Appendix 2. Local Maximum Search

We find a local maximum of the function 
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 starting from a given point X using the following procedure. The first step is made from X in the direction of the gradient. On each next step the direction is determined taking into consideration the direction of the gradient on the previous step. Namely, we construct a plane passing through a current point and defined by two vectors and restrict the step to this plane. The first vector is a gradient vector of the function 
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 in the point. On the second step, the second vector is the gradient from the first step. Restriction of the function 
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 to the plane gives a two argument function F(x, y). We choose a coordinate system in this plane such that x = 0 and y = 0 correspond to the current point. We compute the Taylor approximation of order 2 for F(x, y) at the point (0,0). If the approximation has a maximum (i.e. a quadratic form is negatively defined), then the step unit vector 
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 points at the maximum of the Taylor approximation. If the approximation does not have a maximum, then the vector 
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 is a unit vector in the gradient direction. For each next step the following is performed. Given 
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 (the vector 
[image: image7.wmf]n

 at i-th step) and 
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 (the second vector used for the constructing the abovementioned plane at the i-th step), 
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, if the scalar product 
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, otherwise 
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. In other words, if the angle between the direction of the current step towards the maximum and previous step direction is less than 
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, then the current direction will be used as a vector 
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. The unit vector 
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 and the current point define a line. Restriction of 
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 to the line results in a single argument function f(t). We place the origin of this one-dimensional coordinate system at the current point. To approximately find the smallest positive real t turning f(t) into maximum, we expand the function f in the Taylor approximation 
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 of order 4 and find the smallest positive t=h that maximizes 
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 by solving an equation of degree 3. If the positive root of the equation of degree 3 does not exist or the calculated root is too large, we make some fixed step. Default value for this step is 0.6
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. The process calculating of step h is repeated at new current point until 
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, where 
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 is h on the previous iteration. The default value of 
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 is 
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