mediates oligomerization,
           and a C-terminal catalytic domain. MEKK2 and MEKK3 are
           mitogen-activated protein kinase (MAPK) kinase kinases
           (MAPKKKs or MKKKs or MAP3Ks), proteins that
           phosphorylate and activate MAPK kinases (MAPKKs or MKKs
           or MAP2Ks), which in turn phosphorylate and activate
           MAPKs during signaling cascades that are important in
           mediating cellular responses to extracellular signals.
           MEKK2 and MEKK3 activate MEK5 (also called MKK5), which
           activates extracellular signal-regulated kinase 5
           (ERK5). The ERK5 cascade plays roles in promoting cell
           proliferation, differentiation, neuronal survival, and
           neuroprotection. MEKK3 plays an essential role in
           embryonic angiogenesis and early heart development.
           MEKK2 and MEKK3 can also activate the MAPKs, c-Jun
           N-terminal kinase (JNK) and p38, through their
           respective MAPKKs.
          Length = 263

 Score = 27.1 bits (60), Expect = 5.0
 Identities = 11/39 (28%), Positives = 20/39 (51%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFE 109
           + + E+I  + +  K D+WS  C   E++T    +  FE
Sbjct: 173 WMSPEVISGEGYGRKADVWSVGCTVVEMLTEKPPWAEFE 211


>gnl|CDD|173671 cd05580, STKc_PKA, Catalytic domain of the Protein Serine/Threonine
           Kinase, cAMP-dependent protein kinase.  Serine/Threonine
           Kinases (STKs), cAMP-dependent protein kinase (PKA)
           subfamily, catalytic (c) subunit. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PKA
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase (PI3K). This subfamily is composed of the
           cAMP-dependent proteins kinases, PKA and PRKX. The
           inactive PKA holoenzyme is a heterotetramer composed of
           two phosphorylated and active catalytic (C) subunits
           with a dimer of regulatory (R) subunits. Activation is
           achieved through the binding of the important second
           messenger cAMP to the R subunits, which leads to the
           dissociation of PKA into the R dimer and two active C
           subunits. PKA is present ubiquitously in cells and
           interacts with many different downstream targets. It
           plays a role in the regulation of diverse processes such
           as growth, development, memory, metabolism, gene
           expression, immunity, and lipolysis.
          Length = 290

 Score = 27.1 bits (61), Expect = 5.0
 Identities = 12/39 (30%), Positives = 22/39 (56%), Gaps = 3/39 (7%)

Query: 70  QYKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPF 108
           +Y A E+I +K +   +D W+   L +E++ G   + PF
Sbjct: 163 EYLAPEIILSKGYGKAVDWWALGILIYEMLAG---YPPF 198


>gnl|CDD|140289 PTZ00263, PTZ00263, protein kinase A catalytic subunit;
           Provisional.
          Length = 329

 Score = 27.1 bits (60), Expect = 5.1
 Identities = 17/65 (26%), Positives = 31/65 (47%), Gaps = 8/65 (12%)

Query: 46  IVITDLEYVR--PENDETICREDIHRQYKAVELIYTKEFDMKIDIWSTACLTFELVTGDY 103
           + +TD  + +  P+   T+C      +Y A E+I +K     +D W+   L +E + G  
Sbjct: 157 VKVTDFGFAKKVPDRTFTLCGTP---EYLAPEVIQSKGHGKAVDWWTMGVLLYEFIAG-- 211

Query: 104 MFNPF 108
            + PF
Sbjct: 212 -YPPF 215


>gnl|CDD|173641 cd05072, PTKc_Lyn, Catalytic domain of the Protein Tyrosine Kinase,
           Lyn.  Protein Tyrosine Kinase (PTK) family; Lyn kinase;
           catalytic (c) domain. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Lyn is a member of the
           Src subfamily of proteins, which are cytoplasmic (or
           non-receptor) tyr kinases. Src kinases contain an
           N-terminal SH4 domain with a myristoylation site,
           followed by SH3 and SH2 domains, a tyr kinase domain,
           and a regulatory C-terminal region containing a
           conserved tyr. They are activated by autophosphorylation
           at the tyr kinase domain, but are negatively regulated
           by phosphorylation at the C-terminal tyr by Csk
           (C-terminal Src Kinase). Src proteins are involved in
           signaling pathways that regulate cytokine and growth
           factor responses, cytoskeleton dynamics, cell
           proliferation, survival, and differentiation. Lyn is
           expressed in B lymphocytes and myeloid cells. It
           exhibits both positive and negative regulatory roles in
           B cell receptor (BCR) signaling. Lyn, as well as Fyn and
           Blk, promotes B cell activation by phosphorylating ITAMs
           (immunoreceptor tyr activation motifs) in CD19 and in Ig
           components of BCR. It negatively regulates signaling by
           its unique ability to phosphorylate ITIMs
           (immunoreceptor tyr inhibition motifs) in cell surface
           receptors like CD22 and CD5. Lyn also plays an important
           role in G-CSF receptor signaling by phosphorylating a
           variety of adaptor molecules.
          Length = 261

 Score = 27.3 bits (60), Expect = 5.1
 Identities = 16/46 (34%), Positives = 24/46 (52%), Gaps = 2/46 (4%)

Query: 57  ENDETICRE--DIHRQYKAVELIYTKEFDMKIDIWSTACLTFELVT 100
           E++E   RE      ++ A E I    F +K D+WS   L +E+VT
Sbjct: 154 EDNEYTAREGAKFPIKWTAPEAINFGSFTIKSDVWSFGILLYEIVT 199


>gnl|CDD|173705 cd05614, STKc_MSK2_N, N-terminal catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen and stress-activated
           kinase 2.  Serine/Threonine Kinases (STKs), Mitogen and
           stress-activated kinase (MSK) subfamily, MSK2,
           N-terminal catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The MSK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MSKs contain an N-terminal kinase domain (NTD)
           from the AGC family and a C-terminal kinase domain (CTD)
           from the CAMK family, similar to 90 kDa ribosomal
           protein S6 kinases (RSKs). MSKs are activated by two
           major signaling cascades, the Ras-MAPK and p38 stress
           kinase pathways, which trigger phosphorylation in the
           activation loop (A-loop) of the CTD of MSK. The active
           CTD phosphorylates the hydrophobic motif (HM) of NTD,
           which facilitates the phosphorylation of the A-loop and
           activates the NTD, which in turn phosphorylates
           downstream targets. MSK2 and MSK1 play nonredundant
           roles in activating histone H3 kinases, which play
           pivotal roles in compaction of the chromatin fiber. MSK2
           is the required H3 kinase in response to stress stimuli
           and activation of the p38 MAPK pathway. MSK2 also plays
           a role in the pathogenesis of psoriasis.
          Length = 332

 Score = 27.2 bits (60), Expect = 5.1
 Identities = 22/63 (34%), Positives = 31/63 (49%), Gaps = 10/63 (15%)

Query: 46  IVITDL----EYVRPENDET--ICREDIHRQYKAVELIYTKEFDMK-IDIWSTACLTFEL 98
           +V+TD     E++  E + T   C      +Y A E+I  K    K +D WS   L FEL
Sbjct: 144 VVLTDFGLSKEFLSEEKERTYSFCGT---IEYMAPEIIRGKGGHGKAVDWWSLGILIFEL 200

Query: 99  VTG 101
           +TG
Sbjct: 201 LTG 203


>gnl|CDD|173760 cd08220, STKc_Nek8, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 8.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 8 (Nek8) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek8 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek8 contains an
           N-terminal kinase catalytic domain and a C-terminal RCC1
           (regulator of chromosome condensation) domain. A double
           point mutation in Nek8 causes cystic kidney disease in
           mice that genetically resembles human autosomal
           recessive polycystic kidney disease (ARPKD). Nek8 is
           also associated with a rare form of juvenile renal
           cystic disease, nephronophthisis type 9. It has been
           suggested that a defect in the ciliary localization of
           Nek8 contributes to the development of cysts manifested
           by these diseases.
          Length = 256

 Score = 27.1 bits (60), Expect = 5.1
 Identities = 11/30 (36%), Positives = 18/30 (60%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVT 100
           Y + EL   K ++ K DIW+  C+ +EL +
Sbjct: 167 YISPELCEGKPYNQKSDIWALGCVLYELAS 196


>gnl|CDD|177557 PHA03209, PHA03209, serine/threonine kinase US3; Provisional.
          Length = 357

 Score = 27.1 bits (60), Expect = 5.3
 Identities = 19/58 (32%), Positives = 30/58 (51%), Gaps = 8/58 (13%)

Query: 73  AVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEH------HILKII 124
           A E++   +++ K DIWS   + FE++   Y    FE    T +E+      H+LKII
Sbjct: 224 APEVLARDKYNSKADIWSAGIVLFEMLA--YPSTIFEDPPSTPEEYVKSCHSHLLKII 279


>gnl|CDD|173694 cd05603, STKc_SGK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Serum- and
           Glucocorticoid-induced Kinase 2.  Serine/Threonine
           Kinases (STKs), Serum- and Glucocorticoid-induced Kinase
           (SGK) subfamily, SGK2 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The SGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. There are three isoforms of
           SGK, named SGK1, SGK2, and SGK3. SGK2 shows a more
           restricted distribution that SGK1 and is most abundantly
           expressed in epithelial tissues including kidney, liver,
           pancreas, and the choroid plexus of the brain. In vitro
           cellular assays show that SGK2 can stimulate the
           activity of ion channels, the glutamate transporter
           EEAT4, and the glutamate receptors, GluR6 and GLUR1.
          Length = 321

 Score = 27.2 bits (60), Expect = 5.7
 Identities = 33/128 (25%), Positives = 55/128 (42%), Gaps = 20/128 (15%)

Query: 46  IVITDL----EYVRPEND-ETICREDIHRQYKAVELIYTKEFDMKIDIWSTACLTFELVT 100
           +V+TD     E V PE    T C      +Y A E++  + +D  +D W    + +E++ 
Sbjct: 135 VVLTDFGLCKEGVEPEETTSTFCGTP---EYLAPEVLRKEPYDRTVDWWCLGAVLYEMLY 191

Query: 101 GDYMFNPFESKYYTIDEHHIL-KIIQLMAEIPPNLMDNERCIRNIKVLLERDQHNITSMN 159
           G     PF S+  +    +IL K +Q    +P         +  +  LL +DQ     + 
Sbjct: 192 G---LPPFYSRDVSQMYDNILHKPLQ----LPGGKTVAACDL--LVGLLHKDQRR--RLG 240

Query: 160 AKDNFYRI 167
           AK +F  I
Sbjct: 241 AKADFLEI 248


>gnl|CDD|173744 cd07847, STKc_CDKL1_4, Catalytic domain of the Serine/Threonine
           Kinases, Cyclin-Dependent protein Kinase Like 1 and 4.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase like 1 (CDKL1) and CDKL4 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDKL1 and CDKL4
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDKL1, also called
           p42 KKIALRE, is a glial protein that is upregulated in
           gliosis. It is present in neuroblastoma and A431 human
           carcinoma cells, and may be implicated in neoplastic
           transformation. The function of CDKL4 is unknown.
          Length = 286

 Score = 26.9 bits (60), Expect = 6.0
 Identities = 12/34 (35%), Positives = 21/34 (61%), Gaps = 1/34 (2%)

Query: 69  RQYKAVELIY-TKEFDMKIDIWSTACLTFELVTG 101
           R Y+A EL+    ++   +D+W+  C+  EL+TG
Sbjct: 164 RWYRAPELLVGDTQYGPPVDVWAIGCVFAELLTG 197


>gnl|CDD|143375 cd07870, STKc_PFTAIRE2, Catalytic domain of the Serine/Threonine
           Kinase, PFTAIRE-2 kinase.  Serine/Threonine Kinases
           (STKs), PFTAIRE-2 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PFTAIRE-2 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PFTAIRE-2 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PFTAIRE-2 is also
           referred to as ALS2CR7 (amyotrophic lateral sclerosis 2
           (juvenile) chromosome region candidate 7). It may be
           associated with amyotrophic lateral sclerosis 2 (ALS2),
           an autosomal recessive form of juvenile ALS. The
           function of PFTAIRE-2 is not yet known.
          Length = 291

 Score = 26.9 bits (59), Expect = 6.6
 Identities = 8/30 (26%), Positives = 15/30 (50%)

Query: 76  LIYTKEFDMKIDIWSTACLTFELVTGDYMF 105
           L+   ++   +DIW   C+  E++ G   F
Sbjct: 175 LLGATDYSSALDIWGAGCIFIEMLQGQPAF 204


>gnl|CDD|133194 cd05063, PTKc_EphR_A2, Catalytic domain of the Protein Tyrosine
           Kinase, Ephrin Receptor A2.  Protein Tyrosine Kinase
           (PTK) family; Ephrin Receptor (EphR) subfamily; EphA2
           receptor; catalytic (c) domain. The PTKc family is part
           of a larger superfamily that includes the catalytic
           domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. EphRs
           comprise the largest subfamily of receptor tyr kinases
           (RTKs). In general, class EphA receptors bind
           GPI-anchored ephrin-A ligands. There are ten vertebrate
           EphA receptors (EphA1-10), which display promiscuous
           interactions with six ephrin-A ligands. EphRs contain an
           ephrin binding domain and two fibronectin repeats
           extracellularly, a transmembrane segment, and a
           cytoplasmic tyr kinase domain. Binding of the ephrin
           ligand to EphR requires cell-cell contact since both are
           anchored to the plasma membrane. The resulting
           downstream signals occur bidirectionally in both
           EphR-expressing cells (forward signaling) and
           ephrin-expressing cells (reverse signaling). Ephrin/EphR
           interaction mainly results in cell-cell repulsion or
           adhesion, making it important in neural development and
           plasticity, cell morphogenesis, cell-fate determination,
           embryonic development, tissue patterning, and
           angiogenesis. The EphA2 receptor is overexpressed in
           tumor cells and tumor blood vessels in a variety of
           cancers including breast, prostate, lung, and colon. As
           a result, it is an attractive target for drug design
           since its inhibition could affect several aspects of
           tumor progression.
          Length = 268

 Score = 26.9 bits (59), Expect = 6.7
 Identities = 26/118 (22%), Positives = 51/118 (43%), Gaps = 15/118 (12%)

Query: 19  ITDLEYVRPENDETICREDIHSHPNIEIVITDLEYVR-----PENDETICREDIHRQYKA 73
           ++D+ YV  +    +   +I  + N+E  ++D    R     PE   T     I  ++ A
Sbjct: 123 LSDMNYVHRD----LAARNILVNSNLECKVSDFGLSRVLEDDPEGTYTTSGGKIPIRWTA 178

Query: 74  VELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAEIP 131
            E I  ++F    D+WS   + +E+++        E  Y+ +  H ++K I     +P
Sbjct: 179 PEAIAYRKFTSASDVWSFGIVMWEVMSFG------ERPYWDMSNHEVMKAINDGFRLP 230


>gnl|CDD|173747 cd07852, STKc_MAPK15, Catalytic domain of the Serine/Threonine
           Kinase, Mitogen-Activated Protein Kinase 15.
           Serine/Threonine Kinases (STKs), Mitogen-Activated
           Protein Kinase 15 (MAPK15) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAPK15 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MAPKs are
           important mediators of cellular responses to
           extracellular signals. Human MAPK15 is also called
           Extracellular signal Regulated Kinase 8 (ERK8) while the
           rat protein is called ERK7. ERK7 and ERK8 display both
           similar and different biochemical properties. They
           autophosphorylate and activate themselves and do not
           require upstream activating kinases. ERK7 is
           constitutively active and is not affected by
           extracellular stimuli whereas ERK8 shows low basal
           activity and is activated by DNA-damaging agents. ERK7
           and ERK8 also have different substrate profiles. Genome
           analysis shows that they are orthologs with similar gene
           structures. ERK7 and ERK 8 may be involved in the
           signaling of some nuclear receptor transcription
           factors. ERK7 regulates hormone-dependent degradation of
           estrogen receptor alpha while ERK8 down-regulates the
           transcriptional co-activation androgen and
           glucocorticoid receptors.
          Length = 337

 Score = 26.8 bits (60), Expect = 7.0
 Identities = 15/42 (35%), Positives = 22/42 (52%), Gaps = 9/42 (21%)

Query: 69  RQYKAVELI-----YTKEFDMKIDIWSTACLTFELVTGDYMF 105
           R Y+A E++     YTK  DM    WS  C+  E++ G  +F
Sbjct: 176 RWYRAPEILLGSTRYTKGVDM----WSVGCILGEMLLGKPLF 213


>gnl|CDD|132963 cd06632, STKc_MEKK1_plant, Catalytic domain of the Protein
           Serine/Threonine Kinase, Plant MAP/ERK kinase kinase 1. 
           Serine/threonine kinases (STKs), plant MAP/ERK kinase
           kinase 1 (MEKK1)-like subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The plant MEKK1 subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein STKs, protein tyrosine kinases, RIO
           kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This subfamily is
           composed of plant mitogen-activated protein kinase
           (MAPK) kinase kinases (MAPKKKs or MKKKs or MAP3Ks)
           including Arabidopsis thaliana MEKK1 and MAPKKK3. MEKK1
           is a MAPKKK that phosphorylates and activates MAPK
           kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals. Arabidopsis thaliana
           MEKK1 activates MPK4, a MAPK that regulates systemic
           acquired resistance. MEKK1 also participates in the
           regulation of temperature-sensitive and tissue-specific
           cell death.
          Length = 258

 Score = 26.6 bits (59), Expect = 7.1
 Identities = 11/32 (34%), Positives = 17/32 (53%), Gaps = 1/32 (3%)

Query: 71  YKAVELIYTK-EFDMKIDIWSTACLTFELVTG 101
           + A E+I  +  + +  DIWS  C   E+ TG
Sbjct: 167 WMAPEVIAQQGGYGLAADIWSLGCTVLEMATG 198


>gnl|CDD|132973 cd06642, STKc_STK25-YSK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, STK25 or Yeast
           Sps1/Ste20-related kinase 1.  Serine/threonine kinases
           (STKs), STK25 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The STK25 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. STK25 is also called Ste20/oxidant stress
           response kinase 1 (SOK1) or yeast Sps1/Ste20-related
           kinase 1 (YSK1). STK25 is localized in the Golgi
           apparatus through its interaction with the Golgi matrix
           protein GM130. It may play a role in the regulation of
           cell migration and polarization. STK25 binds and
           phosphorylates CCM3 (cerebral cavernous malformation 3),
           also called PCD10 (programmed cell death 10), and may
           play a role in apoptosis. Human STK25 is a candidate
           gene responsible for pseudopseudohypoparathyroidism
           (PPHP), a disease that shares features with the Albright
           hereditary osteodystrophy (AHO) phenotype.
          Length = 277

 Score = 26.5 bits (58), Expect = 7.4
 Identities = 12/32 (37%), Positives = 16/32 (50%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGD 102
           + A E+I    +D K DIWS      EL  G+
Sbjct: 167 WMAPEVIKQSAYDFKADIWSLGITAIELAKGE 198


>gnl|CDD|173704 cd05613, STKc_MSK1_N, N-terminal catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen and stress-activated
           kinase 1.  Serine/Threonine Kinases (STKs), Mitogen and
           stress-activated kinase (MSK) subfamily, MSK1,
           N-terminal catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The MSK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MSKs contain an N-terminal kinase domain (NTD)
           from the AGC family and a C-terminal kinase domain (CTD)
           from the CAMK family, similar to 90 kDa ribosomal
           protein S6 kinases (RSKs). MSKs are activated by two
           major signaling cascades, the Ras-MAPK and p38 stress
           kinase pathways, which trigger phosphorylation in the
           activation loop (A-loop) of the CTD of MSK. The active
           CTD phosphorylates the hydrophobic motif (HM) of NTD,
           which facilitates the phosphorylation of the A-loop and
           activates the NTD, which in turn phosphorylates
           downstream targets. MSK1 plays a role in the regulation
           of translational control and transcriptional activation.
           It phosphorylates the transcription factors, CREB and
           NFkappaB. It also phosphorylates the nucleosomal
           proteins H3 and HMG-14. Increased phosphorylation of
           MEK1 is associated with the development of cerebral
           ischemic/hypoxic preconditioning.
          Length = 290

 Score = 26.9 bits (59), Expect = 7.4
 Identities = 21/78 (26%), Positives = 35/78 (44%), Gaps = 11/78 (14%)

Query: 36  EDIHSHPNIEIVITDL----EYVRPENDE--TICREDIHRQYKAVELIYTKE--FDMKID 87
           E+I    N  +V+TD     E+   E +   + C      +Y A +++   +   D  +D
Sbjct: 134 ENILLDSNGHVVLTDFGLSKEFHEDEVERAYSFCGT---IEYMAPDIVRGGDGGHDKAVD 190

Query: 88  IWSTACLTFELVTGDYMF 105
            WS   L +EL+TG   F
Sbjct: 191 WWSMGVLMYELLTGASPF 208


>gnl|CDD|140293 PTZ00267, PTZ00267, NIMA-related protein kinase; Provisional.
          Length = 478

 Score = 26.9 bits (59), Expect = 7.8
 Identities = 14/39 (35%), Positives = 21/39 (53%), Gaps = 3/39 (7%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFE 109
           Y A EL   K +  K D+WS   + +EL+T   +  PF+
Sbjct: 237 YLAPELWERKRYSKKADMWSLGVILYELLT---LHRPFK 272


>gnl|CDD|133199 cd05068, PTKc_Frk_like, Catalytic domain of Fyn-related kinase-like
           Protein Tyrosine Kinases.  Protein Tyrosine Kinase (PTK)
           family; Human Fyn-related kinase (Frk) and similar
           proteins; catalytic (c) domain. The PTKc family is part
           of a larger superfamily that includes the catalytic
           domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Frk and
           Srk are members of the Src subfamily of proteins, which
           are cytoplasmic (or non-receptor) tyr kinases. Src
           kinases contain an N-terminal SH4 domain with a
           myristoylation site, followed by SH3 and SH2 domains, a
           tyr kinase domain, and a regulatory C-terminal region
           containing a conserved tyr. They are activated by
           autophosphorylation at the tyr kinase domain, but are
           negatively regulated by phosphorylation at the
           C-terminal tyr by Csk (C-terminal Src Kinase). Src
           proteins are involved in signaling pathways that
           regulate cytokine and growth factor responses,
           cytoskeleton dynamics, cell proliferation, survival, and
           differentiation. Frk, also known as Rak, is specifically
           expressed in liver, lung, kidney, intestine, mammary
           glands, and the islets of Langerhans. Rodent homologs
           were previously referred to as GTK (gastrointestinal tyr
           kinase), BSK (beta-cell Src-like kinase), or IYK
           (intestinal tyr kinase). Studies in mice reveal that Frk
           is not essential for viability. It plays a role in the
           signaling that leads to cytokine-induced beta-cell death
           in Type I diabetes. It also regulates beta-cell number
           during embryogenesis and early in life.
          Length = 261

 Score = 26.6 bits (59), Expect = 8.1
 Identities = 11/31 (35%), Positives = 16/31 (51%)

Query: 70  QYKAVELIYTKEFDMKIDIWSTACLTFELVT 100
           ++ A E      F +K D+WS   L  E+VT
Sbjct: 169 KWTAPEAALYNRFSIKSDVWSFGILLTEIVT 199


>gnl|CDD|132972 cd06641, STKc_MST3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mammalian Ste20-like protein
           kinase 3.  Serine/threonine kinases (STKs), mammalian
           Ste20-like protein kinase 3 (MST3) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MST3 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MST3
           phosphorylates the STK NDR and may play a role in cell
           cycle progression and cell morphology. It may also
           regulate paxillin and consequently, cell migration. MST3
           is present in human placenta, where it plays an
           essential role in the oxidative stress-induced apoptosis
           of trophoblasts in normal spontaneous delivery.
           Dysregulation of trophoblast apoptosis may result in
           pregnancy complications such as preeclampsia and
           intrauterine growth retardation.
          Length = 277

 Score = 26.6 bits (58), Expect = 8.2
 Identities = 22/68 (32%), Positives = 31/68 (45%), Gaps = 11/68 (16%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKIIQLMAE- 129
           + A E+I    +D K DIWS      EL  G+    P  S      E H +K++ L+ + 
Sbjct: 167 WMAPEVIKQSAYDSKADIWSLGITAIELAKGE----PPHS------ELHPMKVLFLIPKN 216

Query: 130 IPPNLMDN 137
            PP L  N
Sbjct: 217 NPPTLEGN 224


>gnl|CDD|173722 cd05633, STKc_GRK3, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 3.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK3
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK3 (also known as beta-adrenergic
           receptor kinase 2) is widely expressed in many tissues.
           GRK3-deficient mice show a lack of olfactory receptor
           desensitization and altered regulation of the M2
           muscarinic airway. GRK3 is involved in modulating the
           cholinergic response of airway smooth muscles. It also
           plays a role in dopamine receptor regulation. GRK3
           promoter polymorphisms may be associated with bipolar
           disorder.
          Length = 279

 Score = 26.5 bits (58), Expect = 8.3
 Identities = 19/71 (26%), Positives = 39/71 (54%), Gaps = 7/71 (9%)

Query: 82  FDMKIDIWSTACLTFELVTGDYMFNPFESKYYTIDEHHILKI-IQLMAEIPPNLMDNERC 140
           +D   D +S  C+ F+L+ G    +PF  ++ T D+H I ++ + +  E+P +     + 
Sbjct: 173 YDSSADWFSLGCMLFKLLRGH---SPFR-QHKTKDKHEIDRMTLTVNVELPDSFSPELKS 228

Query: 141 IRNIKVLLERD 151
           +  ++ LL+RD
Sbjct: 229 L--LEGLLQRD 237


>gnl|CDD|173707 cd05616, STKc_cPKC_beta, Catalytic domain of the Protein
           Serine/Threonine Kinase, Classical Protein Kinase C
           beta.  Serine/Threonine Kinases (STKs), Classical
           Protein Kinase C (cPKC) subfamily, beta isoforms,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The cPKC subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. PKCs are
           classified into three groups (classical, atypical, and
           novel) depending on their mode of activation and the
           structural characteristics of their regulatory domain.
           PKCs undergo three phosphorylations in order to take
           mature forms. In addition, cPKCs depend on calcium, DAG
           (1,2-diacylglycerol), and in most cases,
           phosphatidylserine (PS) for activation. There are four
           cPKC isoforms, named alpha, betaI, betaII, and gamma.
           The PKC beta isoforms (I and II), generated by
           alternative splicing of a single gene, are
           preferentially activated by hyperglycemia-induced DAG in
           retinal tissues. This is implicated in diabetic
           microangiopathy such as ischemia, neovascularization,
           and abnormal vasodilator function. PKC-beta also plays
           an important role in VEGF signaling. In addition,
           glucose regulates proliferation in retinal endothelial
           cells via PKC-betaI. PKC-beta is also being explored as
           a therapeutic target in cancer. It contributes to tumor
           formation and is involved in the tumor host mechanisms
           of inflammation and angiogenesis.
          Length = 323

 Score = 26.5 bits (58), Expect = 8.6
 Identities = 15/55 (27%), Positives = 28/55 (50%), Gaps = 8/55 (14%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGDYMFNPFESK-----YYTIDEHHI 120
           Y A E+I  + +   +D W+   L +E++ G     PFE +     + +I EH++
Sbjct: 167 YIAPEIIAYQPYGKSVDWWAFGVLLYEMLAGQA---PFEGEDEDELFQSIMEHNV 218


>gnl|CDD|173655 cd05110, PTKc_HER4, Catalytic domain of the Protein Tyrosine
           Kinase, HER4.  Protein Tyrosine Kinase (PTK) family;
           HER4 (ErbB4); catalytic (c) domain. The PTKc family is
           part of a larger superfamily that includes the catalytic
           domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. HER4 is a
           member of the EGFR (HER, ErbB) subfamily of proteins,
           which are receptor tyr kinases (RTKs) containing an
           extracellular EGF-related ligand-binding region, a
           transmembrane helix, and a cytoplasmic region with a tyr
           kinase domain and a regulatory C-terminal tail. Unlike
           other tyr kinases, phosphorylation of the activation
           loop of EGFR proteins is not critical to their
           activation. Instead, they are activated by
           ligand-induced dimerization, leading to the
           phosphorylation of tyr residues in the C-terminal tail,
           which serve as binding sites for downstream signaling
           molecules. Ligands that bind HER4 fall into two groups,
           the neuregulins (or heregulins) and some EGFR (HER1)
           ligands including betacellulin, HBEGF, and epiregulin.
           All four neuregulins (NRG1-4) interact with HER4. Upon
           ligand binding, HER4 forms homo- or heterodimers with
           other HER proteins. HER4 is essential in embryonic
           development. It is implicated in mammary gland, cardiac,
           and neural development. As a postsynaptic receptor of
           NRG1, HER4 plays an important role in synaptic
           plasticity and maturation. The impairment of NRG1/HER4
           signaling may contribute to schizophrenia.
          Length = 303

 Score = 26.6 bits (58), Expect = 8.6
 Identities = 24/83 (28%), Positives = 39/83 (46%), Gaps = 5/83 (6%)

Query: 22  LEYVRPENDETICREDIHSHPNIEIVITDLEYVRP-ENDETICREDIHR---QYKAVELI 77
           LE  R  + +   R  +   PN  + ITD    R  E DE     D  +   ++ A+E I
Sbjct: 125 LEERRLVHRDLAARNVLVKSPN-HVKITDFGLARLLEGDEKEYNADGGKMPIKWMALECI 183

Query: 78  YTKEFDMKIDIWSTACLTFELVT 100
           + ++F  + D+WS     +EL+T
Sbjct: 184 HYRKFTHQSDVWSYGVTIWELMT 206


>gnl|CDD|132971 cd06640, STKc_MST4, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mammalian Ste20-like protein
           kinase 4.  Serine/threonine kinases (STKs), mammalian
           Ste20-like protein kinase 4 (MST4) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MST4 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MST4 is sometimes
           referred to as MASK (MST3 and SOK1-related kinase). It
           plays a role in mitogen-activated protein kinase (MAPK)
           signaling during cytoskeletal rearrangement,
           morphogenesis, and apoptosis. It influences cell growth
           and transformation by modulating the extracellular
           signal-regulated kinase (ERK) pathway. MST4 may also
           play a role in tumor formation and progression. It
           localizes in the Golgi apparatus by interacting with the
           Golgi matrix protein GM130 and may play a role in cell
           migration.
          Length = 277

 Score = 26.6 bits (58), Expect = 9.0
 Identities = 12/32 (37%), Positives = 16/32 (50%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFELVTGD 102
           + A E+I    +D K DIWS      EL  G+
Sbjct: 167 WMAPEVIQQSAYDSKADIWSLGITAIELAKGE 198


>gnl|CDD|143346 cd07841, STKc_CDK7, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 7.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 7 (CDK7) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK7 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK7
           plays essential roles in the cell cycle and in
           transcription. It associates with cyclin H and MAT1 and
           acts as a CDK-Activating Kinase (CAK) by phosphorylating
           and activating cell cycle CDKs (CDK1/2/4/6). In the
           brain, it activates CDK5. CDK7 is also a component of
           the general transcription factor TFIIH, which
           phosphorylates the C-terminal domain (CTD) of RNA
           polymerase II when it is bound with unphosphorylated
           DNA, as present in the pre-initiation complex. Following
           phosphorylation, the CTD dissociates from the DNA which
           allows transcription initiation.
          Length = 298

 Score = 26.4 bits (59), Expect = 9.3
 Identities = 11/33 (33%), Positives = 21/33 (63%), Gaps = 1/33 (3%)

Query: 67  IHRQYKAVELIY-TKEFDMKIDIWSTACLTFEL 98
           + R Y+A EL++  + + + +D+WS  C+  EL
Sbjct: 164 VTRWYRAPELLFGARHYGVGVDMWSVGCIFAEL 196


>gnl|CDD|143368 cd07863, STKc_CDK4, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 4.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase 4 (CDK4) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK4 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK4
           partners with all three D-type cyclins (D1, D2, and D3)
           and is also regulated by INK4 inhibitors. It is active
           towards the retinoblastoma (pRb) protein and plays a
           role in regulating the early G1 phase of the cell cycle.
           It is expressed ubiquitously and is localized in the
           nucleus. CDK4 also shows kinase activity towards Smad3,
           a signal transducer of transforming growth factor
           (TGF)-beta signaling which modulates transcription and
           plays a role in cell proliferation and apoptosis. CDK4
           is inhibited by the p21 inhibitor and is specifically
           mutated in human melanoma.
          Length = 288

 Score = 26.5 bits (58), Expect = 9.4
 Identities = 8/28 (28%), Positives = 16/28 (57%)

Query: 71  YKAVELIYTKEFDMKIDIWSTACLTFEL 98
           Y+A E++    +   +D+WS  C+  E+
Sbjct: 173 YRAPEVLLQSTYATPVDMWSVGCIFAEM 200


  Database: CDD.v3.10
    Posted date:  Mar 20, 2013  7:55 AM
  Number of letters in database: 10,937,602
  Number of sequences in database:  44,354
  
Lambda     K      H
   0.323    0.140    0.421 

Gapped
Lambda     K      H
   0.267   0.0818    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 44354
Number of Hits to DB: 9,625,362
Number of extensions: 907644
Number of successful extensions: 949
Number of sequences better than 10.0: 1
Number of HSP's gapped: 948
Number of HSP's successfully gapped: 179
Length of query: 182
Length of database: 10,937,602
Length adjustment: 91
Effective length of query: 91
Effective length of database: 6,901,388
Effective search space: 628026308
Effective search space used: 628026308
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (22.0 bits)
S2: 56 (25.2 bits)