RPS-BLAST 2.2.26 [Sep-21-2011]

Database: CDD.v3.10 
           44,354 sequences; 10,937,602 total letters

Searching..................................................done

Query= psy7200
         (174 letters)



>gnl|CDD|173623 cd00180, PKc, Catalytic domain of Protein Kinases.  Protein Kinases
           (PKs), catalytic (c) domain. PKs catalyze the transfer
           of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The PK family is part of a larger
           superfamily that includes the catalytic domains of RIO
           kinases, aminoglycoside phosphotransferase, choline
           kinase, phosphoinositide 3-kinase (PI3K), and
           actin-fragmin kinase. PKs make up a large family of
           serine/threonine kinases, protein tyrosine kinases
           (PTKs), and dual-specificity PKs that phosphorylate both
           serine/threonine and tyrosine residues of target
           proteins. Majority of protein phosphorylation, about
           95%, occurs on serine residues while only 1% occurs on
           tyrosine residues. Protein phosphorylation is a
           mechanism by which a wide variety of cellular proteins,
           such as enzymes and membrane channels, are reversibly
           regulated in response to certain stimuli. PKs often
           function as components of signal transduction pathways
           in which one kinase activates a second kinase, which in
           turn, may act on other kinases; this sequential action
           transmits a signal from the cell surface to target
           proteins, which results in cellular responses. The PK
           family is one of the largest known protein families with
           more than 100 homologous yeast enzymes and 550 human
           proteins. A fraction of PK family members are
           pseudokinases that lack crucial residues for catalytic
           activity. The mutiplicity of kinases allows for specific
           regulation according to substrate, tissue distribution,
           and cellular localization. PKs regulate many cellular
           processes including proliferation, division,
           differentiation, motility, survival, metabolism,
           cell-cycle progression, cytoskeletal rearrangement,
           immunity, and neuronal functions. Many kinases are
           implicated in the development of various human diseases
           including different types of cancer.
          Length = 215

 Score = 58.8 bits (143), Expect = 5e-11
 Identities = 21/67 (31%), Positives = 38/67 (56%), Gaps = 1/67 (1%)

Query: 101 YGQERDYNVLVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDI 159
             ++ ++  LVM+   G SL+DL      + +   +L +  Q++  +EY+H    IHRD+
Sbjct: 59  VFEDENHLYLVMEYCEGGSLKDLLKENEGKLSEDEILRILLQILEGLEYLHSNGIIHRDL 118

Query: 160 KPDNFLM 166
           KP+N L+
Sbjct: 119 KPENILL 125



 Score = 35.7 bits (83), Expect = 0.006
 Identities = 18/64 (28%), Positives = 26/64 (40%), Gaps = 8/64 (12%)

Query: 1   LFLIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAHLGI-EQSRRDDMESLGYVL 59
           + L DFGL+K     +          K + GT  Y +    LG    S + D+ SLG +L
Sbjct: 132 VKLADFGLSKLLTSDK-------SLLKTIVGTPAYMAPEVLLGKGYYSEKSDIWSLGVIL 184

Query: 60  MYFN 63
               
Sbjct: 185 YELP 188


>gnl|CDD|165211 PHA02882, PHA02882, putative serine/threonine kinase; Provisional.
          Length = 294

 Score = 56.5 bits (136), Expect = 5e-10
 Identities = 33/83 (39%), Positives = 48/83 (57%), Gaps = 7/83 (8%)

Query: 2   FLIDFGLAKKFRDTRTRNHILY-REDKNL-TGTARYASINAHLGIEQSRRDDMESLGYVL 59
           ++ID+G+A  F       HI Y +E K+L  GT  YA ++AH G   +RR D+ESLGY +
Sbjct: 166 YIIDYGIASHF--IIHGKHIEYSKEQKDLHRGTLYYAGLDAHNGACVTRRGDLESLGYCM 223

Query: 60  MYFNRGSLPWQGLKETFNTGGLI 82
           + +    LPW+G     + G LI
Sbjct: 224 LKWAGIKLPWKGFG---HNGNLI 243



 Score = 26.8 bits (59), Expect = 5.7
 Identities = 15/62 (24%), Positives = 33/62 (53%), Gaps = 5/62 (8%)

Query: 107 YNVLVMDLLGPSLEDLFN--FCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           Y  ++++ L  + +++F    C  +  +K ++     M+  +EY+H     H DIKP+N 
Sbjct: 101 YRFILLEKLVENTKEIFKRIKCKNKKLIKNIMK---DMLTTLEYIHEHGISHGDIKPENI 157

Query: 165 LM 166
           ++
Sbjct: 158 MV 159


>gnl|CDD|215690 pfam00069, Pkinase, Protein kinase domain. 
          Length = 260

 Score = 55.3 bits (134), Expect = 1e-09
 Identities = 22/66 (33%), Positives = 38/66 (57%), Gaps = 4/66 (6%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCSR--RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIK 160
           +++D+  LVM+       DLF++ SR    +      +A Q++  +EY+H    IHRD+K
Sbjct: 68  EDKDHLYLVMEYCEGG--DLFDYLSRGGPLSEDEAKKIALQILRGLEYLHSNGIIHRDLK 125

Query: 161 PDNFLM 166
           P+N L+
Sbjct: 126 PENILL 131



 Score = 46.5 bits (111), Expect = 1e-06
 Identities = 20/73 (27%), Positives = 28/73 (38%), Gaps = 8/73 (10%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAHL-GIEQSRRDDMESLGYVLMY 61
           + DFGLAKK   + +             GT  Y +    L G     + D+ SLG +L  
Sbjct: 139 IADFGLAKKLLKSSSSLT-------TFVGTPWYMAPEVLLGGNGYGPKVDVWSLGVILYE 191

Query: 62  FNRGSLPWQGLKE 74
              G  P+ G   
Sbjct: 192 LLTGKPPFSGENI 204


>gnl|CDD|223589 COG0515, SPS1, Serine/threonine protein kinase [General function
           prediction only / Signal transduction mechanisms /
           Transcription / DNA replication, recombination, and
           repair].
          Length = 384

 Score = 54.7 bits (130), Expect = 3e-09
 Identities = 30/94 (31%), Positives = 43/94 (45%), Gaps = 5/94 (5%)

Query: 86  SKTRKLALPSKLTRWY--GQERDYNVLVMDLL-GPSLEDLFNFCSR--RFTVKTVLMLAD 140
                L  P  + + Y   Q+     LVM+ + G SLEDL     R    +    L +  
Sbjct: 49  QILASLNHPPNIVKLYDFFQDEGSLYLVMEYVDGGSLEDLLKKIGRKGPLSESEALFILA 108

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHCNK 174
           Q++  +EY+H K  IHRDIKP+N L+       K
Sbjct: 109 QILSALEYLHSKGIIHRDIKPENILLDRDGRVVK 142



 Score = 48.2 bits (113), Expect = 4e-07
 Identities = 33/121 (27%), Positives = 47/121 (38%), Gaps = 6/121 (4%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAHLGIEQ---SRRDDMESLGYVL 59
           LIDFGLAK   D  + + I         GT  Y +    LG+     S   D+ SLG  L
Sbjct: 143 LIDFGLAKLLPDPGSTSSIPALP-STSVGTPGYMAPEVLLGLSLAYASSSSDIWSLGITL 201

Query: 60  MYFNRGSLPWQGLKETFNTGGLIVPKSKTRKLALPSKLTRWYGQERDYNVLVMDLLGPSL 119
                G  P++G K +  T   +    +    +L S L+    +    +    DLL   L
Sbjct: 202 YELLTGLPPFEGEKNSSATSQTLKIILELPTPSLASPLSPSNPELI--SKAASDLLKKLL 259

Query: 120 E 120
            
Sbjct: 260 A 260


>gnl|CDD|173664 cd05573, STKc_ROCK_NDR_like, Catalytic domain of ROCK- and NDR
           kinase-like Protein Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Rho-associated
           coiled-coil containing protein kinase (ROCK) and Nuclear
           Dbf2-Related (NDR)-like kinase subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The ROCK- and NDR-like
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this subfamily include ROCK and
           ROCK-like proteins such as DMPK, MRCK, and CRIK, as well
           as NDR and NDR-like proteins such as LATS, CBK1 and
           Sid2p. ROCK and CRIK are effectors of the small GTPase
           Rho, while MRCK is an effector of the small GTPase
           Cdc42. NDR and NDR-like kinases contain an N-terminal
           regulatory (NTR) domain and an insert within the
           catalytic domain that contains an auto-inhibitory
           sequence. Proteins in this subfamily are involved in
           regulating many cellular functions including
           contraction, motility, division, proliferation,
           apoptosis, morphogenesis, and cytokinesis.
          Length = 350

 Score = 50.0 bits (120), Expect = 1e-07
 Identities = 24/74 (32%), Positives = 37/74 (50%), Gaps = 4/74 (5%)

Query: 100 WYGQERDYNVLVMDLLGPSLEDLFNFCSR--RFTVKTVLMLADQMIGRIEYVHCKSFIHR 157
           +  Q+ ++  LVM+ +     DL N   R   F  +T      +++  ++ VH   FIHR
Sbjct: 68  YSFQDEEHLYLVMEYMPGG--DLMNLLIRKDVFPEETARFYIAELVLALDSVHKLGFIHR 125

Query: 158 DIKPDNFLMGIGRH 171
           DIKPDN L+    H
Sbjct: 126 DIKPDNILIDADGH 139



 Score = 27.3 bits (61), Expect = 4.0
 Identities = 11/39 (28%), Positives = 13/39 (33%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAH 41
           L DFGL KK    + R + L      L           H
Sbjct: 142 LADFGLCKKMNKAKDREYYLNDSHNLLFRDNVLVRRRDH 180


>gnl|CDD|214567 smart00220, S_TKc, Serine/Threonine protein kinases, catalytic
           domain.  Phosphotransferases. Serine or
           threonine-specific kinase subfamily.
          Length = 254

 Score = 49.1 bits (118), Expect = 2e-07
 Identities = 21/65 (32%), Positives = 33/65 (50%), Gaps = 2/65 (3%)

Query: 103 QERDYNVLVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKP 161
           ++ D   LVM+   G  L DL      R +         Q++  +EY+H K  +HRD+KP
Sbjct: 67  EDEDKLYLVMEYCEGGDLFDLLKKR-GRLSEDEARFYLRQILSALEYLHSKGIVHRDLKP 125

Query: 162 DNFLM 166
           +N L+
Sbjct: 126 ENILL 130



 Score = 30.6 bits (70), Expect = 0.35
 Identities = 20/70 (28%), Positives = 28/70 (40%), Gaps = 10/70 (14%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAHLGIEQSRRDDMESLGYVLMY- 61
           L DFGLA++                   GT  Y +    LG    +  D+ SLG V++Y 
Sbjct: 138 LADFGLARQLDPGEKLTT--------FVGTPEYMAPEVLLGKGYGKAVDIWSLG-VILYE 188

Query: 62  FNRGSLPWQG 71
              G  P+ G
Sbjct: 189 LLTGKPPFPG 198


>gnl|CDD|173669 cd05578, STKc_Yank1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Yank1.  Serine/Threonine
           Kinases (STKs), Yank1 or STK32A subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Yank1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This subfamily
           contains uncharacterized STKs with similarity to the
           human protein designated Yank1 or STK32A.
          Length = 258

 Score = 47.7 bits (114), Expect = 4e-07
 Identities = 27/70 (38%), Positives = 40/70 (57%), Gaps = 5/70 (7%)

Query: 100 WYG-QERDYNVLVMDLLGPSLEDLFNFCSR--RFTVKTVLMLADQMIGRIEYVHCKSFIH 156
           WY  Q+ +   LV+DLL     DL    S+  +F+ + V     +++  +EY+H K  IH
Sbjct: 66  WYSFQDEENMYLVVDLLLGG--DLRYHLSQKVKFSEEQVKFWICEIVLALEYLHSKGIIH 123

Query: 157 RDIKPDNFLM 166
           RDIKPDN L+
Sbjct: 124 RDIKPDNILL 133


>gnl|CDD|173659 cd05122, PKc_STE, Catalytic domain of STE family Protein Kinases.
           Protein Kinases (PKs), STE family, catalytic (c) domain.
           PKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine or tyrosine residues on
           protein substrates. The STE family is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases (STKs), protein
           tyrosine kinases (PTKs), RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase (PI3K). This family is composed of STKs, and
           some dual-specificity PKs that phosphorylate both
           threonine and tyrosine residues of target proteins. Most
           members are kinases involved in mitogen-activated
           protein kinase (MAPK) signaling cascades, acting as MAPK
           kinases (MAPKKs), MAPK kinase kinases (MAPKKKs), or MAPK
           kinase kinase kinases (MAP4Ks). The MAPK signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising of the MAPK, which is
           phosphorylated and activated by a MAPKK, which itself is
           phosphorylated and activated by a MAPKKK. Each MAPK
           cascade is activated either by a small GTP-binding
           protein or by an adaptor protein, which transmits the
           signal either directly to a MAPKKK to start the triple
           kinase core cascade or indirectly through a mediator
           kinase, a MAP4K. Other STE family members include
           p21-activated kinases (PAKs) and class III myosins,
           among others. PAKs are Rho family GTPase-regulated
           kinases that serve as important mediators in the
           function of Cdc42 (cell division cycle 42) and Rac.
           Class III myosins are motor proteins containing an
           N-terminal kinase catalytic domain and a C-terminal
           actin-binding domain, which can phosphorylate several
           cytoskeletal proteins, conventional myosin regulatory
           light chains, as well as autophosphorylate the
           C-terminal motor domain. They play an important role in
           maintaining the structural integrity of photoreceptor
           cell microvilli.
          Length = 253

 Score = 47.6 bits (114), Expect = 5e-07
 Identities = 19/58 (32%), Positives = 32/58 (55%), Gaps = 1/58 (1%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +VM+   G SL+DL    ++  T   +  +  +++  +EY+H    IHRDIK  N L+
Sbjct: 74  IVMEFCSGGSLKDLLKSTNQTLTESQIAYVCKELLKGLEYLHSNGIIHRDIKAANILL 131



 Score = 29.9 bits (68), Expect = 0.52
 Identities = 10/20 (50%), Positives = 15/20 (75%)

Query: 3   LIDFGLAKKFRDTRTRNHIL 22
           LIDFGL+ +  DT+ RN ++
Sbjct: 139 LIDFGLSAQLSDTKARNTMV 158


>gnl|CDD|173736 cd07832, STKc_CCRK, Catalytic domain of the Serine/Threonine
           Kinase, Cell Cycle-Related Kinase.  Serine/Threonine
           Kinases (STKs), Cell Cycle-Related Kinase (CCRK) p42
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CCRK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CCRK was previously called p42. It is a
           Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK)
           which is essential for the activation of CDK2. It is
           indispensable for cell growth and has been implicated in
           the progression of glioblastoma multiforme. In the
           heart, a splice variant of CCRK with a different
           C-terminal half is expressed, this variant promotes
           cardiac cell growth and survival and is significantly
           down-regulated during the development of heart failure.
          Length = 286

 Score = 46.9 bits (112), Expect = 9e-07
 Identities = 16/59 (27%), Positives = 27/59 (45%)

Query: 109 VLVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           VLVM+ +   L ++     R      V      ++  + Y+H    +HRD+KP N L+ 
Sbjct: 75  VLVMEYMPSDLSEVLRDEERPLPEAQVKSYMRMLLKGVAYMHANGIMHRDLKPANLLIS 133


>gnl|CDD|223009 PHA03211, PHA03211, serine/threonine kinase US3; Provisional.
          Length = 461

 Score = 47.2 bits (112), Expect = 1e-06
 Identities = 17/49 (34%), Positives = 28/49 (57%), Gaps = 3/49 (6%)

Query: 121 DLFNFCSRR---FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           DL+ +   R     +  V  +A Q++  I+Y+H +  IHRDIK +N L+
Sbjct: 245 DLYTYLGARLRPLGLAQVTAVARQLLSAIDYIHGEGIIHRDIKTENVLV 293


>gnl|CDD|173660 cd05123, STKc_AGC, Catalytic domain of AGC family Protein
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), AGC (Protein Kinases A, G and C) family,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The AGC family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and Phosphoinositide 3-Kinase (PI3K). Members of
           this family include cAMP-dependent Protein Kinase (PKA),
           cGMP-dependent Protein Kinase (PKG), Protein Kinase C
           (PKC), Protein Kinase B (PKB), G protein-coupled
           Receptor Kinase (GRK), Serum- and Glucocorticoid-induced
           Kinase (SGK), and 70 kDa ribosomal Protein S6 Kinase
           (p70S6K or S6K), among others. AGC kinases share an
           activation mechanism based on the phosphorylation of up
           to three sites: the activation loop (A-loop), the
           hydrophobic motif (HM) and the turn motif.
           Phosphorylation at the A-loop is required of most AGC
           kinases, which results in a disorder-to-order transition
           of the A-loop. The ordered conformation results in the
           access of substrates and ATP to the active site. A
           subset of AGC kinases with C-terminal extensions
           containing the HM also requires phosphorylation at this
           site. Phosphorylation at the HM allows the C-terminal
           extension to form an ordered structure that packs into
           the hydrophobic pocket of the catalytic domain, which
           then reconfigures the kinase into an active bi-lobed
           state. In addition, growth factor-activated AGC kinases
           such as PKB, p70S6K, RSK, MSK, PKC, and SGK, require
           phosphorylation at the turn motif (also called tail or
           zipper site), located N-terminal to the HM at the
           C-terminal extension. AGC kinases regulate many cellular
           processes including division, growth, survival,
           metabolism, motility, and differentiation. Many are
           implicated in the development of various human diseases.
          Length = 250

 Score = 46.0 bits (110), Expect = 2e-06
 Identities = 20/69 (28%), Positives = 37/69 (53%), Gaps = 8/69 (11%)

Query: 103 QERDYNVLVMDLL--GPSLEDLFNFCSR--RFTVKTVLMLADQMIGRIEYVHCKSFIHRD 158
           Q  +   LV++    G    +LF+  S+  RF+ +     A +++  +EY+H    I+RD
Sbjct: 63  QTEEKLYLVLEYAPGG----ELFSHLSKEGRFSEERARFYAAEIVLALEYLHSLGIIYRD 118

Query: 159 IKPDNFLMG 167
           +KP+N L+ 
Sbjct: 119 LKPENILLD 127



 Score = 32.1 bits (74), Expect = 0.11
 Identities = 26/99 (26%), Positives = 35/99 (35%), Gaps = 16/99 (16%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAHLGIEQSRRDDMESLGYVLMYF 62
           L DFGLAK+     +R +          GT  Y +    LG    +  D  SLG +L   
Sbjct: 134 LTDFGLAKELSSEGSRTN-------TFCGTPEYLAPEVLLGKGYGKAVDWWSLGVLLYEM 186

Query: 63  NRGSLPWQG--LKETFNTGGLIVPKSKTRKLALPSKLTR 99
             G  P+     KE +        K     L  P  L+ 
Sbjct: 187 LTGKPPFYAEDRKEIYE-------KILKDPLRFPEFLSP 218


>gnl|CDD|183880 PRK13184, pknD, serine/threonine-protein kinase; Reviewed.
          Length = 932

 Score = 45.5 bits (108), Expect = 5e-06
 Identities = 17/38 (44%), Positives = 25/38 (65%)

Query: 131 TVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGI 168
           +V   L +  ++   IEYVH K  +HRD+KPDN L+G+
Sbjct: 111 SVGAFLSIFHKICATIEYVHSKGVLHRDLKPDNILLGL 148


>gnl|CDD|173672 cd05581, STKc_PDK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Phosphoinositide-dependent
           kinase 1.  Serine/Threonine Kinases (STKs),
           Phosphoinositide-dependent kinase 1 (PDK1) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PDK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase (PI3K). PDK1
           carries an N-terminal catalytic domain and a C-terminal
           pleckstrin homology (PH) domain that binds
           phosphoinositides. It phosphorylates the activation loop
           of AGC kinases that are regulated by PI3K such as PKB,
           SGK, and PKC, among others, and is crucial for their
           activation. Thus, it contributes in regulating many
           processes including metabolism, growth, proliferation,
           and survival. PDK1 also has the ability to
           autophosphorylate and is constitutively active in
           mammalian cells. PDK1 is essential for normal embryo
           development and is important in regulating cell volume.
          Length = 280

 Score = 43.3 bits (103), Expect = 2e-05
 Identities = 16/58 (27%), Positives = 26/58 (44%), Gaps = 2/58 (3%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
            V++      L             K     A +++  +EY+H K  IHRD+KP+N L+
Sbjct: 79  FVLEYAPNGELLQYIRK-YGSLDEKCTRFYAAEILLALEYLHSKGIIHRDLKPENILL 135


>gnl|CDD|173770 cd08528, STKc_Nek10, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 10.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 10 (Nek10)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           Nek10 subfamily is one of a family of 11 different Neks
           (Nek1-11) that are involved in cell cycle control. The
           Nek family is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. No function has yet been ascribed to Nek10.
           The gene encoding Nek10 is a putative causative gene for
           breast cancer; it is located within a breast cancer
           susceptibility loci on chromosome 3p24.
          Length = 269

 Score = 42.9 bits (101), Expect = 2e-05
 Identities = 24/69 (34%), Positives = 39/69 (56%), Gaps = 5/69 (7%)

Query: 104 ERDYNVLVMDLL-GPSLEDLFNFCS---RRFTVKTVLMLADQMIGRIEYVHCKSFI-HRD 158
           E D   +VMDL+ G  L + FN      +RFT + +  +  QM+  + Y+H +  I HRD
Sbjct: 80  ENDRLYIVMDLIEGAPLGEHFNSLKEKKQRFTEERIWNIFVQMVLALRYLHKEKRIVHRD 139

Query: 159 IKPDNFLMG 167
           + P+N ++G
Sbjct: 140 LTPNNIMLG 148


>gnl|CDD|143346 cd07841, STKc_CDK7, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 7.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 7 (CDK7) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK7 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK7
           plays essential roles in the cell cycle and in
           transcription. It associates with cyclin H and MAT1 and
           acts as a CDK-Activating Kinase (CAK) by phosphorylating
           and activating cell cycle CDKs (CDK1/2/4/6). In the
           brain, it activates CDK5. CDK7 is also a component of
           the general transcription factor TFIIH, which
           phosphorylates the C-terminal domain (CTD) of RNA
           polymerase II when it is bound with unphosphorylated
           DNA, as present in the pre-initiation complex. Following
           phosphorylation, the CTD dissociates from the DNA which
           allows transcription initiation.
          Length = 298

 Score = 42.9 bits (102), Expect = 2e-05
 Identities = 16/57 (28%), Positives = 27/57 (47%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LV + +   LE +    S   T   +       +  +EY+H    +HRD+KP+N L+
Sbjct: 79  LVFEFMETDLEKVIKDKSIVLTPADIKSYMLMTLRGLEYLHSNWILHRDLKPNNLLI 135


>gnl|CDD|173733 cd07829, STKc_CDK_like, Catalytic domain of Cyclin-Dependent
           protein Kinase-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase (CDK)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDKs are partly
           regulated by their subcellular localization, which
           defines substrate phosphorylation and the resulting
           specific function. CDK1, CDK2, CDK4, and CDK6 have
           well-defined functions in the cell cycle, such as the
           regulation of the early G1 phase by CDK4 or CDK6, the
           G1/S phase transition by CDK2, or the entry of mitosis
           by CDK1. They also exhibit overlapping cyclin
           specificity and functions in certain conditions.
           Knockout mice with a single CDK deleted remain viable
           with specific phenotypes, showing that some CDKs can
           compensate for each other. For example, CDK4 can
           compensate for the loss of CDK6, however, double
           knockout mice with both CDK4 and CDK6 deleted die in
           utero. CDK8 and CDK9 are mainly involved in
           transcription while CDK5 is implicated in neuronal
           function. CDK7 plays essential roles in both the cell
           cycle as a CDK-Activating Kinase (CAK) and in
           transcription as a component of the general
           transcription factor TFIIH.
          Length = 282

 Score = 42.9 bits (102), Expect = 3e-05
 Identities = 13/58 (22%), Positives = 25/58 (43%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           LV +     L+   +      +   +  +  Q++  + Y H    +HRD+KP N L+ 
Sbjct: 75  LVFEYCDMDLKKYLDKRPGPLSPNLIKSIMYQLLRGLAYCHSHRILHRDLKPQNILIN 132


>gnl|CDD|173703 cd05612, STKc_PRKX_like, Catalytic domain of PRKX-like Protein
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), cAMP-dependent protein kinase (PKA) subfamily,
           PRKX-like kinases, catalytic (c) subunit. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PKA
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include human PRKX (X
           chromosome-encoded protein kinase), Drosophila DC2, and
           similar proteins. PRKX is present in many tissues
           including fetal and adult brain, kidney, and lung. The
           PRKX gene is located in the Xp22.3 subregion and has a
           homolog called PRKY on the Y chromosome. An abnormal
           interchange between PRKX aand PRKY leads to the sex
           reversal disorder of XX males and XY females. PRKX is
           implicated in granulocyte/macrophage lineage
           differentiation, renal cell epithelial migration, and
           tubular morphogenesis in the developing kidney.
          Length = 291

 Score = 41.3 bits (97), Expect = 9e-05
 Identities = 23/72 (31%), Positives = 40/72 (55%), Gaps = 2/72 (2%)

Query: 97  LTRWYGQERDYNVLVMDLLGPSLEDLFNF--CSRRFTVKTVLMLADQMIGRIEYVHCKSF 154
           + R +  E D   L M +      +LF++   S RF+  T L  A +++  +EY+H K  
Sbjct: 63  IIRLFWTEHDQRFLYMLMEYVPGGELFSYLRNSGRFSNSTGLFYASEIVCALEYLHSKEI 122

Query: 155 IHRDIKPDNFLM 166
           ++RD+KP+N L+
Sbjct: 123 VYRDLKPENILL 134


>gnl|CDD|173728 cd06614, STKc_PAK, Catalytic domain of the Protein Serine/Threonine
           Kinase, p21-activated kinase.  Serine/threonine kinases
           (STKs), p21-activated kinase (PAK) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PAK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. PAKs are Rho
           family GTPase-regulated kinases that serve as important
           mediators in the function of Cdc42 (cell division cycle
           42) and Rac. PAKs are implicated in the regulation of
           many cellular processes including growth factor
           receptor-mediated proliferation, cell polarity, cell
           motility, cell death and survival, and actin
           cytoskeleton organization. PAK deregulation is
           associated with tumor development. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           Group I PAKs contain a PBD (p21-binding domain)
           overlapping with an AID (autoinhibitory domain), a
           C-terminal catalytic domain, SH3 binding sites and a
           non-classical SH3 binding site for PIX (PAK-interacting
           exchange factor). Group II PAKs contain a PBD and a
           catalytic domain, but lack other motifs found in group I
           PAKs. Since group II PAKs do not contain an obvious AID,
           they may be regulated differently from group I PAKs.
           Group I PAKs interact with the SH3 containing proteins
           Nck, Grb2 and PIX; no such binding has been demonstrated
           for group II PAKs.
          Length = 286

 Score = 41.0 bits (97), Expect = 9e-05
 Identities = 20/67 (29%), Positives = 30/67 (44%), Gaps = 17/67 (25%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRI--------EYVHCKSFIHRDIK 160
           +VM+ + G SL D+      R          +  I  +        EY+H ++ IHRDIK
Sbjct: 92  VVMEYMDGGSLTDIITQNFVRMN--------EPQIAYVCREVLQGLEYLHSQNVIHRDIK 143

Query: 161 PDNFLMG 167
            DN L+ 
Sbjct: 144 SDNILLS 150


>gnl|CDD|173689 cd05598, STKc_LATS, Catalytic domain of the Protein
           Serine/Threonine Kinase, Large Tumor Suppressor.
           Serine/Threonine Kinases (STKs), Large Tumor Suppressor
           (LATS) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           LATS subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. LATS was originally identified in Drosophila
           using a screen for genes whose inactivation led to
           overproliferation of cells. In tetrapods, there are two
           LATS isoforms, LATS1 and LATS2. Inactivation of LATS1 in
           mice results in the development of various tumors,
           including sarcomas and ovarian cancer. LATS functions as
           a tumor suppressor and is implicated in cell cycle
           regulation.
          Length = 376

 Score = 40.9 bits (96), Expect = 1e-04
 Identities = 15/21 (71%), Positives = 16/21 (76%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           IE VH   FIHRDIKPDN L+
Sbjct: 114 IESVHKMGFIHRDIKPDNILI 134


>gnl|CDD|173718 cd05629, STKc_NDR_like_fungal, Catalytic domain of Fungal Nuclear
           Dbf2-Related kinase-like Protein Serine/Threonine
           Kinases.  Serine/Threonine Kinases (STKs), NDR kinase
           subfamily, fungal NDR-like proteins, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The NDR subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This group is
           composed of fungal NDR-like proteins including
           Saccharomyces cerevisiae CBK1 (or CBK1p),
           Schizosaccharomyces pombe Orb6 (or Orb6p), Ustilago
           maydis Ukc1 (or Ukc1p), and Neurospora crassa Cot1. Like
           NDR kinase, group members contain an N-terminal
           regulatory (NTR) domain and an insert within the
           catalytic domain that contains an auto-inhibitory
           sequence. CBK1 is an essential component in the RAM
           (regulation of Ace2p activity and cellular
           morphogenesis) network. CBK1 and Orb6 play similar roles
           in coordinating cell morphology with cell cycle
           progression. Ukc1 is involved in morphogenesis,
           pathogenicity, and pigment formation. Cot1 plays a role
           in polar tip extension.
          Length = 377

 Score = 40.6 bits (95), Expect = 2e-04
 Identities = 17/26 (65%), Positives = 18/26 (69%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGIGRH 171
           IE VH   FIHRDIKPDN L+  G H
Sbjct: 114 IEAVHKLGFIHRDIKPDNILIDRGGH 139


>gnl|CDD|173713 cd05624, STKc_MRCK_beta, Catalytic domain of the Protein
           Serine/Threonine Kinase, DMPK-related cell division
           control protein 42 binding kinase beta.
           Serine/Threonine Kinases (STKs), DMPK-like subfamily,
           DMPK-related cell division control protein 42 (Cdc42)
           binding kinase (MRCK) beta isoform, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The DMPK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MRCK is activated via interaction with the
           small GTPase Cdc42. MRCK/Cdc42 signaling mediates
           myosin-dependent cell motility. MRCKbeta is expressed
           ubiquitously in many tissues.
          Length = 331

 Score = 40.0 bits (93), Expect = 3e-04
 Identities = 23/70 (32%), Positives = 34/70 (48%), Gaps = 1/70 (1%)

Query: 103 QERDYNVLVMDL-LGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKP 161
           Q+ +Y  LVMD  +G  L  L +    R           +M+  I  +H   ++HRDIKP
Sbjct: 71  QDENYLYLVMDYYVGGDLLTLLSKFEDRLPEDMARFYIAEMVLAIHSIHQLHYVHRDIKP 130

Query: 162 DNFLMGIGRH 171
           DN L+ +  H
Sbjct: 131 DNVLLDMNGH 140


>gnl|CDD|132943 cd06612, STKc_MST1_2, Catalytic domain of the Protein
           Serine/Threonine Kinases, Mammalian Ste20-like protein
           kinase 1 and 2.  Serine/threonine kinases (STKs),
           mammalian Ste20-like protein kinase 1 (MST1) and MST2
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MST1/2 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of MST1, MST2, and
           related proteins including Drosophila Hippo and
           Dictyostelium discoideum Krs1 (kinase responsive to
           stress 1). MST1/2 and Hippo are involved in a conserved
           pathway that governs cell contact inhibition, organ size
           control, and tumor development. MST1 activates the
           mitogen-activated protein kinases (MAPKs) p38 and c-Jun
           N-terminal kinase (JNK) through MKK7 (a MAPK kinase) and
           MEKK1 (a MAPK kinase kinase) by acting as a MAPK kinase
           kinase kinase (MAPKKKK). Activation of JNK by MST1 leads
           to caspase activation and apoptosis. MST1 has also been
           implicated in cell proliferation and differentiation.
           Krs1 may regulate cell growth arrest and apoptosis in
           response to cellular stress.
          Length = 256

 Score = 39.9 bits (94), Expect = 3e-04
 Identities = 19/59 (32%), Positives = 32/59 (54%), Gaps = 3/59 (5%)

Query: 110 LVMDLLGP-SLEDLFNFCSRRFTVKTV-LMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +VM+  G  S+ D+    ++  T + +  +L   + G +EY+H    IHRDIK  N L+
Sbjct: 75  IVMEYCGAGSVSDIMKITNKTLTEEEIAAILYQTLKG-LEYLHSNKKIHRDIKAGNILL 132


>gnl|CDD|173690 cd05599, STKc_NDR_like, Catalytic domain of Nuclear Dbf2-Related
           kinase-like Protein Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Nuclear Dbf2-Related
           (NDR) kinase subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The NDR subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. NDR kinase contains an N-terminal regulatory
           (NTR) domain and an insert within the catalytic domain
           that contains an auto-inhibitory sequence. Like many
           other AGC kinases, NDR kinase requires phosphorylation
           at two sites, the activation loop (A-loop) and the
           hydrophobic motif (HM), for activity. NDR kinases
           regulate mitosis, cell growth, embryonic development,
           and neurological processes. They are also required for
           proper centrosome duplication. Higher eukaryotes contain
           two NDR isoforms, NDR1 and NDR2. This subfamily also
           contains fungal NDR-like kinases.
          Length = 364

 Score = 39.7 bits (93), Expect = 3e-04
 Identities = 12/21 (57%), Positives = 16/21 (76%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           I+ +H   +IHRDIKPDN L+
Sbjct: 114 IDSIHKLGYIHRDIKPDNLLL 134


>gnl|CDD|173702 cd05611, STKc_Rim15_like, Catalytic domain of fungal Rim15-like
           Protein Serine/Threonine Kinases.  Serine/Threonine
           Kinases (STKs), Microtubule-associated serine/threonine
           (MAST) kinase subfamily, fungal Rim15-like kinases,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAST kinase
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include Saccharomyces
           cerevisiae Rim15, Schizosaccharomyces pombe cek1, and
           similar fungal proteins. They contain a central
           catalytic domain, which contains an insert relative to
           MAST kinases. In addition, Rim15 contains a C-terminal
           signal receiver (REC) domain while cek1 contains an
           N-terminal PAS domain. Rim15 (or Rim15p) functions as a
           regulator of meiosis. It acts as a downstream effector
           of PKA and regulates entry into stationary phase (G0).
           Thus, it plays a crucial role in regulating yeast
           proliferation, differentiation, and aging. Cek1 may
           facilitate progression of mitotic anaphase.
          Length = 260

 Score = 39.4 bits (92), Expect = 3e-04
 Identities = 23/76 (30%), Positives = 35/76 (46%), Gaps = 18/76 (23%)

Query: 100 WYGQERDYNVLVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGR--------IEYVH 150
           +  Q +DY  LVM+ L G     L         +KT+  L +    +        +E +H
Sbjct: 64  YSFQSKDYLYLVMEYLNGGDCASL---------IKTLGGLPEDWAKQYIAEVVLGVEDLH 114

Query: 151 CKSFIHRDIKPDNFLM 166
            +  IHRDIKP+N L+
Sbjct: 115 QRGIIHRDIKPENLLI 130


>gnl|CDD|132957 cd06626, STKc_MEKK4, Catalytic domain of the Protein
           Serine/Threonine Kinase, MAP/ERK kinase kinase 4.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 4
           (MEKK4) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MEKK4 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MEKK4 is a mitogen-activated protein kinase
           (MAPK) kinase kinase (MAPKKK or MKKK or MAP3K), that
           phosphorylates and activates MAPK kinases (MAPKKs or
           MKKs or MAP2Ks), which in turn phosphorylate and
           activate MAPKs during signaling cascades that are
           important in mediating cellular responses to
           extracellular signals. MEKK4 activates the c-Jun
           N-terminal kinase (JNK) and p38 MAPK signaling pathways
           by directly activating their respective MAPKKs,
           MKK4/MKK7 and MKK3/MKK6. JNK and p38 are collectively
           known as stress-activated MAPKs, as they are activated
           in response to a variety of environmental stresses and
           pro-inflammatory cytokines. MEKK4 also plays roles in
           the re-polarization of the actin cytoskeleton in
           response to osmotic stress, in the proper closure of the
           neural tube, in cardiovascular development, and in
           immune responses.
          Length = 264

 Score = 39.2 bits (92), Expect = 4e-04
 Identities = 22/81 (27%), Positives = 37/81 (45%), Gaps = 18/81 (22%)

Query: 97  LTRWYGQE--RDYNVLVMDLL-GPSLEDLFNF-------CSRRFTVKTVLMLADQMIGRI 146
           L ++YG E  R+   + M+   G +LE+L            R +T+        Q++  +
Sbjct: 61  LVKYYGVEVHREKVYIFMEYCSGGTLEELLEHGRILDEHVIRVYTL--------QLLEGL 112

Query: 147 EYVHCKSFIHRDIKPDNFLMG 167
            Y+H    +HRDIKP N  + 
Sbjct: 113 AYLHSHGIVHRDIKPANIFLD 133



 Score = 31.9 bits (73), Expect = 0.11
 Identities = 25/77 (32%), Positives = 33/77 (42%), Gaps = 6/77 (7%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYAS---INAHLGIEQSRRDDMESLGYVL 59
           L DFG A K ++  T       E ++L GT  Y +   I    G    R  D+ SLG V+
Sbjct: 140 LGDFGCAVKLKNNTTTMG---EEVQSLAGTPAYMAPEVITGGKGKGHGRAADIWSLGCVV 196

Query: 60  MYFNRGSLPWQGLKETF 76
           +    G  PW  L   F
Sbjct: 197 LEMATGKRPWSELDNEF 213


>gnl|CDD|88524 cd05623, STKc_MRCK_alpha, Catalytic domain of the Protein
           Serine/Threonine Kinase, DMPK-related cell division
           control protein 42 binding kinase alpha.
           Serine/Threonine Kinases (STKs), DMPK-like subfamily,
           DMPK-related cell division control protein 42 (Cdc42)
           binding kinase (MRCK) alpha isoform, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The DMPK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MRCK is activated via interaction with the
           small GTPase Cdc42. MRCK/Cdc42 signaling mediates
           myosin-dependent cell motility. MRCKalpha is expressed
           ubiquitously in many tissues. It plays a role in the
           regulation of peripheral actin reorganization and
           neurite outgrowth. It may also play a role in the
           transferrin iron uptake pathway.
          Length = 332

 Score = 39.3 bits (91), Expect = 5e-04
 Identities = 26/76 (34%), Positives = 37/76 (48%), Gaps = 2/76 (2%)

Query: 98  TRWYGQERDYNV-LVMDL-LGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFI 155
           T  Y  + + N+ LVMD  +G  L  L +    R           +M+  I+ VH   ++
Sbjct: 65  TLHYAFQDENNLYLVMDYYVGGDLLTLLSKFEDRLPEDMARFYLAEMVIAIDSVHQLHYV 124

Query: 156 HRDIKPDNFLMGIGRH 171
           HRDIKPDN LM +  H
Sbjct: 125 HRDIKPDNILMDMNGH 140


>gnl|CDD|215036 PLN00034, PLN00034, mitogen-activated protein kinase kinase;
           Provisional.
          Length = 353

 Score = 38.7 bits (90), Expect = 7e-04
 Identities = 13/33 (39%), Positives = 21/33 (63%)

Query: 138 LADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGR 170
           +A Q++  I Y+H +  +HRDIKP N L+   +
Sbjct: 173 VARQILSGIAYLHRRHIVHRDIKPSNLLINSAK 205


>gnl|CDD|173724 cd06606, STKc_MAPKKK, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen-Activated Protein
           Kinase Kinase Kinase.  Serine/threonine kinases (STKs),
           mitogen-activated protein kinase (MAPK) kinase kinase
           (MAPKKK) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MAPKKK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAPKKKs (MKKKs or MAP3Ks) are also called
           MAP/ERK kinase kinases (MEKKs) in some cases. They
           phosphorylate and activate MAPK kinases (MAPKKs or MKKs
           or MAP2Ks), which in turn phosphorylate and activate
           MAPKs during signaling cascades that are important in
           mediating cellular responses to extracellular signals.
           This subfamily is composed of the Apoptosis
           Signal-regulating Kinases ASK1 (or MAPKKK5) and ASK2 (or
           MAPKKK6), MEKK1, MEKK2, MEKK3, MEKK4, as well as plant
           and fungal MAPKKKs. Also included in this subfamily are
           the cell division control proteins Schizosaccharomyces
           pombe Cdc7 and Saccharomyces cerevisiae Cdc15.
          Length = 260

 Score = 38.3 bits (90), Expect = 8e-04
 Identities = 9/22 (40%), Positives = 13/22 (59%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMG 167
           + Y+H    +HRDIK  N L+ 
Sbjct: 114 LAYLHSNGIVHRDIKGANILVD 135


>gnl|CDD|173741 cd07843, STKc_CDC2L1, Catalytic domain of the Serine/Threonine
           Kinase, Cell Division Cycle 2-like 1.  Serine/Threonine
           Kinases (STKs), Cell Division Cycle 2-like 1 (CDC2L1)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CDC2L1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDC2L1, also
           called PITSLRE, exists in different isoforms which are
           named using the alias CDK11(p). The CDC2L1 gene produces
           two protein products, CDK11(p110) and CDK11(p58). CDC2L1
           is also represented by the caspase-processed CDK11(p46).
           CDK11(p110), the major isoform, associates with cyclin L
           and is expressed throughout the cell cycle. It is
           involved in RNA processing and the regulation of
           transcription. CDK11(p58) associates with cyclin D3 and
           is expressed during the G2/M phase of the cell cycle. It
           plays roles in spindle morphogenesis, centrosome
           maturation, sister chromatid cohesion, and the
           completion of mitosis. CDK11(p46) is formed from the
           larger isoforms by caspases during TNFalpha- and
           Fas-induced apoptosis. It functions as a downstream
           effector kinase in apoptotic signaling pathways and
           interacts with eukaryotic initiation factor 3f (eIF3f), 
           p21-activated kinase (PAK1), and Ran-binding protein
           (RanBPM).
          Length = 293

 Score = 38.4 bits (90), Expect = 0.001
 Identities = 15/57 (26%), Positives = 28/57 (49%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +VM+ +   L+ L     + F    V  L  Q++  + ++H    +HRD+K  N L+
Sbjct: 83  MVMEYVEHDLKSLMETMKQPFLQSEVKCLMLQLLSGVAHLHDNWILHRDLKTSNLLL 139


>gnl|CDD|173760 cd08220, STKc_Nek8, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 8.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 8 (Nek8) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek8 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek8 contains an
           N-terminal kinase catalytic domain and a C-terminal RCC1
           (regulator of chromosome condensation) domain. A double
           point mutation in Nek8 causes cystic kidney disease in
           mice that genetically resembles human autosomal
           recessive polycystic kidney disease (ARPKD). Nek8 is
           also associated with a rare form of juvenile renal
           cystic disease, nephronophthisis type 9. It has been
           suggested that a defect in the ciliary localization of
           Nek8 contributes to the development of cysts manifested
           by these diseases.
          Length = 256

 Score = 37.9 bits (88), Expect = 0.001
 Identities = 15/52 (28%), Positives = 26/52 (50%), Gaps = 1/52 (1%)

Query: 116 GPSLEDLFN-FCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           G +L +     C+      T+L    Q++  + +VH K  +HRD+K  N L+
Sbjct: 83  GGTLAEYIQKRCNSLLDEDTILHFFVQILLALHHVHTKLILHRDLKTQNILL 134


>gnl|CDD|173715 cd05626, STKc_LATS2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Large Tumor Suppressor 2.
           Serine/Threonine Kinases (STKs), Large Tumor Suppressor
           (LATS) subfamily, LATS2 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The LATS subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. LATS functions as a tumor
           suppressor and is implicated in cell cycle regulation.
           LATS2 is an essential mitotic regulator responsible for
           coordinating accurate cytokinesis completion and
           governing the stabilization of other mitotic regulators.
           It is also critical in the maintenance of proper
           chromosome number, genomic stability, mitotic fidelity,
           and the integrity of centrosome duplication.
           Downregulation of LATS2 is associated with poor
           prognosis in acute lymphoblastic leukemia and breast
           cancer.
          Length = 381

 Score = 38.1 bits (88), Expect = 0.001
 Identities = 16/26 (61%), Positives = 18/26 (69%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGIGRH 171
           IE VH   FIHRDIKPDN L+ +  H
Sbjct: 114 IESVHKMGFIHRDIKPDNILIDLDGH 139


>gnl|CDD|143383 cd07878, STKc_p38beta_MAPK11, Catalytic domain of the
           Serine/Threonine Kinase, p38beta Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38beta subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38beta subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38beta, also called MAPK11, is widely expressed
           in tissues and shows more similarity with p38alpha than
           with the other isoforms. Both are sensitive to
           pyridinylimidazoles and share some common substrates
           such as MAPK activated protein kinase 2 (MK2) and the
           transcription factors ATF2, c-Fos and, ELK-1. p38beta is
           involved in regulating the activation of the
           cyclooxygenase-2 promoter and the expression of
           TGFbeta-induced alpha-smooth muscle cell actin.
          Length = 343

 Score = 37.7 bits (87), Expect = 0.001
 Identities = 17/54 (31%), Positives = 31/54 (57%), Gaps = 2/54 (3%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           LV +L+G  L ++     ++ + + V  L  Q++  ++Y+H    IHRD+KP N
Sbjct: 97  LVTNLMGADLNNIVKC--QKLSDEHVQFLIYQLLRGLKYIHSAGIIHRDLKPSN 148


>gnl|CDD|132963 cd06632, STKc_MEKK1_plant, Catalytic domain of the Protein
           Serine/Threonine Kinase, Plant MAP/ERK kinase kinase 1. 
           Serine/threonine kinases (STKs), plant MAP/ERK kinase
           kinase 1 (MEKK1)-like subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The plant MEKK1 subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein STKs, protein tyrosine kinases, RIO
           kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This subfamily is
           composed of plant mitogen-activated protein kinase
           (MAPK) kinase kinases (MAPKKKs or MKKKs or MAP3Ks)
           including Arabidopsis thaliana MEKK1 and MAPKKK3. MEKK1
           is a MAPKKK that phosphorylates and activates MAPK
           kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals. Arabidopsis thaliana
           MEKK1 activates MPK4, a MAPK that regulates systemic
           acquired resistance. MEKK1 also participates in the
           regulation of temperature-sensitive and tissue-specific
           cell death.
          Length = 258

 Score = 37.8 bits (88), Expect = 0.001
 Identities = 32/130 (24%), Positives = 55/130 (42%), Gaps = 25/130 (19%)

Query: 54  SLGYVLMYFNRGSLPWQGLKETFNTGGLIVPKSKT---------RKLALPSKL-----TR 99
           S G V    N     +  +KE       +    +T         +++AL SKL      +
Sbjct: 12  SFGSVYEGLNLDDGDFFAVKEV-----SLADDGQTGQEAVKQLEQEIALLSKLQHPNIVQ 66

Query: 100 WYGQERD---YNVLVMDLLGPSLEDLF-NFCSRRFTVKTVLMLADQMIGRIEYVHCKSFI 155
           + G ER+     + +  + G SL  L   + S  F    + +   Q++  +EY+H ++ +
Sbjct: 67  YLGTEREEDNLYIFLELVPGGSLAKLLKKYGS--FPEPVIRLYTRQILLGLEYLHDRNTV 124

Query: 156 HRDIKPDNFL 165
           HRDIK  N L
Sbjct: 125 HRDIKGANIL 134


>gnl|CDD|143361 cd07856, STKc_Sty1_Hog1, Catalytic domain of the Serine/Threonine
           Kinases, Fungal Mitogen-Activated Protein Kinases Sty1
           and Hog1.  Serine/Threonine Kinases (STKs), Fungal
           Mitogen-Activated Protein Kinase (MAPK) Sty1/Hog1
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           Sty1/Hog1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of the MAPKs Sty1
           from Schizosaccharomyces pombe, Hog1 from Saccharomyces
           cerevisiae, and similar proteins. MAPKs are important
           mediators of cellular responses to extracellular
           signals. Sty1 and Hog1 are stress-activated MAPKs that
           partipate in transcriptional regulation in response to
           stress. Sty1 is activated in response to oxidative
           stress, osmotic stress, and UV radiation. Sty1 is
           regulated by the MAP2K Wis1, which is activated by the
           MAP3Ks Wis4 and Win1, which receive signals of the
           stress condition from membrane-spanning histidine
           kinases Mak1-3. Activated Sty1 stabilizes the Atf1
           transcription factor and induces transcription of
           Atf1-dependent genes of the core environmetal stress
           response (CESR). Hog1 is the key element in the high
           osmolarity glycerol (HOG) pathway and is activated upon
           hyperosmotic stress. Activated Hog1 accumulates in the
           nucleus and regulates stress-induced transcription. The
           HOG pathway is mediated by two transmembrane
           osmosensors, Sln1 and Sho1.
          Length = 328

 Score = 37.9 bits (88), Expect = 0.002
 Identities = 21/64 (32%), Positives = 32/64 (50%), Gaps = 4/64 (6%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIG 169
            V +LLG  L  L    SR    + +     Q++  ++YVH    +HRD+KP N L  I 
Sbjct: 87  FVTELLGTDLHRLLT--SRPLEKQFIQYFLYQILRGLKYVHSAGVVHRDLKPSNIL--IN 142

Query: 170 RHCN 173
            +C+
Sbjct: 143 ENCD 146


>gnl|CDD|173688 cd05597, STKc_DMPK_like, Catalytic domain of Myotonic Dystrophy
           protein kinase-like Protein Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Myotonic Dystrophy
           protein kinase (DMPK)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The DMPK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The DMPK-like subfamily is composed of DMPK
           and DMPK-related cell division control protein 42
           (Cdc42) binding kinase (MRCK). Three isoforms of MRCK
           are known, named alpha, beta and gamma. The DMPK gene is
           implicated in myotonic dystrophy 1 (DM1), an inherited
           multisystemic disorder with symptoms that include muscle
           hyperexcitability, progressive muscle weakness and
           wasting, cataract development, testicular atrophy, and
           cardiac conduction defects. The genetic basis for DM1 is
           the mutational expansion of a CTG repeat in the 3'-UTR
           of DMPK. DMPK is expressed in skeletal and cardiac
           muscles, and in central nervous tissues. The functional
           role of DMPK is not fully understood. It may play a role
           in the signal transduction and homeostasis of calcium.
           MRCK is activated via interaction with the small GTPase
           Cdc42. MRCK/Cdc42 signaling mediates myosin-dependent
           cell motility. MRCKgamma is expressed in heart and
           skeletal muscles, unlike MRCKalpha and MRCKbeta, which
           are expressed ubiquitously.
          Length = 331

 Score = 37.5 bits (87), Expect = 0.002
 Identities = 23/70 (32%), Positives = 33/70 (47%), Gaps = 1/70 (1%)

Query: 103 QERDYNVLVMDL-LGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKP 161
           Q+ +   LVMD  +G  L  L +    R           +M+  I+ VH   ++HRDIKP
Sbjct: 71  QDENNLYLVMDYYVGGDLLTLLSKFEDRLPEDMARFYLAEMVLAIDSVHQLGYVHRDIKP 130

Query: 162 DNFLMGIGRH 171
           DN L+    H
Sbjct: 131 DNVLLDKNGH 140


>gnl|CDD|173665 cd05574, STKc_phototropin_like, Catalytic domain of
           Phototropin-like Protein Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Phototropin-like
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           phototropin-like subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Included in this subfamily
           are plant phototropins and predominantly uncharacterized
           fungal STKs whose catalytic domains resemble the
           phototropin kinase domain. One protein from Neurospora
           crassa is called nrc-2. Phototropins are blue-light
           receptors that control responses such as phototropism,
           stromatal opening, and chloroplast movement in order to
           optimize the photosynthetic efficiency of plants. They
           are light-activated STKs that contain an N-terminal
           photosensory domain and a C-terminal catalytic domain.
           The N-terminal domain contains two LOV (Light, Oxygen or
           Voltage) domains that binds FMN. Photoexcitation of the
           LOV domains results in autophosphorylation at multiple
           sites and activation of the catalytic domain. Neurospora
           crassa nrc-2 plays a role in growth and development by
           controlling entry into the conidiation program.
          Length = 316

 Score = 36.9 bits (86), Expect = 0.002
 Identities = 19/68 (27%), Positives = 33/68 (48%), Gaps = 6/68 (8%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCSRR----FTVKTVLMLADQMIGRIEYVHCKSFIHRD 158
           Q   Y  LVMD       +LF    R+     + +     A +++  +EY+H    ++RD
Sbjct: 71  QTETYLCLVMDYC--PGGELFRLLQRQPGKCLSEEVARFYAAEVLLALEYLHLLGIVYRD 128

Query: 159 IKPDNFLM 166
           +KP+N L+
Sbjct: 129 LKPENILL 136


>gnl|CDD|143371 cd07866, STKc_BUR1, Catalytic domain of the Serine/Threonine
           Kinase, Fungal Cyclin-Dependent protein Kinase Bypass
           UAS Requirement 1 and similar proteins.
           Serine/Threonine Kinases (STKs), Bypass UAS Requirement
           1 (BUR1) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           BUR1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. BUR1, also called
           SGV1, is a yeast Cyclin-Dependent protein Kinase (CDK)
           that is functionally equivalent to mammalian CDK9. It
           associates with the cyclin BUR2. BUR genes were
           orginally identified in a genetic screen as factors
           involved in general transcription. The BUR1/BUR2 complex
           phosphorylates the C-terminal domain of RNA polymerase
           II. In addition, this complex regulates histone
           modification by phosporylating Rad6 and mediating the
           association of the Paf1 complex with chromatin.
          Length = 311

 Score = 36.9 bits (86), Expect = 0.003
 Identities = 11/25 (44%), Positives = 15/25 (60%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  I Y+H    +HRDIK  N L
Sbjct: 123 QLLEGINYLHENHILHRDIKAANIL 147


>gnl|CDD|173726 cd06610, STKc_OSR1_SPAK, Catalytic domain of the Protein
           Serine/Threonine Kinases, Oxidative stress response
           kinase and Ste20-related proline alanine-rich kinase.
           Serine/threonine kinases (STKs), oxidative stress
           response kinase (OSR1) and Ste20-related proline
           alanine-rich kinase (SPAK) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The OSR1 and SPAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. SPAK is also referred to as STK39 or PASK
           (proline-alanine-rich STE20-related kinase). OSR1 and
           SPAK regulate the activity of cation-chloride
           cotransporters through direct interaction and
           phosphorylation. They are also implicated in
           cytoskeletal rearrangement, cell differentiation,
           transformation and proliferation. OSR1 and SPAK contain
           a conserved C-terminal (CCT) domain, which recognizes a
           unique motif ([RK]FX[VI]) present in their activating
           kinases (WNK1/WNK4) and their substrates.
          Length = 267

 Score = 37.0 bits (86), Expect = 0.003
 Identities = 24/64 (37%), Positives = 32/64 (50%), Gaps = 9/64 (14%)

Query: 110 LVMDLL-GPSLEDLFNFCSRR-----FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           LVM  L G SL D+      R       + TVL    +++  +EY+H    IHRDIK  N
Sbjct: 76  LVMPYLSGGSLLDIMKSSYPRGGLDEAIIATVL---KEVLKGLEYLHSNGQIHRDIKAGN 132

Query: 164 FLMG 167
            L+G
Sbjct: 133 ILLG 136


>gnl|CDD|173742 cd07845, STKc_CDK10, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 10.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein Kinase 10 (CDK10) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK10 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDK10, also called PISSLRE, is essential for
           cell growth and proliferation, and acts through the G2/M
           phase of the cell cycle. CDK10 has also been identified
           as an important factor in endocrine therapy resistance
           in breast cancer. CDK10 silencing increases the
           transcription of c-RAF and the activation of the p42/p44
           MAPK pathway, which leads to antiestrogen resistance.
           Patients who express low levels of CDK10 relapse early
           on tamoxifen.
          Length = 309

 Score = 36.6 bits (85), Expect = 0.003
 Identities = 20/65 (30%), Positives = 31/65 (47%)

Query: 102 GQERDYNVLVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKP 161
           G+  D   LVM+     L  L +     F+   V  L  Q++  ++Y+H    IHRD+K 
Sbjct: 77  GKHLDSIFLVMEYCEQDLASLLDNMPTPFSESQVKCLMLQLLRGLQYLHENFIIHRDLKV 136

Query: 162 DNFLM 166
            N L+
Sbjct: 137 SNLLL 141


>gnl|CDD|143356 cd07851, STKc_p38, Catalytic domain of the Serine/Threonine Kinase,
           p38 Mitogen-Activated Protein Kinase.  Serine/Threonine
           Kinases (STKs), p38 subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The p38 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. p38 kinases are
           mitogen-activated protein kinases (MAPKs), serving as
           important mediators of cellular responses to
           extracellular signals. They function in the regulation
           of the cell cycle, cell development, cell
           differentiation, senescence, tumorigenesis, apoptosis,
           pain development and pain progression, and immune
           responses. p38 kinases are activated by the MAPK kinases
           MKK3 and MKK6, which in turn are activated by upstream
           MAPK kinase kinases including TAK1, ASK1, and MLK3, in
           response to cellular stresses or inflammatory cytokines.
           p38 substrates include other protein kinases and factors
           that regulate transcription, nuclear export, mRNA
           stability and translation. p38 kinases are drug targets
           for the inflammatory diseases psoriasis, rheumatoid
           arthritis, and chronic pulmonary disease. Vertebrates
           contain four isoforms of p38, named alpha, beta, gamma,
           and delta, which show varying substrate specificity and
           expression patterns. p38alpha and p38beta are
           ubiquitously expressed, p38gamma is predominantly found
           in skeletal muscle, and p38delta is found in the heart,
           lung, testis, pancreas, and small intestine.
          Length = 343

 Score = 36.5 bits (85), Expect = 0.003
 Identities = 20/76 (26%), Positives = 35/76 (46%), Gaps = 13/76 (17%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF----- 164
           LV  L+G  L ++     ++ +   +  L  Q++  ++Y+H    IHRD+KP N      
Sbjct: 97  LVTHLMGADLNNIVK--CQKLSDDHIQFLVYQILRGLKYIHSAGIIHRDLKPSNIAVNED 154

Query: 165 --LM----GIGRHCNK 174
             L     G+ RH + 
Sbjct: 155 CELKILDFGLARHTDD 170


>gnl|CDD|240233 PTZ00024, PTZ00024, cyclin-dependent protein kinase; Provisional.
          Length = 335

 Score = 36.7 bits (85), Expect = 0.004
 Identities = 18/61 (29%), Positives = 32/61 (52%), Gaps = 3/61 (4%)

Query: 104 ERDYNVLVMDLLGPSLEDLFNFCSR-RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPD 162
           E D+  LVMD++   L+ + +   + R T   V  +  Q++  +  +H   F+HRD+ P 
Sbjct: 91  EGDFINLVMDIMASDLKKVVD--RKIRLTESQVKCILLQILNGLNVLHKWYFMHRDLSPA 148

Query: 163 N 163
           N
Sbjct: 149 N 149


>gnl|CDD|173670 cd05579, STKc_MAST_like, Catalytic domain of Microtubule-associated
           serine/threonine kinase-like proteins.  Serine/Threonine
           Kinases (STKs), Microtubule-associated serine/threonine
           (MAST) kinase subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The MAST kinase subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. The MAST kinase subfamily
           includes MAST kinases, MAST-like (MASTL) kinases, and
           fungal kinases with similarity to Saccharomyces
           cerevisiae Rim15 and Schizosaccharomyces pombe cek1.
           MAST kinases contain an N-terminal domain of unknown
           function, a central catalytic domain, and a C-terminal
           PDZ domain that mediates protein-protein interactions.
           MASTL kinases carry only a catalytic domain which
           contains a long insert relative to other kinases. The
           fungal kinases in this subfamily harbor other domains in
           addition to a central catalytic domain, which also
           contains an insert relative to MAST kinases like MASTL.
           Rim15 contains a C-terminal signal receiver (REC) domain
           while cek1 contains an N-terminal PAS domain. MAST
           kinases are cytoskeletal associated kinases of unknown
           function that are also expressed at neuromuscular
           junctions and postsynaptic densities. The fungal
           proteins Rim15 and cek1 are involved in the regulation
           of meiosis and mitosis, respectively.
          Length = 265

 Score = 36.1 bits (84), Expect = 0.004
 Identities = 12/20 (60%), Positives = 15/20 (75%)

Query: 146 IEYVHCKSFIHRDIKPDNFL 165
           +EY+H    IHRD+KPDN L
Sbjct: 106 LEYLHSNGIIHRDLKPDNIL 125


>gnl|CDD|173687 cd05596, STKc_ROCK, Catalytic domain of the Protein
           Serine/Threonine Kinase, Rho-associated coiled-coil
           containing protein kinase.  Serine/Threonine Kinases
           (STKs), Rho-associated coiled-coil containing protein
           kinase (ROCK) subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The ROCK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. ROCK is also referred to as Rho-associated
           kinase or simply as Rho kinase. It contains an
           N-terminal extension, a catalytic kinase domain, and a
           long C-terminal extension, which contains a coiled-coil
           region encompassing a Rho-binding domain (RBD) and a
           pleckstrin homology (PH) domain. ROCK is auto-inhibited
           by the RBD and PH domain interacting with the catalytic
           domain. It is activated via interaction with Rho GTPases
           and is involved in many cellular functions including
           contraction, adhesion, migration, motility,
           proliferation, and apoptosis. The ROCK subfamily
           consists of two isoforms, ROCK1 and ROCK2, which may be
           functionally redundant in some systems, but exhibit
           different tissue distributions. Both isoforms are
           ubiquitously expressed in most tissues, but ROCK2 is
           more prominent in brain and skeletal muscle while ROCK1
           is more pronounced in the liver, testes, and kidney.
           Studies in knockout mice result in different phenotypes,
           suggesting that the two isoforms do not compensate for
           each other during embryonic development.
          Length = 370

 Score = 36.3 bits (84), Expect = 0.004
 Identities = 26/78 (33%), Positives = 35/78 (44%), Gaps = 19/78 (24%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCS---------RRFTVKTVLMLADQMIGRIEYVHCKS 153
           Q+  Y  +VM+ + P   DL N  S         R +T + VL L          +H   
Sbjct: 113 QDDKYLYMVMEYM-PG-GDLVNLMSNYDIPEKWARFYTAEVVLALDA--------IHSMG 162

Query: 154 FIHRDIKPDNFLMGIGRH 171
           FIHRD+KPDN L+    H
Sbjct: 163 FIHRDVKPDNMLLDKSGH 180


>gnl|CDD|143333 cd05118, STKc_CMGC, Catalytic domain of CMGC family
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), CMGC family, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CMGC family is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The CMGC family consists of Cyclin-Dependent
           protein Kinases (CDKs), Mitogen-activated protein
           kinases (MAPKs) such as Extracellular signal-regulated
           kinase (ERKs), c-Jun N-terminal kinases (JNKs), and p38,
           and similar proteins. CDKs belong to a large subfamily
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. MAPKs
           serve as important mediators of cellular responses to
           extracellular signals. They control critical cellular
           functions including differentiation, proliferation,
           migration, and apoptosis. They are also implicated in
           the pathogenesis of many diseases including multiple
           types of cancer, stroke, diabetes, and chronic
           inflammation.
          Length = 283

 Score = 36.2 bits (84), Expect = 0.004
 Identities = 14/57 (24%), Positives = 24/57 (42%)

Query: 109 VLVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL 165
            LV + +   L  L     R      +     Q++  + + H    +HRD+KP+N L
Sbjct: 74  YLVFEFMDTDLYKLIKDRQRGLPESLIKSYLYQLLQGLAFCHSHGILHRDLKPENLL 130


>gnl|CDD|173743 cd07846, STKc_CDKL2_3, Catalytic domain of the Serine/Threonine
           Kinases, Cyclin-Dependent protein Kinase Like 2 and 3.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase like 2 (CDKL2) and CDKL3 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDKL2 and CDKL3
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDKL2, also called
           p56 KKIAMRE, is expressed in testis, kidney, lung, and
           brain. It functions mainly in mature neurons and plays
           an important role in learning and memory. Inactivation
           of CDKL3, also called NKIAMRE (NKIATRE in rat), by
           translocation is associated with mild mental
           retardation. It has been reported that CDKL3 is lost in
           leukemic cells having a chromosome arm 5q deletion, and
           may contribute to the transformed phenotype.
          Length = 286

 Score = 36.2 bits (84), Expect = 0.005
 Identities = 20/60 (33%), Positives = 33/60 (55%), Gaps = 8/60 (13%)

Query: 119 LEDLFNFCS--RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM---GIGRHCN 173
           L+DL  + +      V+  L    Q++  IE+ H  + IHRDIKP+N L+   G+ + C+
Sbjct: 87  LDDLEKYPNGLDESRVRKYLF---QILRGIEFCHSHNIIHRDIKPENILVSQSGVVKLCD 143


>gnl|CDD|173701 cd05610, STKc_MASTL, Catalytic domain of the Protein
           Serine/Threonine Kinase, Microtubule-associated
           serine/threonine-like kinase.  Serine/Threonine Kinases
           (STKs), Microtubule-associated serine/threonine (MAST)
           kinase subfamily, MAST-like (MASTL) kinases, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAST kinase
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAST kinases contain an N-terminal domain of
           unknown function, a central catalytic domain, and a
           C-terminal PDZ domain that mediates protein-protein
           interactions. The MASTL kinases in this group carry only
           a catalytic domain, which contains a long insertion
           relative to MAST kinases. The human MASTL gene has also
           been labelled FLJ14813. A missense mutation in FLJ14813
           is associated with autosomal dominant thrombocytopenia.
           To date, the function of MASTL is unknown.
          Length = 669

 Score = 36.4 bits (84), Expect = 0.005
 Identities = 21/68 (30%), Positives = 35/68 (51%), Gaps = 8/68 (11%)

Query: 103 QERDYNVLVMD-LLG---PSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRD 158
           Q  +   LVM+ L+G    SL  ++ +      VK +     ++   ++Y+H    IHRD
Sbjct: 74  QSANNVYLVMEYLIGGDVKSLLHIYGYFDEEMAVKYI----SEVALALDYLHRHGIIHRD 129

Query: 159 IKPDNFLM 166
           +KPDN L+
Sbjct: 130 LKPDNMLI 137


>gnl|CDD|143385 cd07880, STKc_p38gamma_MAPK12, Catalytic domain of the
           Serine/Threonine Kinase, p38gamma Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38gamma subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38gamma subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38gamma, also called MAPK12, is predominantly
           expressed in skeletal muscle. Unlike p38alpha and
           p38beta, p38gamma is insensitive to pyridinylimidazoles.
           It displays an antagonizing function compared to
           p38alpha. p38gamma inhibits, while p38alpha stimulates,
           c-Jun phosphorylation and AP-1 mediated transcription.
           p38gamma also plays a role in the signaling between Ras
           and the estrogen receptor and has been implicated to
           increase cell invasion and breast cancer progression. In
           Xenopus, p38gamma is critical in the meiotic maturation
           of oocytes.
          Length = 343

 Score = 36.1 bits (83), Expect = 0.005
 Identities = 18/55 (32%), Positives = 27/55 (49%), Gaps = 2/55 (3%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           LVM  +G  L  L      + +   +  L  QM+  ++Y+H    IHRD+KP N 
Sbjct: 97  LVMPFMGTDLGKLMKH--EKLSEDRIQFLVYQMLKGLKYIHAAGIIHRDLKPGNL 149


>gnl|CDD|143376 cd07871, STKc_PCTAIRE3, Catalytic domain of the Serine/Threonine
           Kinase, PCTAIRE-3 kinase.  Serine/Threonine Kinases
           (STKs), PCTAIRE-3 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PCTAIRE-3 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PCTAIRE-3 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PCTAIRE-3 shows a
           restricted pattern of expression and is present in
           brain, kidney, and intestine. It is elevated in
           Alzheimer's disease (AD) and has been shown to associate
           with paired helical filaments (PHFs) and stimulate Tau
           phosphorylation. As AD progresses, phosphorylated Tau
           aggregates and forms PHFs, which leads to the formation
           of neurofibrillary tangles (NFTs). In human glioma
           cells, PCTAIRE-3 induces cell cycle arrest and cell
           death.
          Length = 288

 Score = 35.8 bits (82), Expect = 0.006
 Identities = 16/57 (28%), Positives = 29/57 (50%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LV + L   L+   + C    ++  V +   Q++  + Y H +  +HRD+KP N L+
Sbjct: 80  LVFEYLDSDLKQYLDNCGNLMSMHNVKIFMFQLLRGLSYCHKRKILHRDLKPQNLLI 136


>gnl|CDD|173671 cd05580, STKc_PKA, Catalytic domain of the Protein Serine/Threonine
           Kinase, cAMP-dependent protein kinase.  Serine/Threonine
           Kinases (STKs), cAMP-dependent protein kinase (PKA)
           subfamily, catalytic (c) subunit. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PKA
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase (PI3K). This subfamily is composed of the
           cAMP-dependent proteins kinases, PKA and PRKX. The
           inactive PKA holoenzyme is a heterotetramer composed of
           two phosphorylated and active catalytic (C) subunits
           with a dimer of regulatory (R) subunits. Activation is
           achieved through the binding of the important second
           messenger cAMP to the R subunits, which leads to the
           dissociation of PKA into the R dimer and two active C
           subunits. PKA is present ubiquitously in cells and
           interacts with many different downstream targets. It
           plays a role in the regulation of diverse processes such
           as growth, development, memory, metabolism, gene
           expression, immunity, and lipolysis.
          Length = 290

 Score = 36.0 bits (84), Expect = 0.006
 Identities = 14/39 (35%), Positives = 22/39 (56%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL 165
           S RF        A Q++  +EY+H    ++RD+KP+N L
Sbjct: 95  SGRFPEPVARFYAAQVVLALEYLHSLDIVYRDLKPENLL 133


>gnl|CDD|173714 cd05625, STKc_LATS1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Large Tumor Suppressor 1.
           Serine/Threonine Kinases (STKs), Large Tumor Suppressor
           (LATS) subfamily, LATS1 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The LATS subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. LATS functions as a tumor
           suppressor and is implicated in cell cycle regulation.
           Inactivation of LATS1 in mice results in the development
           of various tumors, including sarcomas and ovarian
           cancer. Promoter methylation, loss of heterozygosity,
           and missense mutations targeting the LATS1 gene have
           also been found in human sarcomas and ovarian cancers.
           In addition, decreased expression of LATS1 is associated
           with an aggressive phenotype and poor prognosis. LATS1
           induces G2 arrest and promotes cytokinesis. It may be a
           component of the mitotic exit network in higher
           eukaryotes.
          Length = 382

 Score = 36.1 bits (83), Expect = 0.006
 Identities = 14/26 (53%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           ++   +E VH   FIHRDIKPDN L+
Sbjct: 109 ELTCAVESVHKMGFIHRDIKPDNILI 134


>gnl|CDD|173700 cd05609, STKc_MAST, Catalytic domain of the Protein
           Serine/Threonine Kinase, Microtubule-associated
           serine/threonine kinase.  Serine/Threonine Kinases
           (STKs), Microtubule-associated serine/threonine (MAST)
           kinase subfamily, MAST, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The MAST kinase subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. MAST kinases contain an
           N-terminal domain of unknown function, a central
           catalytic domain, and a C-terminal PDZ domain that
           mediates protein-protein interactions. There are four
           mammalian MAST kinases, named MAST1-MAST4. MAST1 is also
           referred to as syntrophin-associated STK (SAST), while
           MAST2 is also called MAST205. MAST kinases are
           cytoskeletal associated kinases of unknown function that
           are also expressed at neuromuscular junctions and
           postsynaptic densities. MAST1, MAST2, and MAST3 bind and
           phosphorylate the tumor suppressor PTEN, and may
           contribute to the regulation and stabilization of PTEN.
           MAST2 is involved in the regulation of the Fc-gamma
           receptor of the innate immune response in macrophages,
           and may also be involved in the regulation of the Na+/H+
           exchanger NHE3.
          Length = 305

 Score = 35.9 bits (83), Expect = 0.006
 Identities = 16/40 (40%), Positives = 23/40 (57%), Gaps = 8/40 (20%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +R +  +TVL L        EY+H    +HRD+KPDN L+
Sbjct: 103 ARMYFAETVLAL--------EYLHNYGIVHRDLKPDNLLI 134


>gnl|CDD|132952 cd06621, PKc_MAPKK_Pek1_like, Catalytic domain of fungal Pek1-like
           dual-specificity MAP kinase kinases.  Protein kinases
           (PKs), MAP kinase kinase(MAPKK) subfamily, fungal
           Pek1-like proteins, catalytic (c) domain. PKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MAPKK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising of the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK), which itself is phosphorylated and
           activated by a MAPK kinase kinase (MAPKKK or MKKK).
           Members of this group include the MAPKKs Pek1/Skh1 from
           Schizosaccharomyces pombe and MKK2 from Saccharomyces
           cerevisiae, and related proteins. Both fission yeast
           Pek1 and baker's yeast MKK2 are components of the cell
           integrity MAPK pathway. In fission yeast, Pek1
           phosphorylates and activates the MAPK Pmk1/Spm1 and is
           regulated by the MAPKKK Mkh1. In baker's yeast, the
           pathway involves the MAPK Slt2, the MAPKKs MKK1 and
           MKK2, and the MAPKKK Bck1. The cell integrity MAPK
           cascade is activated by multiple stress conditions, and
           is essential  in cell wall construction, morphogenesis,
           cytokinesis, and ion homeostasis.
          Length = 287

 Score = 35.9 bits (83), Expect = 0.007
 Identities = 13/34 (38%), Positives = 22/34 (64%)

Query: 133 KTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           K +  +A+ ++  + Y+H +  IHRDIKP N L+
Sbjct: 105 KVLGKIAESVLKGLSYLHSRKIIHRDIKPSNILL 138


>gnl|CDD|132978 cd06647, STKc_PAK_I, Catalytic domain of the Protein
           Serine/Threonine Kinase, Group I p21-activated kinase.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) subfamily, Group I, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PAK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs are
           implicated in the regulation of many cellular processes
           including growth factor receptor-mediated proliferation,
           cell polarity, cell motility, cell death and survival,
           and actin cytoskeleton organization. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           Group I PAKs, also called conventional PAKs, include
           PAK1, PAK2, and PAK3. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). They interact
           with the SH3 domain containing proteins Nck, Grb2 and
           PIX. Binding of group I PAKs to activated GTPases leads
           to conformational changes that destabilize the AID,
           allowing autophosphorylation and full activation of the
           kinase domain. Known group I PAK substrates include
           MLCK, Bad, Raf, MEK1, LIMK, Merlin, Vimentin, Myc,
           Stat5a, and Aurora A, among others.
          Length = 293

 Score = 35.6 bits (82), Expect = 0.007
 Identities = 12/23 (52%), Positives = 17/23 (73%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGI 168
           +E++H    IHRDIK DN L+G+
Sbjct: 128 LEFLHSNQVIHRDIKSDNILLGM 150


>gnl|CDD|173663 cd05572, STKc_cGK_PKG, Catalytic domain of the Protein
           Serine/Threonine Kinase, cGMP-dependent protein kinase. 
           Serine/Threonine Kinases (STKs), cGMP-dependent protein
           kinase (cGK or PKG) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The cGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Mammals have two cGK isoforms
           from different genes, cGKI and cGKII. cGKI exists as two
           splice variants, cGKI-alpha and cGKI-beta. cGK consists
           of an N-terminal regulatory domain containing a
           dimerization and an autoinhibitory pseudosubstrate
           region, two cGMP-binding domains, and a C-terminal
           catalytic domain. Binding of cGMP to both binding sites
           releases the inhibition of the catalytic center by the
           pseudosubstrate region, allowing autophosphorylation and
           activation of the kinase. cGKI is a  soluble protein
           expressed in all smooth muscles, platelets, cerebellum,
           and kidney. It is also expressed at lower concentrations
           in other tissues. cGKII is a membrane-bound protein that
           is most abundantly expressed in the intestine. It is
           also present in the brain nuclei, adrenal cortex,
           kidney, lung, and prostate. cGKI is involved in the
           regulation of smooth muscle tone, smooth cell
           proliferation, and platelet activation. cGKII plays a
           role in the regulation of secretion, such as renin
           secretion by the kidney and aldosterone secretion by the
           adrenal. It also regulates bone growth and the circadian
           rhythm.
          Length = 262

 Score = 35.3 bits (82), Expect = 0.008
 Identities = 10/26 (38%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
            ++   EY+H +  I+RD+KP+N L+
Sbjct: 101 CVVLAFEYLHNRGIIYRDLKPENLLL 126



 Score = 26.4 bits (59), Expect = 9.1
 Identities = 23/75 (30%), Positives = 28/75 (37%), Gaps = 14/75 (18%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLT--GTARYASINAHLGIEQSRRDDMESLGYVLM 60
           L+DFG AKK          L    K  T  GT  Y +    L        D  SLG +L+
Sbjct: 134 LVDFGFAKK----------LKSGQKTWTFCGTPEYVAPEIILNKGYDFSVDYWSLG-ILL 182

Query: 61  Y-FNRGSLPWQGLKE 74
           Y    G  P+    E
Sbjct: 183 YELLTGRPPFGEDDE 197


>gnl|CDD|173739 cd07838, STKc_CDK4_6_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 4 and 6-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase 4 (CDK4) and CDK6-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK4/6-like
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDK4 and CDK6
           partner with D-type cyclins to regulate the early G1
           phase of the cell cycle. They are the first kinase
           activated by mitogenic signals to release cells from the
           G0 arrested state. CDK4 and CDK6 are both expressed
           ubiquitously, associate with all three D cyclins (D1, D2
           and D3), and phosphorylate the retinoblastoma (pRb)
           protein. They are also regulated by the INK4 family of
           inhibitors which associate with either the CDK alone or
           the CDK/cyclin complex. CDK4 and CDK6 show differences
           in subcellular localization, sensitivity to some
           inhibitors, timing in activation, tumor selectivity, and
           possibly substrate profiles. Although CDK4 and CDK6 seem
           to show some redundancy, they also have discrete,
           nonoverlapping functions. CDK6 plays an important role
           in cell differentiation.
          Length = 287

 Score = 35.3 bits (82), Expect = 0.008
 Identities = 11/33 (33%), Positives = 21/33 (63%)

Query: 133 KTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL 165
           +T+  L  Q++  ++++H    +HRD+KP N L
Sbjct: 107 ETIKDLMRQLLRGVDFLHSHRIVHRDLKPQNIL 139


>gnl|CDD|143345 cd07840, STKc_CDK9_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 9-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 9 (CDK9)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK9-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. This subfamily is
           composed of CDK9 and CDK12 from higher eukaryotes, yeast
           BUR1, C-type plant CDKs (CdkC), and similar proteins.
           CDK9, BUR1, and CdkC are functionally equivalent. They
           act as a kinase for the C-terminal domain of RNA
           polymerase II and participate in regulating mutliple
           steps of gene expression including transcription
           elongation and RNA processing. CDK9 and CdkC associate
           with T-type cyclins while BUR1 associates with the
           cyclin BUR2. CDK12 is a unique CDK that contains an
           arginine/serine-rich (RS) domain, which is predominantly
           found in splicing factors. CDK12 interacts with cyclins
           L1 and L2, and participates in regulating transcription
           and alternative splicing.
          Length = 287

 Score = 35.2 bits (82), Expect = 0.009
 Identities = 12/38 (31%), Positives = 21/38 (55%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +FT   +     Q++  ++Y+H    +HRDIK  N L+
Sbjct: 96  KFTESQIKCYMKQLLEGLQYLHSNGILHRDIKGSNILI 133


>gnl|CDD|143382 cd07877, STKc_p38alpha_MAPK14, Catalytic domain of the
           Serine/Threonine Kinase, p38alpha Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38alpha subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38alpha subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38alpha, also called MAPK14, is expressed in
           most tissues and is the major isoform involved in the
           immune and inflammatory response. It is the central p38
           MAPK involved in myogenesis. It plays a role in
           regulating cell cycle check-point transition and
           promoting cell differentiation. p38alpha also regulates
           cell proliferation and death through crosstalk with the
           JNK pathway. Its substrates include MAPK activated
           protein kinase 2 (MK2), MK5, and the transcription
           factors ATF2 and Mitf.
          Length = 345

 Score = 35.0 bits (80), Expect = 0.011
 Identities = 18/55 (32%), Positives = 29/55 (52%), Gaps = 2/55 (3%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           LV  L+G  L ++     ++ T   V  L  Q++  ++Y+H    IHRD+KP N 
Sbjct: 99  LVTHLMGADLNNIVK--CQKLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNL 151


>gnl|CDD|223069 PHA03390, pk1, serine/threonine-protein kinase 1; Provisional.
          Length = 267

 Score = 34.8 bits (81), Expect = 0.011
 Identities = 17/61 (27%), Positives = 30/61 (49%), Gaps = 6/61 (9%)

Query: 108 NVLVMDLL-GPSLEDLFNFC--SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           +VL+MD +      DLF+      + +   V  +  Q++  +  +H  + IH DIK +N 
Sbjct: 84  HVLIMDYIKDG---DLFDLLKKEGKLSEAEVKKIIRQLVEALNDLHKHNIIHNDIKLENV 140

Query: 165 L 165
           L
Sbjct: 141 L 141


>gnl|CDD|173692 cd05601, STKc_CRIK, Catalytic domain of the Protein
           Serine/Threonine Kinase, Citron Rho-interacting kinase. 
           Serine/Threonine Kinases (STKs), Citron Rho-interacting
           kinase (CRIK) subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The CRIK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CRIK is also called citron kinase. It contains
           a catalytic domain, a central coiled-coil domain, and a
           C-terminal region containing a Rho-binding domain (RBD),
           a zinc finger, and a pleckstrin homology (PH) domain, in
           addition to other motifs. CRIK, an effector of the small
           GTPase Rho, plays an important function during
           cytokinesis and affects its contractile process.
           CRIK-deficient mice show severe ataxia and epilepsy as a
           result of abnormal cytokinesis and massive apoptosis in
           neuronal precursors. A Down syndrome critical region
           protein TTC3 interacts with CRIK and inhibits
           CRIK-dependent neuronal differentiation and neurite
           extension.
          Length = 330

 Score = 34.8 bits (80), Expect = 0.013
 Identities = 21/65 (32%), Positives = 32/65 (49%), Gaps = 1/65 (1%)

Query: 103 QERDYNVLVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKP 161
           Q++D   LVM+   G  L  L N    +F          +++  I  VH   ++HRDIKP
Sbjct: 71  QDKDNLYLVMEYQPGGDLLSLLNRYEDQFDEDMAQFYLAELVLAIHSVHQMGYVHRDIKP 130

Query: 162 DNFLM 166
           +N L+
Sbjct: 131 ENVLI 135


>gnl|CDD|143338 cd07833, STKc_CDKL, Catalytic domain of Cyclin-Dependent protein
           Kinase Like Serine/Threonine Kinases.  Serine/Threonine
           Kinases (STKs), Cyclin-dependent protein kinase like
           (CDKL) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           CDKL subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. This subfamily is
           composed of CDKL1-5 and similar proteins. Some CDKLs,
           like CDKL1 and CDKL3, may be implicated in
           transformation and others, like CDKL3 and CDKL5, are
           associated with mental retardation when impaired. CDKL2
           plays a role in learning and memory.
          Length = 288

 Score = 35.0 bits (81), Expect = 0.013
 Identities = 13/25 (52%), Positives = 17/25 (68%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  I Y H  + IHRDIKP+N L
Sbjct: 108 QLLQAIAYCHSHNIIHRDIKPENIL 132


>gnl|CDD|173681 cd05590, STKc_nPKC_eta, Catalytic domain of the Protein
           Serine/Threonine Kinase, Novel Protein Kinase C eta.
           Serine/Threonine Kinases (STKs), Novel Protein Kinase C
           (nPKC), eta isoform, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           nPKC subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PKCs are classified into three groups
           (classical, atypical, and novel) depending on their mode
           of activation and the structural characteristics of
           their regulatory domain. nPKCs are calcium-independent,
           but require DAG (1,2-diacylglycerol) and
           phosphatidylserine (PS) for activity. There are four
           nPKC isoforms, delta, epsilon, eta, and theta. PKC-eta
           is predominantly expressed in squamous epithelia, where
           it plays a crucial role in the signaling of cell-type
           specific differentiation. It is also expressed in pro-B
           cells and early-stage thymocytes, and acts as a key
           regulator in early B-cell development. PKC-eta increases
           glioblastoma multiforme (GBM) proliferation and
           resistance to radiation, and is being developed as a
           therapeutic target for the management of GBM.
          Length = 320

 Score = 34.9 bits (80), Expect = 0.013
 Identities = 16/46 (34%), Positives = 24/46 (52%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           SRRF        A ++   + ++H K  I+RD+K DN L+    HC
Sbjct: 90  SRRFDEARARFYAAEITSALMFLHDKGIIYRDLKLDNVLLDHEGHC 135


>gnl|CDD|133172 cd05040, PTKc_Ack_like, Catalytic domain of the Protein Tyrosine
           Kinase, Activated Cdc42-associated kinase.  Protein
           Tyrosine Kinase (PTK) family; Activated Cdc42-associated
           kinase (Ack) subfamily; catalytic (c) domain. Ack
           subfamily members include Ack1, thirty-eight-negative
           kinase 1 (Tnk1), and similar proteins. The PTKc family
           is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Ack
           subfamily members are cytoplasmic (or nonreceptor) tyr
           kinases containing an N-terminal catalytic domain, an
           SH3 domain, a Cdc42-binding CRIB domain, and a
           proline-rich region. They are mainly expressed in brain
           and skeletal tissues and are involved in the regulation
           of cell adhesion and growth, receptor degradation, and
           axonal guidance. Ack1 is also associated with
           androgen-independent  prostate cancer progression. Tnk1
           regulates TNFalpha signaling and may play an important
           role in cell death.
          Length = 257

 Score = 34.7 bits (80), Expect = 0.015
 Identities = 23/73 (31%), Positives = 35/73 (47%), Gaps = 3/73 (4%)

Query: 97  LTRWYGQERDYNV-LVMDL--LGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKS 153
           L R YG    + + +V +L  LG  L+ L       F + T+   A Q+   + Y+  K 
Sbjct: 58  LIRLYGVVLTHPLMMVTELAPLGSLLDRLRKDALGHFLISTLCDYAVQIANGMRYLESKR 117

Query: 154 FIHRDIKPDNFLM 166
           FIHRD+   N L+
Sbjct: 118 FIHRDLAARNILL 130


>gnl|CDD|143377 cd07872, STKc_PCTAIRE2, Catalytic domain of the Serine/Threonine
           Kinase, PCTAIRE-2 kinase.  Serine/Threonine Kinases
           (STKs), PCTAIRE-2 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PCTAIRE-2 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PCTAIRE-2 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PCTAIRE-2 is
           specifically expressed in neurons in the central nervous
           system, mainly in terminally differentiated neurons. It
           associates with Trap (Tudor repeat associator with
           PCTAIRE-2) and could play a role in regulating
           mitochondrial function in neurons.
          Length = 309

 Score = 34.6 bits (79), Expect = 0.016
 Identities = 16/57 (28%), Positives = 29/57 (50%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LV + L   L+   + C    ++  V +   Q++  + Y H +  +HRD+KP N L+
Sbjct: 81  LVFEYLDKDLKQYMDDCGNIMSMHNVKIFLYQILRGLAYCHRRKVLHRDLKPQNLLI 137


>gnl|CDD|173734 cd07830, STKc_MAK_like, Catalytic domain of Male germ
           cell-Associated Kinase-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Male germ
           cell-Associated Kinase (MAK)-like subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of human MAK and
           MAK-related kinase (MRK), Saccharomyces cerevisiae
           Ime2p, Schizosaccharomyces pombe Mei4-dependent protein
           3 (Mde3) and Pit1, Caenorhabditis elegans dyf-5,
           Arabidopsis thaliana MHK, and similar proteins. These
           proteins play important roles during meiosis. MAK is
           highly expressed in testicular cells specifically in the
           meiotic phase, but is not essential for spermatogenesis
           and fertility. It functions as a coactivator of the
           androgen receptor in prostate cells. MRK, also called
           Intestinal Cell Kinase (ICK), is expressed ubiquitously,
           with highest expression in the ovary and uterus. A
           missense mutation in MRK causes
           endocrine-cerebro-osteodysplasia (ECO), suggesting that
           this protein plays an important role in the development
           of many organs. MAK and MRK may be involved in
           regulating cell cycle and cell fate. Ime2p is a
           meiosis-specific kinase that is important during meiotic
           initiation and during the later stages of meiosis. Mde3
           functions downstream of the transcription factor Mei-4
           which is essential for meiotic prophase I.
          Length = 283

 Score = 34.4 bits (80), Expect = 0.020
 Identities = 10/25 (40%), Positives = 17/25 (68%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  + ++H   F HRD+KP+N L
Sbjct: 107 QILQGLAHIHKHGFFHRDLKPENLL 131


>gnl|CDD|173735 cd07831, STKc_MOK, Catalytic domain of the Serine/Threonine Kinase,
           MAPK/MAK/MRK Overlapping Kinase.  Serine/Threonine
           Kinases (STKs), MAPK/MAK/MRK Overlapping Kinase (MOK)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The MOK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MOK, also called Renal tumor antigen 1
           (RAGE-1), is widely expressed and is enriched in testis,
           kidney, lung, and brain. It is expressed in
           approximately 50% of renal cell carcinomas (RCC) and is
           a potential target for immunotherapy. MOK is stabilized
           by its association with the HSP90 molecular chaperone.
           It is induced by the transcription factor Cdx2 and may
           be involved in regulating intestinal epithelial
           development and differentiation.
          Length = 282

 Score = 34.2 bits (79), Expect = 0.021
 Identities = 18/56 (32%), Positives = 29/56 (51%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL 165
           LV +L+  +L +L     R    K V     Q++  ++++H     HRDIKP+N L
Sbjct: 77  LVFELMDMNLYELIKGRKRPLPEKRVKSYMYQLLKSLDHMHRNGIFHRDIKPENIL 132


>gnl|CDD|173740 cd07842, STKc_CDK8_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 8-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 8 (CDK8)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK8-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. This subfamily is
           composed of CDK8, CDC2L6, and similar proteins. CDK8
           functions as a negative or positive regulator of
           transcription, depending on the scenario. Together with
           its regulator, cyclin C, it reversibly associates with
           the multi-subunit core Mediator complex, a cofactor that
           is involved in regulating RNA polymerase II (RNAP
           II)-dependent transcription. CDC2L6 also associates with
           Mediator in complexes lacking CDK8. In VP16-dependent
           transcriptional activation, CDK8 and CDC2L6 exerts
           opposing effects by positive and negative regulation,
           respectively, in similar conditions.
          Length = 316

 Score = 34.2 bits (79), Expect = 0.021
 Identities = 15/45 (33%), Positives = 24/45 (53%), Gaps = 4/45 (8%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN-FLMGIGRHC 172
              VK++L    Q++  + Y+H    +HRD+KP N  +MG G   
Sbjct: 107 PSMVKSLLW---QILNGVHYLHSNWVLHRDLKPANILVMGEGPER 148


>gnl|CDD|132954 cd06623, PKc_MAPKK_plant_like, Catalytic domain of Plant
           dual-specificity MAP kinase kinases and similar
           proteins.  Protein kinases (PKs), MAP kinase kinase
           (MAPKK) subfamily, Plant MAPKKs and similar proteins,
           catalytic (c) domain. PKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine or
           tyrosine residues on protein substrates. The MAPKK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein serine/threonine
           kinases, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. The mitogen-activated protein
           (MAP) kinase signaling pathways are important mediators
           of cellular responses to extracellular signals. The
           pathways involve a triple kinase core cascade comprising
           of the MAP kinase (MAPK), which is phosphorylated and
           activated by a MAPK kinase (MAPKK or MKK), which itself
           is phosphorylated and activated by a MAPK kinase kinase
           (MAPKKK or MKKK). Members of this group include MAPKKs
           from plants, kinetoplastids, alveolates, and mycetozoa.
           The MAPKK, LmxPK4, from Leishmania mexicana, is
           important in differentiation and virulence.
           Dictyostelium discoideum MEK1 is required for proper
           chemotaxis. MEK1 null mutants display severe defects in
           cell polarization and directional movement. Plants
           contain multiple MAPKKs like other eukaryotes. The
           Arabidopsis genome encodes for 10 MAPKKs while poplar
           and rice contain 13 MAPKKs each. The functions of these
           proteins have not been fully elucidated. There is
           evidence to suggest that MAPK cascades are involved in
           plant stress responses. In Arabidopsis, MKK3 plays a
           role in pathogen signaling, MKK2 is involved in cold and
           salt stress signaling, MKK4/MKK5 participates in innate
           immunity, and MKK7 regulates basal and systemic acquired
           resistance.
          Length = 264

 Score = 34.1 bits (79), Expect = 0.022
 Identities = 14/31 (45%), Positives = 21/31 (67%), Gaps = 1/31 (3%)

Query: 137 MLADQMIGRIEYVHCKS-FIHRDIKPDNFLM 166
            +A Q++  ++Y+H K   IHRDIKP N L+
Sbjct: 103 YIARQILKGLDYLHTKRHIIHRDIKPSNLLI 133


>gnl|CDD|132960 cd06629, STKc_MAPKKK_Bck1_like, Catalytic domain of fungal
           Bck1-like MAP Kinase Kinase Kinases.  Serine/threonine
           kinases (STKs), mitogen-activated protein kinase (MAPK)
           kinase kinase (MAPKKK) subfamily, fungal Bck1-like
           proteins, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MAPKKK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include the MAPKKKs
           Saccharomyces cerevisiae Bck1 and Schizosaccharomyces
           pombe Mkh1, and related proteins. MAPKKKs phosphorylate
           and activate MAPK kinases (MAPKKs or MKKs or MAP2Ks),
           which in turn phosphorylate and activate MAPKs during
           signaling cascades that are important in mediating
           cellular responses to extracellular signals. Budding
           yeast Bck1 is part of the cell integrity MAPK pathway,
           which is activated by stresses and aggressions to the
           cell wall. The MAPKKK Bck1, MAPKKs Mkk1 and Mkk2, and
           the MAPK Slt2 make up the cascade that is important in
           the maintenance of cell wall homeostasis. Fission yeast
           Mkh1 is involved in MAPK cascades regulating cell
           morphology, cell wall integrity, salt resistance, and
           filamentous growth in response to stress.
          Length = 272

 Score = 34.0 bits (78), Expect = 0.022
 Identities = 14/38 (36%), Positives = 23/38 (60%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           RF  + V    +Q++  + Y+H K  +HRD+K DN L+
Sbjct: 104 RFEEQLVRFFTEQVLEGLAYLHSKGILHRDLKADNLLV 141


>gnl|CDD|143378 cd07873, STKc_PCTAIRE1, Catalytic domain of the Serine/Threonine
           Kinase, PCTAIRE-1 kinase.  Serine/Threonine Kinases
           (STKs), PCTAIRE-1 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PCTAIRE-1 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PCTAIRE-1 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PCTAIRE-1 is
           expressed ubiquitously and is localized in the
           cytoplasm. Its kinase activity is cell cycle dependent
           and peaks at the S and G2 phases. PCTAIRE-1 is highly
           expressed in the brain and may play a role in regulating
           neurite outgrowth. It can also associate with Trap
           (Tudor repeat associator with PCTAIRE-2), a
           physiological partner of PCTAIRE-2; with p11, a small
           dimeric protein with similarity to S100; and with 14-3-3
           proteins, mediators of phosphorylation-dependent
           interactions in many different proteins.
          Length = 301

 Score = 34.2 bits (78), Expect = 0.022
 Identities = 16/57 (28%), Positives = 28/57 (49%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LV + L   L+   + C     +  V +   Q++  + Y H +  +HRD+KP N L+
Sbjct: 81  LVFEYLDKDLKQYLDDCGNSINMHNVKLFLFQLLRGLNYCHRRKVLHRDLKPQNLLI 137


>gnl|CDD|173749 cd07855, STKc_ERK5, Catalytic domain of the Serine/Threonine
           Kinase,  Extracellular signal-Regulated Kinase 5.
           Serine/Threonine Kinases (STKs), Extracellular
           signal-Regulated Kinase 5 (ERK5) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The ERK5 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MAPKs are
           important mediators of cellular responses to
           extracellular signals. ERK5, also called Big MAPK1
           (BMK1) or MAPK7, has a unique C-terminal extension,
           making it approximately twice as big as other MAPKs.
           This extension contains transcriptional activation
           capability which is inhibited by the N-terminal half.
           ERK5 is activated in response to growth factors and
           stress by a cascade that leads to its phosphorylation by
           the MAP2K MEK5, which in turn is regulated by the MAP3Ks
           MEKK2 and MEKK3. Activated ERK5 phosphorylates its
           targets including myocyte enhancer factor 2 (MEF2),
           Sap1a, c-Myc, and RSK. It plays a role in EGF-induced
           cell proliferation during the G1/S phase transition.
           Studies on knockout mice revealed that ERK5 is essential
           for cardiovascular development and plays an important
           role in angiogenesis. It is also critical for neural
           differentiation and survival. The ERK5 pathway has been
           implicated in the pathogenesis of many diseases
           including cancer, cardiac hypertrophy, and
           atherosclerosis.
          Length = 334

 Score = 34.2 bits (79), Expect = 0.024
 Identities = 17/56 (30%), Positives = 30/56 (53%), Gaps = 1/56 (1%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL 165
           +VMDL+   L  +     +  T + +     Q++  ++Y+H  + IHRD+KP N L
Sbjct: 85  VVMDLMESDLHHII-HSDQPLTEEHIRYFLYQLLRGLKYIHSANVIHRDLKPSNLL 139


>gnl|CDD|173716 cd05627, STKc_NDR2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Nuclear Dbf2-Related kinase 2. 
           Serine/Threonine Kinases (STKs), NDR kinase subfamily,
           NDR2 isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The NDR
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. NDR kinase contains an N-terminal regulatory
           (NTR) domain and an insert within the catalytic domain
           that contains an auto-inhibitory sequence. Like many
           other AGC kinases, NDR kinase requires phosphorylation
           at two sites, the activation loop (A-loop) and the
           hydrophobic motif (HM), for activity. Higher eukaryotes
           contain two NDR isoforms, NDR1 and NDR2. Both isoforms
           play a role in proper centrosome duplication. In
           addition, NDR2 plays a role in regulating neuronal
           growth and differentiation, as well as in facilitating
           neurite outgrowth. It is also implicated in fear
           conditioning as it contributes to the coupling of
           neuronal morphological changes with fear-memory
           consolidation. NDR2 is also referred to as STK38-like.
          Length = 360

 Score = 34.2 bits (78), Expect = 0.026
 Identities = 14/26 (53%), Positives = 17/26 (65%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGIGRH 171
           I+ +H   FIHRDIKPDN L+    H
Sbjct: 114 IDAIHQLGFIHRDIKPDNLLLDAKGH 139


>gnl|CDD|132985 cd06654, STKc_PAK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 1.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 1, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK1 belongs to group I. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). PAK1 is
           important in the regulation of many cellular processes
           including cytoskeletal dynamics, cell motility, growth,
           and proliferation. Although PAK1 has been regarded
           mainly as a cytosolic protein, recent reports indicate
           that PAK1 also exists in significant amounts in the
           nucleus, where it is involved in transcription
           modulation and in cell cycle regulatory events. PAK1 is
           also involved in transformation and tumorigenesis. Its
           overexpression, hyperactivation and increased nuclear
           accumulation is correlated to breast cancer invasiveness
           and progression. Nuclear accumulation is also linked to
           tamoxifen resistance in breast cancer cells.
          Length = 296

 Score = 33.9 bits (77), Expect = 0.026
 Identities = 12/23 (52%), Positives = 17/23 (73%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGI 168
           +E++H    IHRDIK DN L+G+
Sbjct: 129 LEFLHSNQVIHRDIKSDNILLGM 151


>gnl|CDD|173723 cd06605, PKc_MAPKK, Catalytic domain of the dual-specificity
           Protein Kinase, Mitogen-Activated Protein Kinase Kinase.
            Protein kinases (PKs), MAP kinase kinase (MAPKK)
           subfamily, catalytic (c) domain. PKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MAPKK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK or MAP2K), which itself is phosphorylated
           and activated by a MAPK kinase kinase (MAPKKK or MKKK or
           MAP3K). MAPKKs are dual-specificity PKs that
           phosphorylate their downstream targets, MAPKs, at
           specific threonine and tyrosine residues. There are
           three MAPK subfamilies: extracellular signal-regulated
           kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In
           mammalian cells, there are seven MAPKKs (named MKK1-7)
           and 20 MAPKKKs. Each MAPK subfamily can be activated by
           at least two cognate MAPKKs and by multiple MAPKKKs.
          Length = 265

 Score = 33.8 bits (78), Expect = 0.027
 Identities = 18/56 (32%), Positives = 29/56 (51%), Gaps = 3/56 (5%)

Query: 112 MDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCK-SFIHRDIKPDNFLM 166
           MD  G SL+ +      R   + +  +A  ++  + Y+H K   IHRD+KP N L+
Sbjct: 81  MD--GGSLDKILKEVQGRIPERILGKIAVAVLKGLTYLHEKHKIIHRDVKPSNILV 134


>gnl|CDD|132986 cd06655, STKc_PAK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 2.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 2, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK2 belongs to group I. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). PAK2 plays a
           role in pro-apoptotic signaling. It is cleaved and
           activated by caspases leading to morphological changes
           during apoptosis. PAK2 is also activated in response to
           a variety of stresses including DNA damage,
           hyperosmolarity, serum starvation, and contact
           inhibition, and may play a role in coordinating the
           stress response. PAK2 also contributes to cancer cell
           invasion through a mechanism distinct from that of PAK1.
          Length = 296

 Score = 33.9 bits (77), Expect = 0.028
 Identities = 12/23 (52%), Positives = 17/23 (73%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGI 168
           +E++H    IHRDIK DN L+G+
Sbjct: 128 LEFLHANQVIHRDIKSDNVLLGM 150


>gnl|CDD|173712 cd05622, STKc_ROCK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Rho-associated coiled-coil
           containing protein kinase 1.  Serine/Threonine Kinases
           (STKs), ROCK subfamily, ROCK1 (or ROK-beta) isoform,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The ROCK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. ROCK contains an
           N-terminal extension, a catalytic kinase domain, and a
           C-terminal extension, which contains a coiled-coil
           region encompassing a Rho-binding domain (RBD) and a
           pleckstrin homology (PH) domain. ROCK is auto-inhibited
           by the RBD and PH domain interacting with the catalytic
           domain, and is activated via interaction with Rho
           GTPases. ROCK1 is preferentially expressed in the liver,
           lung, spleen, testes, and kidney. It mediates signaling
           from Rho to the actin cytoskeleton. It is implicated in
           the development of cardiac fibrosis, cardiomyocyte
           apoptosis, and hyperglycemia. Mice deficient with ROCK1
           display eyelids open at birth (EOB) and omphalocele
           phenotypes due to the disorganization of actin filaments
           in the eyelids and the umbilical ring.
          Length = 371

 Score = 33.8 bits (77), Expect = 0.029
 Identities = 25/78 (32%), Positives = 35/78 (44%), Gaps = 19/78 (24%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCS---------RRFTVKTVLMLADQMIGRIEYVHCKS 153
           Q+  Y  +VM+ +     DL N  S         R +T + VL L        + +H   
Sbjct: 113 QDDRYLYMVMEYMPGG--DLVNLMSNYDVPEKWARFYTAEVVLAL--------DAIHSMG 162

Query: 154 FIHRDIKPDNFLMGIGRH 171
           FIHRD+KPDN L+    H
Sbjct: 163 FIHRDVKPDNMLLDKSGH 180


>gnl|CDD|165476 PHA03210, PHA03210, serine/threonine kinase US3; Provisional.
          Length = 501

 Score = 33.9 bits (77), Expect = 0.029
 Identities = 15/31 (48%), Positives = 21/31 (67%), Gaps = 1/31 (3%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDN-FLMGIGR 170
           Q++  +EY+H K  IHRDIK +N FL   G+
Sbjct: 275 QLLCAVEYIHDKKLIHRDIKLENIFLNCDGK 305


>gnl|CDD|165473 PHA03207, PHA03207, serine/threonine kinase US3; Provisional.
          Length = 392

 Score = 34.0 bits (78), Expect = 0.029
 Identities = 14/48 (29%), Positives = 27/48 (56%), Gaps = 3/48 (6%)

Query: 121 DLFNFCSRR--FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN-FL 165
           DLF +  R     ++  + +  +++  + Y+H +  IHRD+K +N FL
Sbjct: 171 DLFTYVDRSGPLPLEQAITIQRRLLEALAYLHGRGIIHRDVKTENIFL 218


>gnl|CDD|165478 PHA03212, PHA03212, serine/threonine kinase US3; Provisional.
          Length = 391

 Score = 33.8 bits (77), Expect = 0.032
 Identities = 17/62 (27%), Positives = 30/62 (48%), Gaps = 2/62 (3%)

Query: 107 YNVLVMDLLGPSLEDLFNFCS--RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           YN     +L     DL+ + +  R   +  +L +   ++  I+Y+H    IHRDIK +N 
Sbjct: 154 YNKFTCLILPRYKTDLYCYLAAKRNIAICDILAIERSVLRAIQYLHENRIIHRDIKAENI 213

Query: 165 LM 166
            +
Sbjct: 214 FI 215


>gnl|CDD|132979 cd06648, STKc_PAK_II, Catalytic domain of the Protein
           Serine/Threonine Kinase, Group II p21-activated kinase. 
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) subfamily, Group II, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PAK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           Group II PAKs, also called non-conventional PAKs,
           include PAK4, PAK5, and PAK6. Group II PAKs contain PBD
           (p21-binding domain) and catalytic domains, but lack
           other motifs found in group I PAKs, such as an AID
           (autoinhibitory domain) and SH3 binding sites. Since
           group II PAKs do not contain an obvious AID, they may be
           regulated differently from group I PAKs. While group I
           PAKs interact with the SH3 containing proteins Nck, Grb2
           and PIX, no such binding has been demonstrated for group
           II PAKs. Some known substrates of group II PAKs are also
           substrates of group I PAKs such as Raf, BAD, LIMK and
           GEFH1. Unique group II substrates include MARK/Par-1 and
           PDZ-RhoGEF. Group II PAKs play important roles in
           filopodia formation, neuron extension, cytoskeletal
           organization, and cell survival.
          Length = 285

 Score = 33.6 bits (77), Expect = 0.033
 Identities = 16/58 (27%), Positives = 31/58 (53%), Gaps = 3/58 (5%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +VM+ L G +L D+      R   + +  +   ++  + ++H +  IHRDIK D+ L+
Sbjct: 93  VVMEFLEGGALTDIVT--HTRMNEEQIATVCLAVLKALSFLHAQGVIHRDIKSDSILL 148


>gnl|CDD|132975 cd06644, STKc_STK10_LOK, Catalytic domain of the Protein
           Serine/Threonine Kinase, STK10 or Lymphocyte-oriented
           kinase.  Serine/threonine kinases (STKs), STK10
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           STK10 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Other names for STK10 include
           lymphocyte-oriented kinase (LOK) and Xenopus polo-like
           kinase kinase 1 (xPlkk1). STK10 is highly expressed in
           lymphocytes and is responsible in regulating leukocyte
           function associated antigen (LFA-1)-mediated lymphocyte
           adhesion. It plays a role in regulating the CD28
           responsive element in T cells, and may also function as
           a regulator of polo-like kinase 1 (Plk1), a protein
           which is overexpressed in multiple tumor types.
          Length = 292

 Score = 33.5 bits (76), Expect = 0.034
 Identities = 13/39 (33%), Positives = 22/39 (56%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           R  T   + ++  QM+  ++Y+H    IHRD+K  N L+
Sbjct: 105 RGLTEPQIQVICRQMLEALQYLHSMKIIHRDLKAGNVLL 143


>gnl|CDD|143384 cd07879, STKc_p38delta_MAPK13, Catalytic domain of the
           Serine/Threonine Kinase, p38delta Mitogen-Activated
           Protein Kinase.  Serine/Threonine Kinases (STKs),
           p38delta subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           p38delta subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. p38 kinases are mitogen-activated protein
           kinases (MAPKs), serving as important mediators of
           cellular responses to extracellular signals. They are
           activated by the MAPK kinases MKK3 and MKK6, which in
           turn are activated by upstream MAPK kinase kinases
           including TAK1, ASK1, and MLK3, in response to cellular
           stresses or inflammatory cytokines. Vertebrates contain
           four isoforms of p38, named alpha, beta, gamma, and
           delta. p38delta, also called MAPK13, is found in
           skeletal muscle, heart, lung, testis, pancreas, and
           small intestine. It regulates microtubule function by
           phosphorylating Tau. It activates the c-jun promoter and
           plays a role in G2 cell cycle arrest. It also controls
           the degration of c-Myb, which is associated with myeloid
           leukemia and poor prognosis in colorectal cancer.
           p38delta is the main isoform involved in regulating the
           differentiation and apoptosis of keratinocytes.
          Length = 342

 Score = 33.7 bits (77), Expect = 0.035
 Identities = 15/44 (34%), Positives = 21/44 (47%)

Query: 121 DLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           DL        +   V  L  QM+  ++Y+H    IHRD+KP N 
Sbjct: 105 DLQKIMGHPLSEDKVQYLVYQMLCGLKYIHSAGIIHRDLKPGNL 148


>gnl|CDD|173691 cd05600, STKc_Sid2p_Dbf2p, Catalytic domain of Fungal Sid2p- and
           Dbf2p-like Protein Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), ROCK- and NDR-like
           subfamily, fungal Sid2p- and Dbf2p-like proteins,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Sid2p- and
           Dbf2p-like group is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This group contains fungal kinases including
           Schizosaccharomyces pombe Sid2p and Saccharomyces
           cerevisiae Dbf2p. Group members show similarity to NDR
           kinases in that they contain an N-terminal regulatory
           (NTR) domain and an insert within the catalytic domain
           that contains an auto-inhibitory sequence. Sid2p plays a
           crucial role in the septum initiation network (SIN) and
           in the initiation of cytokinesis. Dbf2p is important in
           regulating the mitotic exit network (MEN) and in
           cytokinesis.
          Length = 333

 Score = 33.5 bits (77), Expect = 0.036
 Identities = 12/31 (38%), Positives = 20/31 (64%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           +M   ++ +H   +IHRD+KP+NFL+    H
Sbjct: 109 EMFEAVDALHELGYIHRDLKPENFLIDASGH 139


>gnl|CDD|173717 cd05628, STKc_NDR1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Nuclear Dbf2-Related kinase 1. 
           Serine/Threonine Kinases (STKs), NDR kinase subfamily,
           NDR1 isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The NDR
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. NDR kinase contains an N-terminal regulatory
           (NTR) domain and an insert within the catalytic domain
           that contains an auto-inhibitory sequence. Like many
           other AGC kinases, NDR kinase requires phosphorylation
           at two sites, the activation loop (A-loop) and the
           hydrophobic motif (HM), for activity. Higher eukaryotes
           contain two NDR isoforms, NDR1 and NDR2. Both isoforms
           play a role in proper centrosome duplication. NDR1 is
           highly expressed in thymus, muscle, lung and spleen. It
           is not an essential protein because mice deficient of
           NDR1 remain viable and fertile. However, these mice
           develop T-cell lymphomas and appear to be hypersenstive
           to carcinogenic treatment. NDR1 appears to act as a
           tumor suppressor. NDR1 is also called STK38.
          Length = 363

 Score = 33.5 bits (76), Expect = 0.036
 Identities = 13/21 (61%), Positives = 16/21 (76%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           I+ +H   FIHRDIKPDN L+
Sbjct: 114 IDSIHQLGFIHRDIKPDNLLL 134


>gnl|CDD|177557 PHA03209, PHA03209, serine/threonine kinase US3; Provisional.
          Length = 357

 Score = 33.3 bits (76), Expect = 0.043
 Identities = 14/49 (28%), Positives = 27/49 (55%), Gaps = 3/49 (6%)

Query: 121 DLFNFC---SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           DL+ +    SR   +   L++  Q++  + Y+H +  IHRD+K +N  +
Sbjct: 142 DLYTYLTKRSRPLPIDQALIIEKQILEGLRYLHAQRIIHRDVKTENIFI 190


>gnl|CDD|133191 cd05060, PTKc_Syk_like, Catalytic domain of Spleen Tyrosine
           Kinase-like Protein Tyrosine Kinases.  Protein Tyrosine
           Kinase (PTK) family; Spleen Tyrosine Kinase (Syk)
           subfamily; catalytic (c) domain. The Syk subfamily is
           composed of Syk, ZAP-70, Shark, and similar proteins.
           The PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Syk
           subfamily kinases are cytoplasmic (or nonreceptor) tyr
           kinases containing two Src homology 2 (SH2) domains
           N-terminal to the catalytic tyr kinase domain. They are
           involved in the signaling downstream of activated
           receptors (including B-cell, T-cell, and Fc receptors)
           that contain ITAMs (immunoreceptor tyr activation
           motifs), leading to processes such as cell
           proliferation, differentiation, survival, adhesion,
           migration, and phagocytosis. Syk is important in B-cell
           receptor (BCR) signaling, while Zap-70 is primarily
           expressed in T-cells and NK cells, and is a crucial
           component in T-cell receptor (TCR) signaling. Syk also
           plays a central role in Fc receptor-mediated
           phagocytosis in the adaptive immune system. Shark is
           exclusively expressed in ectodermally derived epithelia,
           and is localized preferentially to the apical surface of
           the epithelial cells, it may play a role in a signaling
           pathway for epithelial cell polarity.
          Length = 257

 Score = 33.1 bits (76), Expect = 0.051
 Identities = 22/59 (37%), Positives = 31/59 (52%), Gaps = 4/59 (6%)

Query: 110 LVMDL--LGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LVM+L  LGP L+ L     R   V  +  LA Q+   + Y+  K F+HRD+   N L+
Sbjct: 72  LVMELAPLGPLLKYLKK--RREIPVSDLKELAHQVAMGMAYLESKHFVHRDLAARNVLL 128


>gnl|CDD|173731 cd06627, STKc_Cdc7_like, Catalytic domain of Cell division control
           protein 7-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs),  (Cdc7)-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Cdc7-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this subfamily include
           Schizosaccharomyces pombe Cdc7, Saccharomyces cerevisiae
           Cdc15, Arabidopsis thaliana mitogen-activated protein
           kinase (MAPK) kinase kinase (MAPKKK) epsilon, and
           related proteins. MAPKKKs phosphorylate and activate
           MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals. Fission yeast Cdc7
           is essential for cell division by playing a key role in
           the initiation of septum formation and cytokinesis.
           Budding yeast Cdc15 functions to coordinate mitotic exit
           with cytokinesis. Arabidopsis MAPKKK epsilon is required
           for pollen development in the plasma membrane.
          Length = 254

 Score = 33.0 bits (76), Expect = 0.058
 Identities = 11/27 (40%), Positives = 16/27 (59%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           Q++  + Y+H +  IHRDIK  N L  
Sbjct: 107 QVLQGLAYLHEQGVIHRDIKAANILTT 133


>gnl|CDD|143368 cd07863, STKc_CDK4, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 4.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase 4 (CDK4) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK4 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK4
           partners with all three D-type cyclins (D1, D2, and D3)
           and is also regulated by INK4 inhibitors. It is active
           towards the retinoblastoma (pRb) protein and plays a
           role in regulating the early G1 phase of the cell cycle.
           It is expressed ubiquitously and is localized in the
           nucleus. CDK4 also shows kinase activity towards Smad3,
           a signal transducer of transforming growth factor
           (TGF)-beta signaling which modulates transcription and
           plays a role in cell proliferation and apoptosis. CDK4
           is inhibited by the p21 inhibitor and is specifically
           mutated in human melanoma.
          Length = 288

 Score = 33.0 bits (75), Expect = 0.058
 Identities = 12/38 (31%), Positives = 23/38 (60%)

Query: 132 VKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIG 169
            +T+  L  Q +  ++++H    +HRD+KP+N L+  G
Sbjct: 107 AETIKDLMRQFLRGLDFLHANCIVHRDLKPENILVTSG 144


>gnl|CDD|214568 smart00221, STYKc, Protein kinase; unclassified specificity.
           Phosphotransferases. The specificity of this class of
           kinases can not be predicted. Possible dual-specificity
           Ser/Thr/Tyr kinase.
          Length = 258

 Score = 32.9 bits (76), Expect = 0.060
 Identities = 19/55 (34%), Positives = 25/55 (45%), Gaps = 13/55 (23%)

Query: 118 SLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           SL DL +F          L +A  M    EY+  K+FIHRD+   N L+G     
Sbjct: 101 SLSDLLSFA---------LQIARGM----EYLESKNFIHRDLAARNCLVGENLVV 142


>gnl|CDD|173753 cd07864, STKc_CDK12, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 12.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 12 (CDK12) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK12 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDK12 is also called Cdc2-related protein
           kinase 7 (CRK7) or Cdc2-related kinase
           arginine/serine-rich (CrkRS). It is a unique CDK that
           contains an arginine/serine-rich (RS) domain, which is
           predominantly found in splicing factors. CDK12 is widely
           expressed in tissues. It interacts with cyclins L1 and
           L2, and plays roles in regulating transcription and
           alternative splicing.
          Length = 302

 Score = 32.8 bits (75), Expect = 0.069
 Identities = 13/37 (35%), Positives = 21/37 (56%)

Query: 130 FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           F+   +     Q++  + Y H K+F+HRDIK  N L+
Sbjct: 113 FSEDHIKSFMKQLLEGLNYCHKKNFLHRDIKCSNILL 149


>gnl|CDD|173755 cd08215, STKc_Nek, Catalytic domain of the Protein Serine/Threonine
           Kinase, Never In Mitosis gene A-related kinase.
           Serine/Threonine Kinases (STKs), Never In Mitosis gene A
           (NIMA)-related kinase (Nek) family, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. The Nek family is
           composed of 11 different mammalian members (Nek1-11)
           with similarity to the catalytic domain of Aspergillus
           nidulans NIMA kinase, the founding member of the Nek
           family which was identified in a screen for cell cycle
           mutants that were prevented from entering mitosis. Neks
           contain a conserved N-terminal catalytic domain and a
           more divergent C-terminal regulatory region of various
           sizes and structures. They are involved in the
           regulation of downstream processes following the
           activation of Cdc2, and many of their functions are cell
           cycle-related. They play critical roles in microtubule
           dynamics during ciliogenesis and mitosis.
          Length = 258

 Score = 32.5 bits (75), Expect = 0.078
 Identities = 12/25 (48%), Positives = 17/25 (68%), Gaps = 1/25 (4%)

Query: 146 IEYVHCKSFIHRDIKPDN-FLMGIG 169
           ++Y+H +  +HRDIKP N FL   G
Sbjct: 116 LKYLHSRKILHRDIKPQNIFLTSNG 140


>gnl|CDD|173748 cd07853, STKc_NLK, Catalytic domain of the Serine/Threonine Kinase,
           Nemo-Like Kinase.  Serine/Threonine Kinases (STKs),
           Nemo-Like Kinase (NLK) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The NLK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Mitogen-activated protein
           kinases (MAPKs) are important mediators of cellular
           responses to extracellular signals. NLK is an atypical
           MAPK that is not regulated by a MAPK kinase. It
           functions downstream of the MAPK kinase kinase Tak1,
           which also plays a role in activating the JNK and p38
           MAPKs. The Tak1/NLK pathways are regulated by Wnts, a
           family of secreted proteins that is critical in the
           control of asymmetric division and cell polarity. NLK
           can phosphorylate transcription factors from the TCF/LEF
           family, inhibiting their ability to activate the
           transcription of target genes. In prostate cancer cells,
           NLK is involved in regulating androgen receptor-mediated
           transcription and its expression is altered during
           cancer progression.
          Length = 372

 Score = 32.4 bits (74), Expect = 0.082
 Identities = 24/80 (30%), Positives = 33/80 (41%), Gaps = 26/80 (32%)

Query: 108 NVL-VMDLLGPSLEDLFNFCSRRFTVKTVLMLAD---------------------QMIGR 145
           NVL  +D+L P   D F        V T LM +D                     Q++  
Sbjct: 60  NVLSALDILQPPHIDPF----EEIYVVTELMQSDLHKIIVSPQPLSSDHVKVFLYQILRG 115

Query: 146 IEYVHCKSFIHRDIKPDNFL 165
           ++Y+H    +HRDIKP N L
Sbjct: 116 LKYLHSAGILHRDIKPGNLL 135


>gnl|CDD|173633 cd05052, PTKc_Abl, Catalytic domain of the Protein Tyrosine Kinase,
           Abelson kinase.  Protein Tyrosine Kinase (PTK) family;
           Abelson (Abl) kinase; catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Abl (or
           c-Abl) is a ubiquitously-expressed cytoplasmic (or
           nonreceptor) tyr kinase that contains SH3, SH2, and tyr
           kinase domains in its N-terminal region, as well as
           nuclear localization motifs, a putative DNA-binding
           domain, and F- and G-actin binding domains in its
           C-terminal tail. It also contains a short autoinhibitory
           cap region in its N-terminus. Abl is normally inactive
           and requires phosphorylation and myristoylation for
           activation. Abl function depends on its subcellular
           localization. In the cytoplasm, Abl plays a role in cell
           proliferation and survival. In response to DNA damage or
           oxidative stress, Abl is transported to the nucleus
           where it induces apoptosis. In chronic myelogenous
           leukemia (CML) patients, an aberrant translocation
           results in the replacement of the first exon of Abl with
           the BCR (breakpoint cluster region) gene. The resulting
           BCR-Abl fusion protein is constitutively active and
           associates into tetramers, resulting in a hyperactive
           kinase sending a continuous signal. This leads to
           uncontrolled proliferation, morphological transformation
           and anti-apoptotic effects. BCR-Abl is the target of
           selective inhibitors, such as imatinib (Gleevec), used
           in the treatment of CML. Abl2, also known as ARG
           (Abelson-related gene), is thought to play a cooperative
           role with Abl in the proper development of the nervous
           system. The Tel-ARG fusion protein, resulting from
           reciprocal translocation between chromosomes 1 and 12,
           is associated with acute myeloid leukemia (AML). The TEL
           gene is a frequent fusion partner of other tyr kinase
           oncogenes, including Tel/Abl, Tel/PDGFRbeta, and
           Tel/Jak2, found in patients with leukemia and
           myeloproliferative disorders.
          Length = 263

 Score = 32.5 bits (74), Expect = 0.083
 Identities = 14/34 (41%), Positives = 22/34 (64%)

Query: 134 TVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
            +L +A Q+   +EY+  K+FIHRD+   N L+G
Sbjct: 105 VLLYMATQISSAMEYLEKKNFIHRDLAARNCLVG 138


>gnl|CDD|132987 cd06656, STKc_PAK3, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 3.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 3, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK3 belongs to group I. Group I PAKs contain a PBD
           (p21-binding domain) overlapping with an AID
           (autoinhibitory domain), a C-terminal catalytic domain,
           SH3 binding sites and a non-classical SH3 binding site
           for PIX (PAK-interacting exchange factor). PAK3 is
           highly expressed in the brain. It is implicated in
           neuronal plasticity, synapse formation, dendritic spine
           morphogenesis, cell cycle progression, neuronal
           migration, and apoptosis. Inactivating mutations in the
           PAK3 gene cause X-linked non-syndromic mental
           retardation, the severity of which depends on the site
           of the mutation.
          Length = 297

 Score = 32.4 bits (73), Expect = 0.087
 Identities = 11/23 (47%), Positives = 17/23 (73%)

Query: 146 IEYVHCKSFIHRDIKPDNFLMGI 168
           ++++H    IHRDIK DN L+G+
Sbjct: 128 LDFLHSNQVIHRDIKSDNILLGM 150


>gnl|CDD|173745 cd07848, STKc_CDKL5, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase Like 5.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase like 5 (CDKL5) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDKL5 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. Mutations in the gene encoding CDKL5,
           previously called STK9, are associated with early onset
           epilepsy and severe mental retardation [X-linked
           infantile spasm syndrome (ISSX) or West syndrome]. In
           addition, CDKL5 mutations also sometimes cause a
           phenotype similar to Rett syndrome (RTT), a progressive
           neurodevelopmental disorder. These pathogenic mutations
           are located in the N-terminal portion of the protein
           within the kinase domain.
          Length = 287

 Score = 32.3 bits (73), Expect = 0.094
 Identities = 12/26 (46%), Positives = 17/26 (65%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q+I  I + H    +HRDIKP+N L+
Sbjct: 108 QLIKAIHWCHKNDIVHRDIKPENLLI 133


>gnl|CDD|132990 cd06659, STKc_PAK6, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 6.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 6, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK6 belongs to group II. Group II PAKs contain a PBD
           (p21-binding domain) and a C-terminal catalytic domain,
           but do not harbor an AID (autoinhibitory domain) or SH3
           binding sites. PAK6 may play a role in stress responses
           through its activation by the mitogen-activated protein
           kinase (MAPK) p38 and MAPK kinase 6 (MKK6) pathway. PAK6
           is highly expressed in the brain. It is not required for
           viability, but together with PAK5, it is required for
           normal levels of locomotion and activity, and for
           learning and memory. Increased expression of PAK6 is
           found in primary and metastatic prostate cancer. PAK6
           may play a role in the regulation of motility.
          Length = 297

 Score = 32.3 bits (73), Expect = 0.095
 Identities = 19/63 (30%), Positives = 35/63 (55%), Gaps = 3/63 (4%)

Query: 109 VLVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGI 168
           VL+  L G +L D+ +    R   + +  + + ++  + Y+H +  IHRDIK D+ L+ +
Sbjct: 95  VLMEFLQGGALTDIVS--QTRLNEEQIATVCESVLQALCYLHSQGVIHRDIKSDSILLTL 152

Query: 169 -GR 170
            GR
Sbjct: 153 DGR 155


>gnl|CDD|133212 cd05081, PTKc_Jak2_Jak3_rpt2, Catalytic (repeat 2) domain of the
           Protein Tyrosine Kinases, Janus kinases 2 and 3.
           Protein Tyrosine Kinase (PTK) family; Janus kinase 2
           (Jak2) and Jak3; catalytic (c) domain (repeat 2). The
           PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Jak2 and
           Jak3 are members of the Janus kinase (Jak) subfamily of
           proteins, which are cytoplasmic (or nonreceptor) tyr
           kinases containing an N-terminal FERM domain, followed
           by a Src homology 2 (SH2) domain, a pseudokinase domain,
           and a C-terminal catalytic tyr kinase domain. Jaks are
           crucial for cytokine receptor signaling. They are
           activated by autophosphorylation upon cytokine-induced
           receptor aggregation, and subsequently trigger
           downstream signaling events such as the phosphorylation
           of signal transducers and activators of transcription
           (STATs). Jak2 is widely expressed in many tissues while
           Jak3 is expressed only in hematopoietic cells. Jak2 is
           essential for the signaling of hormone-like cytokines
           such as growth hormone, erythropoietin, thrombopoietin,
           and prolactin, as well as some IFNs and cytokines that
           signal through the IL-3 and gp130 receptors. Jak3 binds
           the shared receptor subunit common gamma chain and thus,
           is essential in the signaling of cytokines that use it
           such as IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21.
           Disruption of Jak2 in mice results in an embryonic
           lethal phenotype with multiple defects including
           erythropoietic and cardiac abnormalities. It is the only
           Jak gene that results in a lethal phenotype when
           disrupted in mice. A mutation in the pseudokinase domain
           of Jak2, V617F, is present in many myeloproliferative
           diseases, including almost all patients with
           polycythemia vera, and 50% of patients with essential
           thrombocytosis and myelofibrosis. Jak3 is important in
           lymphoid development and myeloid cell differentiation.
           Inactivating mutations in Jak3 have been reported in
           humans with severe combined immunodeficiency (SCID).
          Length = 284

 Score = 32.0 bits (73), Expect = 0.10
 Identities = 22/68 (32%), Positives = 33/68 (48%), Gaps = 3/68 (4%)

Query: 101 YGQERDYNVLVMDLLGP--SLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRD 158
           Y   R    LVM+ L P  SL D       R   + +L+ A Q+   +EY+  K ++HRD
Sbjct: 75  YSAGRRNLRLVMEYL-PYGSLRDYLQKHRERLDHRKLLLYASQICKGMEYLGSKRYVHRD 133

Query: 159 IKPDNFLM 166
           +   N L+
Sbjct: 134 LATRNILV 141


>gnl|CDD|173746 cd07850, STKc_JNK, Catalytic domain of the Serine/Threonine Kinase,
           c-Jun N-terminal Kinase.  Serine/Threonine Kinases
           (STKs), c-Jun N-terminal kinase (JNK) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The JNK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. JNKs are
           mitogen-activated protein kinases (MAPKs) that are
           involved in many stress-activated responses including
           those during inflammation, neurodegeneration, apoptosis,
           and persistent pain sensitization, among others. They
           are also essential regulators of physiological and
           pathological processes and are involved in the
           pathogenesis of several diseases such as diabetes,
           atherosclerosis, stroke, Parkinson's and Alzheimer's.
           Vetebrates harbor three different JNK genes (Jnk1, Jnk2,
           and Jnk3) that are alternatively spliced to produce at
           least 10 isoforms. JNKs are specifically activated by
           the MAPK kinases MKK4 and MKK7, which are in turn
           activated by upstream MAPK kinase kinases as a result of
           different stimuli including stresses such as ultraviolet
           (UV) irradiation, hyperosmolarity, heat shock, or
           cytokines. JNKs activate a large number of different
           substrates based on specific stimulus, cell type, and
           cellular condition, and may be implicated in seemingly
           contradictory functions.
          Length = 353

 Score = 32.4 bits (74), Expect = 0.10
 Identities = 17/54 (31%), Positives = 28/54 (51%), Gaps = 3/54 (5%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           LVM+L+  +L  +          + +  L  QM+  I+++H    IHRD+KP N
Sbjct: 98  LVMELMDANLCQVIQ---MDLDHERMSYLLYQMLCGIKHLHSAGIIHRDLKPSN 148


>gnl|CDD|173764 cd08224, STKc_Nek6_Nek7, Catalytic domain of the Protein
           Serine/Threonine Kinases, Never In Mitosis gene
           A-related kinase 6 and 7.  Serine/Threonine Kinases
           (STKs), Never In Mitosis gene A (NIMA)-related kinase 6
           (Nek6) and Nek7 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The Nek6/7 subfamily is part of a family of 11 different
           Neks (Nek1-11) that are involved in cell cycle control.
           The Nek family is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Nek6 and Nek7 are the shortest Neks,
           consisting only of the catalytic domain and a very short
           N-terminal extension. They show distinct expression
           patterns and both appear to be downstream substrates of
           Nek9. They are required for mitotic spindle formation
           and cytokinesis. They may also be regulators of the p70
           ribosomal S6 kinase.
          Length = 267

 Score = 32.0 bits (73), Expect = 0.10
 Identities = 13/40 (32%), Positives = 21/40 (52%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           R    +T+     Q+   +E++H K  +HRDIKP N  + 
Sbjct: 101 RLIPERTIWKYFVQLCSALEHMHSKRIMHRDIKPANVFIT 140


>gnl|CDD|173738 cd07835, STKc_CDK1_like, Catalytic domain of Cyclin-Dependent
           protein Kinase 1-like Serine/Threonine Kinases.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 1 (CDK1)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. This subfamily is composed of CDK1 from higher
           eukaryotes, plants, and yeasts, as well as CDK2 and
           CDK3. CDK1 is also called Cell division control protein
           2 (Cdc2) or p34 protein kinase, and is regulated by
           cyclins A, B, and E. The CDK1/cyclin A complex controls
           G2 phase entry and progression while the CDK1/cyclin B
           complex is critical for G2 to M phase transition. CDK2
           is regulated by cyclin E or cyclin A. Upon activation by
           cyclin E, it phosphorylates the retinoblastoma (pRb)
           protein which activates E2F mediated transcription and
           allows cells to move into S phase. The CDK2/cyclin A
           complex plays a role in regulating DNA replication.
           Studies in knockout mice revealed that CDK1 can
           compensate for the loss of the cdk2 gene as it can also
           bind cyclin E and drive G1 to S phase transition. CDK3
           is regulated by cyclin C and it phosphorylates pRB
           specifically during the G0/G1 transition. This
           phosphorylation is required for cells to exit G0
           efficiently and enter the G1 phase.
          Length = 283

 Score = 32.3 bits (74), Expect = 0.11
 Identities = 11/25 (44%), Positives = 15/25 (60%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  I Y H    +HRD+KP N L
Sbjct: 107 QLLQGIAYCHSHRVLHRDLKPQNLL 131


>gnl|CDD|173668 cd05577, STKc_GRK, Catalytic domain of the Protein Serine/Threonine
           Kinase, G protein-coupled Receptor Kinase.
           Serine/Threonine Kinases (STKs), G protein-coupled
           Receptor Kinase (GRK) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The GRK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. GRKs phosphorylate and
           regulate G protein-coupled receptors (GPCRs), the
           largest superfamily of cell surface receptors, which
           regulate some part of nearly all physiological
           functions. Phosphorylated GPCRs bind to arrestins, which
           prevents further G protein signaling despite the
           presence of activating ligand. GRKs contain a central
           catalytic domain, flanked by N- and C-terminal
           extensions. The N-terminus contains an RGS (regulator of
           G protein signaling) homology (RH) domain and several
           motifs. The C-terminus diverges among different groups
           of GRKs. There are seven types of GRKs, named GRK1 to
           GRK7. They are subdivided into three main groups: visual
           (GRK1/7); beta-adrenergic receptor kinases (GRK2/3); and
           GRK4-like (GRK4/5/6). Expression of GRK2/3/5/6 is
           widespread while GRK1/4/7 show a limited tissue
           distribution. The substrate spectrum of the widely
           expressed GRKs partially overlaps. GRKs play important
           roles in the cardiovascular, immune, respiratory,
           skeletal, and nervous systems.
          Length = 277

 Score = 32.1 bits (73), Expect = 0.12
 Identities = 19/65 (29%), Positives = 35/65 (53%), Gaps = 2/65 (3%)

Query: 110 LVMDLL-GPSLE-DLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           LVM L+ G  L+  ++N     F     +  A Q+I  +E++H +  ++RD+KP+N L+ 
Sbjct: 70  LVMTLMNGGDLKYHIYNVGEPGFPEARAIFYAAQIICGLEHLHQRRIVYRDLKPENVLLD 129

Query: 168 IGRHC 172
              + 
Sbjct: 130 DHGNV 134


>gnl|CDD|177649 PLN00009, PLN00009, cyclin-dependent kinase A; Provisional.
          Length = 294

 Score = 32.1 bits (73), Expect = 0.12
 Identities = 18/50 (36%), Positives = 24/50 (48%), Gaps = 5/50 (10%)

Query: 124 NFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHCN 173
           +F      +KT L    Q++  I Y H    +HRD+KP N L  I R  N
Sbjct: 96  DFAKNPRLIKTYLY---QILRGIAYCHSHRVLHRDLKPQNLL--IDRRTN 140


>gnl|CDD|132956 cd06625, STKc_MEKK3_like, Catalytic domain of MAP/ERK kinase kinase
           3-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 3
           (MEKK3)-like subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The MEKK3-like subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. This subfamily is composed of
           MEKK3, MEKK2, and related proteins, all containing an
           N-terminal PB1 domain, which mediates oligomerization,
           and a C-terminal catalytic domain. MEKK2 and MEKK3 are
           mitogen-activated protein kinase (MAPK) kinase kinases
           (MAPKKKs or MKKKs or MAP3Ks), proteins that
           phosphorylate and activate MAPK kinases (MAPKKs or MKKs
           or MAP2Ks), which in turn phosphorylate and activate
           MAPKs during signaling cascades that are important in
           mediating cellular responses to extracellular signals.
           MEKK2 and MEKK3 activate MEK5 (also called MKK5), which
           activates extracellular signal-regulated kinase 5
           (ERK5). The ERK5 cascade plays roles in promoting cell
           proliferation, differentiation, neuronal survival, and
           neuroprotection. MEKK3 plays an essential role in
           embryonic angiogenesis and early heart development.
           MEKK2 and MEKK3 can also activate the MAPKs, c-Jun
           N-terminal kinase (JNK) and p38, through their
           respective MAPKKs.
          Length = 263

 Score = 32.1 bits (73), Expect = 0.12
 Identities = 23/80 (28%), Positives = 39/80 (48%), Gaps = 18/80 (22%)

Query: 96  KLTRWYGQERDYNVL--VMDLL-GPSLED-------LFNFCSRRFTVKTVLMLADQMIGR 145
           ++ ++YG  RD   L   M+ + G S++D       L    +R++T         Q++  
Sbjct: 65  RIVQYYGCLRDDETLSIFMEYMPGGSVKDQLKAYGALTETVTRKYT--------RQILEG 116

Query: 146 IEYVHCKSFIHRDIKPDNFL 165
           +EY+H    +HRDIK  N L
Sbjct: 117 VEYLHSNMIVHRDIKGANIL 136


>gnl|CDD|197581 smart00219, TyrKc, Tyrosine kinase, catalytic domain.
           Phosphotransferases. Tyrosine-specific kinase subfamily.
          Length = 257

 Score = 31.7 bits (73), Expect = 0.13
 Identities = 19/55 (34%), Positives = 25/55 (45%), Gaps = 13/55 (23%)

Query: 118 SLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           SL DL +F          L +A  M    EY+  K+FIHRD+   N L+G     
Sbjct: 100 SLSDLLSFA---------LQIARGM----EYLESKNFIHRDLAARNCLVGENLVV 141


>gnl|CDD|133246 cd05115, PTKc_Zap-70, Catalytic domain of the Protein Tyrosine
           Kinase, Zeta-chain-associated protein of 70kDa.  Protein
           Tyrosine Kinase (PTK) family; Zeta-chain-associated
           protein of 70kDa (Zap-70); catalytic (c) domain. The
           PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Zap-70 is
           a member of the Syk subfamily of kinases, which are
           cytoplasmic (or nonreceptor) tyr kinases containing two
           Src homology 2 (SH2) domains N-terminal to the catalytic
           tyr kinase domain. Zap-70 is primarily expressed in
           T-cells and NK cells, and is a crucial component in
           T-cell receptor (TCR) signaling. Zap-70 binds the
           phosphorylated ITAM (immunoreceptor tyr activation
           motif) sequences of the activated TCR zeta-chain through
           its SH2 domains, leading to its phosphorylation and
           activation. It then phosphorylates target proteins,
           which propagate the signals to downstream pathways.
           Zap-70 is hardly detected in normal peripheral B-cells,
           but is present in some B-cell malignancies. It is used
           as a diagnostic marker for chronic lymphocytic leukemia
           (CLL) as it is associated with the more aggressive
           subtype of the disease.
          Length = 257

 Score = 31.8 bits (72), Expect = 0.14
 Identities = 20/67 (29%), Positives = 35/67 (52%), Gaps = 2/67 (2%)

Query: 109 VLVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           +LVM++  G  L    +      TV  V+ L  Q+   ++Y+  K+F+HRD+   N L+ 
Sbjct: 70  MLVMEMASGGPLNKFLSGKKDEITVSNVVELMHQVSMGMKYLEGKNFVHRDLAARNVLL- 128

Query: 168 IGRHCNK 174
           + +H  K
Sbjct: 129 VNQHYAK 135


>gnl|CDD|133211 cd05080, PTKc_Tyk2_rpt2, Catalytic (repeat 2) domain of the Protein
           Tyrosine Kinase, Tyrosine kinase 2.  Protein Tyrosine
           Kinase (PTK) family; Tyrosine kinase 2 (Tyk2); catalytic
           (c) domain (repeat 2). The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Tyk2 is a member of the
           Janus kinase (Jak) subfamily of proteins, which are
           cytoplasmic (or nonreceptor) tyr kinases containing an
           N-terminal FERM domain, followed by a Src homology 2
           (SH2) domain, a pseudokinase domain, and a C-terminal
           tyr kinase catalytic domain. Jaks are crucial for
           cytokine receptor signaling. They are activated by
           autophosphorylation upon cytokine-induced receptor
           aggregation, and subsequently trigger downstream
           signaling events such as the phosphorylation of signal
           transducers and activators of transcription (STATs).
           Tyk2 is widely expressed in many tissues. It is involved
           in signaling via the cytokine receptors IFN-alphabeta,
           IL-6, IL-10, IL-12, IL-13, and IL-23. It mediates cell
           surface urokinase receptor (uPAR) signaling and plays a
           role in modulating vascular smooth muscle cell (VSMC)
           functional behavior in response to injury. Tyk2 is also
           important in dendritic cell function and T helper (Th)1
           cell differentiation. A homozygous mutation of Tyk2 was
           found in a patient with hyper-IgE syndrome (HIES), a
           primary immunodeficiency characterized by recurrent skin
           abscesses, pneumonia, and elevated serum IgE. This
           suggests that Tyk2 may play important roles in multiple
           cytokine signaling involved in innate and adaptive
           immunity.
          Length = 283

 Score = 31.8 bits (72), Expect = 0.16
 Identities = 11/32 (34%), Positives = 20/32 (62%)

Query: 135 VLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +L+ A Q+   + Y+H + +IHRD+   N L+
Sbjct: 109 LLLFAQQICEGMAYLHSQHYIHRDLAARNVLL 140


>gnl|CDD|173732 cd06628, STKc_MAPKKK_Byr2_like, Catalytic domain of fungal
           Byr2-like MAP Kinase Kinase Kinases.  Serine/threonine
           kinases (STKs), mitogen-activated protein kinase (MAPK)
           kinase kinase (MAPKKK) subfamily, fungal Byr2-like
           proteins, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MAPKKK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of this group include the MAPKKKs
           Schizosaccharomyces pombe Byr2, Saccharomyces cerevisiae
           and Cryptococcus neoformans Ste11, and related proteins.
           They contain an N-terminal SAM (sterile alpha-motif)
           domain, which mediates protein-protein interaction, and
           a C-terminal catalytic domain. MAPKKKs phosphorylate and
           activate MAPK kinases (MAPKKs or MKKs or MAP2Ks), which
           in turn phosphorylate and activate MAPKs during
           signaling cascades that are important in mediating
           cellular responses to extracellular signals. Fission
           yeast Byr2 is regulated by Ras1. It responds to
           pheromone signaling and controls mating through the MAPK
           pathway. Budding yeast Ste11 functions in MAPK cascades
           that regulate mating, high osmolarity glycerol, and
           filamentous growth responses.
          Length = 267

 Score = 31.4 bits (71), Expect = 0.17
 Identities = 11/26 (42%), Positives = 17/26 (65%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  + Y+H +  IHRDIK  N L+
Sbjct: 114 QILKGLNYLHNRGIIHRDIKGANILV 139


>gnl|CDD|173744 cd07847, STKc_CDKL1_4, Catalytic domain of the Serine/Threonine
           Kinases, Cyclin-Dependent protein Kinase Like 1 and 4.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase like 1 (CDKL1) and CDKL4 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDKL1 and CDKL4
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. CDKL1, also called
           p42 KKIALRE, is a glial protein that is upregulated in
           gliosis. It is present in neuroblastoma and A431 human
           carcinoma cells, and may be implicated in neoplastic
           transformation. The function of CDKL4 is unknown.
          Length = 286

 Score = 31.6 bits (72), Expect = 0.18
 Identities = 10/26 (38%), Positives = 17/26 (65%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q +  + + H  + IHRD+KP+N L+
Sbjct: 108 QTLQAVNFCHKHNCIHRDVKPENILI 133


>gnl|CDD|140289 PTZ00263, PTZ00263, protein kinase A catalytic subunit;
           Provisional.
          Length = 329

 Score = 31.7 bits (72), Expect = 0.18
 Identities = 11/20 (55%), Positives = 16/20 (80%)

Query: 147 EYVHCKSFIHRDIKPDNFLM 166
           EY+H K  I+RD+KP+N L+
Sbjct: 132 EYLHSKDIIYRDLKPENLLL 151


>gnl|CDD|173747 cd07852, STKc_MAPK15, Catalytic domain of the Serine/Threonine
           Kinase, Mitogen-Activated Protein Kinase 15.
           Serine/Threonine Kinases (STKs), Mitogen-Activated
           Protein Kinase 15 (MAPK15) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAPK15 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MAPKs are
           important mediators of cellular responses to
           extracellular signals. Human MAPK15 is also called
           Extracellular signal Regulated Kinase 8 (ERK8) while the
           rat protein is called ERK7. ERK7 and ERK8 display both
           similar and different biochemical properties. They
           autophosphorylate and activate themselves and do not
           require upstream activating kinases. ERK7 is
           constitutively active and is not affected by
           extracellular stimuli whereas ERK8 shows low basal
           activity and is activated by DNA-damaging agents. ERK7
           and ERK8 also have different substrate profiles. Genome
           analysis shows that they are orthologs with similar gene
           structures. ERK7 and ERK 8 may be involved in the
           signaling of some nuclear receptor transcription
           factors. ERK7 regulates hormone-dependent degradation of
           estrogen receptor alpha while ERK8 down-regulates the
           transcriptional co-activation androgen and
           glucocorticoid receptors.
          Length = 337

 Score = 31.4 bits (72), Expect = 0.18
 Identities = 11/25 (44%), Positives = 18/25 (72%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  ++Y+H  + IHRD+KP N L
Sbjct: 115 QLLKALKYIHSGNVIHRDLKPSNIL 139


>gnl|CDD|240344 PTZ00283, PTZ00283, serine/threonine protein kinase; Provisional.
          Length = 496

 Score = 31.8 bits (72), Expect = 0.19
 Identities = 15/40 (37%), Positives = 22/40 (55%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +R F      +L  Q++  + +VH K  IHRDIK  N L+
Sbjct: 137 NRTFREHEAGLLFIQVLLAVHHVHSKHMIHRDIKSANILL 176


>gnl|CDD|143363 cd07858, STKc_TEY_MAPK_plant, Catalytic domain of the
           Serine/Threonine Kinases, TEY Mitogen-Activated Protein
           Kinases from Plants.  Serine/Threonine Kinases (STKs),
           Plant TEY Mitogen-Activated Protein Kinase (MAPK)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The TEY
           MAPK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAPKs are important mediators of cellular
           responses to extracellular signals. In plants, MAPKs are
           associated with physiological, developmental, hormonal,
           and stress responses. Some plants show numerous gene
           duplications of MAPKs. Arabidopsis thaliana harbors at
           least 20 MAPKs, named AtMPK1-20. There are two subtypes
           of plant MAPKs based on the conserved phosphorylation
           motif present in the activation loop, TEY and TDY. This
           subfamily represents the TEY subtype and is further
           subdivided into three groups (A, B, and C). Group A is
           represented by AtMPK3, AtMPK6, Nicotiana tabacum BTF4
           (NtNTF4), among others. They are mostly involved in
           environmental and hormonal responses. AtMPK3 and  AtMPK6
           are also key regulators for stomatal development and
           patterning. Group B is represented by AtMPK4, AtMPK13,
           and NtNTF6, among others. They may be involved in both
           cell division and environmental stress response. AtMPK4
           also participates in regulating innate immunity. Group C
           is represented by AtMPK1, AtMPK2, NtNTF3, Oryza sativa
           MAPK4 (OsMAPK4), among others. They may also be involved
           in stress responses. AtMPK1 and AtMPK2 are activated
           following mechanical injury and in the presence of
           stress chemicals such as jasmonic acid, hydrogen
           peroxide and abscisic acid. OsMAPK4 is also called
           OsMSRMK3 for Multiple Stress-Responsive MAPK3.
          Length = 337

 Score = 31.2 bits (71), Expect = 0.21
 Identities = 10/26 (38%), Positives = 19/26 (73%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  ++Y+H  + +HRD+KP N L+
Sbjct: 116 QLLRGLKYIHSANVLHRDLKPSNLLL 141


>gnl|CDD|143375 cd07870, STKc_PFTAIRE2, Catalytic domain of the Serine/Threonine
           Kinase, PFTAIRE-2 kinase.  Serine/Threonine Kinases
           (STKs), PFTAIRE-2 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PFTAIRE-2 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PFTAIRE-2 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PFTAIRE-2 is also
           referred to as ALS2CR7 (amyotrophic lateral sclerosis 2
           (juvenile) chromosome region candidate 7). It may be
           associated with amyotrophic lateral sclerosis 2 (ALS2),
           an autosomal recessive form of juvenile ALS. The
           function of PFTAIRE-2 is not yet known.
          Length = 291

 Score = 31.1 bits (70), Expect = 0.21
 Identities = 11/32 (34%), Positives = 20/32 (62%)

Query: 135 VLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           V +   Q++  + Y+H +  +HRD+KP N L+
Sbjct: 105 VRLFMFQLLRGLAYIHGQHILHRDLKPQNLLI 136


>gnl|CDD|132940 cd06609, STKc_MST3_like, Catalytic domain of Mammalian Ste20-like
           protein kinase 3-like Protein Serine/Threonine Kinases. 
           Serine/threonine kinases (STKs), mammalian Ste20-like
           protein kinase 3 (MST3)-like subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MST3-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of MST3, MST4,
           STK25, Schizosaccharomyces pombe Nak1 and Sid1,
           Saccharomyces cerevisiae sporulation-specific protein 1
           (SPS1), and related proteins. Nak1 is required by
           fission yeast for polarizing the tips of actin
           cytoskeleton and is involved in cell growth, cell
           separation, cell morphology and cell-cycle progression.
           Sid1 is a component in the septation initiation network
           (SIN) signaling pathway, and plays a role in
           cytokinesis. SPS1 plays a role in regulating proteins
           required for spore wall formation. MST4 plays a role in
           mitogen-activated protein kinase (MAPK) signaling during
           cytoskeletal rearrangement, morphogenesis, and
           apoptosis. MST3 phosphorylates the STK NDR and may play
           a role in cell cycle progression and cell morphology.
           STK25 may play a role in the regulation of cell
           migration and polarization.
          Length = 274

 Score = 31.0 bits (71), Expect = 0.25
 Identities = 19/72 (26%), Positives = 36/72 (50%), Gaps = 5/72 (6%)

Query: 98  TRWYGQ-ERDYNV-LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSF 154
           T++YG   +   + ++M+   G S  DL      +     +  +  +++  +EY+H +  
Sbjct: 62  TKYYGSFLKGSKLWIIMEYCGGGSCLDLLK--PGKLDETYIAFILREVLLGLEYLHEEGK 119

Query: 155 IHRDIKPDNFLM 166
           IHRDIK  N L+
Sbjct: 120 IHRDIKAANILL 131


>gnl|CDD|132942 cd06611, STKc_SLK_like, Catalytic domain of Ste20-like kinase-like
           Protein Serine/Threonine Kinases.  Serine/threonine
           kinases (STKs), Ste20-like kinase (SLK)-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The SLK-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. Members of the subfamily include SLK, STK10
           (also called LOK for lymphocyte-oriented kinase), SmSLK
           (Schistosoma mansoni SLK), and related proteins. SLK
           promotes apoptosis through apoptosis signal-regulating
           kinase 1 (ASK1) and the mitogen-activated protein kinase
           (MAPK) p38. It also plays a role in mediating actin
           reorganization. STK10 is responsible in regulating the
           CD28 responsive element in T cells, as well as leukocyte
           function associated antigen (LFA-1)-mediated lymphocyte
           adhesion. SmSLK is capable of activating the MAPK Jun
           N-terminal kinase (JNK) pathway in human embryonic
           kidney (HEK) cells as well as in Xenopus oocytes. It may
           participate in regulating MAPK cascades during
           host-parasite interactions.
          Length = 280

 Score = 30.9 bits (70), Expect = 0.25
 Identities = 14/51 (27%), Positives = 25/51 (49%)

Query: 116 GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           G +L+ +     R  T   +  +  QM+  + ++H    IHRD+K  N L+
Sbjct: 86  GGALDSIMLELERGLTEPQIRYVCRQMLEALNFLHSHKVIHRDLKAGNILL 136


>gnl|CDD|132961 cd06630, STKc_MEKK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, MAP/ERK kinase kinase 1.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 1
           (MEKK1) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MEKK1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MEKK1 is a mitogen-activated protein kinase
           (MAPK) kinase kinase (MAPKKK or MKKK or MAP3K), that
           phosphorylates and activates MAPK kinases (MAPKKs or
           MKKs or MAP2Ks), which in turn phosphorylate and
           activate MAPKs during signaling cascades that are
           important in mediating cellular responses to
           extracellular signals. MEKK1 activates the extracellular
           signal-regulated kinase 1/2 (ERK1/2) and c-Jun
           N-terminal kinase (JNK) pathways by activating their
           respective MAPKKs, MEK1/2 and MKK4/MKK7, respectively.
           MEKK1 is important in regulating cell survival and
           apoptosis. MEKK1 also plays a role in cell migration,
           tissue maintenance and homeostasis, and wound healing.
          Length = 268

 Score = 31.0 bits (70), Expect = 0.27
 Identities = 19/80 (23%), Positives = 38/80 (47%), Gaps = 7/80 (8%)

Query: 97  LTRWYG---QERDYNVLVMDLLGPSLEDLF-NFCSRRFTVKTVLMLADQMIGRIEYVHCK 152
           + R  G   ++  +N+ V  + G S+  L   + +  F    ++   +Q++  + Y+H  
Sbjct: 65  IIRMLGATCEDSHFNLFVEWMAGGSVSHLLSKYGA--FKEAVIINYTEQLLRGLSYLHEN 122

Query: 153 SFIHRDIKPDNFLM-GIGRH 171
             IHRD+K  N L+   G+ 
Sbjct: 123 QIIHRDVKGANLLIDSTGQR 142


>gnl|CDD|173759 cd08219, STKc_Nek3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 3.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 3 (Nek3) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek3 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek3 is primarily
           localized in the cytoplasm and shows no cell
           cycle-dependent changes in its activity. It is present
           in the axons of neurons and affects morphogenesis and
           polarity through its regulation of microtubule
           acetylation. Nek3 modulates the signaling of the
           prolactin receptor through its activation of Vav2 and
           contributes to prolactin-mediated motility of breast
           cancer cells.
          Length = 255

 Score = 30.7 bits (69), Expect = 0.28
 Identities = 13/39 (33%), Positives = 21/39 (53%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           + F   T+L    QM   ++++H K  +HRDIK  N  +
Sbjct: 95  KLFPEDTILQWFVQMCLGVQHIHEKRVLHRDIKSKNIFL 133


>gnl|CDD|173694 cd05603, STKc_SGK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Serum- and
           Glucocorticoid-induced Kinase 2.  Serine/Threonine
           Kinases (STKs), Serum- and Glucocorticoid-induced Kinase
           (SGK) subfamily, SGK2 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The SGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. There are three isoforms of
           SGK, named SGK1, SGK2, and SGK3. SGK2 shows a more
           restricted distribution that SGK1 and is most abundantly
           expressed in epithelial tissues including kidney, liver,
           pancreas, and the choroid plexus of the brain. In vitro
           cellular assays show that SGK2 can stimulate the
           activity of ion channels, the glutamate transporter
           EEAT4, and the glutamate receptors, GluR6 and GLUR1.
          Length = 321

 Score = 30.7 bits (69), Expect = 0.29
 Identities = 13/39 (33%), Positives = 21/39 (53%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           R F        A ++   I Y+H  + I+RD+KP+N L+
Sbjct: 91  RCFLEPRARFYAAEVASAIGYLHSLNIIYRDLKPENILL 129


>gnl|CDD|143374 cd07869, STKc_PFTAIRE1, Catalytic domain of the Serine/Threonine
           Kinase, PFTAIRE-1 kinase.  Serine/Threonine Kinases
           (STKs), PFTAIRE-1 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The PFTAIRE-1 subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. PFTAIRE-1 shares sequence
           similarity with Cyclin-Dependent Kinases (CDKs), which
           belong to a large family of STKs that are regulated by
           their cognate cyclins. Together, CDKs and cyclins are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. PFTAIRE-1 is
           widely expressed except in the spleen and thymus. It is
           highly expressed in the brain, heart, pancreas, testis,
           and ovary, and is localized in the cytoplasm. It is
           regulated by cyclin D3 and is inhibited by the p21 cell
           cycle inhibitor. It has also been shown to interact with
           the membrane-associated cyclin Y, which recruits the
           protein to the plasma membrane.
          Length = 303

 Score = 30.8 bits (69), Expect = 0.32
 Identities = 10/26 (38%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  + Y+H +  +HRD+KP N L+
Sbjct: 111 QLLRGLSYIHQRYILHRDLKPQNLLI 136


>gnl|CDD|143372 cd07867, STKc_CDC2L6, Catalytic domain of Serine/Threonine Kinase,
           Cell Division Cycle 2-like 6.  Serine/Threonine Kinases
           (STKs), Cell Division Cycle 2-like 6 (CDC2L6) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDC2L6 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDC2L6 is also called CDK8-like and was
           previously referred to as CDK11. However, this is a
           confusing nomenclature as CDC2L6 is distinct from
           CDC2L1, which is represented by the two protein products
           from its gene, called CDK11(p110) and CDK11(p58), as
           well as the caspase-processed CDK11(p46). CDK11(p110),
           CDK11(p58), and CDK11(p46)do not belong to this
           subfamily. CDC2L6 is an associated protein of Mediator,
           a multiprotein complex that provides a platform to
           connect transcriptional and chromatin regulators and
           cofactors, in order to activate and mediate RNA
           polymerase II transcription. CDC2L6 is localized mainly
           in the nucleus amd exerts an opposing effect to CDK8 in
           VP16-dependent transcriptional activation by being a
           negative regulator.
          Length = 317

 Score = 30.8 bits (69), Expect = 0.33
 Identities = 18/42 (42%), Positives = 25/42 (59%), Gaps = 4/42 (9%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL-MGIG 169
           R  VK++L    Q++  I Y+H    +HRD+KP N L MG G
Sbjct: 107 RSMVKSLLY---QILDGIHYLHANWVLHRDLKPANILVMGEG 145


>gnl|CDD|99989 cd03819, GT1_WavL_like, This family is most closely related to the
           GT1 family of glycosyltransferases. WavL in Vibrio
           cholerae has been shown to be involved in the
           biosynthesis of the lipopolysaccharide core.
          Length = 355

 Score = 30.7 bits (70), Expect = 0.34
 Identities = 15/52 (28%), Positives = 21/52 (40%), Gaps = 9/52 (17%)

Query: 56  GYVLMYFNRGSLP---WQGLKETFNTGGLIVPKSKTRKLALPSKLTRWYGQE 104
           G  L  F+ G++P      L   +              + LP +LTRW GQE
Sbjct: 156 GVDLDRFDPGAVPPERILALAREWP------LPKGKPVILLPGRLTRWKGQE 201


>gnl|CDD|173769 cd08229, STKc_Nek7, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 7.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 7 (Nek7) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek7 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek7 is required
           for mitotic spindle formation and cytokinesis. It is
           enriched in the centrosome and is critical for
           microtubule nucleation. Nek7 is activated by Nek9 during
           mitosis, and may regulate the p70 ribosomal S6 kinase.
          Length = 267

 Score = 30.8 bits (69), Expect = 0.34
 Identities = 15/38 (39%), Positives = 22/38 (57%), Gaps = 1/38 (2%)

Query: 133 KTVLMLADQMIGRIEYVHCKSFIHRDIKPDN-FLMGIG 169
           KTV     Q+   +E++H +  +HRDIKP N F+   G
Sbjct: 106 KTVWKYFVQLCSALEHMHSRRVMHRDIKPANVFITATG 143


>gnl|CDD|173699 cd05608, STKc_GRK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 1.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK1
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors, which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK1, also called rhodopsin kinase,
           belongs to the visual group of GRKs and is expressed in
           retinal cells. It phosphorylates rhodopsin in rod cells,
           which leads to termination of the phototransduction
           cascade. Mutations in GRK1 are associated to a
           recessively inherited form of stationary nightblindness
           called Oguchi disease.
          Length = 280

 Score = 30.6 bits (69), Expect = 0.34
 Identities = 11/26 (42%), Positives = 20/26 (76%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q+I  +E++H +  I+RD+KP+N L+
Sbjct: 105 QIISGLEHLHQRRIIYRDLKPENVLL 130


>gnl|CDD|143344 cd07839, STKc_CDK5, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 5.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 5 (CDK5) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK5 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK5
           is unusual in that it is regulated by non-cyclin
           proteins, p35 and p39. It is highly expressed in the
           nervous system and is critical in normal neural
           development and function. It plays a role in neuronal
           migration and differentiation, and is also important in
           synaptic plasticity and learning. CDK5 also participates
           in protecting against cell death and promoting
           angiogenesis. Impaired CDK5 activity is implicated in
           Alzheimer's disease, amyotrophic lateral sclerosis,
           Parkinson's disease, Huntington's disease and acute
           neuronal injury.
          Length = 284

 Score = 30.5 bits (69), Expect = 0.35
 Identities = 15/57 (26%), Positives = 28/57 (49%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LV +     L+  F+ C+     + V     Q++  + + H  + +HRD+KP N L+
Sbjct: 76  LVFEYCDQDLKKYFDSCNGDIDPEIVKSFMFQLLKGLAFCHSHNVLHRDLKPQNLLI 132


>gnl|CDD|143380 cd07875, STKc_JNK1, Catalytic domain of the Serine/Threonine
           Kinase, c-Jun N-terminal Kinase 1.  Serine/Threonine
           Kinases (STKs), c-Jun N-terminal kinase 1 (JNK1)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           JNK1 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. JNKs are mitogen-activated protein kinases
           (MAPKs) that are involved in many stress-activated
           responses including those during inflammation,
           neurodegeneration, apoptosis, and persistent pain
           sensitization, among others. Vetebrates harbor three
           different JNK genes (Jnk1, Jnk2, and Jnk3). JNK1, like
           JNK2, is expressed in every cell and tissue type.
           Initially it was thought that JNK1 and JNK2 were
           functionally redundant as mice deficient in either genes
           (Jnk1 or Jnk2) could survive but disruption of both
           genes resulted in lethality. However, recent studies
           have shown that JNK1 and JNK2 perform distinct functions
           through specific binding partners and substrates. JNK1
           specifically binds with JAMP (JNK1-associated membrane
           protein), which regulates the duration of JNK1 activity
           in response to stimuli. Specific JNK1 substrates include
           Itch and SG10, which are implicated in Th2 responses and
           airway inflammation, and microtubule dynamics and
           axodendritic length, respectively. Mice deficient in
           Jnk1 are protected against arthritis, obesity, type 2
           diabetes, cardiac cell death, and non-alcoholic liver
           disease, suggesting that JNK1 may play roles in the
           pathogenesis of these diseases.
          Length = 364

 Score = 30.8 bits (69), Expect = 0.35
 Identities = 11/26 (42%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           QM+  I+++H    IHRD+KP N ++
Sbjct: 134 QMLCGIKHLHSAGIIHRDLKPSNIVV 159


>gnl|CDD|143364 cd07859, STKc_TDY_MAPK_plant, Catalytic domain of the
           Serine/Threonine Kinases, TDY Mitogen-Activated Protein
           Kinases from Plants.  Serine/Threonine Kinases (STKs),
           Plant TDY Mitogen-Activated Protein Kinase (MAPK)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The TDY
           MAPK subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MAPKs are important mediators of cellular
           responses to extracellular signals. In plants, MAPKs are
           associated with physiological, developmental, hormonal,
           and stress responses. Some plants show numerous gene
           duplications of MAPKs. Arabidopsis thaliana harbors at
           least 20 MAPKs, named AtMPK1-20. Oryza sativa contains
           at least 17 MAPKs. There are two subtypes of plant MAPKs
           based on the conserved phosphorylation motif present in
           the activation loop, TEY and TDY. Arabidopsis thaliana
           contains more TEY-type MAPKs than TDY-type, whereas the
           reverse is true for Oryza sativa. This subfamily
           represents the TDY subtype and is composed of Group D
           plant MAPKs including Arabidopsis thaliana MPK18
           (AtMPK18), Oryza sativa Blast- and Wound-induced MAPK1
           (OsBWMK1), OsWJUMK1 (Wound- and JA-Uninducible MAPK1),
           Zea mays MPK6, and the Medicago sativa TDY1 gene
           product. OsBWMK1 enhances resistance to pathogenic
           infections. It mediates stress-activated defense
           responses by activating a transcription factor that
           affects the expression of stress-related genes. AtMPK18
           is involved in microtubule-related functions.
          Length = 338

 Score = 30.5 bits (69), Expect = 0.38
 Identities = 10/25 (40%), Positives = 17/25 (68%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  ++Y+H  +  HRD+KP N L
Sbjct: 111 QLLRALKYIHTANVFHRDLKPKNIL 135


>gnl|CDD|173730 cd06624, STKc_ASK, Catalytic domain of the Protein Serine/Threonine
           Kinase, Apoptosis signal-regulating kinase.
           Serine/threonine kinases (STKs), Apoptosis
           signal-regulating kinase (ASK) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The ASK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Subfamily members
           are mitogen-activated protein kinase (MAPK) kinase
           kinases (MAPKKKs or MKKKs or MAP3Ks) and include ASK1,
           ASK2, and MAPKKK15. MAPKKKs phosphorylate and activate
           MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals. ASK1 (also called
           MAPKKK5) functions in the c-Jun N-terminal kinase (JNK)
           and p38 MAPK signaling pathways by directly activating
           their respective MAPKKs, MKK4/MKK7 and MKK3/MKK6. It
           plays important roles in cytokine and stress responses,
           as well as in reactive oxygen species (ROS)-mediated
           cellular responses. ASK1 is implicated in various
           diseases mediated by oxidative stress including
           inschemic heart disease, hypertension, vessel injury,
           brain ischemia, Fanconi anemia, asthma, and pulmonary
           edema, among others. ASK2 (also called MAPKKK6)
           functions only in a heteromeric complex with ASK1, and
           can activate ASK1 by direct phosphorylation. The
           function of MAPKKK15 is still unknown.
          Length = 268

 Score = 30.6 bits (69), Expect = 0.38
 Identities = 12/33 (36%), Positives = 21/33 (63%)

Query: 134 TVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           T++    Q++  ++Y+H    +HRDIK DN L+
Sbjct: 109 TIIFYTKQILEGLKYLHDNQIVHRDIKGDNVLV 141


>gnl|CDD|173711 cd05621, STKc_ROCK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Rho-associated coiled-coil
           containing protein kinase 2.  Serine/Threonine Kinases
           (STKs), ROCK subfamily, ROCK2 (or ROK-alpha) isoform,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The ROCK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. ROCK contains an
           N-terminal extension, a catalytic kinase domain, and a
           C-terminal extension, which contains a coiled-coil
           region encompassing a Rho-binding domain (RBD) and a
           pleckstrin homology (PH) domain. ROCK is auto-inhibited
           by the RBD and PH domain interacting with the catalytic
           domain, and is activated via interaction with Rho
           GTPases. ROCK2 was the first identified target of
           activated RhoA, and was found to play a role in stress
           fiber and focal adhesion formation. It is prominently
           expressed in the brain, heart, and skeletal muscles. It
           is implicated in vascular and neurological disorders,
           such as hypertension and vasospasm of the coronary and
           cerebral arteries. ROCK2 is also activated by caspase-2
           cleavage, resulting in thrombin-induced microparticle
           generation in response to cell activation. Mice
           deficient in ROCK2 show intrauterine growth retardation
           and embryonic lethality because of placental
           dysfunction.
          Length = 370

 Score = 30.8 bits (69), Expect = 0.39
 Identities = 22/73 (30%), Positives = 33/73 (45%), Gaps = 19/73 (26%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCS---------RRFTVKTVLMLADQMIGRIEYVHCKS 153
           Q+  Y  +VM+ +     DL N  S         + +T + VL L        + +H   
Sbjct: 113 QDDKYLYMVMEYMPGG--DLVNLMSNYDVPEKWAKFYTAEVVLAL--------DAIHSMG 162

Query: 154 FIHRDIKPDNFLM 166
            IHRD+KPDN L+
Sbjct: 163 LIHRDVKPDNMLL 175


>gnl|CDD|143379 cd07874, STKc_JNK3, Catalytic domain of the Serine/Threonine
           Kinase, c-Jun N-terminal Kinase 3.  Serine/Threonine
           Kinases (STKs), c-Jun N-terminal kinase 3 (JNK3)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           JNK3 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. JNKs are mitogen-activated protein kinases
           (MAPKs) that are involved in many stress-activated
           responses including those during inflammation,
           neurodegeneration, apoptosis, and persistent pain
           sensitization, among others. Vetebrates harbor three
           different JNK genes (Jnk1, Jnk2, and Jnk3). JNK3 is
           expressed primarily in the brain, and to a lesser extent
           in the heart and testis. Mice deficient in Jnk3 are
           protected against kainic acid-induced seizures, stroke,
           sciatic axotomy neural death, and neuronal death due to
           NGF deprivation, oxidative stress, or exposure to
           beta-amyloid peptide. This suggests that JNK3 may play
           roles in the pathogenesis of these diseases.
          Length = 355

 Score = 30.4 bits (68), Expect = 0.39
 Identities = 11/26 (42%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           QM+  I+++H    IHRD+KP N ++
Sbjct: 127 QMLCGIKHLHSAGIIHRDLKPSNIVV 152


>gnl|CDD|173721 cd05632, STKc_GRK5, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 5.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK5
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK5 is widely expressed in many tissues.
           It associates with the membrane though an N-terminal
           PIP2 binding domain and also binds phospholipids via its
           C-terminus. GRK5 deficiency is associated with early
           Alzheimer's disease in humans and mouse models. GRK5
           also plays a crucial role in the pathogenesis of
           sporadic Parkinson's disease. It participates in the
           regulation and desensitization of PDGFRbeta, a receptor
           tyrosine kinase involved in a variety of downstream
           cellular effects including cell growth, chemotaxis,
           apoptosis, and angiogenesis. GRK5 also regulates
           Toll-like receptor 4, which is involved in innate and
           adaptive immunity.
          Length = 285

 Score = 30.3 bits (68), Expect = 0.39
 Identities = 12/45 (26%), Positives = 28/45 (62%)

Query: 122 LFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           ++N  +  F  +  L  A +++  +E +H ++ ++RD+KP+N L+
Sbjct: 91  IYNMGNPGFEEERALFYAAEILCGLEDLHRENTVYRDLKPENILL 135


>gnl|CDD|173750 cd07857, STKc_MPK1, Catalytic domain of the Serine/Threonine
           Kinase, Fungal Mitogen-Activated Protein Kinase MPK1.
           Serine/Threonine Kinases (STKs), Fungal
           Mitogen-Activated Protein Kinase (MAPK) MPK1 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MPK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. This subfamily is
           composed of the MAPKs MPK1 from Saccharomyces
           cerevisiae, Pmk1 from Schizosaccharomyces pombe, and
           similar proteins. MAPKs are important mediators of
           cellular responses to extracellular signals. MPK1 (also
           called Slt2) and Pmk1 (also called Spm1) are
           stress-activated MAPKs that regulate the cell wall
           integrity (CWI) pathway, and are therefore important in
           the maintainance of cell shape, cell wall construction,
           morphogenesis, and ion homeostasis. MPK1 is activated in
           response to cell wall stress including heat stimulation,
           osmotic shock, UV irradiation, and any agents that
           interfere with cell wall biogenesis such as chitin
           antagonists, caffeine, or zymolase. MPK1 is regulated by
           the MAP2Ks Mkk1/2, which are regulated by the MAP3K
           Bck1. Pmk1 is also activated by multiple stresses
           including elevated temperatures, hyper- or hypotonic
           stress, glucose deprivation, exposure to cell-wall
           damaging compounds, and oxidative stress. It is
           regulated by the MAP2K Pek1, which is regulated by the
           MAP3K Mkh1.
          Length = 332

 Score = 30.4 bits (69), Expect = 0.39
 Identities = 10/25 (40%), Positives = 18/25 (72%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  ++Y+H  + +HRD+KP N L
Sbjct: 113 QILCGLKYIHSANVLHRDLKPGNLL 137


>gnl|CDD|143373 cd07868, STKc_CDK8, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 8.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 8 (CDK8) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK8 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK8
           can act as a negative or positive regulator of
           transcription, depending on the scenario. Together with
           its regulator, cyclin C, it reversibly associates with
           the multi-subunit core Mediator complex, a cofactor that
           is involved in regulating RNA polymerase II (RNAP
           II)-dependent transcription. CDK8 phosphorylates cyclin
           H, a subunit of the general transcription factor TFIIH,
           which results in the inhibition of TFIIH-dependent
           phosphorylation of the C-terminal domain (CTD) of RNAP
           II, facilitating the inhibition of transcription. It has
           also been shown to promote transcription by a mechanism
           that is likely to involve RNAP II phosphorylation. CDK8
           also functions as a stimulus-specific positive
           coregulator of p53 transcriptional responses.
          Length = 317

 Score = 30.4 bits (68), Expect = 0.41
 Identities = 18/42 (42%), Positives = 25/42 (59%), Gaps = 4/42 (9%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL-MGIG 169
           R  VK++L    Q++  I Y+H    +HRD+KP N L MG G
Sbjct: 107 RGMVKSLLY---QILDGIHYLHANWVLHRDLKPANILVMGEG 145


>gnl|CDD|173631 cd05045, PTKc_RET, Catalytic domain of the Protein Tyrosine Kinase,
           REarranged during Transfection protein.  Protein
           Tyrosine Kinase (PTK) family; RET (REarranged during
           Transfection) protein; catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. RET is a
           receptor tyr kinase (RTK) containing an extracellular
           region with four cadherin-like repeats, a
           calcium-binding site, and a cysteine-rich domain, a
           transmembrane segment, and an intracellular catalytic
           domain. It is part of a multisubunit complex that binds
           glial-derived neurotropic factor (GDNF) family ligands
           (GFLs) including GDNF, neurturin, artemin, and
           persephin. GFLs bind RET along with four GPI-anchored
           coreceptors, bringing two RET molecules together,
           leading to autophosphorylation, activation, and
           intracellular signaling. RET is essential for the
           development of the sympathetic, parasympathetic and
           enteric nervous systems, and the kidney. RET disruption
           by germline mutations causes diseases in humans
           including congenital aganglionosis of the
           gastrointestinal tract (Hirschsprung's disease) and
           three related inherited cancers: multiple endocrine
           neoplasia type 2A (MEN2A), MEN2B, and familial medullary
           thyroid carcinoma (FMTC).
          Length = 290

 Score = 30.3 bits (68), Expect = 0.42
 Identities = 14/51 (27%), Positives = 24/51 (47%)

Query: 122 LFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           L N   R  T+  ++  A Q+   ++Y+     +HRD+   N L+  GR  
Sbjct: 116 LDNPDERALTMGDLISFAWQISRGMQYLAEMKLVHRDLAARNVLVAEGRKM 166


>gnl|CDD|143354 cd07849, STKc_ERK1_2_like, Catalytic domain of Extracellular
           signal-Regulated Kinase 1 and 2-like Serine/Threonine
           Kinases.  Serine/Threonine Kinases (STKs), Extracellular
           signal-regulated kinases 1 and 2 (ERK1/2) and Fus3
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. This
           ERK1/2-like subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. This subfamily is composed of
           the mitogen-activated protein kinases (MAPKs) ERK1,
           ERK2, baker's yeast Fus3, and similar proteins. MAPK
           pathways are important mediators of cellular responses
           to extracellular signals. ERK1/2 activation is
           preferentially by mitogenic factors, differentiation
           stimuli, and cytokines, through a kinase cascade
           involving the MAPK kinases MEK1/2 and a MAPK kinase
           kinase from the Raf family. ERK1/2 have numerous
           substrates, many of which are nuclear and participate in
           transcriptional regulation of many cellular processes.
           They regulate cell growth, cell proliferation, and cell
           cycle progression from G1 to S phase. Although the
           distinct roles of ERK1 and ERK2 have not been fully
           determined, it is known that ERK2 can maintain most
           functions in the absence of ERK1, and that the deletion
           of ERK2 is embryonically lethal. The MAPK, Fus3,
           regulates yeast mating processes including
           mating-specific gene expression, G1 arrest, mating
           projection, and cell fusion.
          Length = 336

 Score = 30.3 bits (69), Expect = 0.42
 Identities = 10/26 (38%), Positives = 19/26 (73%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  ++Y+H  + +HRD+KP N L+
Sbjct: 114 QILRGLKYIHSANVLHRDLKPSNLLL 139


>gnl|CDD|173737 cd07834, STKc_MAPK, Catalytic domain of the Serine/Threonine
           Kinase, Mitogen-Activated Protein Kinase.
           Serine/Threonine Kinases (STKs), Mitogen-Activated
           Protein Kinase (MAPK) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The MAPK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. MAPKs serve as important
           mediators of cellular responses to extracellular
           signals. They control critical cellular functions
           including differentiation, proliferation, migration, and
           apoptosis. They are also implicated in the pathogenesis
           of many diseases including multiple types of cancer,
           stroke, diabetes, and chronic inflammation. Typical MAPK
           pathways involve a triple kinase core cascade comprising
           of the MAPK, which is phosphorylated and activated by a
           MAPK kinase (MAP2K or MKK), which itself is
           phosphorylated and activated by a MAPK kinase kinase
           (MAP3K or MKKK). Each cascade is activated either by a
           small GTP-binding protein or by an adaptor protein,
           which transmits the signal either directly to a MAP3K to
           start the triple kinase core cascade or indirectly
           through a mediator kinase, a MAP4K. There are three main
           typical MAPK subfamilies: Extracellular signal-Regulated
           Kinase (ERK), c-Jun N-terminal Kinase (JNK), and p38.
           Some MAPKs are atypical in that they are not regulated
           by MAP2Ks. These include MAPK4, MAPK6, NLK, and ERK7.
          Length = 330

 Score = 30.2 bits (69), Expect = 0.43
 Identities = 11/25 (44%), Positives = 18/25 (72%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  ++Y+H  + IHRD+KP N L
Sbjct: 111 QILRGLKYLHSANVIHRDLKPSNIL 135


>gnl|CDD|143381 cd07876, STKc_JNK2, Catalytic domain of the Serine/Threonine
           Kinase, c-Jun N-terminal Kinase 2.  Serine/Threonine
           Kinases (STKs), c-Jun N-terminal kinase 2 (JNK2)
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           JNK2 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. JNKs are mitogen-activated protein kinases
           (MAPKs) that are involved in many stress-activated
           responses including those during inflammation,
           neurodegeneration, apoptosis, and persistent pain
           sensitization, among others. Vetebrates harbor three
           different JNK genes (Jnk1, Jnk2, and Jnk3). JNK1, like
           JNK2, is expressed in every cell and tissue type.
           Initially it was thought that JNK1 and JNK2 were
           functionally redundant as mice deficient in either genes
           (Jnk1 or Jnk2) could survive but disruption of both
           genes resulted in lethality. However, recent studies
           have shown that JNK1 and JNK2 perform distinct functions
           through specific binding partners and substrates.  JNK2
           is specifically translocated to the mitochondria during
           dopaminergic cell death. Specific substrates include the
           microtubule-associated proteins DCX and Tau, as well as
           TIF-IA which is involved in ribosomal RNA synthesis
           regulation. Mice deficient in Jnk2 show protection
           against arthritis, type 1 diabetes, atherosclerosis,
           abdominal aortic aneurysm, cardiac cell death,
           TNF-induced liver damage, and tumor growth, indicating
           that JNK2 may play roles in the pathogenesis of these
           diseases.
          Length = 359

 Score = 30.4 bits (68), Expect = 0.45
 Identities = 11/26 (42%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           QM+  I+++H    IHRD+KP N ++
Sbjct: 131 QMLCGIKHLHSAGIIHRDLKPSNIVV 156


>gnl|CDD|173698 cd05607, STKc_GRK7, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 7.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK7
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors, which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK7, also called iodopsin kinase, belongs
           to the visual group of GRKs. It is primarily found in
           the retina and plays a role in the regulation of opsin
           light receptors. GRK7 is located in retinal cone outer
           segments and plays an important role in regulating
           photoresponse of the cones.
          Length = 277

 Score = 30.3 bits (68), Expect = 0.48
 Identities = 19/65 (29%), Positives = 36/65 (55%), Gaps = 2/65 (3%)

Query: 110 LVMDLL-GPSLE-DLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           LVM L+ G  L+  ++N   R   ++ V+  + Q+   I ++H    ++RD+KP+N L+ 
Sbjct: 70  LVMSLMNGGDLKYHIYNVGERGLEMERVIHYSAQITCGILHLHSMDIVYRDMKPENVLLD 129

Query: 168 IGRHC 172
              +C
Sbjct: 130 DQGNC 134


>gnl|CDD|173729 cd06617, PKc_MKK3_6, Catalytic domain of the dual-specificity
           Protein Kinases, MAP kinase kinases 3 and 6.  Protein
           kinases (PKs), MAP kinase kinase 3 (MKK3) and MKK6
           subfamily, catalytic (c) domain. PKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MKK3 and MKK6 subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein serine/threonine kinases, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The mitogen-activated protein (MAP) kinase
           signaling pathways are important mediators of cellular
           responses to extracellular signals. The pathways involve
           a triple kinase core cascade comprising the MAP kinase
           (MAPK), which is phosphorylated and activated by a MAPK
           kinase (MAPKK or MKK), which itself is phosphorylated
           and activated by a MAPK kinase kinase (MAPKKK or MKKK).
           MKK3 and MKK6 are dual-specificity PKs that
           phosphorylate and activate their downstream target, p38
           MAPK, on specific threonine and tyrosine residues.
           MKK3/6 plays roles in the regulation of cell cycle
           progression, cytokine- and stress-induced apoptosis,
           oncogenic transformation, and adult tissue regeneration.
           In addition, MKK6 plays a critical role in osteoclast
           survival in inflammatory disease while MKK3 is
           associated with tumor invasion, progression, and poor
           patient survival in glioma.
          Length = 283

 Score = 30.1 bits (68), Expect = 0.49
 Identities = 19/63 (30%), Positives = 32/63 (50%), Gaps = 14/63 (22%)

Query: 112 MDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRI--------EYVHCK-SFIHRDIKPD 162
           M+++  SL+  +     +      L + + ++G+I        EY+H K S IHRD+KP 
Sbjct: 79  MEVMDTSLDKFY-----KKVYDKGLTIPEDILGKIAVSIVKALEYLHSKLSVIHRDVKPS 133

Query: 163 NFL 165
           N L
Sbjct: 134 NVL 136


>gnl|CDD|132984 cd06653, STKc_MEKK3_like_1, Catalytic domain of MAP/ERK kinase
           kinase 3-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 3
           (MEKK3)-like subfamily, catalytic (c) domain,
           functionally uncharacterized subgroup 1. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MEKK3-like subfamily is part of a larger superfamily
           that includes the catalytic domains of other protein
           STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. The MEKK3-like subfamily is
           composed of MEKK3, MEKK2, and related proteins, all
           containing an N-terminal PB1 domain, which mediates
           oligomerization, and a C-terminal catalytic domain.
           MEKK2 and MEKK3 are mitogen-activated protein kinase
           (MAPK) kinase kinases (MAPKKKs or MKKKs or MAP3Ks),
           proteins that phosphorylate and activate MAPK kinases
           (MAPKKs or MKKs or MAP2Ks), which in turn phosphorylate
           and activate MAPKs during signaling cascades that are
           important in mediating cellular responses to
           extracellular signals. MEKK2 and MEKK3 activate MEK5
           (also called MKK5), which activates extracellular
           signal-regulated kinase 5 (ERK5). The ERK5 cascade plays
           roles in promoting cell proliferation, differentiation,
           neuronal survival, and neuroprotection. MEKK3 plays an
           essential role in embryonic angiogenesis and early heart
           development. MEKK2 and MEKK3 can also activate the
           MAPKs, c-Jun N-terminal kinase (JNK) and p38, through
           their respective MAPKKs.
          Length = 264

 Score = 30.0 bits (67), Expect = 0.50
 Identities = 21/82 (25%), Positives = 39/82 (47%), Gaps = 20/82 (24%)

Query: 96  KLTRWYG-----QERDYNVLVMDLLGPSLED-------LFNFCSRRFTVKTVLMLADQMI 143
           ++ ++YG     +E+  ++ V  + G S++D       L    +RR+T         Q++
Sbjct: 65  RIVQYYGCLRDPEEKKLSIFVEYMPGGSIKDQLKAYGALTENVTRRYT--------RQIL 116

Query: 144 GRIEYVHCKSFIHRDIKPDNFL 165
             + Y+H    +HRDIK  N L
Sbjct: 117 QGVSYLHSNMIVHRDIKGANIL 138


>gnl|CDD|173333 PTZ00036, PTZ00036, glycogen synthase kinase; Provisional.
          Length = 440

 Score = 30.4 bits (68), Expect = 0.51
 Identities = 13/34 (38%), Positives = 18/34 (52%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHCNK 174
           Q+   + Y+H K   HRD+KP N L+    H  K
Sbjct: 178 QLCRALAYIHSKFICHRDLKPQNLLIDPNTHTLK 211


>gnl|CDD|173768 cd08228, STKc_Nek6, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 6.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 6 (Nek6) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek6 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek6 is required
           for the transition from metaphase to anaphase. It also
           plays important roles in mitotic spindle formation and
           cytokinesis.  Activated by Nek9 during mitosis, Nek6
           phosphorylates Eg5, a kinesin that is important for
           spindle bipolarity. Nek6 localizes to spindle
           microtubules during metaphase and anaphase, and to the
           midbody during cytokinesis.
          Length = 267

 Score = 30.0 bits (67), Expect = 0.51
 Identities = 12/34 (35%), Positives = 20/34 (58%)

Query: 133 KTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +TV     Q+   +E++H +  +HRDIKP N  +
Sbjct: 106 RTVWKYFVQLCSAVEHMHSRRVMHRDIKPANVFI 139


>gnl|CDD|173761 cd08221, STKc_Nek9, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 9.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 9 (Nek9) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek9 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Nek9, also called
           Nercc1, is primarily a cytoplasmic protein but can also
           localize in the nucleus. It is involved in modulating
           chromosome alignment and splitting during mitosis. It
           interacts with the gamma-tubulin ring complex and the
           Ran GTPase, and is implicated in microtubule
           organization. Nek9 associates with FACT (FAcilitates
           Chromatin Transcription) and modulates interphase
           progression. It also interacts with Nek6, and Nek7,
           during mitosis, resulting in their activation.
          Length = 256

 Score = 30.1 bits (68), Expect = 0.54
 Identities = 18/71 (25%), Positives = 34/71 (47%), Gaps = 4/71 (5%)

Query: 100 WYGQERDYNVLVMDLLGPSLEDLFNFCSRR----FTVKTVLMLADQMIGRIEYVHCKSFI 155
           +Y    D N L++++   +   L++   R+    F  + VL    Q++  + Y+H    +
Sbjct: 64  YYNHFMDDNTLLIEMEYANGGTLYDKIVRQKGQLFEEEMVLWYLFQIVSAVSYIHKAGIL 123

Query: 156 HRDIKPDNFLM 166
           HRDIK  N  +
Sbjct: 124 HRDIKTLNIFL 134


>gnl|CDD|173616 PTZ00426, PTZ00426, cAMP-dependent protein kinase catalytic
           subunit; Provisional.
          Length = 340

 Score = 29.9 bits (67), Expect = 0.61
 Identities = 20/68 (29%), Positives = 33/68 (48%), Gaps = 2/68 (2%)

Query: 101 YGQERDYNVLVMDLLGPSLEDLFNFCSR--RFTVKTVLMLADQMIGRIEYVHCKSFIHRD 158
           YG  +D + L + L      + F F  R  RF        A Q++   EY+   + ++RD
Sbjct: 97  YGSFKDESYLYLVLEFVIGGEFFTFLRRNKRFPNDVGCFYAAQIVLIFEYLQSLNIVYRD 156

Query: 159 IKPDNFLM 166
           +KP+N L+
Sbjct: 157 LKPENLLL 164


>gnl|CDD|173628 cd05038, PTKc_Jak_rpt2, Catalytic (repeat 2) domain of the Protein
           Tyrosine Kinases, Janus kinases.  Protein Tyrosine
           Kinase (PTK) family; Janus kinase (Jak) subfamily;
           catalytic (c) domain (repeat 2). The Jak subfamily is
           composed of Jak1, Jak2, Jak3, TYK2, and similar
           proteins. The PTKc family is part of a larger
           superfamily that includes the catalytic domains of other
           kinases such as protein serine/threonine kinases, RIO
           kinases, and phosphoinositide 3-kinase (PI3K). PTKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to tyrosine (tyr) residues in protein substrates.
           Jak subfamily proteins are cytoplasmic (or nonreceptor)
           tyr kinases containing an N-terminal FERM domain,
           followed by a Src homology 2 (SH2) domain, a
           pseudokinase domain, and a C-terminal tyr kinase
           catalytic domain. Most Jaks are expressed in a wide
           variety of tissues, except for Jak3, which is expressed
           only in hematopoietic cells. Jaks are crucial for
           cytokine receptor signaling. They are activated by
           autophosphorylation upon cytokine-induced receptor
           aggregation, and subsequently trigger downstream
           signaling events such as the phosphorylation of signal
           transducers and activators of transcription (STATs).
           Jaks are also involved in regulating the surface
           expression of some cytokine receptors. The Jak-STAT
           pathway is involved in many biological processes
           including hematopoiesis, immunoregulation, host defense,
           fertility, lactation, growth, and embryogenesis.
          Length = 284

 Score = 29.7 bits (67), Expect = 0.64
 Identities = 16/67 (23%), Positives = 31/67 (46%), Gaps = 1/67 (1%)

Query: 101 YGQERDYNVLVMDLLGP-SLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDI 159
                    L+M+ L   SL D       +  +K +L+ + Q+   ++Y+  + +IHRD+
Sbjct: 76  EKPGGRSLRLIMEYLPSGSLRDYLQRHRDQINLKRLLLFSSQICKGMDYLGSQRYIHRDL 135

Query: 160 KPDNFLM 166
              N L+
Sbjct: 136 AARNILV 142


>gnl|CDD|173709 cd05619, STKc_nPKC_theta, Catalytic domain of the Protein
           Serine/Threonine Kinase, Novel Protein Kinase C theta.
           Serine/Threonine Kinases (STKs), Novel Protein Kinase C
           (nPKC), theta isoform, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The nPKC subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PKCs are classified into three groups
           (classical, atypical, and novel) depending on their mode
           of activation and the structural characteristics of
           their regulatory domain. nPKCs are calcium-independent,
           but require DAG (1,2-diacylglycerol) and
           phosphatidylserine (PS) for activity. There are four
           nPKC isoforms, delta, epsilon, eta, and theta. PKC-theta
           is selectively expressed in T-cells and plays an
           important and non-redundant role in several aspects of
           T-cell biology. Although T-cells also express other PKC
           isoforms, PKC-theta is unique in that upon antigen
           stimulation, it is translocated to the plasma membrane
           at the immunological synapse, where it mediates signals
           essential for T-cell activation. It is essential for
           TCR-induced proliferation, cytokine production, T-cell
           survival, and the differentiation and effector function
           of T-helper (Th) cells, particularly Th2 and Th17.
           PKC-theta is being developed as a therapeutic target for
           Th2-mediated allergic inflammation and Th17-mediated
           autoimmune diseases.
          Length = 316

 Score = 29.6 bits (66), Expect = 0.70
 Identities = 12/43 (27%), Positives = 24/43 (55%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           +F +      A ++I  ++++H K  ++RD+K DN L+    H
Sbjct: 92  KFDLPRATFYAAEIICGLQFLHSKGIVYRDLKLDNILLDTDGH 134


>gnl|CDD|132989 cd06658, STKc_PAK5, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 5.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 5, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK5 belongs to group II. Group II PAKs contain a PBD
           (p21-binding domain) and a C-terminal catalytic domain,
           but do not harbor an AID (autoinhibitory domain) or SH3
           binding sites. PAK5 is mainly expressed in the brain. It
           is not required for viability, but together with PAK6,
           it is required for normal levels of locomotion and
           activity, and for learning and memory. PAK5 cooperates
           with Inca (induced in neural crest by AP2) in the
           regulation of cell adhesion and cytoskeletal
           organization in the embryo and in neural crest cells
           during craniofacial development. PAK5 may also play a
           role in controlling the signaling of Raf-1, an effector
           of Ras, at the mitochondria.
          Length = 292

 Score = 29.6 bits (66), Expect = 0.70
 Identities = 17/58 (29%), Positives = 31/58 (53%), Gaps = 3/58 (5%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +VM+ L G +L D+      R   + +  +   ++  + Y+H +  IHRDIK D+ L+
Sbjct: 96  VVMEFLEGGALTDIVT--HTRMNEEQIATVCLSVLRALSYLHNQGVIHRDIKSDSILL 151


>gnl|CDD|173640 cd05067, PTKc_Lck_Blk, Catalytic domain of the Protein Tyrosine
           Kinases, Lymphocyte-specific kinase and Blk.  Protein
           Tyrosine Kinase (PTK) family; Lck and Blk kinases;
           catalytic (c) domain. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Lck (lymphocyte-specific
           kinase) and Blk are members of the Src subfamily of
           proteins, which are cytoplasmic (or non-receptor) tyr
           kinases. Src kinases contain an N-terminal SH4 domain
           with a myristoylation site, followed by SH3 and SH2
           domains, a tyr kinase domain, and a regulatory
           C-terminal region containing a conserved tyr. They are
           activated by autophosphorylation at the tyr kinase
           domain, but are negatively regulated by phosphorylation
           at the C-terminal tyr by Csk (C-terminal Src Kinase).
           Src proteins are involved in signaling pathways that
           regulate cytokine and growth factor responses,
           cytoskeleton dynamics, cell proliferation, survival, and
           differentiation. Lck is expressed in T-cells and natural
           killer (NK) cells. It plays a critical role in T-cell
           maturation, activation, and T-cell receptor (TCR)
           signaling. Lck phosphorylates ITAM (immunoreceptor tyr
           activation motif) sequences on several subunits of TCRs,
           leading to the activation of different second messenger
           cascades. Phosphorylated ITAMs serve as binding sites
           for other signaling factor such as Syk and ZAP-70,
           leading to their activation and propagation of
           downstream events. In addition, Lck regulates
           drug-induced apoptosis by interfering with the
           mitochondrial death pathway. The apototic role of Lck is
           independent of its primary function in T-cell signaling.
           Blk is expressed specifically in B-cells. It is involved
           in pre-BCR (B-cell receptor) signaling.
          Length = 260

 Score = 29.4 bits (66), Expect = 0.71
 Identities = 11/44 (25%), Positives = 25/44 (56%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           + T+  ++ +A Q+   + ++  K++IHRD++  N L+     C
Sbjct: 98  KLTINKLIDMAAQIAEGMAFIERKNYIHRDLRAANILVSETLCC 141


>gnl|CDD|173752 cd07861, STKc_CDK1_euk, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 1 from higher
           eukaryotes-like.  Serine/Threonine Kinases (STKs),
           Cyclin-Dependent protein Kinase 1 (CDK1) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK1 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. This subfamily is composed of CDK1 from higher
           eukaryotes. CDK1 is also called Cell division control
           protein 2 (Cdc2) or p34 protein kinase, and is regulated
           by cyclins A, B, and E. The CDK1/cyclin A complex
           controls G2 phase entry and progression. CDK1/cyclin A2
           has also been implicated as an important regulator of S
           phase events. The CDK1/cyclin B complex is critical for
           G2 to M phase transition. It induces mitosis by
           activating nuclear enzymes that regulate chromatin
           condensation, nuclear membrane degradation,
           mitosis-specific microtubule and cytoskeletal
           reorganization. CDK1 also associates with cyclin E and
           plays a role in the entry into S phase. CDK1
           transcription is stable throughout the cell cycle but is
           modulated in some pathological conditions. It may play a
           role in regulating apoptosis under these conditions. In
           breast cancer cells, HER2 can mediate apoptosis by
           inactivating CDK1. Activation of CDK1 may contribute to
           HIV-1 induced apoptosis and neuronal apoptosis in
           neurodegenerative diseases.
          Length = 285

 Score = 29.7 bits (67), Expect = 0.76
 Identities = 13/36 (36%), Positives = 21/36 (58%), Gaps = 3/36 (8%)

Query: 131 TVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
            VK+ L    Q++  I + H +  +HRD+KP N L+
Sbjct: 102 LVKSYLY---QILQGILFCHSRRVLHRDLKPQNLLI 134


>gnl|CDD|143367 cd07862, STKc_CDK6, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 6.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase 6 (CDK6) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK6 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK6
           is regulated by D-type cyclins and INK4 inhibitors. It
           is active towards the retinoblastoma (pRb) protein,
           implicating it to function in regulating the early G1
           phase of the cell cycle. It is expressed ubiquitously
           and is localized in the cytoplasm. It is also present in
           the ruffling edge of spreading fibroblasts and may play
           a role in cell spreading. It binds to the p21 inhibitor
           without any effect on its own activity and it is
           overexpressed in squamous cell carcinomas and
           neuroblastomas. CDK6 has also been shown to inhibit cell
           differentiation in many cell types.
          Length = 290

 Score = 29.6 bits (66), Expect = 0.80
 Identities = 11/36 (30%), Positives = 23/36 (63%), Gaps = 3/36 (8%)

Query: 131 TVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           T+K ++    Q++  ++++H    +HRD+KP N L+
Sbjct: 111 TIKDMMF---QLLRGLDFLHSHRVVHRDLKPQNILV 143


>gnl|CDD|173666 cd05575, STKc_SGK, Catalytic domain of the Protein Serine/Threonine
           Kinase, Serum- and Glucocorticoid-induced Kinase.
           Serine/Threonine Kinases (STKs), Serum- and
           Glucocorticoid-induced Kinase (SGK) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The SGK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. There are three
           isoforms of SGK, named SGK1, SGK2, and SGK3 (also called
           cytokine-independent survival kinase CISK). SGKs are
           activated by insulin and growth factors via
           phosphoinositide 3-kinase and PDK1. They activate ion
           channels, ion carriers, and the Na-K-ATPase, as well as
           regulate the activity of enzymes and transcription
           factors. SGKs play important roles in transport, hormone
           release, neuroexcitability, cell proliferation, and
           apoptosis.
          Length = 323

 Score = 29.4 bits (66), Expect = 0.82
 Identities = 12/39 (30%), Positives = 21/39 (53%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           R F        A ++   + Y+H  + I+RD+KP+N L+
Sbjct: 91  RSFPEPRARFYAAEIASALGYLHSLNIIYRDLKPENILL 129


>gnl|CDD|173682 cd05591, STKc_nPKC_epsilon, Catalytic domain of the Protein
           Serine/Threonine Kinase, Novel Protein Kinase C epsilon.
            Serine/Threonine Kinases (STKs), Novel Protein Kinase C
           (nPKC), epsilon isoform, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The nPKC subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PKCs are classified into three groups
           (classical, atypical, and novel) depending on their mode
           of activation and the structural characteristics of
           their regulatory domain. nPKCs are calcium-independent,
           but require DAG (1,2-diacylglycerol) and
           phosphatidylserine (PS) for activity. There are four
           nPKC isoforms, delta, epsilon, eta, and theta.
           PKC-epsilon has been shown to behave as an oncoprotein.
           Its overexpression contributes to neoplastic
           transformation depending on the cell type. It
           contributes to oncogenesis by inducing disordered cell
           growth and inhibiting cell death. It also plays a role
           in tumor invasion and metastasis. PKC-epsilon has also
           been found to confer cardioprotection against ischemia
           and reperfusion-mediated damage. Other cellular
           functions include the regulation of gene expression,
           cell adhesion, and cell motility.
          Length = 321

 Score = 29.4 bits (66), Expect = 0.83
 Identities = 14/46 (30%), Positives = 23/46 (50%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           SR+F        A ++   + ++H    I+RD+K DN L+    HC
Sbjct: 90  SRKFDEPRSRFYAAEVTLALMFLHRHGVIYRDLKLDNILLDAEGHC 135


>gnl|CDD|132977 cd06646, STKc_MAP4K5, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen-activated protein
           kinase kinase kinase kinase 5.  Serine/threonine kinases
           (STKs), mitogen-activated protein kinase (MAPK) kinase
           kinase kinase 5 (MAPKKKK5 or MAP4K5) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAP4K5 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Members of this
           subfamily contain an N-terminal catalytic domain and a
           C-terminal citron homology (CNH) regulatory domain,
           similar to MAP4K4/6. MAP4Ks are involved in some MAPK
           signaling pathways that are important in mediating
           cellular responses to extracellular signals by
           activating a MAPK kinase kinase (MAPKKK or MAP3K or
           MKKK). Each MAPK cascade is activated either by a small
           GTP-binding protein or by an adaptor protein, which
           transmits the signal either directly to a MAP3K to start
           the triple kinase core cascade or indirectly through a
           mediator kinase, a MAP4K. MAP4K5, also called germinal
           center kinase-related enzyme (GCKR), has been shown to
           activate the MAPK c-Jun N-terminal kinase (JNK). MAP4K5
           also facilitates Wnt signaling in B cells, and may
           therefore be implicated in the control of cell fate,
           proliferation, and polarity.
          Length = 267

 Score = 29.6 bits (66), Expect = 0.83
 Identities = 15/51 (29%), Positives = 28/51 (54%), Gaps = 1/51 (1%)

Query: 116 GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           G SL+D+++       ++   +  + + G + Y+H K  +HRDIK  N L+
Sbjct: 90  GGSLQDIYHVTGPLSELQIAYVCRETLQG-LAYLHSKGKMHRDIKGANILL 139


>gnl|CDD|133187 cd05056, PTKc_FAK, Catalytic domain of the Protein Tyrosine Kinase,
           Focal Adhesion Kinase.  Protein Tyrosine Kinase (PTK)
           family; Focal Adhesion Kinase (FAK); catalytic (c)
           domain. The PTKc family is part of a larger superfamily
           that includes the catalytic domains of other kinases
           such as protein serine/threonine kinases, RIO kinases,
           and phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. FAK is a
           cytoplasmic (or nonreceptor) tyr kinase that contains an
           autophosphorylation site and a FERM domain at the
           N-terminus, a central tyr kinase domain, proline-rich
           regions, and a C-terminal FAT (focal adhesion targeting)
           domain. FAK activity is dependent on integrin-mediated
           cell adhesion, which facilitates N-terminal
           autophosphorylation. Full activation is achieved by the
           phosphorylation of its two adjacent A-loop tyrosines.
           FAK is important in mediating signaling initiated at
           sites of cell adhesions and at growth factor receptors.
           Through diverse molecular interactions, FAK functions as
           a biosensor or integrator to control cell motility. It
           is a key regulator of cell survival, proliferation,
           migration and invasion, and thus plays an important role
           in the development and progression of cancer. Src binds
           to autophosphorylated FAK forming the FAK-Src dual
           kinase complex, which is activated in a wide variety of
           tumor cells and generates signals promoting growth and
           metastasis. FAK is being developed as a target for
           cancer therapy.
          Length = 270

 Score = 29.3 bits (66), Expect = 0.85
 Identities = 10/37 (27%), Positives = 20/37 (54%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFL 165
              + ++++ + Q+   + Y+  K F+HRDI   N L
Sbjct: 103 SLDLASLILYSYQLSTALAYLESKRFVHRDIAARNVL 139


>gnl|CDD|143359 cd07854, STKc_MAPK4_6, Catalytic domain of the Serine/Threonine
           Kinases, Mitogen-Activated Protein Kinases 4 and 6.
           Serine/Threonine Kinases (STKs), Mitogen-Activated
           Protein Kinase 4 (MAPK4) and MAPK6 subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAPK4/6 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MAPKs are
           important mediators of cellular responses to
           extracellular signals. MAPK4 is also called ERK4 or
           p63MAPK, while MAPK6 is also called ERK3 or p97MAPK.
           MAPK4 and MAPK6 are atypical MAPKs that are not
           regulated by MAP2Ks. MAPK6 is expressed ubiquitously
           with highest amounts in brain and skeletal muscle. It
           may be involved in the control of cell differentiation
           by negatively regulating cell cycle progression in
           certain conditions. It may also play a role in
           glucose-induced insulin secretion. MAPK6 and MAPK4
           cooperate to regulate the activity of MAPK-activated
           protein kinase 5 (MK5), leading to its relocation to the
           cytoplasm and exclusion from the nucleus. The MAPK6/MK5
           and MAPK4/MK5 pathways may play critical roles in
           embryonic and post-natal development.
          Length = 342

 Score = 29.4 bits (66), Expect = 0.87
 Identities = 20/83 (24%), Positives = 33/83 (39%), Gaps = 25/83 (30%)

Query: 109 VLVMDLLGPSLEDLFNFCSRRFTVKTV-----LMLAD--------------------QMI 143
           V V ++LGPS  DL         + +V      M  D                    Q++
Sbjct: 65  VKVYEVLGPSGSDLTEDVGSLTELNSVYIVQEYMETDLANVLEQGPLSEEHARLFMYQLL 124

Query: 144 GRIEYVHCKSFIHRDIKPDNFLM 166
             ++Y+H  + +HRD+KP N  +
Sbjct: 125 RGLKYIHSANVLHRDLKPANVFI 147


>gnl|CDD|173751 cd07860, STKc_CDK2_3, Catalytic domain of the Serine/Threonine
           Kinases, Cyclin-Dependent protein Kinase 2 and 3.
           Serine/Threonine Kinases (STKs), Cyclin-dependent
           protein kinase 2 (CDK2) and CDK3 subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CDK2/3 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. CDK2 is regulated by cyclin E or cyclin A.
           Upon activation by cyclin E, it phosphorylates the
           retinoblastoma (pRb) protein which activates E2F
           mediated transcription and allows cells to move into S
           phase. The CDK2/cyclin A complex plays a role in
           regulating DNA replication. CDK2, together with CDK4,
           also regulates embryonic cell proliferation. Despite
           these important roles, mice deleted for the cdk2 gene
           are viable and normal except for being sterile. This may
           be due to compensation provided by CDK1 (also called
           Cdc2), which can also bind cyclin E and drive the G1 to
           S phase transition. CDK3 is regulated by cyclin C and it
           phosphorylates pRB specifically during the G0/G1
           transition. This phosphorylation is required for cells
           to exit G0 efficiently and enter the G1 phase.
          Length = 284

 Score = 29.4 bits (66), Expect = 0.88
 Identities = 9/26 (34%), Positives = 16/26 (61%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  + + H    +HRD+KP N L+
Sbjct: 108 QLLQGLAFCHSHRVLHRDLKPQNLLI 133


>gnl|CDD|133201 cd05070, PTKc_Fyn_Yrk, Catalytic domain of the Protein Tyrosine
           Kinases, Fyn and Yrk.  Protein Tyrosine Kinase (PTK)
           family; Fyn and Yrk kinases; catalytic (c) domain. The
           PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Fyn and
           Yrk are members of the Src subfamily of proteins, which
           are cytoplasmic (or non-receptor) tyr kinases. Src
           kinases contain an N-terminal SH4 domain with a
           myristoylation site, followed by SH3 and SH2 domains, a
           tyr kinase domain, and a regulatory C-terminal region
           containing a conserved tyr. They are activated by
           autophosphorylation at the tyr kinase domain, but are
           negatively regulated by phosphorylation at the
           C-terminal tyr by Csk (C-terminal Src Kinase). Src
           proteins are involved in signaling pathways that
           regulate cytokine and growth factor responses,
           cytoskeleton dynamics, cell proliferation, survival, and
           differentiation. Fyn, together with Lck, plays a
           critical role in T-cell signal transduction by
           phosphorylating ITAM (immunoreceptor tyr activation
           motif) sequences on T-cell receptors, ultimately leading
           to the proliferation and differentiation of T-cells. In
           addition, Fyn is involved in the myelination of neurons,
           and is implicated in Alzheimer's and Parkinson's
           diseases. Yrk has been detected only in chickens. It is
           primarily found in neuronal and epithelial cells and in
           macrophages. It may play a role in inflammation and in
           response to injury.
          Length = 260

 Score = 29.2 bits (65), Expect = 0.89
 Identities = 13/45 (28%), Positives = 25/45 (55%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           R   +  ++ +A Q+   + Y+   ++IHRD++  N L+G G  C
Sbjct: 97  RALKLPNLVDMAAQVAAGMAYIERMNYIHRDLRSANILVGDGLVC 141


>gnl|CDD|173727 cd06613, STKc_MAP4K3_like, Catalytic domain of Mitogen-activated
           protein kinase kinase kinase kinase-like Protein
           Serine/Threonine Kinases.  Serine/threonine kinases
           (STKs), mitogen-activated protein kinase (MAPK) kinase
           kinase kinase 3 (MAPKKKK3 or MAP4K3)-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAP4K3-like
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily includes MAP4K3, MAP4K1,
           MAP4K2, MAP4K5, and related proteins. Vertebrate members
           contain an N-terminal catalytic domain and a C-terminal
           citron homology (CNH) regulatory domain, similar to
           MAP4K4/6. MAP4Ks are involved in some MAPK signaling
           pathways that are important in mediating cellular
           responses to extracellular signals by activating a MAPK
           kinase kinase (MAPKKK or MAP3K or MKKK). Each MAPK
           cascade is activated either by a small GTP-binding
           protein or by an adaptor protein, which transmits the
           signal either directly to a MAP3K to start the triple
           kinase core cascade or indirectly through a mediator
           kinase, a MAP4K. MAP4K1, also called haematopoietic
           progenitor kinase 1 (HPK1), is a hematopoietic-specific
           STK involved in many cellular signaling cascades
           including MAPK, antigen receptor, apoptosis, growth
           factor, and cytokine signaling. It participates in the
           regulation of T cell receptor signaling and T
           cell-mediated immune responses. MAP4K2 was referred to
           as germinal center (GC) kinase because of its preferred
           location in GC B cells. MAP4K3 plays a role in the
           nutrient-responsive pathway of mTOR (mammalian target of
           rapamycin) signaling. It is required in the activation
           of S6 kinase by amino acids and for the phosphorylation
           of the mTOR-regulated inhibitor of eukaryotic initiation
           factor 4E. MAP4K5, also called germinal center
           kinase-related enzyme (GCKR), has been shown to activate
           the MAPK c-Jun N-terminal kinase (JNK).
          Length = 262

 Score = 29.2 bits (66), Expect = 0.89
 Identities = 22/79 (27%), Positives = 34/79 (43%), Gaps = 19/79 (24%)

Query: 99  RWYG--QERDYNVLVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRI--------E 147
            ++G    RD   +VM+   G SL+D++          T   L++  I  +         
Sbjct: 64  AYFGSYLRRDKLWIVMEYCGGGSLQDIYQ--------VTRGPLSELQIAYVCRETLKGLA 115

Query: 148 YVHCKSFIHRDIKPDNFLM 166
           Y+H    IHRDIK  N L+
Sbjct: 116 YLHETGKIHRDIKGANILL 134


>gnl|CDD|173697 cd05606, STKc_beta_ARK, Catalytic domain of the Protein
           Serine/Threonine Kinase, beta-adrenergic receptor
           kinase.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily,
           beta-adrenergic receptor kinase (beta-ARK) group,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The GRK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. GRKs
           phosphorylate and regulate G protein-coupled receptors
           (GPCRs), the largest superfamily of cell surface
           receptors which regulate some part of nearly all
           physiological functions. Phosphorylated GPCRs bind to
           arrestins, which prevents further G protein signaling
           despite the presence of activating ligand. There are
           seven types of GRKs, named GRK1 to GRK7. The beta-ARK
           group is composed of GRK2, GRK3, and similar proteins.
           GRK2 and GRK3 are both widely expressed in many tissues,
           although GRK2 is present at higher levels. They contain
           an N-terminal RGS homology (RH) domain, a central
           catalytic domain, and C-terminal pleckstrin homology
           (PH) domain that mediates PIP2 and G protein
           betagamma-subunit translocation to the membrane. GRK2
           (also called beta-ARK or beta-ARK1) is important in
           regulating several cardiac receptor responses. It plays
           a role in cardiac development and in hypertension.
           Deletion of GRK2 in mice results in embryonic lethality,
           caused by hypoplasia of the ventricular myocardium. GRK2
           also plays important roles in the liver (as a regulator
           of portal blood pressure), in immune cells, and in the
           nervous system. Altered GRK2 expression has been
           reported in several disorders including major
           depression, schizophrenia, bipolar disorder, and
           Parkinsonism.
          Length = 278

 Score = 29.5 bits (66), Expect = 0.89
 Identities = 11/37 (29%), Positives = 23/37 (62%)

Query: 130 FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           F+   +   A ++I  +E++H +  ++RD+KP N L+
Sbjct: 94  FSEAEMRFYAAEIILGLEHMHNRFVVYRDLKPANILL 130


>gnl|CDD|173754 cd07865, STKc_CDK9, Catalytic domain of the Serine/Threonine
           Kinase, Cyclin-Dependent protein Kinase 9.
           Serine/Threonine Kinases (STKs), Cyclin-Dependent
           protein Kinase 9 (CDK9) subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The CDK9 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. CDKs belong to a large family
           of STKs that are regulated by their cognate cyclins.
           Together, they are involved in the control of cell-cycle
           progression, transcription, and neuronal function. CDK9
           together with a cyclin partner (cyclin T1, T2a, T2b, or
           K) is the main component of distinct positive
           transcription elongation factors (P-TEFb), which
           function as Ser2 C-terminal domain kinases of RNA
           polymerase II. P-TEFb participates in multiple steps of
           gene expression including transcription elongation, mRNA
           synthesis, processing, export, and translation. It also
           plays a role in mediating cytokine induced transcription
           networks such as IL6-induced STAT3 signaling. In
           addition, the CDK9/cyclin T2a complex promotes muscle
           differentiation and enhances the function of some
           myogenic regulatory factors.
          Length = 310

 Score = 29.3 bits (66), Expect = 0.92
 Identities = 14/57 (24%), Positives = 28/57 (49%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LV +     L  L +  + +FT+  +  +   ++  + Y+H    +HRD+K  N L+
Sbjct: 96  LVFEFCEHDLAGLLSNKNVKFTLSEIKKVMKMLLNGLYYIHRNKILHRDMKAANILI 152


>gnl|CDD|133247 cd05116, PTKc_Syk, Catalytic domain of the Protein Tyrosine Kinase,
           Spleen tyrosine kinase.  Protein Tyrosine Kinase (PTK)
           family; Spleen tyrosine kinase (Syk); catalytic (c)
           domain. The PTKc family is part of a larger superfamily
           that includes the catalytic domains of other kinases
           such as protein serine/threonine kinases, RIO kinases,
           and phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Syk,
           together with Zap-70, form the Syk subfamily of kinases
           which are cytoplasmic (or nonreceptor) tyr kinases
           containing two Src homology 2 (SH2) domains N-terminal
           to the catalytic tyr kinase domain. Syk was first cloned
           from the spleen, and its function in hematopoietic cells
           is well-established. Syk is involved in the signaling
           downstream of activated receptors (including B-cell and
           Fc receptors) that contain ITAMs (immunoreceptor tyr
           activation motifs), leading to processes such as cell
           proliferation, differentiation, survival, adhesion,
           migration, and phagocytosis. More recently, Syk
           expression has been detected in other cell types
           (including epithelial cells, vascular endothelial cells,
           neurons, hepatocytes, and melanocytes), suggesting a
           variety of biological functions in non-immune cells. Syk
           plays a critical role in maintaining vascular integrity
           and in wound healing during embryogenesis. It also
           regulates Vav3, which is important in osteoclast
           function including bone development. In breast
           epithelial cells, where Syk acts as a negative regulator
           for epidermal growth factor receptor (EGFR) signaling,
           loss of Syk expression is associated with abnormal
           proliferation during cancer development suggesting a
           potential role as a tumor suppressor. In mice, Syk has
           been shown to inhibit malignant transformation of
           mammary epithelial cells induced with murine mammary
           tumor virus (MMTV).
          Length = 257

 Score = 29.2 bits (65), Expect = 0.95
 Identities = 20/62 (32%), Positives = 33/62 (53%), Gaps = 8/62 (12%)

Query: 109 VLVMDL--LGPSLEDLFNFC--SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNF 164
           +LVM+L  LGP    L  F   ++  T K +  L  Q+   ++Y+   +F+HRD+   N 
Sbjct: 71  MLVMELAELGP----LNKFLQKNKHVTEKNITELVHQVSMGMKYLEETNFVHRDLAARNV 126

Query: 165 LM 166
           L+
Sbjct: 127 LL 128


>gnl|CDD|173686 cd05595, STKc_PKB_beta, Catalytic domain of the Protein
           Serine/Threonine Kinase, Protein Kinase B beta.
           Serine/Threonine Kinases (STKs), Protein Kinase B (PKB)
           or Akt subfamily, beta (or Akt2) isoform, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PKB subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. There are three
           PKB isoforms from different genes, PKB-alpha (or Akt1),
           PKB-beta (or Akt2), and PKB-gamma (or Akt3). PKB
           contains an N-terminal pleckstrin homology (PH) domain
           and a C-terminal catalytic domain. PKB-beta is the
           predominant PKB isoform expressed in insulin-responsive
           tissues. It plays a critical role in the regulation of
           glucose homeostasis. It is also implicated in muscle
           cell differentiation. Mice deficient in PKB-beta display
           normal growth weights but exhibit severe insulin
           resistance and diabetes, accompanied by lipoatrophy and
           B-cell failure.
          Length = 323

 Score = 29.2 bits (65), Expect = 0.96
 Identities = 18/66 (27%), Positives = 32/66 (48%), Gaps = 4/66 (6%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCSRR--FTVKTVLMLADQMIGRIEYVHCKSFIHRDIK 160
           Q  D    VM+       +LF   SR   FT +       +++  +EY+H +  ++RDIK
Sbjct: 65  QTHDRLCFVMEYANGG--ELFFHLSRERVFTEERARFYGAEIVSALEYLHSRDVVYRDIK 122

Query: 161 PDNFLM 166
            +N ++
Sbjct: 123 LENLML 128


>gnl|CDD|173629 cd05041, PTKc_Fes_like, Catalytic domain of Fes-like Protein
           Tyrosine Kinases.  Protein Tyrosine Kinase (PTK) family;
           Fes subfamily; catalytic (c) domain. Fes subfamily
           members include Fes (or Fps), Fer, and similar proteins.
           The PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Fes
           subfamily proteins are cytoplasmic (or nonreceptor) tyr
           kinases containing an N-terminal region with FCH
           (Fes/Fer/CIP4 homology) and coiled-coil domains,
           followed by a SH2 domain, and a C-terminal catalytic
           domain. The genes for Fes (feline sarcoma) and Fps
           (Fujinami poultry sarcoma) were first isolated from
           tumor-causing retroviruses. The viral oncogenes encode
           chimeric Fes proteins consisting of Gag sequences at the
           N-termini, resulting in unregulated tyr kinase activity.
           Fes and Fer kinases play roles in haematopoiesis,
           inflammation and immunity, growth factor signaling,
           cytoskeletal regulation, cell migration and adhesion,
           and the regulation of cell-cell interactions. Fes and
           Fer show redundancy in their biological functions.
          Length = 251

 Score = 29.0 bits (65), Expect = 1.0
 Identities = 21/59 (35%), Positives = 32/59 (54%), Gaps = 1/59 (1%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           +VM+L+ G SL         R TVK +L ++      +EY+  K+ IHRD+   N L+G
Sbjct: 69  IVMELVPGGSLLTFLRKKKNRLTVKKLLQMSLDAAAGMEYLESKNCIHRDLAARNCLVG 127


>gnl|CDD|132983 cd06652, STKc_MEKK2, Catalytic domain of the Protein
           Serine/Threonine Kinase, MAP/ERK kinase kinase 2.
           Serine/threonine kinases (STKs), MAP/ERK kinase kinase 2
           (MEKK2) subfamily, catalytic (c) domain. STKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           MEKK2 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MEKK2 is a mitogen-activated protein kinase
           (MAPK) kinase kinase (MAPKKK or MKKK or MAP3K), that
           phosphorylates and activates the MAPK kinase MEK5 (or
           MKK5), which in turn phosphorylates and activates
           extracellular signal-regulated kinase 5 (ERK5). The ERK5
           cascade plays roles in promoting cell proliferation,
           differentiation, neuronal survival, and neuroprotection.
           MEKK2 also activates ERK1/2, c-Jun N-terminal kinase
           (JNK) and p38 through their respective MAPKKs MEK1/2,
           JNK-activating kinase 2 (JNKK2), and MKK3/6. MEKK2 plays
           roles in T cell receptor signaling, immune synapse
           formation, cytokine gene expression, as well as in EGF
           and FGF receptor signaling.
          Length = 265

 Score = 29.2 bits (65), Expect = 1.1
 Identities = 21/85 (24%), Positives = 39/85 (45%), Gaps = 20/85 (23%)

Query: 93  LPSKLTRWYG-----QERDYNVLVMDLLGPSLED-------LFNFCSRRFTVKTVLMLAD 140
           L  ++ ++YG      ER  ++ +  + G S++D       L    +R++T         
Sbjct: 62  LHERIVQYYGCLRDPMERTLSIFMEHMPGGSIKDQLKSYGALTENVTRKYT--------R 113

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFL 165
           Q++  + Y+H    +HRDIK  N L
Sbjct: 114 QILEGVSYLHSNMIVHRDIKGANIL 138


>gnl|CDD|218593 pfam05445, Pox_ser-thr_kin, Poxvirus serine/threonine protein
           kinase. 
          Length = 434

 Score = 29.3 bits (66), Expect = 1.1
 Identities = 9/16 (56%), Positives = 13/16 (81%)

Query: 151 CKSFIHRDIKPDNFLM 166
           C +F+H D+KPDN L+
Sbjct: 297 CTNFLHVDLKPDNILI 312


>gnl|CDD|132971 cd06640, STKc_MST4, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mammalian Ste20-like protein
           kinase 4.  Serine/threonine kinases (STKs), mammalian
           Ste20-like protein kinase 4 (MST4) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MST4 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MST4 is sometimes
           referred to as MASK (MST3 and SOK1-related kinase). It
           plays a role in mitogen-activated protein kinase (MAPK)
           signaling during cytoskeletal rearrangement,
           morphogenesis, and apoptosis. It influences cell growth
           and transformation by modulating the extracellular
           signal-regulated kinase (ERK) pathway. MST4 may also
           play a role in tumor formation and progression. It
           localizes in the Golgi apparatus by interacting with the
           Golgi matrix protein GM130 and may play a role in cell
           migration.
          Length = 277

 Score = 29.3 bits (65), Expect = 1.1
 Identities = 22/76 (28%), Positives = 39/76 (51%), Gaps = 7/76 (9%)

Query: 95  SKLTRWYGQERDYNVL--VMDLLG--PSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVH 150
             +T++YG       L  +M+ LG   +L+ L       F + T+L    +++  ++Y+H
Sbjct: 62  PYVTKYYGSYLKGTKLWIIMEYLGGGSALDLLRAGPFDEFQIATML---KEILKGLDYLH 118

Query: 151 CKSFIHRDIKPDNFLM 166
            +  IHRDIK  N L+
Sbjct: 119 SEKKIHRDIKAANVLL 134


>gnl|CDD|132724 cd02737, RNAP_IV_NRPD1_C, Largest subunit (NRPD1) of Higher plant
           RNA polymerase IV, C-terminal domain.  Higher plants
           have five multi-subunit nuclear RNA polymerases: RNAP I,
           RNAP II and RNAP III, which are essential for viability;
           plus the two isoforms of the non-essential polymerase
           RNAP IV (IVa and IVb), which specialize in small
           RNA-mediated gene silencing pathways. RNAP IVa and/or
           RNAP IVb might be involved in RNA-directed DNA
           methylation of endogenous repetitive elements, silencing
           of transgenes, regulation of flowering-time genes,
           inducible regulation of adjacent gene pairs, and
           spreading of mobile silencing signals. NRPD1a is the
           largest subunit of RNAP IVa, whereas NRPD1b is the
           largest subunit of RNAP IVb. The full subunit
           compositions of RNAP IVa and RNAP IVb are not known, nor
           are their templates or enzymatic products. However, it
           has been shown that RNAP IVa and, to a lesser extent,
           RNAP IVb are crucial for several RNA-mediated gene
           silencing phenomena.
          Length = 381

 Score = 29.3 bits (66), Expect = 1.2
 Identities = 18/63 (28%), Positives = 27/63 (42%), Gaps = 3/63 (4%)

Query: 63  NRGSLPWQGLKETFNTGGLIVPKSKTRKLALPSKLTRW-YGQERDYNVL-VMDLLGP-SL 119
           +  S P + LKE          K   R++ L   L +  +G E +   L V + L   +L
Sbjct: 26  SLESSPLELLKEVLECRSKSKSKENDRRVILSLHLCKCDHGFEYERAALEVKNHLERVTL 85

Query: 120 EDL 122
           EDL
Sbjct: 86  EDL 88


>gnl|CDD|173722 cd05633, STKc_GRK3, Catalytic domain of the Protein
           Serine/Threonine Kinase, G protein-coupled Receptor
           Kinase 3.  Serine/Threonine Kinases (STKs), G
           protein-coupled Receptor Kinase (GRK) subfamily, GRK3
           isoform, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The GRK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. GRKs phosphorylate and regulate G
           protein-coupled receptors (GPCRs), the largest
           superfamily of cell surface receptors which regulate
           some part of nearly all physiological functions.
           Phosphorylated GPCRs bind to arrestins, which prevents
           further G protein signaling despite the presence of
           activating ligand. There are seven types of GRKs, named
           GRK1 to GRK7. GRK3 (also known as beta-adrenergic
           receptor kinase 2) is widely expressed in many tissues.
           GRK3-deficient mice show a lack of olfactory receptor
           desensitization and altered regulation of the M2
           muscarinic airway. GRK3 is involved in modulating the
           cholinergic response of airway smooth muscles. It also
           plays a role in dopamine receptor regulation. GRK3
           promoter polymorphisms may be associated with bipolar
           disorder.
          Length = 279

 Score = 29.2 bits (65), Expect = 1.2
 Identities = 12/37 (32%), Positives = 24/37 (64%)

Query: 130 FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           F+ K +   A ++I  +E++H +  ++RD+KP N L+
Sbjct: 94  FSEKEMRFYATEIILGLEHMHNRFVVYRDLKPANILL 130


>gnl|CDD|132966 cd06635, STKc_TAO1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Thousand-and-one amino acids 1.
            Serine/threonine kinases (STKs), thousand-and-one amino
           acids 1 (TAO1) subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The TAO subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. TAO proteins possess mitogen-activated protein
           kinase (MAPK) kinase kinase (MAPKKK or MAP3K or MKKK)
           activity. MAPK signaling cascades are important in
           mediating cellular responses to extracellular signals.
           TAO1 is sometimes referred to as prostate-derived
           sterile 20-like kinase 2 (PSK2). TAO1 activates the p38
           MAPK through direct interaction with and activation of
           MEK3. TAO1 is highly expressed in the brain and may play
           a role in neuronal apoptosis. TAO1 interacts with the
           checkpoint proteins BubR1 and Mad2, and plays an
           important role in regulating mitotic progression, which
           is required for both chromosome congression and
           checkpoint-induced anaphase delay. TAO1 may play a role
           in protecting genomic stability.
          Length = 317

 Score = 28.9 bits (64), Expect = 1.2
 Identities = 16/57 (28%), Positives = 25/57 (43%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LVM+    S  DL     +      +  +    +  + Y+H  + IHRDIK  N L+
Sbjct: 102 LVMEYCLGSASDLLEVHKKPLQEVEIAAITHGALQGLAYLHSHNMIHRDIKAGNILL 158


>gnl|CDD|173710 cd05620, STKc_nPKC_delta, Catalytic domain of the Protein
           Serine/Threonine Kinase, Novel Protein Kinase C delta.
           Serine/Threonine Kinases (STKs), Novel Protein Kinase C
           (nPKC), delta isoform, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The nPKC subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PKCs are classified into three groups
           (classical, atypical, and novel) depending on their mode
           of activation and the structural characteristics of
           their regulatory domain. nPKCs are calcium-independent,
           but require DAG (1,2-diacylglycerol) and
           phosphatidylserine (PS) for activity. There are four
           nPKC isoforms, delta, epsilon, eta, and theta. PKC-delta
           plays a role in cell cycle regulation and programmed
           cell death in many cell types. It slows down cell
           proliferation, inducing cell cycle arrest and enhancing
           cell differentiation. PKC-delta is also involved in the
           regulation of transcription as well as immune and
           inflammatory responses. It plays a central role in the
           genotoxic stress response that leads to DNA
           damaged-induced apoptosis.
          Length = 316

 Score = 29.1 bits (65), Expect = 1.2
 Identities = 18/66 (27%), Positives = 37/66 (56%), Gaps = 4/66 (6%)

Query: 103 QERDYNVLVMDLL-GPSLEDLFNFCSR-RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIK 160
           Q +++   VM+ L G  L  +F+   + RF +      A +++  ++++H K  I+RD+K
Sbjct: 66  QTKEHLFFVMEFLNGGDL--MFHIQDKGRFDLYRATFYAAEIVCGLQFLHSKGIIYRDLK 123

Query: 161 PDNFLM 166
            DN ++
Sbjct: 124 LDNVML 129


>gnl|CDD|173677 cd05586, STKc_Sck1_like, Catalytic domain of Suppressor of loss of
           cAMP-dependent protein kinase-like Protein
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), Fission yeast Suppressor of loss of
           cAMP-dependent protein kinase (Sck1)-like subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Sck1-like subfamily
           is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. This subfamily is composed of fungal proteins
           with similarity to the Schizosaccharomyces pombe STK
           Sck1. Sck1 plays a role in trehalase activation
           triggered by glucose and a nitrogen source. Trehalase
           catalyzes the cleavage of the disaccharide trehalose to
           glucose. Trehalose, as a carbohydrate reserve and stress
           metabolite, plays an important role in the response of
           yeast to environmental changes.
          Length = 330

 Score = 28.7 bits (64), Expect = 1.7
 Identities = 11/43 (25%), Positives = 23/43 (53%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           RF+         +++  +E++H    ++RD+KP+N L+    H
Sbjct: 92  RFSEDRAKFYIAELVLALEHLHKYDIVYRDLKPENILLDATGH 134


>gnl|CDD|222989 PHA03111, PHA03111, Ser/Thr kinase; Provisional.
          Length = 444

 Score = 28.5 bits (64), Expect = 1.7
 Identities = 9/16 (56%), Positives = 13/16 (81%)

Query: 151 CKSFIHRDIKPDNFLM 166
           C +F+H D+KPDN L+
Sbjct: 301 CDNFLHVDLKPDNILI 316


>gnl|CDD|143349 cd07844, STKc_PCTAIRE_like, Catalytic domain of PCTAIRE-like
           Serine/Threonine Kinases.  Serine/Threonine Kinases
           (STKs), PCTAIRE-like subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The PCTAIRE-like subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein STKs, protein tyrosine kinases, RIO
           kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Members of this
           subfamily share sequence similarity with
           Cyclin-Dependent Kinases (CDKs), which belong to a large
           family of STKs that are regulated by their cognate
           cyclins. Together, CDKs and cyclins are involved in the
           control of cell-cycle progression, transcription, and
           neuronal function. The association of PCTAIRE-like
           proteins with cyclins has not been widely studied,
           although PFTAIRE-1 has been shown to function as a CDK
           which is regulated by cyclin D3 as well as the
           membrane-associated cyclin Y. PCTAIRE-like proteins show
           unusual expression patterns with high levels in
           post-mitotic tissues, suggesting that they may be
           involved in regulating post-mitotic cellular events.
          Length = 291

 Score = 28.5 bits (64), Expect = 1.7
 Identities = 10/26 (38%), Positives = 17/26 (65%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  + Y H +  +HRD+KP N L+
Sbjct: 111 QLLRGLAYCHQRRVLHRDLKPQNLLI 136


>gnl|CDD|173704 cd05613, STKc_MSK1_N, N-terminal catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen and stress-activated
           kinase 1.  Serine/Threonine Kinases (STKs), Mitogen and
           stress-activated kinase (MSK) subfamily, MSK1,
           N-terminal catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The MSK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. MSKs contain an N-terminal kinase domain (NTD)
           from the AGC family and a C-terminal kinase domain (CTD)
           from the CAMK family, similar to 90 kDa ribosomal
           protein S6 kinases (RSKs). MSKs are activated by two
           major signaling cascades, the Ras-MAPK and p38 stress
           kinase pathways, which trigger phosphorylation in the
           activation loop (A-loop) of the CTD of MSK. The active
           CTD phosphorylates the hydrophobic motif (HM) of NTD,
           which facilitates the phosphorylation of the A-loop and
           activates the NTD, which in turn phosphorylates
           downstream targets. MSK1 plays a role in the regulation
           of translational control and transcriptional activation.
           It phosphorylates the transcription factors, CREB and
           NFkappaB. It also phosphorylates the nucleosomal
           proteins H3 and HMG-14. Increased phosphorylation of
           MEK1 is associated with the development of cerebral
           ischemic/hypoxic preconditioning.
          Length = 290

 Score = 28.4 bits (63), Expect = 1.7
 Identities = 16/53 (30%), Positives = 30/53 (56%), Gaps = 2/53 (3%)

Query: 121 DLFNFCSRR--FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           +LF   S+R  F  + V + + +++  +E++H    I+RDIK +N L+    H
Sbjct: 91  ELFTHLSQRERFKEQEVQIYSGEIVLALEHLHKLGIIYRDIKLENILLDSNGH 143


>gnl|CDD|173683 cd05592, STKc_nPKC_theta_delta, Catalytic domain of the Protein
           Serine/Threonine Kinases, Novel Protein Kinase C theta
           and delta.  Serine/Threonine Kinases (STKs), Novel
           Protein Kinase C (nPKC), theta and delta-like isoforms,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The nPKC subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. PKCs are
           classified into three groups (classical, atypical, and
           novel) depending on their mode of activation and the
           structural characteristics of their regulatory domain.
           nPKCs are calcium-independent, but require DAG
           (1,2-diacylglycerol) and phosphatidylserine (PS) for
           activity. There are four nPKC isoforms, delta, epsilon,
           eta, and theta. PKC-theta is selectively expressed in
           T-cells and plays an important and non-redundant role in
           several aspects of T-cell biology. PKC-delta plays a
           role in cell cycle regulation and programmed cell death
           in many cell types.
          Length = 316

 Score = 28.6 bits (64), Expect = 1.8
 Identities = 14/40 (35%), Positives = 23/40 (57%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           S RF        A ++I  ++++H K  I+RD+K DN L+
Sbjct: 90  SGRFDEARARFYAAEIICGLQFLHKKGIIYRDLKLDNVLL 129


>gnl|CDD|173645 cd05084, PTKc_Fes, Catalytic domain of the Protein Tyrosine Kinase,
           Fes.  Protein Tyrosine Kinase (PTK) family; Fes (or Fps)
           kinase subfamily; catalytic (c) domain. The PTKc family
           is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Fes
           subfamily proteins are cytoplasmic (or nonreceptor) tyr
           kinases containing an N-terminal region with FCH
           (Fes/Fer/CIP4 homology) and coiled-coil domains,
           followed by a SH2 domain, and a C-terminal catalytic
           domain. The genes for Fes (feline sarcoma) and Fps
           (Fujinami poultry sarcoma) were first isolated from
           tumor-causing retroviruses. The viral oncogenes encode
           chimeric Fes proteins consisting of Gag sequences at the
           N-termini, resulting in unregulated tyr kinase activity.
           Fes kinase is expressed in myeloid, vascular
           endothelial, epithelial, and neuronal cells. It plays
           important roles in cell growth and differentiation,
           angiogenesis, inflammation and immunity, and
           cytoskeletal regulation. A recent study implicates Fes
           kinase as a tumor suppressor in colorectal cancer.
          Length = 252

 Score = 28.4 bits (63), Expect = 1.9
 Identities = 12/38 (31%), Positives = 20/38 (52%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           R  VK ++ + +     +EY+  K  IHRD+   N L+
Sbjct: 90  RLKVKELIQMVENAAAGMEYLESKHCIHRDLAARNCLV 127


>gnl|CDD|132938 cd06607, STKc_TAO, Catalytic domain of the Protein Serine/Threonine
           Kinase, Thousand-and-one amino acids proteins.
           Serine/threonine kinases (STKs), thousand-and-one amino
           acids (TAO) subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The TAO subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. TAO proteins possess mitogen-activated protein
           kinase (MAPK) kinase kinase (MAPKKK or MAP3K or MKKK)
           activity. They activate the MAPKs, p38 and c-Jun
           N-terminal kinase (JNK), by phosphorylating and
           activating the respective MAP/ERK kinases (MEKs, also
           known as MKKs or MAPKKs), MEK3/MEK6 and MKK4/MKK7. MAPK
           signaling cascades are important in mediating cellular
           responses to extracellular signals. Vertebrates contain
           three TAO subfamily members, named TAO1, TAO2, and TAO3.
          Length = 307

 Score = 28.2 bits (63), Expect = 1.9
 Identities = 10/21 (47%), Positives = 13/21 (61%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           + Y+H    IHRDIK  N L+
Sbjct: 128 LAYLHSHERIHRDIKAGNILL 148


>gnl|CDD|132947 cd06616, PKc_MKK4, Catalytic domain of the dual-specificity Protein
           Kinase, MAP kinase kinase 4.  Protein kinases (PKs), MAP
           kinase kinase 4 (MKK4) subfamily, catalytic (c) domain.
           PKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine or tyrosine residues on
           protein substrates. The MKK4 subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein serine/threonine kinases, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The mitogen-activated protein (MAP) kinase
           signaling pathways are important mediators of cellular
           responses to extracellular signals. The pathways involve
           a triple kinase core cascade comprising of the MAP
           kinase (MAPK), which is phosphorylated and activated by
           a MAPK kinase (MAPKK or MKK), which itself is
           phosphorylated and activated by a MAPK kinase kinase
           (MAPKKK or MKKK). MKK4 is a dual-specificity PK that
           phosphorylates and activates the downstream targets,
           c-Jun N-terminal kinase (JNK) and p38 MAPK, on specific
           threonine and tyrosine residues. JNK and p38 are
           collectively known as stress-activated MAPKs, as they
           are activated in response to a variety of environmental
           stresses and pro-inflammatory cytokines. Their
           activation is associated with the induction of cell
           death. Mice deficient in MKK4 die during embryogenesis
           and display anemia, severe liver hemorrhage, and
           abnormal hepatogenesis. MKK4 may also play roles in the
           immune system and in cardiac hypertrophy. It plays a
           major role in cancer as a tumor and metastasis
           suppressor. Under certain conditions, MKK4 is
           pro-oncogenic.
          Length = 288

 Score = 28.5 bits (64), Expect = 1.9
 Identities = 15/64 (23%), Positives = 30/64 (46%), Gaps = 13/64 (20%)

Query: 112 MDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSF---------IHRDIKPD 162
           M+L+  SL+  +    +        ++ ++++G+I     K+          IHRD+KP 
Sbjct: 82  MELMDISLDKFY----KYVYEVLKSVIPEEILGKIAVATVKALNYLKEELKIIHRDVKPS 137

Query: 163 NFLM 166
           N L+
Sbjct: 138 NILL 141


>gnl|CDD|132976 cd06645, STKc_MAP4K3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mitogen-activated protein
           kinase kinase kinase kinase 3.  Serine/threonine kinases
           (STKs), mitogen-activated protein kinase (MAPK) kinase
           kinase kinase 3 (MAPKKKK3 or MAP4K3) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MAP4K3 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Members of this
           subfamily contain an N-terminal catalytic domain and a
           C-terminal citron homology (CNH) regulatory domain,
           similar to MAP4K4/6. MAP4Ks are involved in some MAPK
           signaling pathways that are important in mediating
           cellular responses to extracellular signals by
           activating a MAPK kinase kinase (MAPKKK or MAP3K or
           MKKK). Each MAPK cascade is activated either by a small
           GTP-binding protein or by an adaptor protein, which
           transmits the signal either directly to a MAP3K to start
           the triple kinase core cascade or indirectly through a
           mediator kinase, a MAP4K. MAP4K3 plays a role in the
           nutrient-responsive pathway of mTOR (mammalian target of
           rapamycin) signaling. MAP4K3 is required in the
           activation of S6 kinase by amino acids and for the
           phosphorylation of the mTOR-regulated inhibitor of
           eukaryotic initiation factor 4E. mTOR regulates ribosome
           biogenesis and protein translation, and is frequently
           deregulated in cancer.
          Length = 267

 Score = 28.1 bits (62), Expect = 2.2
 Identities = 15/51 (29%), Positives = 27/51 (52%), Gaps = 1/51 (1%)

Query: 116 GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           G SL+D+++        +   +  + + G + Y+H K  +HRDIK  N L+
Sbjct: 90  GGSLQDIYHVTGPLSESQIAYVSRETLQG-LYYLHSKGKMHRDIKGANILL 139


>gnl|CDD|173662 cd05571, STKc_PKB, Catalytic domain of the Protein Serine/Threonine
           Kinase, Protein Kinase B.  Serine/Threonine Kinases
           (STKs), Protein Kinase B (PKB) or Akt subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PKB subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase (PI3K). There are
           three PKB isoforms from different genes, PKB-alpha (or
           Akt1), PKB-beta (or Akt2), and PKB-gamma (or Akt3). PKB
           contains an N-terminal pleckstrin homology (PH) domain
           and a C-terminal catalytic domain. It is activated
           downstream of PI3K and plays important roles in diverse
           cellular functions including cell survival, growth,
           proliferation, angiogenesis, motility, and migration.
           PKB also has a central role in a variety of human
           cancers, having been implicated in tumor initiation,
           progression, and metastasis.
          Length = 323

 Score = 28.2 bits (63), Expect = 2.2
 Identities = 15/66 (22%), Positives = 29/66 (43%), Gaps = 4/66 (6%)

Query: 103 QERDYNVLVMDLLGPSLEDLFNFCSRR--FTVKTVLMLADQMIGRIEYVHCKSFIHRDIK 160
           Q  D    VM+       +LF   SR   F+         +++  + Y+H    ++RD+K
Sbjct: 65  QTHDRLCFVMEYANGG--ELFFHLSRERVFSEDRARFYGAEIVSALGYLHSCDVVYRDLK 122

Query: 161 PDNFLM 166
            +N ++
Sbjct: 123 LENLML 128


>gnl|CDD|173675 cd05584, STKc_p70S6K, Catalytic domain of the Protein
           Serine/Threonine Kinase, 70 kDa ribosomal protein S6
           kinase.  Serine/Threonine Kinases (STKs), 70 kDa
           ribosomal protein S6 kinase (p70S6K) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The p70S6K subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. p70S6K (or S6K)
           contains only one catalytic kinase domain, unlike p90
           ribosomal S6 kinases (RSKs). It acts as a downstream
           effector of the STK mTOR (mammalian Target of Rapamycin)
           and plays a role in the regulation of the translation
           machinery during protein synthesis. p70S6K also plays a
           pivotal role in regulating cell size and glucose
           homeostasis. Its targets include S6, the translation
           initiation factor eIF3, and the insulin receptor
           substrate IRS-1, among others. Mammals contain two
           isoforms of p70S6K, named S6K1 and S6K2 (or S6K-beta).
          Length = 323

 Score = 28.2 bits (63), Expect = 2.3
 Identities = 9/21 (42%), Positives = 17/21 (80%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           +E++H +  I+RD+KP+N L+
Sbjct: 113 LEHLHQQGIIYRDLKPENILL 133


>gnl|CDD|132964 cd06633, STKc_TAO3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Thousand-and-one amino acids 3.
            Serine/threonine kinases (STKs), thousand-and-one amino
           acids 3 (TAO3) subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The TAO subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. TAO proteins possess mitogen-activated protein
           kinase (MAPK) kinase kinase (MAPKKK or MAP3K or MKKK)
           activity. MAPK signaling cascades are important in
           mediating cellular responses to extracellular signals.
           TAO3 is also known as JIK (JNK inhibitory kinase) or KFC
           (kinase from chicken). It specifically activates c-Jun
           N-terminal kinase (JNK), presumably by phosphorylating
           and activating MKK4/MKK7. In Saccharomyces cerevisiae,
           TAO3 is a component of the RAM (regulation of Ace2p
           activity and cellular morphogenesis) signaling pathway.
           TAO3 is upregulated in retinal ganglion cells after
           axotomy, and may play a role in apoptosis.
          Length = 313

 Score = 28.1 bits (62), Expect = 2.3
 Identities = 16/57 (28%), Positives = 25/57 (43%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LVM+    S  DL     +      +  +    +  + Y+H  + IHRDIK  N L+
Sbjct: 98  LVMEYCLGSASDLLEVHKKPLQEVEIAAITHGALQGLAYLHSHNMIHRDIKAGNILL 154


>gnl|CDD|234389 TIGR03903, TOMM_kin_cyc, TOMM system kinase/cyclase fusion protein.
            This model represents proteins of 1350 in length, in
           multiple species of Burkholderia, in Acidovorax avenae
           subsp. citrulli AAC00-1 and Delftia acidovorans SPH-1,
           and in multiple copies in Sorangium cellulosum, in
           genomic neighborhoods that include a
           cyclodehydratase/docking scaffold fusion protein
           (TIGR03882) and a member of the thiazole/oxazole
           modified metabolite (TOMM) precursor family TIGR03795.
           It has a kinase domain in the N-terminal 300 amino
           acids, followed by a cyclase homology domain, followed
           by regions without named domain definitions. It is a
           probable bacteriocin-like metabolite biosynthesis
           protein [Cellular processes, Toxin production and
           resistance].
          Length = 1266

 Score = 28.3 bits (63), Expect = 2.3
 Identities = 13/39 (33%), Positives = 22/39 (56%), Gaps = 5/39 (12%)

Query: 136 LMLADQMIGRIEYVHCKSFIHRDIKPDNFLM---GIGRH 171
           LML  Q++  +   H +  +HRD+KP N ++   G+  H
Sbjct: 84  LML--QVLDALACAHNQGIVHRDLKPQNIMVSQTGVRPH 120


>gnl|CDD|132974 cd06643, STKc_SLK, Catalytic domain of the Protein Serine/Threonine
           Kinase, Ste20-like kinase.  Serine/threonine kinases
           (STKs), Ste20-like kinase (SLK) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The SLK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. SLK promotes
           apoptosis through apoptosis signal-regulating kinase 1
           (ASK1) and the mitogen-activated protein kinase (MAPK)
           p38. It acts as a MAPK kinase kinase (MAPKKK) by
           phosphorylating ASK1, resulting in the phosphorylation
           of p38. SLK also plays a role in mediating actin
           reorganization. It is part of a microtubule-associated
           complex that is targeted at adhesion sites, and is
           required in focal adhesion turnover and in regulating
           cell migration.
          Length = 282

 Score = 28.1 bits (62), Expect = 2.4
 Identities = 12/39 (30%), Positives = 19/39 (48%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           R  T   + ++  Q +  + Y+H    IHRD+K  N L 
Sbjct: 98  RPLTEPQIRVVCKQTLEALNYLHENKIIHRDLKAGNILF 136


>gnl|CDD|133186 cd05055, PTKc_PDGFR, Catalytic domain of the Protein Tyrosine
           Kinases, Platelet Derived Growth Factor Receptors.
           Protein Tyrosine Kinase (PTK) family; Platelet Derived
           Growth Factor Receptor (PDGFR) subfamily; catalytic (c)
           domain. The PDGFR subfamily consists of PDGFR alpha,
           PDGFR beta, KIT, CSF-1R, the mammalian FLT3, and similar
           proteins. The PTKc family is part of a larger
           superfamily that includes the catalytic domains of other
           kinases such as protein serine/threonine kinases, RIO
           kinases, and phosphoinositide 3-kinase (PI3K). PTKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to tyrosine (tyr) residues in protein substrates.
           PDGFR subfamily members are receptor tyr kinases (RTKs)
           containing an extracellular ligand-binding region with
           five immunoglobulin-like domains, a transmembrane
           segment, and an intracellular catalytic domain. PDGFR
           kinase domains are autoinhibited by their juxtamembrane
           regions containing tyr residues. The binding to their
           ligands leads to receptor dimerization, trans
           phosphorylation and activation, and intracellular
           signaling. PDGFR subfamily receptors are important in
           the development of a variety of cells. PDGFRs are
           expressed in a many cells including fibroblasts,
           neurons, endometrial cells, mammary epithelial cells,
           and vascular smooth muscle cells. PDGFR signaling is
           critical in normal embryonic development, angiogenesis,
           and wound healing. PDGFRs transduce mitogenic signals
           for connective tissue cells and are important for cell
           shape and motility. Kit is important in the development
           of melanocytes, germ cells, mast cells, hematopoietic
           stem cells, the interstitial cells of Cajal, and the
           pacemaker cells of the GI tract. CSF-1R signaling is
           critical in the regulation of macrophages and
           osteoclasts. Mammalian FLT3 plays an important role in
           the survival, proliferation, and differentiation of stem
           cells.
          Length = 302

 Score = 28.2 bits (63), Expect = 2.4
 Identities = 16/54 (29%), Positives = 29/54 (53%), Gaps = 4/54 (7%)

Query: 121 DLFNFCSRR----FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGR 170
           DL NF  R+     T++ +L  + Q+   + ++  K+ IHRD+   N L+  G+
Sbjct: 125 DLLNFLRRKRESFLTLEDLLSFSYQVAKGMAFLASKNCIHRDLAARNVLLTHGK 178


>gnl|CDD|133189 cd05058, PTKc_Met_Ron, Catalytic domain of the Protein Tyrosine
           Kinases, Met and Ron.  Protein Tyrosine Kinase (PTK)
           family; Met and Ron; catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Met and
           Ron are receptor tyr kinases (RTKs) composed of an
           alpha-beta heterodimer. The extracellular alpha chain is
           disulfide linked to the beta chain, which contains an
           extracellular ligand-binding region with a sema domain,
           a PSI domain and four IPT repeats, a transmembrane
           segment, and an intracellular catalytic domain. Binding
           to their ligands leads to receptor dimerization,
           autophosphorylation, activation, and intracellular
           signaling. Met binds to the ligand, hepatocyte growth
           factor/scatter factor (HGF/SF), and is also called the
           HGF receptor. HGF/Met signaling plays a role in growth,
           transformation, cell motility, invasion, metastasis,
           angiogenesis, wound healing, and tissue regeneration.
           Aberrant expression of Met through mutations or gene
           amplification is associated with many human cancers
           including hereditary papillary renal and gastric
           carcinomas. The ligand for Ron is macrophage stimulating
           protein (MSP). Ron signaling is important in regulating
           cell motility, adhesion, proliferation, and apoptosis.
           Aberrant Ron expression is implicated in tumorigenesis
           and metastasis.
          Length = 262

 Score = 27.8 bits (62), Expect = 2.4
 Identities = 16/46 (34%), Positives = 24/46 (52%), Gaps = 3/46 (6%)

Query: 121 DLFNFC---SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           DL NF    +   TVK ++    Q+   +EY+  K F+HRD+   N
Sbjct: 83  DLRNFIRSETHNPTVKDLIGFGLQVAKGMEYLASKKFVHRDLAARN 128


>gnl|CDD|133221 cd05090, PTKc_Ror1, Catalytic domain of the Protein Tyrosine
           Kinase, Receptor tyrosine kinase-like Orphan Receptor 1.
            Protein Tyrosine Kinase (PTK) family; Receptor tyrosine
           kinase-like Orphan Receptor 1 (Ror1); catalytic (c)
           domain. The PTKc family is part of a larger superfamily
           that includes the catalytic domains of other kinases
           such as protein serine/threonine kinases, RIO kinases,
           and phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Ror
           proteins are orphan receptor tyr kinases (RTKs)
           containing an extracellular region with
           immunoglobulin-like, cysteine-rich, and kringle domains,
           a transmembrane segment, and an intracellular catalytic
           domain. Ror RTKs are unrelated to the nuclear receptor
           subfamily called retinoid-related orphan receptors
           (RORs). RTKs are usually activated through ligand
           binding, which causes dimerization and
           autophosphorylation of the intracellular tyr kinase
           catalytic domain. Ror kinases are expressed in many
           tissues during development. Avian Ror1 was found to be
           involved in late limb development. Studies in mice
           reveal that Ror1 is important in the regulation of
           neurite growth in central neurons, as well as in
           respiratory development. Loss of Ror1 also enhances the
           heart and skeletal abnormalities found in Ror2-deficient
           mice.
          Length = 283

 Score = 28.0 bits (62), Expect = 2.6
 Identities = 12/36 (33%), Positives = 20/36 (55%)

Query: 136 LMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           L +A Q+   +EY+    F+H+D+   N L+G   H
Sbjct: 127 LHIAIQIAAGMEYLSSHFFVHKDLAARNILIGEQLH 162


>gnl|CDD|132973 cd06642, STKc_STK25-YSK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, STK25 or Yeast
           Sps1/Ste20-related kinase 1.  Serine/threonine kinases
           (STKs), STK25 subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The STK25 subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. STK25 is also called Ste20/oxidant stress
           response kinase 1 (SOK1) or yeast Sps1/Ste20-related
           kinase 1 (YSK1). STK25 is localized in the Golgi
           apparatus through its interaction with the Golgi matrix
           protein GM130. It may play a role in the regulation of
           cell migration and polarization. STK25 binds and
           phosphorylates CCM3 (cerebral cavernous malformation 3),
           also called PCD10 (programmed cell death 10), and may
           play a role in apoptosis. Human STK25 is a candidate
           gene responsible for pseudopseudohypoparathyroidism
           (PPHP), a disease that shares features with the Albright
           hereditary osteodystrophy (AHO) phenotype.
          Length = 277

 Score = 27.7 bits (61), Expect = 2.8
 Identities = 18/56 (32%), Positives = 31/56 (55%), Gaps = 12/56 (21%)

Query: 112 MDLLGPS-LEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +DLL P  LE+ +        + T+L    +++  ++Y+H +  IHRDIK  N L+
Sbjct: 90  LDLLKPGPLEETY--------IATILR---EILKGLDYLHSERKIHRDIKAANVLL 134


>gnl|CDD|143342 cd07837, STKc_CdkB_plant, Catalytic domain of the Serine/Threonine
           Kinase, Plant B-type Cyclin-Dependent protein Kinase.
           Serine/Threonine Kinases (STKs), Plant B-type
           Cyclin-Dependent protein Kinase (CdkB) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The CdkB subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. CDKs belong to a
           large family of STKs that are regulated by their cognate
           cyclins. Together, they are involved in the control of
           cell-cycle progression, transcription, and neuronal
           function. The plant-specific B-type CDKs are expressed
           from the late S to the M phase of the cell cycle. They
           are characterized by the cyclin binding motif
           PPT[A/T]LRE. They play a role in controlling mitosis and
           integrating developmental pathways, such as stomata and
           leaf development. CdkB has been shown to associate with
           both cyclin B, which controls G2/M transition, and
           cyclin D, which acts as a mediator in linking
           extracellular signals to the cell cycle.
          Length = 295

 Score = 27.9 bits (62), Expect = 2.9
 Identities = 10/34 (29%), Positives = 18/34 (52%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHCNK 174
           Q++  + + H    +HRD+KP N L+   +   K
Sbjct: 118 QLLKGVAHCHKHGVMHRDLKPQNLLVDKQKGLLK 151


>gnl|CDD|173695 cd05604, STKc_SGK3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Serum- and
           Glucocorticoid-induced Kinase 3.  Serine/Threonine
           Kinases (STKs), Serum- and Glucocorticoid-induced Kinase
           (SGK) subfamily, SGK3 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The SGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. There are three isoforms of
           SGK, named SGK1, SGK2, and SGK3 (also called
           cytokine-independent survival kinase CISK). SGK3 is
           expressed in most tissues and is most abundant in the
           embryo and adult heart and spleen. It was originally
           discovered in a screen for antiapoptotic genes. It
           phosphorylates and inhibits the proapoptotic proteins,
           Bad and FKHRL1. SGK3 also regulates many transporters,
           ion channels, and receptors. It plays a critical role in
           hair follicle morphogenesis and hair cycling.
          Length = 325

 Score = 28.0 bits (62), Expect = 2.9
 Identities = 11/39 (28%), Positives = 21/39 (53%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           R F        A ++   + Y+H  + ++RD+KP+N L+
Sbjct: 91  RSFPEPRARFYAAEIASALGYLHSINIVYRDLKPENILL 129


>gnl|CDD|132965 cd06634, STKc_TAO2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Thousand-and-one amino acids 2.
            Serine/threonine kinases (STKs), thousand-and-one amino
           acids 2 (TAO2) subfamily, catalytic (c) domain. STKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine residues on protein substrates.
           The TAO subfamily is part of a larger superfamily that
           includes the catalytic domains of other protein STKs,
           protein tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. TAO proteins possess mitogen-activated protein
           kinase (MAPK) kinase kinase (MAPKKK or MAP3K or MKKK)
           activity. MAPK signaling cascades are important in
           mediating cellular responses to extracellular signals.
           Human TAO2 is also known as prostate-derived Ste20-like
           kinase (PSK) and was identified in a screen for
           overexpressed RNAs in prostate cancer. TAO2 activates
           both p38 and c-Jun N-terminal kinase (JNK), by
           phosphorylating and activating the respective MAP/ERK
           kinases (MEKs, also known as MKKs or MAPKKs), MEK3/MEK6
           and MKK4/MKK7. TAO2 contains a long C-terminal extension
           with autoinhibitory segments. It is activated by the
           release of this inhibition and the phosphorylation of
           its activation loop serine. TAO2 functions as a
           regulator of actin cytoskeletal and microtubule
           organization. In addition, it regulates the transforming
           growth factor-activated kinase 1 (TAK1), which is a
           MAPKKK that plays an essential role in the signaling
           pathways of tumor necrosis factor (TNF), interleukin 1
           (IL-1), and Toll-like receptor (TLR).
          Length = 308

 Score = 27.7 bits (61), Expect = 3.0
 Identities = 15/57 (26%), Positives = 25/57 (43%)

Query: 110 LVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LVM+    S  DL     +      +  +    +  + Y+H  + IHRD+K  N L+
Sbjct: 92  LVMEYCLGSASDLLEVHKKPLQEVEIAAVTHGALQGLAYLHSHNMIHRDVKAGNILL 148


>gnl|CDD|173696 cd05605, STKc_GRK4_like, Catalytic domain of G protein-coupled
           Receptor Kinase 4-like Protein Serine/Threonine Kinases.
            Serine/Threonine Kinases (STKs), G protein-coupled
           Receptor Kinase (GRK) subfamily, GRK4-like group,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The GRK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. GRKs
           phosphorylate and regulate G protein-coupled receptors
           (GPCRs), the largest superfamily of cell surface
           receptors which regulate some part of nearly all
           physiological functions. Phosphorylated GPCRs bind to
           arrestins, which prevents further G protein signaling
           despite the presence of activating ligand. There are
           seven types of GRKs, named GRK1 to GRK7. Members of the
           GRK4-like group include GRK4, GRK5, GRK6, and similar
           GRKs. GRKs in this group contain an N-terminal RGS
           homology (RH) domain and a catalytic domain, but lack a
           G protein betagamma-subunit binding domain. They are
           localized to the plasma membrane through
           post-translational lipid modification or direct binding
           to PIP2.
          Length = 285

 Score = 27.9 bits (62), Expect = 3.1
 Identities = 11/45 (24%), Positives = 26/45 (57%)

Query: 122 LFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           ++N  +  F  +  +  A ++   +E +H +  ++RD+KP+N L+
Sbjct: 91  IYNMGNPGFDEERAVFYAAEITCGLEDLHRERIVYRDLKPENILL 135


>gnl|CDD|181842 PRK09422, PRK09422, ethanol-active
           dehydrogenase/acetaldehyde-active reductase;
           Provisional.
          Length = 338

 Score = 27.7 bits (62), Expect = 3.1
 Identities = 14/33 (42%), Positives = 17/33 (51%), Gaps = 4/33 (12%)

Query: 64  RGSL--PWQGLKETFNTG--GLIVPKSKTRKLA 92
            GSL    Q L+E F  G  G +VPK + R L 
Sbjct: 282 VGSLVGTRQDLEEAFQFGAEGKVVPKVQLRPLE 314


>gnl|CDD|173661 cd05570, STKc_PKC, Catalytic domain of the Protein Serine/Threonine
           Kinase, Protein Kinase C.  Serine/Threonine Kinases
           (STKs), Protein Kinase C (PKC) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PKC subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. PKCs are
           classified into three groups (classical, atypical, and
           novel) depending on their mode of activation and the
           structural characteristics of their regulatory domain.
           PKCs undergo three phosphorylations in order to take
           mature forms. In addition, classical PKCs depend on
           calcium, DAG (1,2-diacylglycerol), and in most cases,
           phosphatidylserine (PS) for activation. Novel PKCs are
           calcium-independent, but require DAG and PS for
           activity, while atypical PKCs only require PS. PKCs
           phosphorylate and modify the activities of a wide
           variety of cellular proteins including receptors,
           enzymes, cytoskeletal proteins, transcription factors,
           and other kinases. They play a central role in signal
           transduction pathways that regulate cell migration and
           polarity, proliferation, differentiation, and apoptosis.
           Also included in this subfamily are the PKC-like
           proteins, called PKNs.
          Length = 318

 Score = 27.7 bits (62), Expect = 3.2
 Identities = 13/46 (28%), Positives = 24/46 (52%)

Query: 127 SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           S RF        A +++  ++++H +  I+RD+K DN L+    H 
Sbjct: 90  SGRFDEPRARFYAAEIVLGLQFLHERGIIYRDLKLDNVLLDSEGHI 135


>gnl|CDD|173725 cd06608, STKc_myosinIII_like, Catalytic domain of Class III
           myosin-like Protein Serine/Threonine Kinases.
           Serine/threonine kinases (STKs), Class III myosin-like
           subfamily, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The
           class III myosin-like subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. Class III myosins are motor
           proteins with an N-terminal kinase catalytic domain and
           a C-terminal actin-binding motor domain. Class III
           myosins are present in the photoreceptors of
           invertebrates and vertebrates and in the auditory hair
           cells of mammals. The kinase domain of myosin III can
           phosphorylate several cytoskeletal proteins,
           conventional myosin regulatory light chains, and can
           autophosphorylate the C-terminal motor domain. Myosin
           III may play an important role in maintaining the
           structural integrity of photoreceptor cell microvilli.
           It may also function as a cargo carrier during
           light-dependent translocation, in photoreceptor cells,
           of proteins such as transducin and arrestin. The
           Drosophila class III myosin, called NinaC (Neither
           inactivation nor afterpotential protein C), is critical
           in normal adaptation and termination of photoresponse.
           Vertebrates contain two isoforms of class III myosin,
           IIIA and IIIB. This subfamily also includes mammalian
           NIK-like embryo-specific kinase (NESK), Traf2- and
           Nck-interacting kinase (TNIK), mitogen-activated protein
           kinase (MAPK) kinase kinase kinase 4 (MAPKKKK4 or
           MAP4K4) and MAPKKKK6 (or MAP4K6). MAP4Ks are involved in
           some MAPK signaling pathways by activating a MAPK kinase
           kinase (MAPKKK or MAP3K or MKKK). Each MAPK cascade is
           activated either by a small GTP-binding protein or by an
           adaptor protein, which transmits the signal either
           directly to a MAP3K to start the triple kinase core
           cascade or indirectly through a mediator kinase, a
           MAP4K. MAPK signaling cascades are important in
           mediating cellular responses to extracellular signals.
          Length = 275

 Score = 27.6 bits (62), Expect = 3.2
 Identities = 10/20 (50%), Positives = 12/20 (60%)

Query: 147 EYVHCKSFIHRDIKPDNFLM 166
            Y+H    IHRDIK  N L+
Sbjct: 127 AYLHENKVIHRDIKGQNILL 146


>gnl|CDD|133220 cd05089, PTKc_Tie1, Catalytic domain of the Protein Tyrosine
           Kinase, Tie1.  Protein Tyrosine Kinase (PTK) family;
           Tie1; catalytic (c) domain. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Tie1 is a receptor tyr
           kinase (RTK) containing an extracellular region, a
           transmembrane segment, and an intracellular catalytic
           domain. The extracellular region contains an
           immunoglobulin (Ig)-like domain, three epidermal growth
           factor (EGF)-like domains, a second Ig-like domain, and
           three fibronectin type III repeats. Tie receptors are
           specifically expressed in endothelial cells and
           hematopoietic stem cells. No specific ligand has been
           identified for Tie1, although the angiopoietin, Ang-1,
           binds to Tie1 through integrins at high concentrations.
           In vivo studies of Tie1 show that it is critical in
           vascular development.
          Length = 297

 Score = 27.7 bits (61), Expect = 3.2
 Identities = 13/38 (34%), Positives = 21/38 (55%)

Query: 130 FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
            T + +L  A  +   ++Y+  K FIHRD+   N L+G
Sbjct: 116 LTSQQLLQFASDVATGMQYLSEKQFIHRDLAARNVLVG 153


>gnl|CDD|140307 PTZ00284, PTZ00284, protein kinase; Provisional.
          Length = 467

 Score = 28.0 bits (62), Expect = 3.2
 Identities = 20/72 (27%), Positives = 35/72 (48%), Gaps = 2/72 (2%)

Query: 96  KLTRWYGQERDYNVLVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCK-SF 154
           K+ R++  E  +  +VM   GP L D        F+ + +  +  Q    ++Y H +   
Sbjct: 195 KIQRYFQNETGHMCIVMPKYGPCLLDWI-MKHGPFSHRHLAQIIFQTGVALDYFHTELHL 253

Query: 155 IHRDIKPDNFLM 166
           +H D+KP+N LM
Sbjct: 254 MHTDLKPENILM 265


>gnl|CDD|173637 cd05059, PTKc_Tec_like, Catalytic domain of Tec-like Protein
           Tyrosine Kinases.  Protein Tyrosine Kinase (PTK) family;
           Tyrosine kinase expressed in hepatocellular carcinoma
           (Tec) subfamily; catalytic (c) domain. The Tec subfamily
           is composed of Tec, Btk, Bmx (Etk), Itk (Tsk, Emt), Rlk
           (Txk), and similar proteins. The PTKc family is part of
           a larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Tec kinases are
           cytoplasmic (or nonreceptor) tyr kinases (nRTKs) with
           similarity to Src kinases in that they contain Src
           homology protein interaction domains (SH3, SH2)
           N-terminal to the catalytic tyr kinase domain. Unlike
           Src kinases, most Tec subfamily members (except Rlk)
           also contain an N-terminal pleckstrin homology (PH)
           domain, which binds the products of PI3K and allows
           membrane recruitment and activation. In addition, some
           members contain the Tec homology (TH) domain, which
           contains proline-rich and zinc-binding regions. Tec
           kinases form the second largest subfamily of nRTKs and
           are expressed mainly by haematopoietic cells, although
           Tec and Bmx are also found in endothelial cells. B-cells
           express Btk and Tec, while T-cells express Itk, Txk, and
           Tec. Collectively, Tec kinases are expressed in a
           variety of myeloid cells such as mast cells, platelets,
           macrophages, and dendritic cells. Each Tec kinase shows
           a distinct cell-type pattern of expression. The function
           of Tec kinases in lymphoid cells have been studied
           extensively. They play important roles in the
           development, differentiation, maturation, regulation,
           survival, and function of B-cells and T-cells. Mutations
           in Btk cause the severe B-cell immunodeficiency,
           X-linked agammaglobulinaemia (XLA).
          Length = 256

 Score = 27.4 bits (61), Expect = 3.3
 Identities = 14/49 (28%), Positives = 23/49 (46%), Gaps = 3/49 (6%)

Query: 122 LFNFCSRR---FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           L N+   R      + +L +   +   +EY+    FIHRD+   N L+G
Sbjct: 86  LLNYLRERKGKLGTEWLLDMCSDVCEAMEYLESNGFIHRDLAARNCLVG 134


>gnl|CDD|178763 PLN03224, PLN03224, probable serine/threonine protein kinase;
           Provisional.
          Length = 507

 Score = 27.7 bits (61), Expect = 3.3
 Identities = 10/28 (35%), Positives = 18/28 (64%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLMGI 168
           Q++  +  +H    +HRDIKP+N L+ +
Sbjct: 317 QVLTGLRKLHRIGIVHRDIKPENLLVTV 344


>gnl|CDD|132962 cd06631, STKc_YSK4, Catalytic domain of the Protein
           Serine/Threonine Kinase, Yeast Sps1/Ste20-related kinase
           4.  Serine/threonine kinases (STKs), yeast
           Sps1/Ste20-related kinase 4 (YSK4) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The YSK4 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. YSK4 is a
           putative MAPKKK, whose mammalian gene has been isolated.
           MAPKKKs (MKKKs or MAP3Ks) phosphorylate and activate
           MAPK kinases (MAPKKs or MKKs or MAP2Ks), which in turn
           phosphorylate and activate MAPKs during signaling
           cascades that are important in mediating cellular
           responses to extracellular signals.
          Length = 265

 Score = 27.6 bits (61), Expect = 3.3
 Identities = 14/56 (25%), Positives = 28/56 (50%), Gaps = 12/56 (21%)

Query: 111 VMDLLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +++  GP  E +F     ++T         Q++  + Y+H    +HRDIK +N ++
Sbjct: 92  ILNRFGPLPEPVF----CKYT--------KQILDGVAYLHNNCVVHRDIKGNNVML 135


>gnl|CDD|132951 cd06620, PKc_MAPKK_Byr1_like, Catalytic domain of fungal Byr1-like
           dual-specificity MAP kinase kinases.  Protein kinases
           (PKs), MAP kinase kinase (MAPKK) subfamily, fungal
           Byr1-like proteins, catalytic (c) domain. PKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           serine/threonine or tyrosine residues on protein
           substrates. The MAPKK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising of the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK), which itself is phosphorylated and
           activated by a MAPK kinase kinase (MAPKKK or MKKK).
           Members of this group include the MAPKKs Byr1 from
           Schizosaccharomyces pombe, FUZ7 from Ustilago maydis,
           and related proteins. Byr1 phosphorylates its downstream
           target, the MAPK Spk1, and is regulated by the MAPKKK
           Byr2. The Spk1 cascade is pheromone-responsive and is
           essential for sporulation and sexual differentiation in
           fission yeast. FUZ7 phosphorylates and activates its
           target, the MAPK Crk1, which is required in mating and
           virulence in U. maydis.
          Length = 284

 Score = 27.5 bits (61), Expect = 3.3
 Identities = 11/36 (30%), Positives = 20/36 (55%), Gaps = 1/36 (2%)

Query: 131 TVKTVLMLADQMIGRIEYVHCK-SFIHRDIKPDNFL 165
            V+ +  +A  ++  + Y++     +HRDIKP N L
Sbjct: 101 PVEILGKIAVAVVEGLTYLYNVHRIMHRDIKPSNIL 136


>gnl|CDD|133235 cd05104, PTKc_Kit, Catalytic domain of the Protein Tyrosine Kinase,
           Kit.  Protein Tyrosine Kinase (PTK) family; Kit (or
           c-Kit); catalytic (c) domain. The PTKc family is part of
           a larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Kit is a member of the
           Platelet Derived Growth Factor Receptor (PDGFR)
           subfamily of proteins, which are receptor tyr kinases
           (RTKs) containing an extracellular ligand-binding region
           with five immunoglobulin-like domains, a transmembrane
           segment, and an intracellular catalytic domain. The
           binding of Kit to its ligand, the stem-cell factor
           (SCF), leads to receptor dimerization, trans
           phosphorylation and activation, and intracellular
           signaling. Kit is important in the development of
           melanocytes, germ cells, mast cells, hematopoietic stem
           cells, the interstitial cells of Cajal, and the
           pacemaker cells of the GI tract. Kit signaling is
           involved in major cellular functions including cell
           survival, proliferation, differentiation, adhesion, and
           chemotaxis. Mutations in Kit, which result in
           constitutive ligand-independent activation, are found in
           human cancers such as gastrointestinal stromal tumor
           (GIST) and testicular germ cell tumor (TGCT). The
           aberrant expression of Kit and/or SCF is associated with
           other tumor types such as systemic mastocytosis and
           cancers of the breast, neurons, lung, prostate, colon,
           and rectum.  Although the structure of the human Kit
           catalytic domain is known, it is excluded from this
           specific alignment model because it contains a deletion
           in its sequence.
          Length = 375

 Score = 27.5 bits (61), Expect = 3.4
 Identities = 20/89 (22%), Positives = 36/89 (40%), Gaps = 15/89 (16%)

Query: 82  IVPKSKTRKLALPSKLTRWYGQERDYNVLVMDLLGPSLEDLFNFCSRRFTVKTVLMLADQ 141
           +VP    ++     +   +  Q+    +L  D L    EDL +F             + Q
Sbjct: 178 VVPTKADKRR--SVRSGSYIDQDVTSEILEEDELALDTEDLLSF-------------SYQ 222

Query: 142 MIGRIEYVHCKSFIHRDIKPDNFLMGIGR 170
           +   + ++  K+ IHRD+   N L+  GR
Sbjct: 223 VAKGMSFLASKNCIHRDLAARNILLTHGR 251


>gnl|CDD|173757 cd08217, STKc_Nek2, Catalytic domain of the Protein
           Serine/Threonine Kinase, Never In Mitosis gene A-related
           kinase 2.  Serine/Threonine Kinases (STKs), Never In
           Mitosis gene A (NIMA)-related kinase 2 (Nek2) subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Nek2 subfamily is
           one of a family of 11 different Neks (Nek1-11) that are
           involved in cell cycle control. The Nek family is part
           of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. The Nek2
           subfamily includes Aspergillus nidulans NIMA kinase, the
           founding member of the Nek family, which was identified
           in a screen for cell cycle mutants prevented from
           entering mitosis. NIMA is essential for mitotic entry
           and progression through mitosis, and its degradation is
           essential for mitotic exit. NIMA is involved in nuclear
           membrane fission. Vertebrate Nek2 is a cell
           cycle-regulated STK, localized in centrosomes and
           kinetochores, that regulates centrosome splitting at the
           G2/M phase. It also interacts with other mitotic kinases
           such as Polo-like kinase 1 and may play a role in
           spindle checkpoint. An increase in the expression of the
           human NEK2 gene is strongly associated with the
           progression of non-Hodgkin lymphoma.
          Length = 265

 Score = 27.6 bits (62), Expect = 3.4
 Identities = 8/14 (57%), Positives = 11/14 (78%), Gaps = 1/14 (7%)

Query: 153 SFIHRDIKPDN-FL 165
           + +HRD+KP N FL
Sbjct: 130 TVLHRDLKPANIFL 143


>gnl|CDD|173649 cd05093, PTKc_TrkB, Catalytic domain of the Protein Tyrosine
           Kinase, Tropomyosin Related Kinase B.  Protein Tyrosine
           Kinase (PTK) family; Tropomyosin Related Kinase B
           (TrkB); catalytic (c) domain. The PTKc family is part of
           a larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. TrkB is a member of the
           Trk subfamily of proteins, which are receptor tyr
           kinases (RTKs) containing an extracellular region with
           arrays of leucine-rich motifs flanked by two
           cysteine-rich clusters followed by two
           immunoglobulin-like domains, a transmembrane segment,
           and an intracellular catalytic domain. Binding of TrkB
           to its ligands, brain-derived neurotrophic factor (BDNF)
           or neurotrophin 4 (NT4), results in receptor
           oligomerization and activation of the catalytic domain.
           TrkB is broadly expressed in the nervous system and in
           some non-neural tissues. It plays important roles in
           cell proliferation, differentiation, and survival.
           BDNF/Trk signaling plays a key role in regulating
           activity-dependent synaptic plasticity. TrkB also
           contributes to protection against gp120-induced neuronal
           cell death. TrkB overexpression is associated with poor
           prognosis in neuroblastoma (NB) and other human cancers.
           It acts as a suppressor of anoikis (detachment-induced
           apoptosis) and contributes to tumor metastasis.
          Length = 288

 Score = 27.3 bits (60), Expect = 3.9
 Identities = 12/38 (31%), Positives = 21/38 (55%)

Query: 130 FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
            T   +L +A Q+   + Y+  + F+HRD+   N L+G
Sbjct: 117 LTQSQMLHIAQQIAAGMVYLASQHFVHRDLATRNCLVG 154


>gnl|CDD|88330 cd05047, PTKc_Tie, Catalytic domain of Tie Protein Tyrosine
           Kinases.  Protein Tyrosine Kinase (PTK) family; Tie
           subfamily; catalytic (c) domain. The Tie subfamily
           consists of Tie1 and Tie2. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Tie proteins are
           receptor tyr kinases (RTKs) containing an extracellular
           region, a transmembrane segment, and an intracellular
           catalytic domain. The extracellular region contains an
           immunoglobulin (Ig)-like domain, three epidermal growth
           factor (EGF)-like domains, a second Ig-like domain, and
           three fibronectin type III repeats. Tie receptors are
           specifically expressed in endothelial cells and
           hematopoietic stem cells. The angiopoietins (Ang-1 to
           Ang-4) serve as ligands for Tie2, while no specific
           ligand has been identified for Tie1. The binding of
           Ang-1 to Tie2 leads to receptor autophosphorylation and
           activation, promoting cell migration and survival. In
           contrast, Ang-2 binding to Tie2 does not result in the
           same response, suggesting that Ang-2 may function as an
           antagonist. In vivo studies of Tie1 show that it is
           critical in vascular development.
          Length = 270

 Score = 27.3 bits (60), Expect = 4.1
 Identities = 12/38 (31%), Positives = 21/38 (55%)

Query: 130 FTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
            + + +L  A  +   ++Y+  K FIHRD+   N L+G
Sbjct: 109 LSSQQLLHFAADVARGMDYLSQKQFIHRDLAARNILVG 146


>gnl|CDD|215638 PLN03225, PLN03225, Serine/threonine-protein kinase SNT7;
           Provisional.
          Length = 566

 Score = 27.4 bits (61), Expect = 4.2
 Identities = 8/26 (30%), Positives = 16/26 (61%)

Query: 140 DQMIGRIEYVHCKSFIHRDIKPDNFL 165
            Q++  ++ +H    +HRD+KP N +
Sbjct: 262 RQILFALDGLHSTGIVHRDVKPQNII 287


>gnl|CDD|173624 cd00192, PTKc, Catalytic domain of Protein Tyrosine Kinases.
           Protein Tyrosine Kinase (PTK) family, catalytic domain.
           This PTKc family is part of a larger superfamily that
           includes the catalytic domains of protein
           serine/threonine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. They can be classified
           into receptor and non-receptor tyr kinases. PTKs play
           important roles in many cellular processes including,
           lymphocyte activation, epithelium growth and
           maintenance, metabolism control, organogenesis
           regulation, survival, proliferation, differentiation,
           migration, adhesion, motility, and morphogenesis.
           Receptor tyr kinases (RTKs) are integral membrane
           proteins which contain an extracellular ligand-binding
           region, a transmembrane segment, and an intracellular
           tyr kinase domain. RTKs are usually activated through
           ligand binding, which causes dimerization and
           autophosphorylation of the intracellular tyr kinase
           catalytic domain, leading to intracellular signaling.
           Some RTKs are orphan receptors with no known ligands.
           Non-receptor (or cytoplasmic) tyr kinases are
           distributed in different intracellular compartments and
           are usually multi-domain proteins containing a catalytic
           tyr kinase domain as well as various regulatory domains
           such as SH3 and SH2. PTKs are usually autoinhibited and
           require a mechanism for activation. In many PTKs, the
           phosphorylation of tyr residues in the activation loop
           is essential for optimal activity. Aberrant expression
           of PTKs is associated with many development
           abnormalities and cancers.
          Length = 262

 Score = 27.1 bits (61), Expect = 4.2
 Identities = 15/47 (31%), Positives = 24/47 (51%), Gaps = 2/47 (4%)

Query: 127 SRRFTVKTVLMLADQMIGR-IEYVHCKSFIHRDIKPDNFLMGIGRHC 172
               ++K +L  A Q I + +EY+  K F+HRD+   N L+G     
Sbjct: 99  KSTLSLKDLLSFAIQ-IAKGMEYLASKKFVHRDLAARNCLVGEDLVV 144


>gnl|CDD|173673 cd05582, STKc_RSK_N, N-terminal catalytic domain of the Protein
           Serine/Threonine Kinase, 90 kDa ribosomal protein S6
           kinase.  Serine/Threonine Kinases (STKs), 90 kDa
           ribosomal protein S6 kinase (RSK) subfamily, N-terminal
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The RSK subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. RSKs contain an
           N-terminal kinase domain (NTD) from the AGC family and a
           C-terminal kinase domain (CTD) from the CAMK family.
           They are activated by signaling inputs from
           extracellular regulated kinase (ERK) and
           phosphoinositide dependent kinase 1 (PDK1). ERK
           phosphorylates and activates the CTD of RSK, serving as
           a docking site for PDK1, which phosphorylates and
           activates the NTD, which in turn phosphorylates all
           known RSK substrates. RSKs act as downstream effectors
           of mitogen-activated protein kinase (MAPK) and play key
           roles in mitogen-activated cell growth, differentiation,
           and survival. Mammals possess four RSK isoforms (RSK1-4)
           from distinct genes. RSK proteins are also referred to
           as MAP kinase-activated protein kinases (MAPKAPKs),
           p90-RSKs, or p90S6Ks.
          Length = 318

 Score = 27.5 bits (61), Expect = 4.3
 Identities = 30/99 (30%), Positives = 45/99 (45%), Gaps = 18/99 (18%)

Query: 3   LIDFGLAKKFRDTRTRNHILYREDKNLTGTARYASINAHLGIEQSRRDDMESLGYVLMY- 61
           L DFGL+K+  D   + +       +  GT  Y +         ++  D  S G VLM+ 
Sbjct: 139 LTDFGLSKESIDHEKKAY-------SFCGTVEYMAPEVVNRRGHTQSADWWSFG-VLMFE 190

Query: 62  FNRGSLPWQG--LKETFNTGGLIVPKSKTRKLALPSKLT 98
              GSLP+QG   KET      ++ K+   KL +P  L+
Sbjct: 191 MLTGSLPFQGKDRKETMT----MILKA---KLGMPQFLS 222



 Score = 27.1 bits (60), Expect = 4.7
 Identities = 20/60 (33%), Positives = 34/60 (56%), Gaps = 6/60 (10%)

Query: 110 LVMDLLGPSLEDLFNFCSRR--FTVKTV-LMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           L++D L     DLF   S+   FT + V   LA+  +  ++++H    I+RD+KP+N L+
Sbjct: 75  LILDFLRGG--DLFTRLSKEVMFTEEDVKFYLAELALA-LDHLHSLGIIYRDLKPENILL 131


>gnl|CDD|173772 cd08530, STKc_CNK2-like, Catalytic domain of the Protein
           Serine/Threonine Kinase, Chlamydomonas reinhardtii CNK2,
            and similar domains.  Serine/Threonine Kinases (STKs),
           Chlamydomonas reinhardtii Never In Mitosis gene A
           (NIMA)-related kinase 1 (CNK2)-like subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Chlamydomonas
           reinhardtii CNK2-like subfamily belongs to the
           (NIMA)-related kinase (Nek) family. The Nek family
           includes seven different Chlamydomonas Neks (CNKs 1-6
           and Fa2). This subfamily includes CNK1, and -2.  The Nek
           family is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase.  Chlamydomonas reinhardtii CNK2 has both
           cilliary and cell cycle functions. It influences
           flagellar length through promoting flagellar
           disassembly, and it regulates cell size, through
           influencing the size threshold at which cells commit to
           mitosis.
          Length = 256

 Score = 27.4 bits (61), Expect = 4.3
 Identities = 15/54 (27%), Positives = 26/54 (48%), Gaps = 10/54 (18%)

Query: 121 DLFNFCSRRFTVKTVLMLADQMIGRI--------EYVHCKSFIHRDIKPDNFLM 166
           DL    S+R   +   ++ +Q I RI        + +H +  +HRD+K  N L+
Sbjct: 85  DLSKAISKRKKKRK--LIPEQEIWRIFIQLLRGLQALHEQKILHRDLKSANILL 136


>gnl|CDD|143341 cd07836, STKc_Pho85, Catalytic domain of the Serine/Threonine
           Kinase, Fungal Cyclin-Dependent protein Kinase Pho85.
           Serine/Threonine Kinases (STKs), Pho85 subfamily,
           catalytic (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Pho85 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. Pho85 is a
           multifunctional Cyclin-Dependent protein Kinase (CDK) in
           yeast. CDKs belong to a large family of STKs that are
           regulated by their cognate cyclins. Together, they are
           involved in the control of cell-cycle progression,
           transcription, and neuronal function. Pho85 is regulated
           by 10 different cyclins (Pcls) and plays a role in G1
           progression, cell polarity, phosphate and glycogen
           metabolism, gene expression, and in signaling changes in
           the environment. It is not essential for yeast viability
           and is the functional homolog of mammalian CDK5, which
           plays a role in central nervous system development.
          Length = 284

 Score = 27.1 bits (60), Expect = 4.8
 Identities = 10/26 (38%), Positives = 16/26 (61%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           Q++  I + H    +HRD+KP N L+
Sbjct: 108 QLLKGIAFCHENRVLHRDLKPQNLLI 133


>gnl|CDD|176688 cd07267, THT_Oxygenase_N, N-terminal domain of
          2,4,5-trihydroxytoluene (THT) oxygenase.  This
          subfamily contains the N-terminal, non-catalytic,
          domain of THT oxygenase. THT oxygenase is an extradiol
          dioxygenase in the 2,4-dinitrotoluene (DNT) degradation
          pathway. It catalyzes the conversion of
          2,4,5-trihydroxytoluene to an unstable ring fission
          product, 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic
          acid. The native protein was determined to be a dimer
          by gel filtration. The enzyme belongs to the type I
          family of extradiol dioxygenases which contains two
          structurally homologous barrel-shaped domains at the N-
          and C-terminus of each monomer. The active-site metal
          is located in the C-terminal barrel. Fe(II) is required
          for its catalytic activity.
          Length = 113

 Score = 26.4 bits (59), Expect = 4.8
 Identities = 19/62 (30%), Positives = 24/62 (38%), Gaps = 15/62 (24%)

Query: 2  FLIDFGLAKKFRDTRTRNHILYREDKNLTGT------ARYASINAHLGI--EQSRRDDME 53
          FL DFGL       RT + + YR      GT      AR       +G   E + R D+E
Sbjct: 20 FLTDFGLEVAA---RTDDELYYRG----YGTDPFVYVARKGEKARFVGAAFEAASRADLE 72

Query: 54 SL 55
            
Sbjct: 73 KA 74


>gnl|CDD|173652 cd05100, PTKc_FGFR3, Catalytic domain of the Protein Tyrosine
           Kinase, Fibroblast Growth Factor Receptor 3.  Protein
           Tyrosine Kinase (PTK) family; Fibroblast Growth Factor
           Receptor 3 (FGFR3); catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. FGFR3 is
           part of the FGFR subfamily, which are receptor tyr
           kinases (RTKs) containing an extracellular
           ligand-binding region with three immunoglobulin-like
           domains, a transmembrane segment, and an intracellular
           catalytic domain. The binding of FGFRs to their ligands,
           the FGFs, results in receptor dimerization and
           activation, and intracellular signaling. The binding of
           FGFs to FGFRs is promiscuous, in that a receptor may be
           activated by several ligands and a ligand may bind to
           more that one type of receptor. Many FGFR3 splice
           variants have been reported with the IIIb and IIIc
           isoforms being the predominant forms. FGFR3 IIIc is the
           isoform expressed in chondrocytes, the cells affected in
           dwarfism, while IIIb is expressed in epithelial cells.
           FGFR3 ligands include FGF1, FGF2, FGF4, FGF8, FGF9, and
           FGF23. It is a negative regulator of long bone growth.
           In the cochlear duct and in the lens, FGFR3 is involved
           in differentiation while it appears to have a role in
           cell proliferation in epithelial cells. Germline
           mutations in FGFR3 are associated with skeletal
           disorders including several forms of dwarfism. Some
           missense mutations are associated with multiple myeloma
           and carcinomas of the bladder and cervix. Overexpression
           of FGFR3 is found in thyroid carcinoma.
          Length = 334

 Score = 27.3 bits (60), Expect = 4.9
 Identities = 15/53 (28%), Positives = 27/53 (50%), Gaps = 3/53 (5%)

Query: 117 PSLEDLFNFC---SRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           P ++  F+ C     + T K ++  A Q+   +EY+  +  IHRD+   N L+
Sbjct: 115 PGMDYSFDTCKLPEEQLTFKDLVSCAYQVARGMEYLASQKCIHRDLAARNVLV 167


>gnl|CDD|132972 cd06641, STKc_MST3, Catalytic domain of the Protein
           Serine/Threonine Kinase, Mammalian Ste20-like protein
           kinase 3.  Serine/threonine kinases (STKs), mammalian
           Ste20-like protein kinase 3 (MST3) subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The MST3 subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. MST3
           phosphorylates the STK NDR and may play a role in cell
           cycle progression and cell morphology. It may also
           regulate paxillin and consequently, cell migration. MST3
           is present in human placenta, where it plays an
           essential role in the oxidative stress-induced apoptosis
           of trophoblasts in normal spontaneous delivery.
           Dysregulation of trophoblast apoptosis may result in
           pregnancy complications such as preeclampsia and
           intrauterine growth retardation.
          Length = 277

 Score = 27.0 bits (59), Expect = 4.9
 Identities = 10/26 (38%), Positives = 18/26 (69%)

Query: 141 QMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +++  ++Y+H +  IHRDIK  N L+
Sbjct: 109 EILKGLDYLHSEKKIHRDIKAANVLL 134


>gnl|CDD|173657 cd05113, PTKc_Btk_Bmx, Catalytic domain of the Protein Tyrosine
           Kinases, Bruton's tyrosine kinase and Bone marrow kinase
           on the X chromosome.  Protein Tyrosine Kinase (PTK)
           family; Bruton's tyrosine kinase (Btk) and Bone marrow
           kinase on the X chromosome (Bmx); catalytic (c) domain.
           The PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Btk and
           Bmx (also named Etk) are members of the Tec subfamily of
           proteins, which are cytoplasmic (or nonreceptor) tyr
           kinases with similarity to Src kinases in that they
           contain Src homology protein interaction domains (SH3,
           SH2) N-terminal to the catalytic tyr kinase domain.
           Unlike Src kinases, most Tec subfamily members (except
           Rlk) also contain an N-terminal pleckstrin homology (PH)
           domain, which binds the products of PI3K and allows
           membrane recruitment and activation. In addition, Btk
           contains the Tec homology (TH) domain with proline-rich
           and zinc-binding regions. Tec kinases are expressed
           mainly by haematopoietic cells. Btk is expressed in
           B-cells, and a variety of myeloid cells including mast
           cells, platelets, neutrophils, and dendrictic cells. It
           interacts with a variety of partners, from cytosolic
           proteins to nuclear transcription factors, suggesting a
           diversity of functions. Stimulation of a diverse array
           of cell surface receptors, including antigen engagement
           of the B-cell receptor (BCR), leads to PH-mediated
           membrane translocation of Btk and subsequent
           phosphorylation by Src kinase and activation. Btk plays
           an important role in the life cycle of B-cells including
           their development, differentiation, proliferation,
           survival, and apoptosis. Mutations in Btk cause the
           primary immunodeficiency disease, X-linked
           agammaglobulinaemia (XLA) in humans. Bmx is primarily
           expressed in bone marrow and the arterial endothelium,
           and plays an important role in ischemia-induced
           angiogenesis. It facilitates arterial growth, capillary
           formation, vessel maturation, and bone marrow-derived
           endothelial progenitor cell mobilization.
          Length = 256

 Score = 27.2 bits (60), Expect = 5.2
 Identities = 12/39 (30%), Positives = 20/39 (51%)

Query: 128 RRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +RF    +L +   +   + Y+  K FIHRD+   N L+
Sbjct: 95  KRFQPSQLLEMCKDVCEGMAYLESKQFIHRDLAARNCLV 133


>gnl|CDD|133202 cd05071, PTKc_Src, Catalytic domain of the Protein Tyrosine Kinase,
           Src.  Protein Tyrosine Kinase (PTK) family; Src kinase;
           catalytic (c) domain. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Src (or c-Src) is a
           cytoplasmic (or non-receptor) tyr kinase, containing an
           N-terminal SH4 domain with a myristoylation site,
           followed by SH3 and SH2 domains, a tyr kinase domain,
           and a regulatory C-terminal region with a conserved tyr.
           It is activated by autophosphorylation at the tyr kinase
           domain, and is negatively regulated by phosphorylation
           at the C-terminal tyr by Csk (C-terminal Src Kinase).
           c-Src is the vertebrate homolog of the oncogenic protein
           (v-Src) from Rous sarcoma virus. Together with other Src
           subfamily proteins, it is involved in signaling pathways
           that regulate cytokine and growth factor responses,
           cytoskeleton dynamics, cell proliferation, survival, and
           differentiation. Src also play a role in regulating cell
           adhesion, invasion, and motility in cancer cells and
           tumor vasculature, contributing to cancer progression
           and metastasis. Elevated levels of Src kinase activity
           have been reported in a variety of human cancers.
           Several inhibitors of Src have been developed as
           anti-cancer drugs. Src is also implicated in acute
           inflammatory responses and osteoclast function.
          Length = 262

 Score = 26.9 bits (59), Expect = 5.2
 Identities = 13/52 (25%), Positives = 27/52 (51%)

Query: 116 GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMG 167
           G  L+ L     +   +  ++ +A Q+   + YV   +++HRD++  N L+G
Sbjct: 85  GSLLDFLKGEMGKYLRLPQLVDMAAQIASGMAYVERMNYVHRDLRAANILVG 136


>gnl|CDD|133199 cd05068, PTKc_Frk_like, Catalytic domain of Fyn-related kinase-like
           Protein Tyrosine Kinases.  Protein Tyrosine Kinase (PTK)
           family; Human Fyn-related kinase (Frk) and similar
           proteins; catalytic (c) domain. The PTKc family is part
           of a larger superfamily that includes the catalytic
           domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. Frk and
           Srk are members of the Src subfamily of proteins, which
           are cytoplasmic (or non-receptor) tyr kinases. Src
           kinases contain an N-terminal SH4 domain with a
           myristoylation site, followed by SH3 and SH2 domains, a
           tyr kinase domain, and a regulatory C-terminal region
           containing a conserved tyr. They are activated by
           autophosphorylation at the tyr kinase domain, but are
           negatively regulated by phosphorylation at the
           C-terminal tyr by Csk (C-terminal Src Kinase). Src
           proteins are involved in signaling pathways that
           regulate cytokine and growth factor responses,
           cytoskeleton dynamics, cell proliferation, survival, and
           differentiation. Frk, also known as Rak, is specifically
           expressed in liver, lung, kidney, intestine, mammary
           glands, and the islets of Langerhans. Rodent homologs
           were previously referred to as GTK (gastrointestinal tyr
           kinase), BSK (beta-cell Src-like kinase), or IYK
           (intestinal tyr kinase). Studies in mice reveal that Frk
           is not essential for viability. It plays a role in the
           signaling that leads to cytokine-induced beta-cell death
           in Type I diabetes. It also regulates beta-cell number
           during embryogenesis and early in life.
          Length = 261

 Score = 27.0 bits (60), Expect = 5.3
 Identities = 16/57 (28%), Positives = 28/57 (49%)

Query: 116 GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
           G  LE L     R   +  ++ +A Q+   + Y+  +++IHRD+   N L+G    C
Sbjct: 86  GSLLEYLQGGAGRALKLPQLIDMAAQVASGMAYLEAQNYIHRDLAARNVLVGENNIC 142


>gnl|CDD|219530 pfam07714, Pkinase_Tyr, Protein tyrosine kinase. 
          Length = 258

 Score = 26.7 bits (60), Expect = 5.6
 Identities = 15/56 (26%), Positives = 23/56 (41%), Gaps = 13/56 (23%)

Query: 117 PSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRHC 172
            +L+DL             L +A  M    EY+  K+F+HRD+   N L+      
Sbjct: 99  LTLKDLLQMA---------LQIAKGM----EYLESKNFVHRDLAARNCLVTENLVV 141


>gnl|CDD|140293 PTZ00267, PTZ00267, NIMA-related protein kinase; Provisional.
          Length = 478

 Score = 26.9 bits (59), Expect = 5.8
 Identities = 13/34 (38%), Positives = 21/34 (61%), Gaps = 1/34 (2%)

Query: 137 MLADQMIGRIEYVHCKSFIHRDIKPDN-FLMGIG 169
           +L  Q++  ++ VH +  +HRD+K  N FLM  G
Sbjct: 173 LLFYQIVLALDEVHSRKMMHRDLKSANIFLMPTG 206


>gnl|CDD|173693 cd05602, STKc_SGK1, Catalytic domain of the Protein
           Serine/Threonine Kinase, Serum- and
           Glucocorticoid-induced Kinase 1.  Serine/Threonine
           Kinases (STKs), Serum- and Glucocorticoid-induced Kinase
           (SGK) subfamily, SGK1 isoform, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The SGK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. There are three isoforms of
           SGK, named SGK1, SGK2, and SGK3. SGK1 is ubiquitously
           expressed and is under transcriptional control of
           numerous stimuli including cell stress (cell shrinkage),
           serum, hormones (gluco- and mineralocorticoids),
           gonadotropins, growth factors, interleukin-6, and other
           cytokines. It plays roles in sodium retention and
           potassium elimination in the kidney, nutrient transport,
           salt sensitivity, memory consolidation, and cardiac
           repolarization. A common SGK1 variant is associated with
           increased blood pressure and body weight. SGK1 may also
           contribute to tumor growth, neurodegeneration, fibrosing
           disease, and ischemia.
          Length = 325

 Score = 26.9 bits (59), Expect = 5.9
 Identities = 9/28 (32%), Positives = 19/28 (67%)

Query: 139 ADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           A ++   + Y+H  + ++RD+KP+N L+
Sbjct: 102 AAEIASALGYLHSLNIVYRDLKPENILL 129


>gnl|CDD|173650 cd05094, PTKc_TrkC, Catalytic domain of the Protein Tyrosine
           Kinase, Tropomyosin Related Kinase C.  Protein Tyrosine
           Kinase (PTK) family; Tropomyosin Related Kinase C
           (TrkC); catalytic (c) domain. The PTKc family is part of
           a larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. TrkC is a member of the
           Trk subfamily of proteins, which are receptor tyr
           kinases (RTKs) containing an extracellular region with
           arrays of leucine-rich motifs flanked by two
           cysteine-rich clusters followed by two
           immunoglobulin-like domains, a transmembrane segment,
           and an intracellular catalytic domain. Binding of TrkC
           to its ligand, neurotrophin 3 (NT3), results in receptor
           oligomerization and activation of the catalytic domain.
           TrkC is broadly expressed in the nervous system and in
           some non-neural tissues including the developing heart.
           NT3/TrkC signaling plays an important role in the
           innervation of the cardiac conducting system and the
           development of smooth muscle cells. Mice deficient with
           NT3 and TrkC have multiple heart defects. NT3/TrkC
           signaling is also critical for the development and
           maintenance of enteric neurons that are important for
           the control of gut peristalsis.
          Length = 291

 Score = 26.9 bits (59), Expect = 6.2
 Identities = 11/35 (31%), Positives = 20/35 (57%)

Query: 135 VLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIG 169
           +L +A Q+   + Y+  + F+HRD+   N L+G  
Sbjct: 125 MLHIASQIASGMVYLASQHFVHRDLATRNCLVGAN 159


>gnl|CDD|132991 cd06917, STKc_NAK1_like, Catalytic domain of Fungal Nak1-like
           Protein Serine/Threonine Kinases.  Serine/threonine
           kinases (STKs), Nak1 subfamily, catalytic (c) domain.
           STKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine residues on protein
           substrates. The Nak1 subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein STKs, protein tyrosine kinases, RIO kinases,
           aminoglycoside phosphotransferase, choline kinase, and
           phosphoinositide 3-kinase. This subfamily is composed of
           Schizosaccharomyces pombe Nak1, Saccharomyces cerevisiae
           Kic1p (kinase that interacts with Cdc31p) and related
           proteins. Nak1 (also known as N-rich kinase 1), is
           required by fission yeast for polarizing the tips of
           actin cytoskeleton and is involved in cell growth, cell
           separation, cell morphology and cell-cycle progression.
           Kic1p is required by budding yeast for cell integrity
           and morphogenesis. Kic1p interacts with Cdc31p, the
           yeast homologue of centrin, and phosphorylates
           substrates in a Cdc31p-dependent manner.
          Length = 277

 Score = 26.6 bits (59), Expect = 6.4
 Identities = 10/21 (47%), Positives = 14/21 (66%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           ++Y+H    IHRDIK  N L+
Sbjct: 114 LKYIHKVGVIHRDIKAANILV 134


>gnl|CDD|133192 cd05061, PTKc_InsR, Catalytic domain of the Protein Tyrosine
           Kinase, Insulin Receptor.  Protein Tyrosine Kinase (PTK)
           family; Insulin Receptor (InsR); catalytic (c) domain.
           The PTKc family is part of a larger superfamily that
           includes the catalytic domains of other kinases such as
           protein serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. InsR is a
           receptor tyr kinase (RTK) that is composed of two
           alphabeta heterodimers. Binding of the insulin ligand to
           the extracellular alpha subunit activates the
           intracellular tyr kinase domain of the transmembrane
           beta subunit. Receptor activation leads to
           autophosphorylation, stimulating downstream kinase
           activities, which initiate signaling cascades and
           biological function. InsR signaling plays an important
           role in many cellular processes including glucose
           homeostasis, glycogen synthesis, lipid and protein
           metabolism, ion and amino acid transport, cell cycle and
           proliferation, cell differentiation, gene transcription,
           and nitric oxide synthesis. Insulin resistance, caused
           by abnormalities in InsR signaling, has been described
           in diabetes, hypertension, cardiovascular disease,
           metabolic syndrome, heart failure, and female
           infertility.
          Length = 288

 Score = 26.9 bits (59), Expect = 6.5
 Identities = 9/33 (27%), Positives = 21/33 (63%)

Query: 131 TVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           T++ ++ +A ++   + Y++ K F+HRD+   N
Sbjct: 117 TLQEMIQMAAEIADGMAYLNAKKFVHRDLAARN 149


>gnl|CDD|132949 cd06618, PKc_MKK7, Catalytic domain of the dual-specificity Protein
           Kinase, MAP kinase kinase 7.  Protein kinases (PKs), MAP
           kinase kinase 7 (MKK7) subfamily, catalytic (c) domain.
           PKs catalyze the transfer of the gamma-phosphoryl group
           from ATP to serine/threonine or tyrosine residues on
           protein substrates. The MKK7 subfamily is part of a
           larger superfamily that includes the catalytic domains
           of other protein serine/threonine kinases, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. The mitogen-activated protein (MAP) kinase
           signaling pathways are important mediators of cellular
           responses to extracellular signals. The pathways involve
           a triple kinase core cascade comprising the MAP kinase
           (MAPK), which is phosphorylated and activated by a MAPK
           kinase (MAPKK or MKK), which itself is phosphorylated
           and activated by a MAPK kinase kinase (MAPKKK or MKKK).
           MKK7 is a dual-specificity PK that phosphorylates and
           activates its downstream target, c-Jun N-terminal kinase
           (JNK), on specific threonine and tyrosine residues.
           Although MKK7 is capable of dual phosphorylation, it
           prefers to phosphorylate the threonine residue of JNK.
           Thus, optimal activation of JNK requires both MKK4 (not
           included in this subfamily) and MKK7. MKK7 is primarily
           activated by cytokines. MKK7 is essential for liver
           formation during embryogenesis. It plays roles in G2/M
           cell cycle arrest and cell growth. In addition, it is
           involved in the control of programmed cell death, which
           is crucial in oncogenesis, cancer chemoresistance, and
           antagonism to TNFalpha-induced killing, through its
           inhibition by Gadd45beta and the subsequent suppression
           of the JNK cascade.
          Length = 296

 Score = 26.6 bits (59), Expect = 6.7
 Identities = 8/12 (66%), Positives = 10/12 (83%)

Query: 155 IHRDIKPDNFLM 166
           IHRD+KP N L+
Sbjct: 137 IHRDVKPSNILL 148


>gnl|CDD|133167 cd05035, PTKc_Axl_like, Catalytic Domain of Axl-like Protein
           Tyrosine Kinases.  Protein Tyrosine Kinase (PTK) family;
           Axl subfamily; catalytic (c) domain. The PTKc family is
           part of a larger superfamily that includes the catalytic
           domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). The Axl subfamily
           consists of Axl, Tyro3 (or Sky), Mer (or Mertk), and
           similar proteins. PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Axl subfamily members
           are receptor tyr kinases (RTKs) containing an
           extracellular ligand-binding region with two
           immunoglobulin-like domains followed by two fibronectin
           type III repeats, a transmembrane segment, and an
           intracellular catalytic domain. Binding to their
           ligands, Gas6 and protein S, leads to receptor
           dimerization, autophosphorylation, activation, and
           intracellular signaling. Axl subfamily members are
           implicated in a variety of cellular effects including
           survival, proliferation, migration, and phagocytosis.
           They are also associated with several types of cancer as
           well as inflammatory, autoimmune, vascular, and kidney
           diseases. Mer is named after its original reported
           expression pattern (monocytes, epithelial, and
           reproductive tissues). It is required for the ingestion
           of apoptotic cells by phagocytes such as macrophages,
           retinal pigment epithelial cells, and dendritic cells.
           Mer is also important in maintaining immune homeostasis.
          Length = 273

 Score = 26.7 bits (59), Expect = 7.1
 Identities = 14/50 (28%), Positives = 24/50 (48%), Gaps = 4/50 (8%)

Query: 114 LLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           LL   L  L      +  ++T+L     +   +EY+  ++FIHRD+   N
Sbjct: 98  LLYSRLGGL----PEKLPLQTLLKFMVDIALGMEYLSNRNFIHRDLAARN 143


>gnl|CDD|133227 cd05096, PTKc_DDR1, Catalytic domain of the Protein Tyrosine
           Kinase, Discoidin Domain Receptor 1.  Protein Tyrosine
           Kinase (PTK) family; mammalian Discoidin Domain Receptor
           1 (DDR1) and homologs; catalytic (c) domain. The PTKc
           family is part of a larger superfamily that includes the
           catalytic domains of other kinases such as protein
           serine/threonine kinases, RIO kinases, and
           phosphoinositide 3-kinase (PI3K). PTKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. DDR1 is a
           member of the DDR subfamily, which are receptor tyr
           kinases (RTKs) containing an extracellular discoidin
           homology domain, a transmembrane segment, an extended
           juxtamembrane region, and an intracellular catalytic
           domain. The binding of the ligand, collagen, to DDRs
           results in a slow but sustained receptor activation.
           DDR1 binds to all collagens tested to date (types I-IV).
           It is widely expressed in many tissues. It is abundant
           in the brain and is also found in keratinocytes, colonic
           mucosa epithelium, lung epithelium, thyroid follicles,
           and the islets of Langerhans. During embryonic
           development, it is found in the developing
           neuroectoderm. DDR1 is a key regulator of cell
           morphogenesis, differentiation and proliferation. It is
           important in the development of the mammary gland, the
           vasculator and the kidney. DDR1 is also found in human
           leukocytes, where it facilitates cell adhesion,
           migration, maturation, and cytokine production.
          Length = 304

 Score = 26.8 bits (59), Expect = 7.2
 Identities = 11/38 (28%), Positives = 22/38 (57%)

Query: 134 TVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           ++L +A Q+   ++Y+   +F+HRD+   N L+G    
Sbjct: 139 SLLHVALQIASGMKYLSSLNFVHRDLATRNCLVGENLT 176


>gnl|CDD|173644 cd05079, PTKc_Jak1_rpt2, Catalytic (repeat 2) domain of the Protein
           Tyrosine Kinase, Janus kinase 1.  Protein Tyrosine
           Kinase (PTK) family; Janus kinase 1 (Jak1); catalytic
           (c) domain (repeat 2). The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Jak1 is a member of the
           Janus kinase (Jak) subfamily of proteins, which are
           cytoplasmic (or nonreceptor) tyr kinases containing an
           N-terminal FERM domain, followed by a Src homology 2
           (SH2) domain, a pseudokinase domain, and a C-terminal
           tyr kinase domain. Jaks are crucial for cytokine
           receptor signaling. They are activated by
           autophosphorylation upon cytokine-induced receptor
           aggregation, and subsequently trigger downstream
           signaling events such as the phosphorylation of signal
           transducers and activators of transcription (STATs).
           Jak1 is widely expressed in many tissues. Many cytokines
           are dependent on Jak1 for signaling, including those
           that use the shared receptor subunits common gamma chain
           (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and gp130 (IL-6,
           IL-11, oncostatin M, G-CSF, and IFNs, among others). The
           many varied interactions of Jak1 and its ubiquitous
           expression suggest many biological roles. Jak1 is
           important in neurological development, as well as in
           lymphoid development and function. It also plays a role
           in the pathophysiology of cardiac hypertrophy and heart
           failure. A mutation in the ATP-binding site of Jak1 was
           identified in a human uterine leiomyosarcoma cell line,
           resulting in defective cytokine induction and antigen
           presentation, thus allowing the tumor to evade the
           immune system.
          Length = 284

 Score = 26.8 bits (59), Expect = 7.3
 Identities = 15/58 (25%), Positives = 30/58 (51%), Gaps = 1/58 (1%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           L+M+ L   SL++       +  +K  L  A Q+   ++Y+  + ++HRD+   N L+
Sbjct: 85  LIMEFLPSGSLKEYLPRNKNKINLKQQLKYAVQICKGMDYLGSRQYVHRDLAARNVLV 142


>gnl|CDD|173625 cd05032, PTKc_InsR_like, Catalytic domain of Insulin Receptor-like
           Protein Tyrosine Kinases.  Protein Tyrosine Kinase (PTK)
           family; Insulin Receptor (InsR) subfamily; catalytic (c)
           domain. The PTKc family is part of a larger superfamily
           that includes the catalytic domains of other kinases
           such as protein serine/threonine kinases, RIO kinases,
           and phosphoinositide 3-kinase (PI3K). The InsR subfamily
           is composed of InsR, Insulin-like Growth Factor-1
           Receptor (IGF-1R), and similar proteins. PTKs catalyze
           the transfer of the gamma-phosphoryl group from ATP to
           tyrosine (tyr) residues in protein substrates. InsR and
           IGF-1R are receptor tyr kinases (RTKs) composed of two
           alphabeta heterodimers. Binding of the ligand (insulin,
           IGF-1, or IGF-2) to the extracellular alpha subunit
           activates the intracellular tyr kinase domain of the
           transmembrane beta subunit. Receptor activation leads to
           autophosphorylation, stimulating downstream kinase
           activities, which initiate signaling cascades and
           biological function. InsR and IGF-1R, which share 84%
           sequence identity in their kinase domains, display
           physiologically distinct yet overlapping functions in
           cell growth, differentiation, and metabolism. InsR
           activation leads primarily to metabolic effects while
           IGF-1R activation stimulates mitogenic pathways. In
           cells expressing both receptors, InsR/IGF-1R hybrids are
           found together with classical receptors. Both receptors
           can interact with common adaptor molecules such as IRS-1
           and IRS-2.
          Length = 277

 Score = 26.5 bits (59), Expect = 7.5
 Identities = 12/47 (25%), Positives = 19/47 (40%), Gaps = 13/47 (27%)

Query: 117 PSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDN 163
           P+L+      +          +AD M     Y+  K F+HRD+   N
Sbjct: 116 PTLQKFIQMAAE---------IADGM----AYLAAKKFVHRDLAARN 149


>gnl|CDD|132988 cd06657, STKc_PAK4, Catalytic domain of the Protein
           Serine/Threonine Kinase, p21-activated kinase 4.
           Serine/threonine kinases (STKs), p21-activated kinase
           (PAK) 4, catalytic (c) domain. STKs catalyze the
           transfer of the gamma-phosphoryl group from ATP to
           serine/threonine residues on protein substrates. The PAK
           subfamily is part of a larger superfamily that includes
           the catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase. PAKs are Rho family GTPase-regulated kinases
           that serve as important mediators in the function of
           Cdc42 (cell division cycle 42) and Rac. PAKs from higher
           eukaryotes are classified into two groups (I and II),
           according to their biochemical and structural features.
           PAK4 belongs to group II. Group II PAKs contain a PBD
           (p21-binding domain) and a C-terminal catalytic domain,
           but do not harbor an AID (autoinhibitory domain) or SH3
           binding sites. PAK4 regulates cell morphology and
           cytoskeletal organization. It is essential for embryonic
           viability and proper neural development. Mice lacking
           PAK4 die due to defects in the fetal heart. In addition,
           their spinal cord motor neurons showed failure to
           differentiate and migrate. PAK4 also plays a role in
           cell survival and tumorigenesis. It is overexpressed in
           many primary tumors including colon, esophageal, and
           mammary tumors. PAK4 has also been implicated in viral
           and bacterial infection pathways.
          Length = 292

 Score = 26.5 bits (58), Expect = 7.7
 Identities = 16/58 (27%), Positives = 30/58 (51%), Gaps = 3/58 (5%)

Query: 110 LVMDLL-GPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           +VM+ L G +L D+      R   + +  +   ++  +  +H +  IHRDIK D+ L+
Sbjct: 94  VVMEFLEGGALTDIVT--HTRMNEEQIAAVCLAVLKALSVLHAQGVIHRDIKSDSILL 149


>gnl|CDD|173771 cd08529, STKc_FA2-like, Catalytic domain of the Protein
           Serine/Threonine Kinase, Chlamydomonas reinhardtii FA2
           and similar domains.  Serine/Threonine Kinases (STKs),
           Chlamydomonas reinhardtii FA2-like subfamily, catalytic
           (c) domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The Chlamydomonas
           reinhardtii FA2-like subfamily belongs to the
           (NIMA)-related kinase (Nek) family. The Nek family
           includes seven different Chlamydomonas Neks (CNKs 1-6
           and Fa2). This subfamily includes FA2 and CNK4.  The Nek
           family is part of a larger superfamily that includes the
           catalytic domains of other protein STKs, protein
           tyrosine kinases, RIO kinases, aminoglycoside
           phosphotransferase, choline kinase, and phosphoinositide
           3-kinase.  Chlamydomonas reinhardtii FA2 was discovered
           in a genetic screen for deflagellation-defective
           mutants. It is essential for
           basal-body/centriole-associated microtubule severing,
           and plays a role in cell cycle progression. No cellular
           function has yet been ascribed to CNK4.
          Length = 256

 Score = 26.3 bits (58), Expect = 7.7
 Identities = 13/38 (34%), Positives = 20/38 (52%), Gaps = 8/38 (21%)

Query: 129 RFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           RF ++ +L LA        ++H K  +HRDIK  N  +
Sbjct: 105 RFFIQILLGLA--------HLHSKKILHRDIKSLNLFL 134


>gnl|CDD|235094 PRK02971, PRK02971, 4-amino-4-deoxy-L-arabinose-phosphoundecaprenol
           flippase subunit ArnF; Provisional.
          Length = 129

 Score = 25.7 bits (57), Expect = 8.0
 Identities = 11/23 (47%), Positives = 12/23 (52%), Gaps = 2/23 (8%)

Query: 54  SLGYVLMYFNRGSLPWQGLKETF 76
           SL Y L+Y     LPW    ETF
Sbjct: 82  SLSYALVYLAAMLLPW--FNETF 102


>gnl|CDD|173642 cd05075, PTKc_Axl, Catalytic domain of the Protein Tyrosine Kinase,
           Axl.  Protein Tyrosine Kinase (PTK) family; Axl;
           catalytic (c) domain. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Axl is a member of the
           Axl subfamily, which is composed of receptor tyr kinases
           (RTKs) containing an extracellular ligand-binding region
           with two immunoglobulin-like domains followed by two
           fibronectin type III repeats, a transmembrane segment,
           and an intracellular catalytic domain. Binding to their
           ligands, Gas6 and protein S, leads to receptor
           dimerization, autophosphorylation, activation, and
           intracellular signaling. Axl is widely expressed in a
           variety of organs and cells including epithelial,
           mesenchymal, hematopoietic, as well as non-transformed
           cells. Axl signaling is important in many cellular
           functions such as survival, anti-apoptosis,
           proliferation, migration, and adhesion. Axl was
           originally isolated from patients with chronic
           myelogenous leukemia and a chronic myeloproliferative
           disorder. Axl is overexpressed in many human cancers
           including colon, squamous cell, thyroid, breast, and
           lung carcinomas.
          Length = 272

 Score = 26.5 bits (58), Expect = 8.9
 Identities = 18/53 (33%), Positives = 26/53 (49%), Gaps = 4/53 (7%)

Query: 114 LLGPSLEDLFNFCSRRFTVKTVLMLADQMIGRIEYVHCKSFIHRDIKPDNFLM 166
           LL   L D   +   +  VK +  +A  M    EY+  KSFIHRD+   N ++
Sbjct: 97  LLYSRLGDCPQYLPTQMLVKFMTDIASGM----EYLSSKSFIHRDLAARNCML 145


>gnl|CDD|132946 cd06615, PKc_MEK, Catalytic domain of the dual-specificity Protein
           Kinase, MAP/ERK Kinase.  Protein kinases (PKs), MAP/ERK
           kinase (MEK) subfamily, catalytic (c) domain. PKs
           catalyze the transfer of the gamma-phosphoryl group from
           ATP to serine/threonine or tyrosine residues on protein
           substrates. The MEK subfamily is part of a larger
           superfamily that includes the catalytic domains of other
           protein serine/threonine kinases, protein tyrosine
           kinases, RIO kinases, aminoglycoside phosphotransferase,
           choline kinase, and phosphoinositide 3-kinase. The
           mitogen-activated protein (MAP) kinase signaling
           pathways are important mediators of cellular responses
           to extracellular signals. The pathways involve a triple
           kinase core cascade comprising the MAP kinase (MAPK),
           which is phosphorylated and activated by a MAPK kinase
           (MAPKK or MKK), which itself is phosphorylated and
           activated by a MAPK kinase kinase (MAPKKK or MKKK). MEK1
           and MEK2 are dual-specificity PKs that phosphorylate and
           activate the downstream targets, ERK(extracellular
           signal-regulated kinase) 1 and ERK2, on specific
           threonine and tyrosine residues. The ERK cascade starts
           with extracellular signals including growth factors,
           hormones, and neurotransmitters, which act through
           receptors and ion channels to initiate intracellular
           signaling that leads to the activation at the MAPKKK
           (Raf-1 or MOS) level, which leads to the transmission of
           signals to MEK1/2, and finally to ERK1/2. The ERK
           cascade plays an important role in cell proliferation,
           differentiation, oncogenic transformation, and cell
           cycle control, as well as in apoptosis and cell survival
           under certain conditions. This cascade has also been
           implicated in synaptic plasticity, migration,
           morphological determination, and stress response
           immunological reactions. Gain-of-function mutations in
           genes encoding ERK cascade proteins, including MEK1/2,
           cause cardiofaciocutaneous (CFC) syndrome, a condition
           leading to multiple congenital anomalies and mental
           retardation in patients.
          Length = 308

 Score = 26.2 bits (58), Expect = 9.4
 Identities = 7/13 (53%), Positives = 9/13 (69%)

Query: 153 SFIHRDIKPDNFL 165
             +HRD+KP N L
Sbjct: 120 KIMHRDVKPSNIL 132


>gnl|CDD|133179 cd05048, PTKc_Ror, Catalytic Domain of the Protein Tyrosine
           Kinases, Receptor tyrosine kinase-like Orphan Receptors.
            Protein Tyrosine Kinase (PTK) family; Receptor tyrosine
           kinase-like Orphan Receptor (Ror) subfamily; catalytic
           (c) domain. The Ror subfamily consists of Ror1, Ror2,
           and similar proteins. The PTKc family is part of a
           larger superfamily that includes the catalytic domains
           of other kinases such as protein serine/threonine
           kinases, RIO kinases, and phosphoinositide 3-kinase
           (PI3K). PTKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to tyrosine (tyr)
           residues in protein substrates. Ror proteins are orphan
           receptor tyr kinases (RTKs) containing an extracellular
           region with immunoglobulin-like, cysteine-rich, and
           kringle domains, a transmembrane segment, and an
           intracellular catalytic domain. Ror RTKs are unrelated
           to the nuclear receptor subfamily called
           retinoid-related orphan receptors (RORs). RTKs are
           usually activated through ligand binding, which causes
           dimerization and autophosphorylation of the
           intracellular tyr kinase catalytic domain. Ror kinases
           are expressed in many tissues during development. They
           play important roles in bone and heart formation.
           Mutations in human Ror2 result in two different bone
           development genetic disorders, recessive Robinow
           syndrome and brachydactyly type B. Drosophila Ror is
           expressed only in the developing nervous system during
           neurite outgrowth and neuronal differentiation,
           suggesting a role for Drosophila Ror in neural
           development. More recently, mouse Ror1 and Ror2 have
           also been found to play an important role in regulating
           neurite growth in central neurons. Ror1 and Ror2 are
           believed to have some overlapping and redundant
           functions.
          Length = 283

 Score = 26.3 bits (58), Expect = 9.5
 Identities = 13/36 (36%), Positives = 20/36 (55%)

Query: 136 LMLADQMIGRIEYVHCKSFIHRDIKPDNFLMGIGRH 171
           L +A Q+   +EY+    F+HRD+   N L+G G  
Sbjct: 127 LHIAIQIAAGMEYLSSHHFVHRDLAARNCLVGEGLT 162


>gnl|CDD|173680 cd05589, STKc_PKN, Catalytic domain of the Protein Serine/Threonine
           Kinase, Protein Kinase N.  Serine/Threonine Kinases
           (STKs), Protein Kinase N (PKN) subfamily, catalytic (c)
           domain. STKs catalyze the transfer of the
           gamma-phosphoryl group from ATP to serine/threonine
           residues on protein substrates. The PKN subfamily is
           part of a larger superfamily that includes the catalytic
           domains of other protein STKs, protein tyrosine kinases,
           RIO kinases, aminoglycoside phosphotransferase, choline
           kinase, and phosphoinositide 3-kinase. PKN has a
           C-terminal catalytic domain that is highly homologous to
           PKCs. Its unique N-terminal regulatory region contains
           antiparallel coiled-coil (ACC) domains. In mammals,
           there are three PKN isoforms from different genes
           (designated PKN-alpha, beta, and gamma), which show
           different enzymatic properties, tissue distribution, and
           varied functions. PKN can be activated by the small
           GTPase Rho, and by fatty acids such as arachidonic and
           linoleic acids. It is involved in many biological
           processes including cytokeletal regulation, cell
           adhesion, vesicle transport, glucose transport,
           regulation of meiotic maturation and embryonic cell
           cycles, signaling to the nucleus, and tumorigenesis.
          Length = 324

 Score = 26.2 bits (58), Expect = 10.0
 Identities = 8/21 (38%), Positives = 15/21 (71%)

Query: 146 IEYVHCKSFIHRDIKPDNFLM 166
           ++Y+H    ++RD+K DN L+
Sbjct: 114 LQYLHENKIVYRDLKLDNLLL 134


  Database: CDD.v3.10
    Posted date:  Mar 20, 2013  7:55 AM
  Number of letters in database: 10,937,602
  Number of sequences in database:  44,354
  
Lambda     K      H
   0.326    0.142    0.435 

Gapped
Lambda     K      H
   0.267   0.0807    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 44354
Number of Hits to DB: 8,987,522
Number of extensions: 815723
Number of successful extensions: 1044
Number of sequences better than 10.0: 1
Number of HSP's gapped: 1036
Number of HSP's successfully gapped: 262
Length of query: 174
Length of database: 10,937,602
Length adjustment: 90
Effective length of query: 84
Effective length of database: 6,945,742
Effective search space: 583442328
Effective search space used: 583442328
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 56 (25.2 bits)