RPS-BLAST 2.2.22 [Sep-27-2009]

Database: CddA 
           21,609 sequences; 6,263,737 total letters

Searching..................................................done

Query= gi|254780233|ref|YP_003064646.1| GTP-binding protein
[Candidatus Liberibacter asiaticus str. psy62]
         (624 letters)



>gnl|CDD|31410 COG1217, TypA, Predicted membrane GTPase involved in stress
           response [Signal transduction mechanisms].
          Length = 603

 Score =  944 bits (2443), Expect = 0.0
 Identities = 377/602 (62%), Positives = 454/602 (75%), Gaps = 3/602 (0%)

Query: 17  MQIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTS 76
             IRNIAIIAHVDHGKTTLVD LLKQSG FR+ + V+ERVMD NDLEKERGITILAK T+
Sbjct: 3   EDIRNIAIIAHVDHGKTTLVDALLKQSGTFREREEVAERVMDSNDLEKERGITILAKNTA 62

Query: 77  IVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLR 136
           + +N  RINIVDTPGHADFGGEVER+L MV+ V++LVDA+EGPMPQT+FV+ KAL +GL+
Sbjct: 63  VNYNGTRINIVDTPGHADFGGEVERVLSMVDGVLLLVDASEGPMPQTRFVLKKALALGLK 122

Query: 137 PIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSRDQ 196
           PIVV+NK+DR DAR DEV++EVFDLF  L ATD QLDFPI+Y S R G  S   +   D 
Sbjct: 123 PIVVINKIDRPDARPDEVVDEVFDLFVELGATDEQLDFPIVYASARNGTASLDPEDEADD 182

Query: 197 GMVPLLNLIVDHVPPPVI-SEGEFKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKALS 255
            M PL   I+DHVP P    +   +M  T L+ + ++GRI  GRI  GT+K NQ +  + 
Sbjct: 183 -MAPLFETILDHVPAPKGDLDEPLQMQVTQLDYNSYVGRIGIGRIFRGTVKPNQQVALIK 241

Query: 256 PDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIAGLVKATVADTFCDPSIDEPLKAQ 315
            DG   E GR++K+L F G++R  I+EA AGDIV+IAGL    + DT CDP   E L A 
Sbjct: 242 SDGT-TENGRITKLLGFLGLERIEIEEAEAGDIVAIAGLEDINIGDTICDPDNPEALPAL 300

Query: 316 PIDPPTVTMTFGVNDSPLAGTEGDKVTSRMIRDRLFKEAEGNIALKIEESSSKDAFFVSG 375
            +D PT++MTF VNDSP AG EG  VTSR IRDRL KE E N+AL++EE+ S DAF VSG
Sbjct: 301 SVDEPTLSMTFSVNDSPFAGKEGKFVTSRQIRDRLNKELETNVALRVEETESPDAFEVSG 360

Query: 376 RGELQLAVLIETMRREGFELAVSRPRVVIKKEGDSLLEPIEEVVIDVDEEHSGAVVQKMT 435
           RGEL L++LIE MRREGFEL VSRP V+IK+      EP EEV IDV EEH GAV++K+ 
Sbjct: 361 RGELHLSILIENMRREGFELQVSRPEVIIKEIDGVKCEPFEEVTIDVPEEHQGAVIEKLG 420

Query: 436 LHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQLMTDTRGTAIMNRLFHSYQPHKGEIG 495
             K EM ++ P G GRVRL F+ P RGLIG++++ +T TRGT IMN  F  Y+P KGEIG
Sbjct: 421 ERKGEMKDMAPDGKGRVRLEFVIPARGLIGFRTEFLTMTRGTGIMNHSFDHYRPVKGEIG 480

Query: 496 GRSNGVLLSNEEGKVVAYALFNLEDRGSMIVEPGDKVYQGMIVGIHTRENDLDVNVLKGK 555
           GR NGVL+SNE GK VAYALFNL+DRG + +EPG KVY+GMI+G H+R+NDL VNVLKGK
Sbjct: 481 GRHNGVLISNETGKAVAYALFNLQDRGKLFIEPGTKVYEGMIIGEHSRDNDLTVNVLKGK 540

Query: 556 KLTNMRASGKDEAVKLVPAVKMTLEQALSWIQNDELVEVTPKSIRLRKMYLDPNERKRKG 615
           KLTNMRASGKDEAV L P ++MTLE+AL +I +DELVEVTP+SIRLRK  L+ NERKR  
Sbjct: 541 KLTNMRASGKDEAVTLTPPIRMTLERALEFIADDELVEVTPESIRLRKKILNENERKRAE 600

Query: 616 KS 617
           K 
Sbjct: 601 KR 602


>gnl|CDD|35683 KOG0462, KOG0462, KOG0462, Elongation factor-type GTP-binding
           protein [Translation, ribosomal structure and
           biogenesis].
          Length = 650

 Score =  415 bits (1069), Expect = e-116
 Identities = 171/612 (27%), Positives = 264/612 (43%), Gaps = 57/612 (9%)

Query: 19  IRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIV 78
           IRN +IIAHVDHGK+TL D LL+ +G   DN    E+V+D   +E+ERGITI A+  SI 
Sbjct: 60  IRNFSIIAHVDHGKSTLADRLLELTG-TIDNNIGQEQVLDKLQVERERGITIKAQTASIF 118

Query: 79  WNDVR---INIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGL 135
           + D +   +N++DTPGH DF GEV R L   +  +++VDA++G   QT      A + GL
Sbjct: 119 YKDGQSYLLNLIDTPGHVDFSGEVSRSLAACDGALLVVDASQGVQAQTVANFYLAFEAGL 178

Query: 136 RPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSRD 195
             I V+NK+D   A  + V N++F+LF    A        ++Y S + G           
Sbjct: 179 AIIPVLNKIDLPSADPERVENQLFELFDIPPA-------EVIYVSAKTGL---------- 221

Query: 196 QGMVPLLNLIVDHVPPP-VISEGEFKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKAL 254
             +  LL  I+  VPPP  I +   +M+    E D + G I   R+  G ++    +++ 
Sbjct: 222 -NVEELLEAIIRRVPPPKGIRDAPLRMLIFDSEYDEYRGVIALVRVVDGVVRKGDKVQSA 280

Query: 255 SPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIAGLVK-ATVADTFCDPSIDEPLK 313
           +  G   EV +V  ++         +D    G I+     VK A + DT    S+ + ++
Sbjct: 281 A-TGKSYEV-KVVGVMRPEMTPVVELDAGQVGYIICNMRNVKEAQIGDTIAHKSVTKAVE 338

Query: 314 AQPIDPPTVTMTFGVNDSPLAGTEGDKVTSRMIRDRLFKEAEGNIALKIEESSSKDAFFV 373
             P   PT  M F V   PL G+  D  T R   +RL    E    +K    +    + +
Sbjct: 339 TLPGFEPTKPMVF-VGLFPLDGS--DYETLRDAIERLVLNDESVTVIKESSGALGQGWRL 395

Query: 374 SGRGELQLAVLIETMRRE-GFELAVSRPRVVIKKE--------------------GDSLL 412
              G L + V IE + RE G EL V+ P V  +                          L
Sbjct: 396 GFLGLLHMEVFIERLEREYGAELIVTPPTVPYRVVYSNGDEILISNPALFPDPSDVKEFL 455

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIG-YQSQLM 471
           EP  E  I   +E+ GAV++  +  + E  ++      RV L +  P R L+G +  +L 
Sbjct: 456 EPYVEATIITPDEYVGAVIELCSERRGEQKDMTYIDGNRVMLKYQLPLRELVGDFFDRLK 515

Query: 472 TDTRGTAIMNRLFHSYQPHKGEIGGRSNGVLLSNEEGKVVAYALFNLEDRGSMIVEPGDK 531
           + T G A  +     YQ    ++      +     +G      L   E RG   V+    
Sbjct: 516 SLTSGYASFDYEDAGYQA--SDLVKLDILLNGKMVDGLSTIVHLSKAESRGREFVQKLKD 573

Query: 532 VYQGMIVGIHTRENDLDVNVLKGKKLTNMRASGKDEAVKLVPAVKMTLEQALSWIQNDEL 591
           +    I  +H +      N+ +      + A  KD   KL       L++ L      + 
Sbjct: 574 LIPRQIFEVHIQACIGSKNIARET----ISAYRKDVLAKLYGGDVTRLKKLLKKQAEGKK 629

Query: 592 VEVTPKSIRLRK 603
              T  +IR+ K
Sbjct: 630 RMKTVGNIRIPK 641


>gnl|CDD|133291 cd01891, TypA_BipA, TypA (tyrosine phosphorylated protein A)/BipA
           subfamily.  BipA is a protein belonging to the
           ribosome-binding family of GTPases and is widely
           distributed in bacteria and plants.  BipA was originally
           described as a protein that is induced in Salmonella
           typhimurium after exposure to
           bactericidal/permeability-inducing protein (a cationic
           antimicrobial protein produced by neutrophils), and has
           since been identified in E. coli as well.  The
           properties thus far described for BipA are related to
           its role in the process of pathogenesis by
           enteropathogenic E. coli.  It appears to be involved in
           the regulation of several processes important for
           infection, including rearrangements of the cytoskeleton
           of the host, bacterial resistance to host defense
           peptides, flagellum-mediated cell motility, and
           expression of K5 capsular genes.  It has been proposed
           that BipA may utilize a novel mechanism to regulate the
           expression of target genes.  In addition, BipA from
           enteropathogenic E. coli has been shown to be
           phosphorylated on a tyrosine residue, while BipA from
           Salmonella and from E. coli K12 strains is not
           phosphorylated under the conditions assayed.  The
           phosphorylation apparently modifies the rate of
           nucleotide hydrolysis, with the phosphorylated form
           showing greatly increased GTPase activity.
          Length = 194

 Score =  371 bits (956), Expect = e-103
 Identities = 129/194 (66%), Positives = 161/194 (82%), Gaps = 1/194 (0%)

Query: 19  IRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIV 78
           IRNIAIIAHVDHGKTTLVD LLKQSG FR+N+ V ERVMD NDLE+ERGITILAK T++ 
Sbjct: 2   IRNIAIIAHVDHGKTTLVDALLKQSGTFRENEEVEERVMDSNDLERERGITILAKNTAVT 61

Query: 79  WNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPI 138
           + D +INIVDTPGHADFGGEVER+L MV+ V++LVDA+EGPMPQT+FV+ KAL++GL+PI
Sbjct: 62  YKDTKINIVDTPGHADFGGEVERVLSMVDGVLLLVDASEGPMPQTRFVLKKALELGLKPI 121

Query: 139 VVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSRDQGM 198
           VV+NK+DR DAR +EV++EVFDLF  L AT+ QLDFP+LY S + GW S + +   +  +
Sbjct: 122 VVINKIDRPDARPEEVVDEVFDLFIELGATEEQLDFPVLYASAKNGWASLNLEDPSED-L 180

Query: 199 VPLLNLIVDHVPPP 212
            PL + I++HVP P
Sbjct: 181 EPLFDTIIEHVPAP 194


>gnl|CDD|143801 pfam00009, GTP_EFTU, Elongation factor Tu GTP binding domain.  This
           domain contains a P-loop motif, also found in several
           other families such as pfam00071, pfam00025 and
           pfam00063. Elongation factor Tu consists of three
           structural domains, this plus two C-terminal beta barrel
           domains.
          Length = 185

 Score =  201 bits (514), Expect = 4e-52
 Identities = 72/197 (36%), Positives = 97/197 (49%), Gaps = 14/197 (7%)

Query: 17  MQIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVS-ERVMDCNDLEKERGITILAKVT 75
            + RNI II HVDHGKTTL D LL  +G       V  E  +D    E+ERGITI     
Sbjct: 1   KRHRNIGIIGHVDHGKTTLTDALLYVTGAIDKRGEVKQEGELDRLKEERERGITIKIAAV 60

Query: 76  SIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGL 135
           S       INI+DTPGH DF  E+ R     +  +++VDA EG MPQT+  +  A ++G+
Sbjct: 61  SFETKKRHINIIDTPGHVDFTKEMIRGAAQADGAILVVDAVEGVMPQTREHLLLAKQLGV 120

Query: 136 RPIVVVNKVDR-SDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSR 194
             IV +NK+DR  DA  DEV+ E+                P++ GS   G          
Sbjct: 121 PIIVFINKMDRVDDAELDEVVEEISREL-LEKYGFGGETIPVIPGSALTGE--------- 170

Query: 195 DQGMVPLLNLIVDHVPP 211
             G+  LL  +  ++P 
Sbjct: 171 --GIDTLLEALDLYLPS 185


>gnl|CDD|133257 cd00881, GTP_translation_factor, GTP translation factor family.
           This family consists primarily of translation
           initiation, elongation, and release factors, which play
           specific roles in protein translation.  In addition, the
           family includes Snu114p, a component of the U5 small
           nuclear riboprotein particle which is a component of the
           spliceosome and is involved in excision of introns,
           TetM, a tetracycline resistance gene that protects the
           ribosome from tetracycline binding, and the unusual
           subfamily CysN/ATPS, which has an unrelated function
           (ATP sulfurylase) acquired through lateral transfer of
           the EF1-alpha gene and development of a new function.
          Length = 189

 Score =  187 bits (477), Expect = 8e-48
 Identities = 77/200 (38%), Positives = 108/200 (54%), Gaps = 19/200 (9%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
           N+ I  HVDHGKTTL + LL  +G    +  V E  +D    E+ERGITI + V +  W 
Sbjct: 1   NVGIAGHVDHGKTTLTERLLYVTGDIERDGTVEETFLDVLKEERERGITIKSGVATFEWP 60

Query: 81  DVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPIVV 140
           D R+N +DTPGH DF  EV R L + +  +++VDA EG  PQT+  +  A + GL  IV 
Sbjct: 61  DRRVNFIDTPGHEDFSSEVIRGLSVSDGAILVVDANEGVQPQTREHLRIAREGGLPIIVA 120

Query: 141 VNKVDR-SDARADEVINEVFDLFSAL-------DATDAQLDFPILYGSGRFGWMSDSSDG 192
           +NK+DR  +   +EV+ E+ +L   +       + T   L  PI+ GS   G        
Sbjct: 121 INKIDRVGEEDLEEVLREIKELLGLIGFISTKEEGTRNGLLVPIVPGSALTGI------- 173

Query: 193 SRDQGMVPLLNLIVDHVPPP 212
               G+  LL  IV+H+PPP
Sbjct: 174 ----GVEELLEAIVEHLPPP 189


>gnl|CDD|30829 COG0481, LepA, Membrane GTPase LepA [Cell envelope biogenesis,
           outer membrane].
          Length = 603

 Score =  179 bits (456), Expect = 2e-45
 Identities = 145/510 (28%), Positives = 226/510 (44%), Gaps = 72/510 (14%)

Query: 18  QIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSI 77
            IRN +IIAH+DHGK+TL D LL+ +G   + +    +V+D  D+E+ERGITI A+   +
Sbjct: 8   NIRNFSIIAHIDHGKSTLADRLLELTGGLSEREM-RAQVLDSMDIERERGITIKAQAVRL 66

Query: 78  VW-----NDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALK 132
            +         +N++DTPGH DF  EV R L   E  +++VDA++G   QT   V  AL+
Sbjct: 67  NYKAKDGETYVLNLIDTPGHVDFSYEVSRSLAACEGALLVVDASQGVEAQTLANVYLALE 126

Query: 133 IGLRPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDG 192
             L  I V+NK+D   A  + V  E+ D+   +DA+DA L       S + G        
Sbjct: 127 NNLEIIPVLNKIDLPAADPERVKQEIEDII-GIDASDAVL------VSAKTG-------- 171

Query: 193 SRDQGMVPLLNLIVDHVPPPVIS-EGEFKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNI 251
               G+  +L  IV+ +PPP    +   K +      D +LG +V  RI  GT+K    I
Sbjct: 172 ---IGIEDVLEAIVEKIPPPKGDPDAPLKALIFDSWYDNYLGVVVLVRIFDGTLKKGDKI 228

Query: 252 KALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIAGLVK----ATVADTF--CD 305
           + +S  G   EV  V             +DE  AG++  I   +K    A V DT     
Sbjct: 229 RMMS-TGKEYEVDEV----GIFTPKMVKVDELKAGEVGYIIAGIKDVRDARVGDTITLAS 283

Query: 306 PSIDEPLKA-QPIDPPTVTMTFGVNDSPLAGTEGDKVTSRMIRDRLFKEAEGNIALKIE- 363
               EPL   + + P    M F    + L   + D      +RD L K    + +L  E 
Sbjct: 284 NPATEPLPGFKEVKP----MVF----AGLYPVDSDDY--EDLRDALEKLQLNDASLTYEP 333

Query: 364 ESSSKDAF-FVSG-RGELQLAVLIETMRRE-GFELAVSRPRV---VIKKEG--------- 408
           E+S    F F  G  G L + ++ E + RE   +L  + P V   V   +G         
Sbjct: 334 ETSQALGFGFRCGFLGLLHMEIIQERLEREFDLDLITTAPSVVYKVELTDGEEIEVDNPS 393

Query: 409 --------DSLLEPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPT 460
                   + + EP  +  I   +E+ G V++     +   I++      RV L +  P 
Sbjct: 394 DLPDPNKIEEIEEPYVKATIITPQEYLGNVMELCQEKRGIQIDMEYLDQNRVMLTYELPL 453

Query: 461 RGLI-GYQSQLMTDTRGTAIMNRLFHSYQP 489
             ++  +  +L + ++G A  +  F  Y+ 
Sbjct: 454 AEIVFDFFDKLKSISKGYASFDYEFIGYRE 483


>gnl|CDD|133285 cd01885, EF2, EF2 (for archaea and eukarya).  Translocation
           requires hydrolysis of a molecule of GTP and is mediated
           by EF-G in bacteria and by eEF2 in eukaryotes.  The
           eukaryotic elongation factor eEF2 is a GTPase involved
           in the translocation of the peptidyl-tRNA from the A
           site to the P site on the ribosome.  The 95-kDa protein
           is highly conserved, with 60% amino acid sequence
           identity between the human and yeast proteins.  Two
           major mechanisms are known to regulate protein
           elongation and both involve eEF2.  First, eEF2 can be
           modulated by reversible phosphorylation.  Increased
           levels of phosphorylated eEF2 reduce elongation rates
           presumably because phosphorylated eEF2 fails to bind the
           ribosomes.  Treatment of mammalian cells with agents
           that raise the cytoplasmic Ca2+ and cAMP levels reduce
           elongation rates by activating the kinase responsible
           for phosphorylating eEF2.  In contrast, treatment of
           cells with insulin increases elongation rates by
           promoting eEF2 dephosphorylation.  Second, the protein
           can be post-translationally modified by
           ADP-ribosylation.  Various bacterial toxins perform this
           reaction after modification of a specific histidine
           residue to diphthamide, but there is evidence for
           endogenous ADP ribosylase activity.  Similar to the
           bacterial toxins, it is presumed that modification by
           the endogenous enzyme also inhibits eEF2 activity.
          Length = 222

 Score =  150 bits (381), Expect = 1e-36
 Identities = 75/227 (33%), Positives = 112/227 (49%), Gaps = 39/227 (17%)

Query: 20  RNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSI-- 77
           RNI IIAHVDHGKTTL D LL  +G+  +      R MD  + E+ERGIT+  K ++I  
Sbjct: 1   RNICIIAHVDHGKTTLSDSLLASAGIISEKLAGKARYMDSREDEQERGITM--KSSAISL 58

Query: 78  ----------VWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVV 127
                       N+  IN++D+PGH DF  EV   L + +  +V+VDA EG   QT+ V+
Sbjct: 59  YFEYEEEDKADGNEYLINLIDSPGHVDFSSEVTAALRLCDGALVVVDAVEGVCVQTETVL 118

Query: 128 GKALKIGLRPIVVVNKVDR---------SDA--RADEVINEVFDLFSAL--------DAT 168
            +ALK  ++P++V+NK+DR          +A  R   +I +V  +            D  
Sbjct: 119 RQALKERVKPVLVINKIDRLILELKLSPEEAYQRLARIIEQVNAIIGTYADEEFKEKDDE 178

Query: 169 DAQLDFP---ILYGSGRFGWMSDSSDGSRDQGMVPLLNLIVDHVPPP 212
                     + +GS   GW       +R   +  +L ++V H+P P
Sbjct: 179 KWYFSPQKGNVAFGSALHGWGFTIIKFAR---IYAVLEMVVKHLPSP 222


>gnl|CDD|30828 COG0480, FusA, Translation elongation factors (GTPases)
           [Translation, ribosomal structure and biogenesis].
          Length = 697

 Score =  145 bits (367), Expect = 4e-35
 Identities = 64/156 (41%), Positives = 92/156 (58%), Gaps = 3/156 (1%)

Query: 12  GRLGYMQIRNIAIIAHVDHGKTTLVDELLKQSGVFRD--NQRVSERVMDCNDLEKERGIT 69
             +   +IRNI I+AH+D GKTTL + +L  +G+             MD  + E+ERGIT
Sbjct: 3   RLMPLERIRNIGIVAHIDAGKTTLTERILFYTGIISKIGEVHDGAATMDWMEQEQERGIT 62

Query: 70  ILAKVTSIVWND-VRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVG 128
           I +  T++ W    RIN++DTPGH DF  EVER L +++  VV+VDA EG  PQT+ V  
Sbjct: 63  ITSAATTLFWKGDYRINLIDTPGHVDFTIEVERSLRVLDGAVVVVDAVEGVEPQTETVWR 122

Query: 129 KALKIGLRPIVVVNKVDRSDARADEVINEVFDLFSA 164
           +A K G+  I+ VNK+DR  A    V+ ++ +   A
Sbjct: 123 QADKYGVPRILFVNKMDRLGADFYLVVEQLKERLGA 158



 Score = 96.8 bits (241), Expect = 2e-20
 Identities = 71/309 (22%), Positives = 132/309 (42%), Gaps = 61/309 (19%)

Query: 129 KALKIGLRPIVVVNKVDRSDARADEVINE----VFDLFSAL-DATDAQLDFPILYGSGRF 183
           K +    R  ++    +  +   ++ +        ++  AL   T A    P+L GS   
Sbjct: 203 KEIAEEAREKLLEALAEFDEELMEKYLEGEEPTEEEIKKALRKGTIAGKIVPVLCGSA-- 260

Query: 184 GWMSDSSDGSRDQGMVPLLNLIVDHVPPPV---------------------ISEGEFKMI 222
                     +++G+ PLL+ +VD++P P+                       EG    +
Sbjct: 261 ---------FKNKGVQPLLDAVVDYLPSPLDVPPIKGDLDDEIEKAVLRKASDEGPLSAL 311

Query: 223 GTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDE 282
              +  DPF+G++   R++SGT+KS   +   +      +  RV ++L   G +R+ +DE
Sbjct: 312 VFKIMTDPFVGKLTFVRVYSGTLKSGSEVLNSTKG----KKERVGRLLLMHGNEREEVDE 367

Query: 283 AHAGDIVSIAGLVKATVADTFCDPSIDEPLKAQPIDPPTVTMTFGVNDSPLAGTEGDKVT 342
             AGDIV++ GL  AT  DT CD +    L++     P +++       P    + +K+ 
Sbjct: 368 VPAGDIVALVGLKDATTGDTLCDENKPVILESMEFPEPVISVAV----EPKTKADQEKL- 422

Query: 343 SRMIRDRLFKEAEGNIA-----LKIEESSSKDAFFVSGRGELQLAVLIETMRRE-GFELA 396
                     EA   +A      ++E         +SG GEL L ++++ ++RE G E+ 
Sbjct: 423 ---------SEALNKLAEEDPTFRVETDEETGETIISGMGELHLEIIVDRLKREFGVEVE 473

Query: 397 VSRPRVVIK 405
           V +P+V  +
Sbjct: 474 VGKPQVAYR 482



 Score = 39.4 bits (92), Expect = 0.003
 Identities = 26/99 (26%), Positives = 46/99 (46%), Gaps = 2/99 (2%)

Query: 393 FELAVSRP-RVVIKKEGDSLLEPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRP-SGTG 450
           F++A S   +  + K    LLEPI +V I   EE+ G V+  +   + +++ +    G G
Sbjct: 580 FKIAASLAFKEAMLKAKPVLLEPIMKVEITTPEEYMGDVIGDLNSRRGQILGMEQRPGGG 639

Query: 451 RVRLVFLSPTRGLIGYQSQLMTDTRGTAIMNRLFHSYQP 489
              +    P   + GY + L + T+G A  +  F  Y+ 
Sbjct: 640 LDVIKAEVPLAEMFGYATDLRSATQGRASFSMEFDHYEE 678


>gnl|CDD|133368 cd04168, TetM_like, Tet(M)-like subfamily.  Tet(M), Tet(O), Tet(W),
           and OtrA are tetracycline resistance genes found in
           Gram-positive and Gram-negative bacteria.  Tetracyclines
           inhibit protein synthesis by preventing aminoacyl-tRNA
           from binding to the ribosomal acceptor site.  This
           subfamily contains tetracycline resistance proteins that
           function through ribosomal protection and are typically
           found on mobile genetic elements, such as transposons or
           plasmids, and are often conjugative.  Ribosomal
           protection proteins are homologous to the elongation
           factors EF-Tu and EF-G.  EF-G and Tet(M) compete for
           binding on the ribosomes.  Tet(M) has a higher affinity
           than EF-G, suggesting these two proteins may have
           overlapping binding sites and that Tet(M) must be
           released before EF-G can bind.  Tet(M) and Tet(O) have
           been shown to have ribosome-dependent GTPase activity.
           These proteins are part of the GTP translation factor
           family, which includes EF-G, EF-Tu, EF2, LepA, and SelB.
          Length = 237

 Score =  140 bits (354), Expect = 1e-33
 Identities = 59/147 (40%), Positives = 91/147 (61%), Gaps = 4/147 (2%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER--VMDCNDLEKERGITILAKVTSIV 78
           NI I+AHVD GKTTL + LL  SG  R    V +     D  +LE++RGITI + V S  
Sbjct: 1   NIGILAHVDAGKTTLTESLLYTSGAIRKLGSVDKGTTRTDTMELERQRGITIFSAVASFQ 60

Query: 79  WNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKI-GLRP 137
           W D ++N++DTPGH DF  EVER L +++  ++++ A EG   QT+ ++ + L+   +  
Sbjct: 61  WEDTKVNLIDTPGHMDFIAEVERSLSVLDGAILVISAVEGVQAQTR-ILWRLLRKLNIPT 119

Query: 138 IVVVNKVDRSDARADEVINEVFDLFSA 164
           I+ VNK+DR+ A  ++V  E+ +  S+
Sbjct: 120 IIFVNKIDRAGADLEKVYQEIKEKLSS 146


>gnl|CDD|133290 cd01890, LepA, LepA subfamily.  LepA belongs to the GTPase family
           of and exhibits significant homology to the translation
           factors EF-G and EF-Tu, indicating its possible
           involvement in translation and association with the
           ribosome.  LepA is ubiquitous in bacteria and eukaryota
           (e.g. yeast GUF1p), but is missing from archaea.  This
           pattern of phyletic distribution suggests that LepA
           evolved through a duplication of the EF-G gene in
           bacteria, followed by early transfer into the eukaryotic
           lineage, most likely from the promitochondrial
           endosymbiont.  Yeast GUF1p is not essential and mutant
           cells did not reveal any marked phenotype.
          Length = 179

 Score =  138 bits (349), Expect = 6e-33
 Identities = 73/198 (36%), Positives = 106/198 (53%), Gaps = 24/198 (12%)

Query: 20  RNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVW 79
           RN +IIAH+DHGK+TL D LL+ +G     +   E+V+D  DLE+ERGITI A+   + +
Sbjct: 1   RNFSIIAHIDHGKSTLADRLLELTGTVSKREM-KEQVLDSMDLERERGITIKAQTVRLNY 59

Query: 80  -----NDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIG 134
                 +  +N++DTPGH DF  EV R L   E  ++LVDA +G   QT      AL+  
Sbjct: 60  KAKDGQEYLLNLIDTPGHVDFSYEVSRSLAACEGALLLVDATQGVEAQTLANFYLALENN 119

Query: 135 LRPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSR 194
           L  I V+NK+D   A  + V  ++ D+   LD ++A      +  S + G          
Sbjct: 120 LEIIPVINKIDLPSADPERVKQQIEDVLG-LDPSEA------ILVSAKTG---------- 162

Query: 195 DQGMVPLLNLIVDHVPPP 212
             G+  LL  IV+ +PPP
Sbjct: 163 -LGVEDLLEAIVERIPPP 179


>gnl|CDD|133286 cd01886, EF-G, Elongation factor G (EF-G) subfamily.  Translocation
           is mediated by EF-G (also called translocase).  The
           structure of EF-G closely resembles that of the complex
           between EF-Tu and tRNA.  This is an example of molecular
           mimicry; a protein domain evolved so that it mimics the
           shape of a tRNA molecule.  EF-G in the GTP form binds to
           the ribosome, primarily through the interaction of its
           EF-Tu-like domain with the 50S subunit.  The binding of
           EF-G to the ribosome in this manner stimulates the
           GTPase activity of EF-G. On GTP hydrolysis, EF-G
           undergoes a conformational change that forces its arm
           deeper into the A site on the 30S subunit.  To
           accommodate this domain, the peptidyl-tRNA in the A site
           moves to the P site, carrying the mRNA and the
           deacylated tRNA with it.  The ribosome may be prepared
           for these rearrangements by the initial binding of EF-G
           as well.  The dissociation of EF-G leaves the ribosome
           ready to accept the next aminoacyl-tRNA into the A site.
            This group contains both eukaryotic and bacterial
           members.
          Length = 270

 Score =  127 bits (321), Expect = 1e-29
 Identities = 59/140 (42%), Positives = 81/140 (57%), Gaps = 2/140 (1%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER--VMDCNDLEKERGITILAKVTSIV 78
           NI IIAH+D GKTT  + +L  +G       V      MD  + E+ERGITI +  T+  
Sbjct: 1   NIGIIAHIDAGKTTTTERILYYTGRIHKIGEVHGGGATMDFMEQERERGITIQSAATTCF 60

Query: 79  WNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPI 138
           W D RINI+DTPGH DF  EVER L +++  V + DA  G  PQT+ V  +A +  +  I
Sbjct: 61  WKDHRINIIDTPGHVDFTIEVERSLRVLDGAVAVFDAVAGVEPQTETVWRQADRYNVPRI 120

Query: 139 VVVNKVDRSDARADEVINEV 158
             VNK+DR+ A    V+ ++
Sbjct: 121 AFVNKMDRTGADFFRVVEQI 140


>gnl|CDD|35686 KOG0465, KOG0465, KOG0465, Mitochondrial elongation factor
           [Translation, ribosomal structure and biogenesis].
          Length = 721

 Score =  125 bits (315), Expect = 4e-29
 Identities = 62/161 (38%), Positives = 90/161 (55%), Gaps = 5/161 (3%)

Query: 18  QIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER--VMDCNDLEKERGITILAKVT 75
           +IRNI I AH+D GKTTL + +L  +G  +    V      MD  +LE++RGITI +  T
Sbjct: 38  KIRNIGISAHIDAGKTTLTERMLYYTGRIKHIGEVRGGGATMDSMELERQRGITIQSAAT 97

Query: 76  SIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGL 135
              W D RINI+DTPGH DF  EVER L +++  V+++DA  G   QT+ V  +  +  +
Sbjct: 98  YFTWRDYRINIIDTPGHVDFTFEVERALRVLDGAVLVLDAVAGVESQTETVWRQMKRYNV 157

Query: 136 RPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPI 176
             I  +NK+DR  A     +N    + + L+   A +  PI
Sbjct: 158 PRICFINKMDRMGASPFRTLN---QIRTKLNHKPAVVQIPI 195



 Score = 63.4 bits (154), Expect = 2e-10
 Identities = 70/287 (24%), Positives = 122/287 (42%), Gaps = 58/287 (20%)

Query: 149 ARADEVINEVF---------DLFSAL-DATDAQLDFPILYGSGRFGWMSDSSDGSRDQGM 198
           A  DE + E+F          L +A+  AT  +   P+L GS             +++G+
Sbjct: 248 ADVDETLAEMFLEEEEPSAQQLKAAIRRATIKRSFVPVLCGSAL-----------KNKGV 296

Query: 199 VPLLNLIVDHVPPPV---------ISEGEFKMIGTI-LEKDPFLG---RIVTG------- 238
            PLL+ +VD++P P           +  + K+  +   +KDPF+    ++  G       
Sbjct: 297 QPLLDAVVDYLPSPSEVENYALNKETNSKEKVTLSPSRDKDPFVALAFKLEEGRFGQLTY 356

Query: 239 -RIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIAGLVKA 297
            R++ GT+     I      G  V VGR+ ++ A    D + ++E  AGDI ++ G+  A
Sbjct: 357 VRVYQGTLSKGDTIYN-VRTGKKVRVGRLVRMHA---NDMEDVNEVLAGDICALFGIDCA 412

Query: 298 TVADTFCDPSIDEPLKAQPID-PPTVTMTFGVNDSPLAGTEGDKVTSRMIRDRLFKEAEG 356
           +  DTF D   +  L  + I  P  V     V   P+   + D  +  +   R  KE   
Sbjct: 413 S-GDTFTDKQ-NLALSMESIHIPEPV---ISVAIKPVNKKDADNFSKALN--RFTKE--- 462

Query: 357 NIALKIEESSSKDAFFVSGRGELQLAVLIETMRRE-GFELAVSRPRV 402
           +   ++          +SG GEL L + +E + RE   +  + +P+V
Sbjct: 463 DPTFRVSLDPEMKQTVISGMGELHLEIYVERLVREYKVDAELGKPQV 509



 Score = 34.5 bits (79), Expect = 0.086
 Identities = 22/89 (24%), Positives = 38/89 (42%), Gaps = 1/89 (1%)

Query: 401 RVVIKKEGDSLLEPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPT 460
           R   K+    +LEPI  V +   EE  G V+  +   K+++  +  S   +  +    P 
Sbjct: 621 REAFKRAPPRILEPIMNVEVTTPEEFQGTVIGDLNKRKAQITGIDSSEDYKT-IKAEVPL 679

Query: 461 RGLIGYQSQLMTDTRGTAIMNRLFHSYQP 489
             + GY S+L + T+G       +  Y P
Sbjct: 680 NEMFGYSSELRSLTQGKGEFTMEYSRYSP 708


>gnl|CDD|58063 cd03710, BipA_TypA_C, BipA_TypA_C: a C-terminal portion of BipA or
           TypA having homology to the C terminal domains of the
           elongation factors EF-G and EF-2. A member of the
           ribosome binding GTPase superfamily, BipA is widely
           distributed in bacteria and plants.  BipA is a highly
           conserved protein with global regulatory properties in
           Escherichia coli. BipA is phosphorylated on a tyrosine
           residue under some cellular conditions. Mutants show
           altered regulation of some pathways. BipA functions as a
           translation factor that is required specifically for the
           expression of the transcriptional modulator Fis.  BipA
           binds to ribosomes at a site that coincides with that of
           EF-G and has a GTPase activity that is sensitive to high
           GDP:GTP ratios and, is stimulated  by 70S ribosomes
           programmed with mRNA and aminoacylated tRNAs. The growth
           rate-dependent induction of BipA allows the efficient
           expression of Fis, thereby modulating a range of
           downstream processes, including DNA metabolism and type
           III secretion..
          Length = 79

 Score =  122 bits (307), Expect = 3e-28
 Identities = 45/79 (56%), Positives = 61/79 (77%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQLMT 472
           EPIEE+ IDV EE+SGAV++K+   K EM+++ P G GR RL F  P+RGLIG++S+ +T
Sbjct: 1   EPIEELTIDVPEEYSGAVIEKLGKRKGEMVDMEPDGNGRTRLEFKIPSRGLIGFRSEFLT 60

Query: 473 DTRGTAIMNRLFHSYQPHK 491
           DTRGT IMN +F  Y+P+K
Sbjct: 61  DTRGTGIMNHVFDGYEPYK 79


>gnl|CDD|35688 KOG0467, KOG0467, KOG0467, Translation elongation factor 2/ribosome
           biogenesis protein RIA1 and related proteins
           [Translation, ribosomal structure and biogenesis].
          Length = 887

 Score =  120 bits (301), Expect = 2e-27
 Identities = 55/128 (42%), Positives = 79/128 (61%)

Query: 19  IRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIV 78
           IRNI ++AHVDHGKT+L D L+  +GV         R +D  + E+ RGIT+ +   S++
Sbjct: 9   IRNICLVAHVDHGKTSLADSLVASNGVISSRLAGKIRFLDTREDEQTRGITMKSSAISLL 68

Query: 79  WNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPI 138
             D  IN++D+PGH DF  EV     + +  +VLVD  EG   QT  V+ +A   GL+PI
Sbjct: 69  HKDYLINLIDSPGHVDFSSEVSSASRLSDGALVLVDVVEGVCSQTYAVLRQAWIEGLKPI 128

Query: 139 VVVNKVDR 146
           +V+NK+DR
Sbjct: 129 LVINKIDR 136



 Score = 41.9 bits (98), Expect = 5e-04
 Identities = 60/267 (22%), Positives = 101/267 (37%), Gaps = 29/267 (10%)

Query: 220 KMIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSPD---GALVEVGRVSKILAFRGID 276
           KM+ T L+  P    +   RI SGT++  Q +  L PD      +    V  +  F G +
Sbjct: 366 KMLATPLKYLPQSRLLAFARIFSGTLRVGQVVYVLGPDPLSPEHITECTVESLYLFMGQE 425

Query: 277 RQPIDEAHAGDIVSIAGLVKATVADTFCDPSIDEPLKAQPIDPPTVTMTFGVNDSPLAGT 336
             P+DE  +G++V+I G      + T C      P          +T    V   P    
Sbjct: 426 LVPLDEVPSGNVVAIGGAGIVLKSATLCSKVPCGPNLVVNF---QITPIVRVAIEPDDPD 482

Query: 337 EGDKVTSRMIRDRLFKEAEGNIALKIEESSSKDAFFVSGRGELQLAVLIETMRR-EGFEL 395
           E DK+   +   +L  +A+  + +++EE+       +   GE+ L   ++ ++     E+
Sbjct: 483 EMDKLVEGL---KLLNQADPFVKIRVEENGE---HVLVTAGEVHLERCLKDLKEFAKIEI 536

Query: 396 AVSRPRVVIKKEGDSLLEPIEEVVI---DVDEEHSGAVVQKMTLHKSEMIELRPSGTGRV 452
           +VS P           L P  E +I   D+    S     K        I+LR       
Sbjct: 537 SVSEP-----------LVPFRETIIEDSDLLANLSIGQETKCLPRGQLKIKLRVVPLSGA 585

Query: 453 RLVFLSPTRGLIGYQSQLMTDTRGTAI 479
            +  L     LI   + L  ++R   I
Sbjct: 586 VVDLLDKNSSLIS--NILRGESRQVPI 610


>gnl|CDD|133367 cd04167, Snu114p, Snu114p subfamily.  Snu114p is one of several
           proteins that make up the U5 small nuclear
           ribonucleoprotein (snRNP) particle.  U5 is a component
           of the spliceosome, which catalyzes the splicing of
           pre-mRNA to remove introns.  Snu114p is homologous to
           EF-2, but typically contains an additional N-terminal
           domain not found in Ef-2.  This protein is part of the
           GTP translation factor family and the Ras superfamily,
           characterized by five G-box motifs.
          Length = 213

 Score =  119 bits (300), Expect = 2e-27
 Identities = 67/217 (30%), Positives = 112/217 (51%), Gaps = 28/217 (12%)

Query: 20  RNIAIIAHVDHGKTTLVDELLKQS---GVFRDNQRVSERVMDCNDLEKERGITILAKVTS 76
           RN+AI  H+ HGKT+L+D L++Q+        +     R  D    E+ERGI+I +   S
Sbjct: 1   RNVAIAGHLHHGKTSLLDMLIEQTHDLTPSGKDGWKPLRYTDIRKDEQERGISIKSSPIS 60

Query: 77  IVWNDVR-----INIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKAL 131
           +V  D +      NI+DTPGH +F  EV   L + + VV++VD  EG    T+ ++  A+
Sbjct: 61  LVLPDSKGKSYLFNIIDTPGHVNFMDEVAAALRLSDGVVLVVDVVEGVTSNTERLIRHAI 120

Query: 132 KIGLRPIVVVNKVDR---------SDA--RADEVINEVFDLFSALDATDAQLDFP----I 176
             GL  ++V+NK+DR         +DA  +   +I+EV ++ ++   T + L  P    +
Sbjct: 121 LEGLPIVLVINKIDRLILELKLPPNDAYFKLRHIIDEVNNIIASFSTTLSFLFSPENGNV 180

Query: 177 LYGSGRFGWM-SDSSDGSRDQGMVPLLNLIVDHVPPP 212
            + S +FG+  +  S          L++ IV ++P P
Sbjct: 181 CFASSKFGFCFTLESFAK----KYGLVDSIVSNIPSP 213


>gnl|CDD|35690 KOG0469, KOG0469, KOG0469, Elongation factor 2 [Translation,
           ribosomal structure and biogenesis].
          Length = 842

 Score =  107 bits (268), Expect = 1e-23
 Identities = 64/201 (31%), Positives = 102/201 (50%), Gaps = 35/201 (17%)

Query: 19  IRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIV 78
           IRN+++IAHVDHGK+TL D L++++G+    +    R  D    E+ERGITI +   S+ 
Sbjct: 19  IRNMSVIAHVDHGKSTLTDSLVQKAGIISAAKAGETRFTDTRKDEQERGITIKSTAISLF 78

Query: 79  W----------------NDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQ 122
           +                N   IN++D+PGH DF  EV   L + +  +V+VD   G   Q
Sbjct: 79  FEMSDDDLKFIKQEGDGNGFLINLIDSPGHVDFSSEVTAALRVTDGALVVVDCVSGVCVQ 138

Query: 123 TKFVVGKALKIGLRPIVVVNKVDRSD--------------ARADEVINEVFDLFSALDAT 168
           T+ V+ +A+   ++P++V+NK+DR+                R  E +N +   +      
Sbjct: 139 TETVLRQAIAERIKPVLVMNKMDRALLELQLSQEELYQTFQRIVENVNVIISTYGDGPMG 198

Query: 169 DAQLDFP----ILYGSGRFGW 185
           D Q+D P    + +GSG  GW
Sbjct: 199 DVQVD-PEKGTVGFGSGLHGW 218



 Score = 28.8 bits (64), Expect = 4.2
 Identities = 23/112 (20%), Positives = 41/112 (36%), Gaps = 11/112 (9%)

Query: 384 LIETMRREGFELAV-SRPRVVIKKEGDSLLEPIEEVVIDVDEEHSGAVVQKMTLHKSEMI 442
           +I T RR  +   + + P          L EP+  V I   E+  G +   +   +  + 
Sbjct: 705 IIPTARRVLYASVLTAGPI---------LQEPVYLVEIQCPEQAVGGIYGVLNRKRGHVF 755

Query: 443 ELRP-SGTGRVRLVFLSPTRGLIGYQSQLMTDTRGTAIMNRLFHSYQPHKGE 493
           E     GT    +    P     G+ + L ++T G A    +F  +    G+
Sbjct: 756 EEEQVPGTPMFVVKAYLPVNESFGFTADLRSNTGGQAFPQMVFDHWSILPGD 807



 Score = 27.6 bits (61), Expect = 9.8
 Identities = 16/75 (21%), Positives = 33/75 (44%), Gaps = 9/75 (12%)

Query: 238 GRIHSGTIKSNQNIKALSPD-----GALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIA 292
           GR+ SG + +   ++   P+        + +  + + +   G   +PI++  AG+I+ + 
Sbjct: 398 GRVFSGKVFTGLKVRIQGPNYVPGKKEDLYIKAIQRTVLMMGRFVEPIEDCPAGNIIGLV 457

Query: 293 G----LVKATVADTF 303
           G    LVK     T 
Sbjct: 458 GVDQFLVKTGTITTS 472


>gnl|CDD|35685 KOG0464, KOG0464, KOG0464, Elongation factor G [Translation,
           ribosomal structure and biogenesis].
          Length = 753

 Score =  107 bits (267), Expect = 1e-23
 Identities = 54/143 (37%), Positives = 80/143 (55%), Gaps = 2/143 (1%)

Query: 18  QIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSE--RVMDCNDLEKERGITILAKVT 75
           +IRNI IIAH+D GKTT  + +L  +G       V +   V D   +E+ERGITI +   
Sbjct: 36  KIRNIGIIAHIDAGKTTTTERILYLAGAIHSAGDVDDGDTVTDFLAIERERGITIQSAAV 95

Query: 76  SIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGL 135
           +  W   RIN++DTPGH DF  EVER L +++  V + DA+ G   QT  V  +A K  +
Sbjct: 96  NFDWKGHRINLIDTPGHVDFRLEVERCLRVLDGAVAVFDASAGVEAQTLTVWRQADKFKI 155

Query: 136 RPIVVVNKVDRSDARADEVINEV 158
                +NK+D+  A  +  ++ +
Sbjct: 156 PAHCFINKMDKLAANFENAVDSI 178



 Score = 35.1 bits (80), Expect = 0.052
 Identities = 44/176 (25%), Positives = 72/176 (40%), Gaps = 33/176 (18%)

Query: 145 DRSDARADEVINEVFDLFSALDA----------TDAQLDFPILYGSGRFGWMSDSSDGSR 194
           D     AD+ ++E  + F  +DA          T AQ   PIL GS             +
Sbjct: 254 DLDADFADKFLDEFDENFDKIDAEELKSAIHELTCAQKAAPILCGSA-----------IK 302

Query: 195 DQGMVPLLNLIVDHVPPPVISEGEFKM--------IGTILEKDPFLGRIVTGRIHSGTIK 246
           ++G+ PLL+ +  ++P P     EF          +   +  D   G +   RI+SG+I 
Sbjct: 303 NKGIQPLLDAVTMYLPSPEERNYEFLQWYKDDLCALAFKVLHDKQRGPLSFMRIYSGSIH 362

Query: 247 SNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIAGLVKATVADT 302
           +N  I  ++  G   E   + K+      + + I++  AG+I   AGL      DT
Sbjct: 363 NNLAIFNIN--GMCSE--GILKLFLPFADEHREIEQLSAGNIALTAGLKHTATGDT 414


>gnl|CDD|133369 cd04169, RF3, RF3 subfamily.  Peptide chain release factor 3 (RF3)
           is a protein involved in the termination step of
           translation in bacteria.  Termination occurs when class
           I release factors (RF1 or RF2) recognize the stop codon
           at the A-site of the ribosome and activate the release
           of the nascent polypeptide.  The class II release factor
           RF3 then initiates the release of the class I RF from
           the ribosome.  RF3 binds to the RF/ribosome complex in
           the inactive (GDP-bound) state.  GDP/GTP exchange
           occurs, followed by the release of the class I RF.
           Subsequent hydrolysis of GTP to GDP triggers the release
           of RF3 from the ribosome.  RF3 also enhances the
           efficiency of class I RFs at less preferred stop codons
           and at stop codons in weak contexts.
          Length = 267

 Score =  106 bits (266), Expect = 3e-23
 Identities = 59/152 (38%), Positives = 85/152 (55%), Gaps = 18/152 (11%)

Query: 20  RNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER------VMDCNDLEKERGITILAK 73
           R  AII+H D GKTTL ++LL   G  R+   V  R        D  ++EK+RGI++ + 
Sbjct: 3   RTFAIISHPDAGKTTLTEKLLLFGGAIREAGAVKARKSRKHATSDWMEIEKQRGISVTSS 62

Query: 74  VTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTK--FVVGKAL 131
           V    + D  IN++DTPGH DF  +  R L  V+S V+++DAA+G  PQT+  F V +  
Sbjct: 63  VMQFEYRDCVINLLDTPGHEDFSEDTYRTLTAVDSAVMVIDAAKGVEPQTRKLFEVCRLR 122

Query: 132 KIGLRPIV-VVNKVDRSDARA-----DEVINE 157
            I   PI+  +NK+DR + R      DE+  E
Sbjct: 123 GI---PIITFINKLDR-EGRDPLELLDEIEEE 150


>gnl|CDD|58082 cd03691, BipA_TypA_II, BipA_TypA_II: domain II of BipA (also called
           TypA) having homology to domain II of the elongation
           factors (EFs) EF-G and EF-Tu.  BipA is a highly
           conserved protein with global regulatory properties in
           Escherichia coli.  BipA is phosphorylated on a tyrosine
           residue under some cellular conditions. Mutants show
           altered regulation of some pathways. BipA functions as a
           translation factor that is required specifically for the
           expression of the transcriptional modulator Fis.  BipA
           binds to ribosomes at a site that coincides with that of
           EF-G and has a GTPase activity that is sensitive to high
           GDP:GTP ratios and, is stimulated  by 70S ribosomes
           programmed with mRNA and aminoacylated tRNAs. The growth
           rate-dependent induction of BipA allows the efficient
           expression of Fis, thereby modulating a range of
           downstream processes, including DNA metabolism and type
           III secretion..
          Length = 86

 Score =  105 bits (263), Expect = 5e-23
 Identities = 36/87 (41%), Positives = 55/87 (63%), Gaps = 1/87 (1%)

Query: 219 FKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQ 278
            +M+ T L+ D ++GRI  GRI  GT+K  Q +  +  DG  +E  +++K+  F G+ R 
Sbjct: 1   LQMLVTTLDYDDYVGRIAIGRIFRGTVKVGQQVAVVKRDGK-IEKAKITKLFGFEGLKRV 59

Query: 279 PIDEAHAGDIVSIAGLVKATVADTFCD 305
            ++EA AGDIV+IAG+   T+ DT CD
Sbjct: 60  EVEEAEAGDIVAIAGIEDITIGDTICD 86


>gnl|CDD|133370 cd04170, EF-G_bact, Elongation factor G (EF-G) subfamily.
           Translocation is mediated by EF-G (also called
           translocase).  The structure of EF-G closely resembles
           that of the complex between EF-Tu and tRNA.  This is an
           example of molecular mimicry; a protein domain evolved
           so that it mimics the shape of a tRNA molecule.  EF-G in
           the GTP form binds to the ribosome, primarily through
           the interaction of its EF-Tu-like domain with the 50S
           subunit.  The binding of EF-G to the ribosome in this
           manner stimulates the GTPase activity of EF-G.  On GTP
           hydrolysis, EF-G undergoes a conformational change that
           forces its arm deeper into the A site on the 30S
           subunit.  To accommodate this domain, the peptidyl-tRNA
           in the A site moves to the P site, carrying the mRNA and
           the deacylated tRNA with it.  The ribosome may be
           prepared for these rearrangements by the initial binding
           of EF-G as well.  The dissociation of EF-G leaves the
           ribosome ready to accept the next aminoacyl-tRNA into
           the A site.  This group contains only bacterial members.
          Length = 268

 Score =  104 bits (262), Expect = 7e-23
 Identities = 47/146 (32%), Positives = 76/146 (52%), Gaps = 2/146 (1%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSE--RVMDCNDLEKERGITILAKVTSIV 78
           NIA++ H   GKTTL + LL  +G       V +   V D +  E +R ++I   V  + 
Sbjct: 1   NIALVGHSGSGKTTLAEALLYATGAIDRLGSVEDGTTVSDYDPEEIKRKMSISTSVAPLE 60

Query: 79  WNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPI 138
           W   +IN++DTPG+ADF GE    L   ++ +V+V A  G    T+ +   A + G+  I
Sbjct: 61  WKGHKINLIDTPGYADFVGETRAALRAADAALVVVSAQSGVEVGTEKLWEFADEAGIPRI 120

Query: 139 VVVNKVDRSDARADEVINEVFDLFSA 164
           + +NK+DR  A  D+ +  + + F  
Sbjct: 121 IFINKMDRERADFDKTLAALQEAFGR 146


>gnl|CDD|33865 COG4108, PrfC, Peptide chain release factor RF-3 [Translation,
           ribosomal structure and biogenesis].
          Length = 528

 Score =  102 bits (255), Expect = 4e-22
 Identities = 55/148 (37%), Positives = 83/148 (56%), Gaps = 12/148 (8%)

Query: 20  RNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER------VMDCNDLEKERGITILAK 73
           R  AII+H D GKTTL ++LL   G  ++   V  R        D  ++EK+RGI++ + 
Sbjct: 13  RTFAIISHPDAGKTTLTEKLLLFGGAIQEAGTVKGRKSGKHAKSDWMEIEKQRGISVTSS 72

Query: 74  VTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTK--FVVGKAL 131
           V    + D  +N++DTPGH DF  +  R L  V+S V+++DAA+G  PQT   F V +  
Sbjct: 73  VMQFDYADCLVNLLDTPGHEDFSEDTYRTLTAVDSAVMVIDAAKGIEPQTLKLFEVCRLR 132

Query: 132 KIGLRPIV-VVNKVDRSDARADEVINEV 158
            I   PI   +NK+DR      E+++E+
Sbjct: 133 DI---PIFTFINKLDREGRDPLELLDEI 157



 Score = 38.3 bits (89), Expect = 0.006
 Identities = 36/137 (26%), Positives = 55/137 (40%), Gaps = 26/137 (18%)

Query: 197 GMVPLLNLIVDHVPPP--------VISEGEFKMIGTILE----KDP-FLGRIVTGRIHSG 243
           G+   L+ +VD  P P         +   E K  G + +     DP    RI   R+ SG
Sbjct: 263 GVDHFLDALVDWAPSPRARQADTREVEPTEDKFSGFVFKIQANMDPKHRDRIAFMRVCSG 322

Query: 244 TIKSNQNIKALSPDGALVEVGR---VSKILAFRGIDRQPIDEAHAGDIVSIAGLVKATVA 300
             +    +         V  G+   +S  L F   DR+ ++EA+AGDI+ +       + 
Sbjct: 323 KFERGMKVT-------HVRTGKDVKLSDALTFMAQDRETVEEAYAGDIIGLHNHGTIQIG 375

Query: 301 DTFCDPSIDEPLKAQPI 317
           DTF +    E LK   I
Sbjct: 376 DTFTE---GEKLKFTGI 389


>gnl|CDD|35689 KOG0468, KOG0468, KOG0468, U5 snRNP-specific protein [Translation,
           ribosomal structure and biogenesis].
          Length = 971

 Score =  100 bits (251), Expect = 1e-21
 Identities = 64/188 (34%), Positives = 102/188 (54%), Gaps = 21/188 (11%)

Query: 19  IRNIAIIAHVDHGKTTLVDELLKQSGV-FRDNQRVSERVMDCNDLEKERGITILAKVTSI 77
           IRN+ ++ H+ HGKT L+D L++Q+   F  N     R  D    E+ERG +I +   ++
Sbjct: 128 IRNVGLVGHLHHGKTALMDLLVEQTHPDFSKNTEADLRYTDTLFYEQERGCSIKSTPVTL 187

Query: 78  VWNDVR-----INIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALK 132
           V +D +     +NI+DTPGH +F  E    L + + VV++VD AEG M  T+ ++  A++
Sbjct: 188 VLSDSKGKSYLMNILDTPGHVNFSDETTASLRLSDGVVLVVDVAEGVMLNTERIIKHAIQ 247

Query: 133 IGLRPIVVVNKVDR---------SDA--RADEVINEVFDLFSALDATDAQLDFPIL---- 177
             L  +VV+NKVDR          DA  +   +I+E+ +L S     D  +  PIL    
Sbjct: 248 NRLPIVVVINKVDRLILELKLPPMDAYYKLRHIIDEINNLISTFSKDDNPVVSPILGNVC 307

Query: 178 YGSGRFGW 185
           + SG+ G+
Sbjct: 308 FASGKLGF 315



 Score = 40.4 bits (94), Expect = 0.002
 Identities = 45/181 (24%), Positives = 74/181 (40%), Gaps = 24/181 (13%)

Query: 236 VTGRIHSGTIKSNQNIKALS-----PDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVS 290
           V GR++SG + + Q+++ L       D   + +  V ++   R   R P+  A AG  V 
Sbjct: 491 VFGRVYSGQVVTGQDVRVLGENYSLEDEEDMVICEVGELWVVRARYRIPVSRAPAGLWVL 550

Query: 291 IAGLVKATV-ADTFCDPSIDEPLKAQPIDPPTVTMT---FGVNDSPLAGTEGDKVTSRMI 346
           I G+ ++ V   T       E +    I  P    T     V   PL  +E  K+     
Sbjct: 551 IEGVDQSIVKTATIKSLEYKEDVY---IFRPLKFNTEPVVKVAVEPLNPSELPKML---- 603

Query: 347 RDRLFKEAEG--NIALKIEESSSKDAFFVSGRGELQLAVLIETMRR--EGFELAVSRPRV 402
            D L K  +    +  K+EES       + G GEL +  ++  +R+     E+ V+ P V
Sbjct: 604 -DGLRKINKSYPLVITKVEESGEH---VILGTGELYMDCVLYDLRKSYSEIEIKVADPVV 659

Query: 403 V 403
            
Sbjct: 660 R 660



 Score = 28.5 bits (63), Expect = 5.8
 Identities = 23/113 (20%), Positives = 45/113 (39%), Gaps = 11/113 (9%)

Query: 383 VLIETMRREGFE-LAVSRPRVVIKKEGDSLLEPIEEVVIDVDEEHSGAVVQKMTLHKSEM 441
            +I T RR  +    ++ PR         L+EP+  V I    +   AV   ++  +  +
Sbjct: 806 QIIPTARRVAYSAFLMATPR---------LMEPVYLVEITAPADCVPAVYTVLSRRRGHV 856

Query: 442 IELRP-SGTGRVRLVFLSPTRGLIGYQSQLMTDTRGTAIMNRLFHSYQPHKGE 493
            +  P  G+    +    P     G+++ L   T+G A    +F  ++   G+
Sbjct: 857 TQDIPVPGSPLYTVKAYLPVIESFGFETDLRVHTQGQAFCLSVFDHWRIVPGD 909


>gnl|CDD|34853 COG5256, TEF1, Translation elongation factor EF-1alpha (GTPase)
           [Translation, ribosomal structure and biogenesis].
          Length = 428

 Score = 97.6 bits (243), Expect = 9e-21
 Identities = 83/339 (24%), Positives = 132/339 (38%), Gaps = 55/339 (16%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER-----------------VMDCNDLE 63
           N+  I HVD GK+TLV  LL   G    ++R  E+                 V+D    E
Sbjct: 9   NLVFIGHVDAGKSTLVGRLLYDLGEI--DKRTMEKLEKEAKELGKESFKFAWVLDKTKEE 66

Query: 64  KERGITILAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEG----- 118
           +ERG+TI    +    +     I+D PGH DF   +       +  V++VDA +G     
Sbjct: 67  RERGVTIDVAHSKFETDKYNFTIIDAPGHRDFVKNMITGASQADVAVLVVDARDGEFEAG 126

Query: 119 --PMPQTKFVVGKALKIGLRPIVV-VNKVDR---SDARADEVINEVFDLFSALDATDAQL 172
                QT+     A  +G++ ++V VNK+D     + R +E+++EV  L   +      +
Sbjct: 127 FGVGGQTREHAFLARTLGIKQLIVAVNKMDLVSWDEERFEEIVSEVSKLLKMVGYNPKDV 186

Query: 173 DF-PI--LYGSGRFGWMSDSSDGSRDQGMVPLLNLIVDHVPPPVISEGEFKMIGTILEKD 229
            F PI    G      ++  S+         LL  +    PP    +   ++   I +  
Sbjct: 187 PFIPISGFKGDN----LTKKSENMPWYKGPTLLEALDQLEPPERPLDKPLRL--PIQDVY 240

Query: 230 PFLGR--IVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGD 287
              G   +  GR+ SG IK  Q +    P G + EV  +        +  + I +A  GD
Sbjct: 241 SISGIGTVPVGRVESGVIKPGQKVT-FMPAGVVGEVKSIE-------MHHEEISQAEPGD 292

Query: 288 IVSIAGLVKATVADTFCDPSIDEPLKAQPIDPPTVTMTF 326
            V   G     V            +     +PPTV+  F
Sbjct: 293 NV---GFNVRGVEKNDIRRGD---VIGHSDNPPTVSPEF 325


>gnl|CDD|30399 COG0050, TufB, GTPases - translation elongation factors
           [Translation, ribosomal structure and biogenesis].
          Length = 394

 Score = 91.8 bits (228), Expect = 4e-19
 Identities = 77/291 (26%), Positives = 123/291 (42%), Gaps = 47/291 (16%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDL---EKERGITILAKVTSI 77
           N+  I HVDHGKTTL   +   + V         +  D  D    EK RGITI       
Sbjct: 14  NVGTIGHVDHGKTTLTAAI---TTVLAKKGGAEAKAYDQIDNAPEEKARGITINTAHVEY 70

Query: 78  VWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRP 137
              +     VD PGHAD+   +      ++  +++V A +GPMPQT+  +  A ++G+  
Sbjct: 71  ETANRHYAHVDCPGHADYVKNMITGAAQMDGAILVVAATDGPMPQTREHILLARQVGVPY 130

Query: 138 IVV-VNKVDRSDAR--ADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSR 194
           IVV +NKVD  D     + V  EV +L S         D PI+ GS     +   +    
Sbjct: 131 IVVFLNKVDMVDDEELLELVEMEVRELLSEYGFPGD--DTPIIRGSA-LKALEGDAKW-- 185

Query: 195 DQGMVPLLNLIVDHVPPPVISEGEFKMIGTILEKDPFL------------GRIVTGRIHS 242
           +  +  L++ +  ++P P                 PFL            G +VTGR+  
Sbjct: 186 EAKIEELMDAVDSYIPTPERD-----------IDKPFLMPVEDVFSISGRGTVVTGRVER 234

Query: 243 GTIKSNQNIKALSPDGALVEVGRVSKILAFRGID--RQPIDEAHAGDIVSI 291
           G +K  + ++ +          + ++     G++  R+ +DE  AGD V +
Sbjct: 235 GILKVGEEVEIVG--------IKETQKTTVTGVEMFRKLLDEGQAGDNVGV 277


>gnl|CDD|144322 pfam00679, EFG_C, Elongation factor G C-terminus.  This domain
           includes the carboxyl terminal regions of Elongation
           factor G, elongation factor 2 and some tetracycline
           resistance proteins and adopt a ferredoxin-like fold.
          Length = 89

 Score = 90.7 bits (226), Expect = 1e-18
 Identities = 29/84 (34%), Positives = 47/84 (55%)

Query: 411 LLEPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQL 470
           LLEPI +V I V EE+ G V+  +   + E++++ P G GRV +    P   L G+ ++L
Sbjct: 2   LLEPIMKVEITVPEEYLGDVIGDLNKRRGEILDMEPIGGGRVVIEAEVPLAELFGFSTEL 61

Query: 471 MTDTRGTAIMNRLFHSYQPHKGEI 494
            + T+G    +  F  Y+P  G+I
Sbjct: 62  RSLTQGRGSFSMEFSGYEPVPGDI 85


>gnl|CDD|35681 KOG0460, KOG0460, KOG0460, Mitochondrial translation elongation
           factor Tu [Translation, ribosomal structure and
           biogenesis].
          Length = 449

 Score = 81.1 bits (200), Expect = 8e-16
 Identities = 77/276 (27%), Positives = 125/276 (45%), Gaps = 23/276 (8%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
           N+  I HVDHGKTTL   + K        +      +D    EK RGITI A        
Sbjct: 56  NVGTIGHVDHGKTTLTAAITKILAEKGGAKFKKYDEIDKAPEEKARGITINAAHVEYETA 115

Query: 81  DVRINIVDTPGHADFGGEVERILC---MVESVVVLVDAAEGPMPQTKFVVGKALKIGLRP 137
                  D PGHAD+   ++ ++     ++  +++V A +GPMPQT+  +  A ++G++ 
Sbjct: 116 KRHYAHTDCPGHADY---IKNMITGAAQMDGAILVVAATDGPMPQTREHLLLARQVGVKH 172

Query: 138 IVV-VNKVDR-SDARADEVIN-EVFDLFS--ALDATDAQLDFPILYGSGRFGWMSDSSDG 192
           IVV +NKVD   D    E++  E+ +L S    D  +     P++ GS          + 
Sbjct: 173 IVVFINKVDLVDDPEMLELVEMEIRELLSEFGFDGDNT----PVIRGSALCALEGRQPEI 228

Query: 193 SRDQGMVPLLNLIVDHVPPPV-ISEGEFKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNI 251
              + +  LL+ +  ++P P    +  F +    +   P  G +VTGR+  G +K    +
Sbjct: 229 GL-EAIEKLLDAVDSYIPTPERDLDKPFLLPIEDVFSIPGRGTVVTGRLERGVLKKGDEV 287

Query: 252 KALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGD 287
           + +  +  L     V+ I  FR      +DEA AGD
Sbjct: 288 EIVGHNKTLKTT--VTGIEMFRKS----LDEAQAGD 317


>gnl|CDD|58061 cd01514, Elongation_Factor_C, Elongation factor G C-terminus. This
           domain includes the carboxyl terminal regions of
           elongation factors (EFs) bacterial EF-G, eukaryotic and
           archeal EF-2 and eukaryotic mitochondrial mtEFG1s and
           mtEFG2s. This group also includes proteins similar to
           the ribosomal protection proteins Tet(M) and Tet(O),
           BipA, LepA and, spliceosomal proteins: human 116kD U5
           small nuclear ribonucleoprotein (snRNP) protein (U5-116
           kD) and yeast counterpart Snu114p.  This domain adopts a
           ferredoxin-like fold consisting of an alpha-beta
           sandwich with anti-parallel beta-sheets, resembling the
           topology of domain III found in the elongation factors
           EF-G and eukaryotic EF-2, with which it forms the
           C-terminal block. The two domains however are not
           superimposable and domain III lacks some of the
           characteristics of this domain.  EF-2/EF-G in complex
           with GTP, promotes the translocation step of
           translation. During translocation the peptidyl-tRNA is
           moved from the A site to the P site, the uncharged tRNA
           from the P site to the E-site and, the mRNA is shifted
           one codon relative to the ribosome. Tet(M) and Tet(O)
           mediate Tc resistance. Typical Tcs bind to the ribosome
           and inhibit the elongation phase of protein synthesis,
           by inhibiting the occupation of site A by
           aminoacyl-tRNA. Tet(M) and Tet(O) catalyze the release
           of tetracycline (Tc) from the ribosome in a
           GTP-dependent manner.  BipA is a highly conserved
           protein with global regulatory properties in Escherichia
           coli. Yeast Snu114p is essential for cell viability and
           for splicing in vivo. Experiments suggest that GTP
           binding and probably GTP hydrolysis is important for the
           function of the U5-116 kD/Snu114p. The function of LepA
           proteins is unknown..
          Length = 79

 Score = 76.4 bits (188), Expect = 2e-14
 Identities = 27/77 (35%), Positives = 44/77 (57%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQLMT 472
           EPI +V I V EE+ GAV+  ++  + E++ + P GTGRV +    P   + G+ + L +
Sbjct: 1   EPIMKVEITVPEEYLGAVIGDLSKRRGEILGMEPRGTGRVVIKAELPLAEMFGFATDLRS 60

Query: 473 DTRGTAIMNRLFHSYQP 489
            T+G A  +  F  Y+P
Sbjct: 61  LTQGRASFSMEFSHYEP 77


>gnl|CDD|133283 cd01883, EF1_alpha, Eukaryotic elongation factor 1 (EF1) alpha
           subfamily.  EF1 is responsible for the GTP-dependent
           binding of aminoacyl-tRNAs to the ribosomes.  EF1 is
           composed of four subunits: the alpha chain which binds
           GTP and aminoacyl-tRNAs, the gamma chain that probably
           plays a role in anchoring the complex to other cellular
           components and the beta and delta (or beta') chains.
           This subfamily is the alpha subunit, and represents the
           counterpart of bacterial EF-Tu for the archaea
           (aEF1-alpha) and eukaryotes (eEF1-alpha).  eEF1-alpha
           interacts with the actin of the eukaryotic cytoskeleton
           and may thereby play a role in cellular transformation
           and apoptosis.  EF-Tu can have no such role in bacteria.
            In humans, the isoform eEF1A2 is overexpressed in 2/3
           of breast cancers and has been identified as a putative
           oncogene.  This subfamily also includes Hbs1, a G
           protein known to be important for efficient growth and
           protein synthesis under conditions of limiting
           translation initiation in yeast, and to associate with
           Dom34.  It has been speculated that yeast Hbs1 and Dom34
           proteins may function as part of a complex with a role
           in gene expression.
          Length = 219

 Score = 76.4 bits (189), Expect = 2e-14
 Identities = 52/179 (29%), Positives = 77/179 (43%), Gaps = 54/179 (30%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER-----------------VMDCNDLE 63
           N+ +I HVD GK+T    LL   G    ++R  E+                 V+D    E
Sbjct: 1   NLVVIGHVDAGKSTTTGHLLYLLGGV--DKRTIEKYEKEAKEMGKGSFKYAWVLDTLKEE 58

Query: 64  KERGITI---LAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESV------VVLVD 114
           +ERG+TI   LAK  +      R  I+D PGH DF      +  M+         V++VD
Sbjct: 59  RERGVTIDVGLAKFET---EKYRFTILDAPGHRDF------VPNMITGASQADVAVLVVD 109

Query: 115 AAEG-------PMPQTK---FVVGKALKIGLRPIVVVNKVDR-----SDARADEVINEV 158
           A +G          QT+    +  + L +  + IV VNK+D      S+ R DE+  E+
Sbjct: 110 ARKGEFEAGFEKGGQTREHALLA-RTLGVK-QLIVAVNKMDDVTVNWSEERYDEIKKEL 166


>gnl|CDD|177010 CHL00071, tufA, elongation factor Tu.
          Length = 409

 Score = 74.2 bits (183), Expect = 1e-13
 Identities = 87/306 (28%), Positives = 130/306 (42%), Gaps = 67/306 (21%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
           NI  I HVDHGKTTL   +          +      +D    EK RGITI          
Sbjct: 14  NIGTIGHVDHGKTTLTAAITMTLAAKGGAKAKKYDEIDSAPEEKARGITINTAHVEYETE 73

Query: 81  DVRINIVDTPGHADFGGEVERILCM------VESVVVLVDAAEGPMPQTKFVVGKALKIG 134
           +     VD PGHAD+      +  M      ++  +++V AA+GPMPQTK  +  A ++G
Sbjct: 74  NRHYAHVDCPGHADY------VKNMITGAAQMDGAILVVSAADGPMPQTKEHILLAKQVG 127

Query: 135 LRPIVV-VNKVDRSDARADEVIN----EVFDLFSALD-ATDAQLDFPILYGSGRFGWMSD 188
           +  IVV +NK D+ D   +E++     EV +L S  D   D   D PI+ GS      + 
Sbjct: 128 VPNIVVFLNKEDQVD--DEELLELVELEVRELLSKYDFPGD---DIPIVSGSALLALEAL 182

Query: 189 SSDGSRDQGMVP-------LLNLIVDHVPPPVISEGEFKMIGTILEKD-PFL-------- 232
           + +    +G          L++ +  ++P P              + D PFL        
Sbjct: 183 TENPKIKRGENKWVDKIYNLMDAVDSYIPTPE------------RDTDKPFLMAIEDVFS 230

Query: 233 ----GRIVTGRIHSGTIKSNQNIKALSPDGALVEVG-RVSKILAFRGID--RQPIDEAHA 285
               G + TGRI  GT+K    ++          VG R +K     G++  ++ +DE  A
Sbjct: 231 ITGRGTVATGRIERGTVKVGDTVEI---------VGLRETKTTTVTGLEMFQKTLDEGLA 281

Query: 286 GDIVSI 291
           GD V I
Sbjct: 282 GDNVGI 287


>gnl|CDD|133371 cd04171, SelB, SelB subfamily.  SelB is an elongation factor needed
           for the co-translational incorporation of
           selenocysteine.  Selenocysteine is coded by a UGA stop
           codon in combination with a specific downstream mRNA
           hairpin.  In bacteria, the C-terminal part of SelB
           recognizes this hairpin, while the N-terminal part binds
           GTP and tRNA in analogy with elongation factor Tu
           (EF-Tu).  It specifically recognizes the selenocysteine
           charged tRNAsec, which has a UCA anticodon, in an EF-Tu
           like manner. This allows insertion of selenocysteine at
           in-frame UGA stop codons.  In E. coli SelB binds GTP,
           selenocysteyl-tRNAsec, and a stem-loop structure
           immediately downstream of the UGA codon (the SECIS
           sequence).  The absence of active SelB prevents the
           participation of selenocysteyl-tRNAsec in translation.
           Archaeal and animal mechanisms of selenocysteine
           incorporation are more complex.  Although the SECIS
           elements have different secondary structures and
           conserved elements between archaea and eukaryotes, they
           do share a common feature.  Unlike in E. coli, these
           SECIS elements are located in the 3' UTRs.  This group
           contains bacterial SelBs, as well as, one from archaea.
          Length = 164

 Score = 73.0 bits (180), Expect = 2e-13
 Identities = 51/154 (33%), Positives = 74/154 (48%), Gaps = 30/154 (19%)

Query: 27  HVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITI-LAKVTSIVWNDVRIN 85
           H+DHGKTTL+  L   +G+  +  R+ E        EK+RGITI L      + +  R+ 
Sbjct: 8   HIDHGKTTLIKAL---TGI--ETDRLPE--------EKKRGITIDLGFAYLDLPSGKRLG 54

Query: 86  IVDTPGHADFGGEVERILCMVESV-----VVLVDAA-EGPMPQTK--FVVGKALKIGLRP 137
            +D PGH  F      I  M+        V+LV AA EG MPQT+    + + L I  R 
Sbjct: 55  FIDVPGHEKF------IKNMLAGAGGIDLVLLVVAADEGIMPQTREHLEILELLGIK-RG 107

Query: 138 IVVVNKVDR-SDARADEVINEVFDLFSALDATDA 170
           +VV+ K D   +   + V  E+ +L +     DA
Sbjct: 108 LVVLTKADLVDEDWLELVEEEIRELLAGTFLADA 141


>gnl|CDD|133287 cd01887, IF2_eIF5B, IF2/eIF5B (initiation factors 2/ eukaryotic
           initiation factor 5B) subfamily.  IF2/eIF5B contribute
           to ribosomal subunit joining and function as GTPases
           that are maximally activated by the presence of both
           ribosomal subunits.  As seen in other GTPases, IF2/IF5B
           undergoes conformational changes between its GTP- and
           GDP-bound states.  Eukaryotic IF2/eIF5Bs possess three
           characteristic segments, including a divergent
           N-terminal region followed by conserved central and
           C-terminal segments.  This core region is conserved
           among all known eukaryotic and archaeal IF2/eIF5Bs and
           eubacterial IF2s.
          Length = 168

 Score = 71.8 bits (177), Expect = 6e-13
 Identities = 46/147 (31%), Positives = 68/147 (46%), Gaps = 33/147 (22%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKE-RGIT--ILA-KVTSI 77
           + ++ HVDHGKTTL+D++ K                  N    E  GIT  I A +V + 
Sbjct: 3   VTVMGHVDHGKTTLLDKIRK-----------------TNVAAGEAGGITQHIGAFEVPAE 45

Query: 78  VWNDVRINIVDTPGHADF------GGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKAL 131
           V     I  +DTPGH  F      G  +  I       +++V A +G MPQT   +  A 
Sbjct: 46  VLKIPGITFIDTPGHEAFTNMRARGASLTDI------AILVVAADDGVMPQTIEAIKLAK 99

Query: 132 KIGLRPIVVVNKVDRSDARADEVINEV 158
              +  IV +NK+D+ +A  + V NE+
Sbjct: 100 AANVPFIVALNKIDKPNANPERVKNEL 126


>gnl|CDD|32720 COG2895, CysN, GTPases - Sulfate adenylate transferase subunit 1
           [Inorganic ion transport and metabolism].
          Length = 431

 Score = 70.7 bits (173), Expect = 1e-12
 Identities = 78/327 (23%), Positives = 129/327 (39%), Gaps = 46/327 (14%)

Query: 27  HVDHGKTTLVDELLKQSGVFRDNQ-----RVSER------------VMDCNDLEKERGIT 69
            VD GK+TL+  LL  +    ++Q     R S+R            ++D  + E+E+GIT
Sbjct: 14  SVDDGKSTLIGRLLYDTKAIYEDQLASLERDSKRKGTQGEKIDLALLVDGLEAEREQGIT 73

Query: 70  ILAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGK 129
           I            +  I DTPGH  +   +       +  ++LVDA +G + QT+     
Sbjct: 74  IDVAYRYFSTEKRKFIIADTPGHEQYTRNMATGASTADLAILLVDARKGVLEQTRRHSFI 133

Query: 130 ALKIGLRPIVV-VNK---VDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFG- 184
           A  +G+R +VV VNK   VD S+   + ++ +     + L   D +   PI   S   G 
Sbjct: 134 ASLLGIRHVVVAVNKMDLVDYSEEVFEAIVADYLAFAAQLGLKDVRF-IPI---SALLGD 189

Query: 185 WMSDSSDGSRDQGMVPLLNLIVDHVPPPVISEGEFKMIGTILEKDPFLGRIVTGRIHSGT 244
            +   S+         LL ++         S   F+     + +     R   G I SG+
Sbjct: 190 NVVSKSENMPWYKGPTLLEILETVEIADDRSAKAFRFPVQYVNRPNLDFRGYAGTIASGS 249

Query: 245 IKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSI--AGLVKATVADT 302
           +K    +  L P G   +  RV +I+ F G     + +A AG+ V++  A  +  +  D 
Sbjct: 250 VKVGDEVVVL-PSG---KTSRVKRIVTFDG----ELAQASAGEAVTLVLADEIDISRGDL 301

Query: 303 FCDPSIDEPLKAQPIDPPTVTMTFGVN 329
                           PP V   F  +
Sbjct: 302 IVAAD----------APPAVADAFDAD 318


>gnl|CDD|33087 COG3276, SelB, Selenocysteine-specific translation elongation
           factor [Translation, ribosomal structure and
           biogenesis].
          Length = 447

 Score = 70.0 bits (171), Expect = 2e-12
 Identities = 77/276 (27%), Positives = 116/276 (42%), Gaps = 44/276 (15%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
            I    H+DHGKTTL+  L   +G   D  R+ E        EK+RGITI          
Sbjct: 2   IIGTAGHIDHGKTTLLKAL---TGGVTD--RLPE--------EKKRGITIDLGFYYRKLE 48

Query: 81  DVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTK--FVVGKALKIGLRPI 138
           D  +  +D PGH DF   +   L  ++  +++V A EG M QT    ++   L I    I
Sbjct: 49  DGVMGFIDVPGHPDFISNLLAGLGGIDYALLVVAADEGLMAQTGEHLLILDLLGI-KNGI 107

Query: 139 VVVNKVDRSD-ARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDGSRDQG 197
           +V+ K DR D AR ++ I ++    S  +A      F     +G              +G
Sbjct: 108 IVLTKADRVDEARIEQKIKQILADLSLANAK----IFKTSAKTG--------------RG 149

Query: 198 MVPLLNLIVDHVPPPVI-SEGEFKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSP 256
           +  L N ++D +       +  F++          +G +VTG + SG +K    +  LSP
Sbjct: 150 IEELKNELIDLLEEIERDEQKPFRIAIDRAFTVKGVGTVVTGTVLSGEVKVGDKLY-LSP 208

Query: 257 DGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIA 292
               V   RV  I A        ++EA AG  V +A
Sbjct: 209 INKEV---RVRSIQAH----DVDVEEAKAGQRVGLA 237


>gnl|CDD|35679 KOG0458, KOG0458, KOG0458, Elongation factor 1 alpha [Translation,
           ribosomal structure and biogenesis].
          Length = 603

 Score = 67.3 bits (164), Expect = 1e-11
 Identities = 75/304 (24%), Positives = 128/304 (42%), Gaps = 43/304 (14%)

Query: 21  NIAIIAHVDHGKTTLVDELLK-----QSGVFRDNQRVSER----------VMDCNDLEKE 65
           N+ ++ HVD GK+TL+  LL       S      +R S+           ++D    E+E
Sbjct: 179 NLVVLGHVDAGKSTLMGHLLYDLGEISSRSMHKLERESKNLGKSSFAYAWILDETKEERE 238

Query: 66  RGITILAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEG------- 118
           RG+T+  K T        + ++D PGH DF   +       +  V++VDA+ G       
Sbjct: 239 RGVTMDVKTTWFESKSKIVTLIDAPGHKDFIPNMISGASQADVAVLVVDASTGEFESGFD 298

Query: 119 PMPQTKFVVGKALKIGLRP-IVVVNKVDR---SDARADEVINEVFD-LFSALDATDAQLD 173
           P  QT+        +G+   IV +NK+D    S  R +E+ N++   L  +    ++ + 
Sbjct: 299 PGGQTREHALLLRSLGISQLIVAINKMDLVSWSQDRFEEIKNKLSSFLKESCGFKESSVK 358

Query: 174 F-PI--LYGSGRFGWMSDSSDGSRDQGMVPLLNLIVDHVPPPVISEGEFKMIGTILE--K 228
           F PI  L G        ++      +G   LL+ I     P    +   ++  TI +   
Sbjct: 359 FIPISGLSGENLIKIEQENELSQWYKGPT-LLSQIDSFKIPERPIDKPLRL--TISDIYP 415

Query: 229 DPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDI 288
            P  G  ++G+I SG I+  Q +  ++      E   V  + +    + +P   A AGD 
Sbjct: 416 LPSSGVSISGKIESGYIQPGQKLYIMTS----REDATVKGLTS----NDEPKTWAVAGDN 467

Query: 289 VSIA 292
           VS+ 
Sbjct: 468 VSLK 471


>gnl|CDD|30878 COG0532, InfB, Translation initiation factor 2 (IF-2; GTPase)
           [Translation, ribosomal structure and biogenesis].
          Length = 509

 Score = 66.0 bits (161), Expect = 3e-11
 Identities = 74/305 (24%), Positives = 120/305 (39%), Gaps = 74/305 (24%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGIT--ILA-KVTSIV 78
           + I+ HVDHGKTTL+D++ K +    +                  GIT  I A +V   V
Sbjct: 8   VTIMGHVDHGKTTLLDKIRKTNVAAGE----------------AGGITQHIGAYQVPLDV 51

Query: 79  WNDVRINIVDTPGHADF------GGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALK 132
                I  +DTPGH  F      G  V  I       +++V A +G MPQT   +  A  
Sbjct: 52  IKIPGITFIDTPGHEAFTAMRARGASVTDI------AILVVAADDGVMPQTIEAINHAKA 105

Query: 133 IGLRPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDSSDG 192
            G+  +V +NK+D+ +A  D+V  E+ +    L   +   D   +  S + G        
Sbjct: 106 AGVPIVVAINKIDKPEANPDKVKQELQEY--GLVPEEWGGDVIFVPVSAKTG-------- 155

Query: 193 SRDQGMVPLLNLIVDHVPPPVISEGEFKM--------IGTILE--KDPFLGRIVTGRIHS 242
              +G+  LL LI       ++     ++         GT++E   D  LG + T  +  
Sbjct: 156 ---EGIDELLELI-------LLLAEVLELKANPEGPARGTVIEVKLDKGLGPVATVIVQD 205

Query: 243 GTIK---------SNQNIKALSPD-GALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIA 292
           GT+K             ++ +  D G  ++    SK +   G+   P   A     + + 
Sbjct: 206 GTLKKGDIIVAGGEYGRVRTMVDDLGKPIKEAGPSKPVEILGLSEVP---AAGDVFIVVK 262

Query: 293 GLVKA 297
              KA
Sbjct: 263 DEKKA 267


>gnl|CDD|36360 KOG1145, KOG1145, KOG1145, Mitochondrial translation initiation
           factor 2 (IF-2; GTPase) [Translation, ribosomal
           structure and biogenesis].
          Length = 683

 Score = 65.4 bits (159), Expect = 5e-11
 Identities = 45/139 (32%), Positives = 67/139 (48%), Gaps = 19/139 (13%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGIT--ILAKVTSIVW 79
           + I+ HVDHGKTTL+D L K S    +                  GIT  I A   ++  
Sbjct: 156 VTIMGHVDHGKTTLLDALRKSSVAAGEAG----------------GITQHIGAFTVTLP- 198

Query: 80  NDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPIV 139
           +   I  +DTPGHA F     R   + + VV++V A +G MPQT   +  A    +  +V
Sbjct: 199 SGKSITFLDTPGHAAFSAMRARGANVTDIVVLVVAADDGVMPQTLEAIKHAKSANVPIVV 258

Query: 140 VVNKVDRSDARADEVINEV 158
            +NK+D+  A  ++V  E+
Sbjct: 259 AINKIDKPGANPEKVKREL 277


>gnl|CDD|133284 cd01884, EF_Tu, EF-Tu subfamily.  This subfamily includes orthologs
           of translation elongation factor EF-Tu in bacteria,
           mitochondria, and chloroplasts.  It is one of several
           GTP-binding translation factors found in the larger
           family of GTP-binding elongation factors.  The
           eukaryotic counterpart, eukaryotic translation
           elongation factor 1 (eEF-1 alpha), is excluded from this
           family.  EF-Tu is one of the most abundant proteins in
           bacteria, as well as, one of the most highly conserved,
           and in a number of species the gene is duplicated with
           identical function.  When bound to GTP, EF-Tu can form a
           complex with any (correctly) aminoacylated tRNA except
           those for initiation and for selenocysteine, in which
           case EF-Tu is replaced by other factors.  Transfer RNA
           is carried to the ribosome in these complexes for
           protein translation.
          Length = 195

 Score = 63.7 bits (156), Expect = 1e-10
 Identities = 65/228 (28%), Positives = 94/228 (41%), Gaps = 72/228 (31%)

Query: 21  NIAIIAHVDHGKTTLVDEL-----LKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVT 75
           N+  I HVDHGKTTL   +      K    F+    +     D    EK RGITI     
Sbjct: 4   NVGTIGHVDHGKTTLTAAITKVLAKKGGAKFKKYDEI-----DKAPEEKARGITI----- 53

Query: 76  SIVWNDVRINI--------------VDTPGHADFGGEVERILCMV------ESVVVLVDA 115
                    N               VD PGHAD+      I  M+      +  +++V A
Sbjct: 54  ---------NTAHVEYETANRHYAHVDCPGHADY------IKNMITGAAQMDGAILVVSA 98

Query: 116 AEGPMPQTKFVVGKALKIGLRPIVV-VNKVDRSDARADE-----VINEVFDLFSA--LDA 167
            +GPMPQT+  +  A ++G+  IVV +NK D  D   DE     V  EV +L S    D 
Sbjct: 99  TDGPMPQTREHLLLARQVGVPYIVVFLNKADMVD---DEELLELVEMEVRELLSKYGFDG 155

Query: 168 TDAQLDFPILYGSGRFGWMSDSSDGSRDQGMVPLLNLI--VD-HVPPP 212
            +     PI+ GS     +        ++ +  +L L+  +D ++P P
Sbjct: 156 DNT----PIVRGSA-LKALEGDDP---NKWVKKILELLDALDSYIPTP 195


>gnl|CDD|133289 cd01889, SelB_euk, SelB subfamily.  SelB is an elongation factor
           needed for the co-translational incorporation of
           selenocysteine.  Selenocysteine is coded by a UGA stop
           codon in combination with a specific downstream mRNA
           hairpin.  In bacteria, the C-terminal part of SelB
           recognizes this hairpin, while the N-terminal part binds
           GTP and tRNA in analogy with elongation factor Tu
           (EF-Tu).  It specifically recognizes the selenocysteine
           charged tRNAsec, which has a UCA anticodon, in an EF-Tu
           like manner.  This allows insertion of selenocysteine at
           in-frame UGA stop codons.  In E. coli SelB binds GTP,
           selenocysteyl-tRNAsec and a stem-loop structure
           immediately downstream of the UGA codon (the SECIS
           sequence).  The absence of active SelB prevents the
           participation of selenocysteyl-tRNAsec in translation.
           Archaeal and animal mechanisms of selenocysteine
           incorporation are more complex.  Although the SECIS
           elements have different secondary structures and
           conserved elements between archaea and eukaryotes, they
           do share a common feature.  Unlike in E. coli, these
           SECIS elements are located in the 3' UTRs.  This group
           contains eukaryotic SelBs and some from archaea.
          Length = 192

 Score = 63.5 bits (155), Expect = 1e-10
 Identities = 42/144 (29%), Positives = 71/144 (49%), Gaps = 33/144 (22%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITI---------- 70
           N+ ++ HVD GKT+L   L         ++  S    D N   +ERGIT+          
Sbjct: 2   NVGVLGHVDSGKTSLAKAL---------SEIASTAAFDKNPQSQERGITLDLGFSSFYVD 52

Query: 71  ----LAKVTSIVWNDVRINIVDTPGHADFGGEVERILC---MVESVVVLVDAAEGPMPQT 123
               L ++ +    +++I +VD PGHA     +  I+    +++ ++++VDA +G   QT
Sbjct: 53  KPKHLRELINPGEENLQITLVDCPGHASL---IRTIIGGAQIIDLMLLVVDATKGIQTQT 109

Query: 124 K--FVVGKALKIGLRPIVVVNKVD 145
               V+G+ L   L  IVV+NK+D
Sbjct: 110 AECLVIGEILCKKL--IVVLNKID 131


>gnl|CDD|58095 cd04088, EFG_mtEFG_II, EFG_mtEFG_II: this subfamily represents the
           domain II of elongation factor G (EF-G) in bacteria and,
           the C-terminus of mitochondrial Elongation factor G1
           (mtEFG1) and G2 (mtEFG2)_like proteins found in
           eukaryotes. During the process of peptide synthesis and
           tRNA site changes, the ribosome is moved along the mRNA
           a distance equal to one codon with the addition of each
           amino acid. In bacteria this translocation step is
           catalyzed by EF-G_GTP, which is hydrolyzed to provide
           the required energy. Thus, this action releases the
           uncharged tRNA from the P site and transfers the newly
           formed peptidyl-tRNA from the A site to the P site.
           Eukaryotic cells harbor 2 protein synthesis systems: one
           localized in the cytoplasm, the other in the
           mitochondria. Most factors regulating mitochondrial
           protein synthesis are encoded by nuclear genes,
           translated in the cytoplasm, and then transported to the
           mitochondria. The eukaryotic system of elongation factor
           (EF) components is more complex than that in
           prokaryotes, with both cytoplasmic and mitochondrial
           elongation factors and multiple isoforms being expressed
           in certain species.  mtEFG1 and mtEFG2 show significant
           homology to bacterial EF-Gs.  Mutants in yeast mtEFG1
           have impaired mitochondrial protein synthesis,
           respiratory defects and a tendency to lose mitochondrial
           DNA. No clear phenotype has been found for mutants in
           the yeast homologue of mtEFG2, MEF2..
          Length = 83

 Score = 61.6 bits (150), Expect = 6e-10
 Identities = 26/77 (33%), Positives = 44/77 (57%), Gaps = 4/77 (5%)

Query: 229 DPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDI 288
           DPF+G++   R++SGT+K+   +   +      +  RV ++L   G  ++ ++EA AGDI
Sbjct: 11  DPFVGKLSFVRVYSGTLKAGSTLYNSTKG----KKERVGRLLRMHGKKQEEVEEAGAGDI 66

Query: 289 VSIAGLVKATVADTFCD 305
            ++AGL      DT CD
Sbjct: 67  GAVAGLKDTATGDTLCD 83


>gnl|CDD|177089 CHL00189, infB, translation initiation factor 2; Provisional.
          Length = 742

 Score = 61.0 bits (148), Expect = 9e-10
 Identities = 40/138 (28%), Positives = 63/138 (45%), Gaps = 22/138 (15%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKER-GIT--ILAKVTSIV 78
           + I+ HVDHGKTTL+D++ K                     +KE  GIT  I A      
Sbjct: 247 VTILGHVDHGKTTLLDKIRKT-----------------QIAQKEAGGITQKIGAYEVEFE 289

Query: 79  WNDVRINIV--DTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLR 136
           + D    IV  DTPGH  F     R   + +  ++++ A +G  PQT   +       + 
Sbjct: 290 YKDENQKIVFLDTPGHEAFSSMRSRGANVTDIAILIIAADDGVKPQTIEAINYIQAANVP 349

Query: 137 PIVVVNKVDRSDARADEV 154
            IV +NK+D+++A  + +
Sbjct: 350 IIVAINKIDKANANTERI 367


>gnl|CDD|133366 cd04166, CysN_ATPS, CysN_ATPS subfamily.  CysN, together with
           protein CysD, form the ATP sulfurylase (ATPS) complex in
           some bacteria and lower eukaryotes.  ATPS catalyzes the
           production of ATP sulfurylase (APS) and pyrophosphate
           (PPi) from ATP and sulfate.  CysD, which catalyzes ATP
           hydrolysis, is a member of the ATP pyrophosphatase (ATP
           PPase) family.  CysN hydrolysis of GTP is required for
           CysD hydrolysis of ATP; however, CysN hydrolysis of GTP
           is not dependent on CysD hydrolysis of ATP.  CysN is an
           example of lateral gene transfer followed by acquisition
           of new function.  In many organisms, an ATPS exists
           which is not GTP-dependent and shares no sequence or
           structural similarity to CysN.
          Length = 208

 Score = 58.7 bits (143), Expect = 5e-09
 Identities = 49/188 (26%), Positives = 79/188 (42%), Gaps = 57/188 (30%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQR---VSER------------VMDCNDLEKE 65
                  VD GK+TL+  LL  S    ++Q     S+             ++D    E+E
Sbjct: 1   RFLTCGSVDDGKSTLIGRLLYDSKSIFEDQLAALESKSCGTGGEPLDLALLVDGLQAERE 60

Query: 66  RGITILAKVTSIVWNDV----------RINIVDTPGHADFGGEVERILCMV------ESV 109
           +GITI          DV          +  I DTPGH  +         MV      +  
Sbjct: 61  QGITI----------DVAYRYFSTPKRKFIIADTPGHEQYTRN------MVTGASTADLA 104

Query: 110 VVLVDAAEGPMPQTK---FVVGKALKIGLRPIVV-VNK---VDRSDARADEVINEVFDLF 162
           ++LVDA +G + QT+   +++  +L +G+R +VV VNK   VD S+   +E++ +     
Sbjct: 105 ILLVDARKGVLEQTRRHSYIL--SL-LGIRHVVVAVNKMDLVDYSEEVFEEIVADYLAFA 161

Query: 163 SALDATDA 170
           + L   D 
Sbjct: 162 AKLGIEDI 169


>gnl|CDD|35680 KOG0459, KOG0459, KOG0459, Polypeptide release factor 3
           [Translation, ribosomal structure and biogenesis].
          Length = 501

 Score = 57.3 bits (138), Expect = 1e-08
 Identities = 69/302 (22%), Positives = 117/302 (38%), Gaps = 43/302 (14%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQR-VSER--------------VMDCNDLEKE 65
           N   I HVD GK+T+   +L  +G+         ER               +D N  E++
Sbjct: 81  NAVFIGHVDAGKSTIGGNILFLTGMVDKRTLEKYEREAKEKNRESWYLSWALDTNGEERD 140

Query: 66  RGITILAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPM----- 120
           +G T+          + R  I+D PGH  F   +       +  V+++ A +G       
Sbjct: 141 KGKTVEVGRAYFETENKRFTILDAPGHKSFVPNMIGGASQADLAVLVISARKGEFETGFE 200

Query: 121 --PQTK--FVVGKALKIGLRPIVVVNKVDR-----SDARADEVINEVFDLFSALDATDAQ 171
              QT+   ++ K   +    IV++NK+D      S+ R +E   E    F      + +
Sbjct: 201 KGGQTREHAMLAKTAGVK-HLIVLINKMDDPTVNWSNERYEE-CKEKLQPFLRKLGFNPK 258

Query: 172 LDFPILYGSGRFG-WMSDSSDGSRDQGMVPLLNLIVDHVP-PPVISEGEFKMIGTILEKD 229
            D   +  SG  G  + D +D        P+    +D +P    I  G  +    +  K 
Sbjct: 259 PDKHFVPVSGLTGANVKDRTDSVCPWYKGPIFLEYLDELPHLERILNGPIRC--PVANKY 316

Query: 230 PFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIV 289
             +G +V G++ SG+IK  Q +  + P+   VE   V  I +    D    D    G+ V
Sbjct: 317 KDMGTVVGGKVESGSIKKGQQLVVM-PNKTNVE---VLGIYS----DDVETDRVAPGENV 368

Query: 290 SI 291
            +
Sbjct: 369 KL 370


>gnl|CDD|35682 KOG0461, KOG0461, KOG0461, Selenocysteine-specific elongation
           factor [Translation, ribosomal structure and
           biogenesis].
          Length = 522

 Score = 56.2 bits (135), Expect = 3e-08
 Identities = 66/284 (23%), Positives = 115/284 (40%), Gaps = 38/284 (13%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITI---------L 71
           N+ I+ HVD GKTTL   L +           S    D +    ERGIT+         L
Sbjct: 9   NLGILGHVDSGKTTLARALSELG---------STAAFDKHPQSTERGITLDLGFSTMTVL 59

Query: 72  AKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKAL 131
           +         ++  +VD PGHA     +     +++ +++++D  +G   QT   +    
Sbjct: 60  SPARLPQGEQLQFTLVDCPGHASLIRTIIGGAQIIDLMILVIDVQKGKQTQTAECLIIGE 119

Query: 132 KIGLRPIVVVNKVD--RSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSDS 189
            +  + +VV+NK+D    + RA ++      +   L++T    + PI+  S        +
Sbjct: 120 LLCKKLVVVINKIDVLPENQRASKIEKSAKKVRKTLESTGFDGNSPIVEVS--------A 171

Query: 190 SDGSRDQGMVPLLNLIVDH--VPPPVISEGEFKMIGTILEKDPFLGRIVTGRIHSGTIKS 247
           +DG   + M+  L   ++     P    EG F M           G ++TG +  G ++ 
Sbjct: 172 ADGYFKEEMIQELKEALESRIFEPKRDEEGPFLMAVDHCFAIKGQGTVLTGTVLRGVLRL 231

Query: 248 NQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSI 291
           N  I+      AL E  +V  +  F    +Q +  A AGD    
Sbjct: 232 NTEIEF----PALNEKRKVKSLQMF----KQRVTSAAAGDRAGF 267


>gnl|CDD|145992 pfam03144, GTP_EFTU_D2, Elongation factor Tu domain 2.  Elongation
           factor Tu consists of three structural domains, this is
           the second domain. This domain adopts a beta barrel
           structure. This the second domain is involved in binding
           to charged tRNA. This domain is also found in other
           proteins such as elongation factor G and translation
           initiation factor IF-2. This domain is structurally
           related to pfam03143, and in fact has weak sequence
           matches to this domain.
          Length = 70

 Score = 54.6 bits (132), Expect = 9e-08
 Identities = 22/72 (30%), Positives = 34/72 (47%), Gaps = 2/72 (2%)

Query: 233 GRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIA 292
           G + TGR+ SGT+K    +          + GRV+ +  F G  R+ +  A+AG I++  
Sbjct: 1   GTVATGRVESGTLKKGDKVVIGP--NGTGKKGRVTSLEMFHGDLREAVAGANAGIILAGI 58

Query: 293 GLVKATVADTFC 304
           GL      DT  
Sbjct: 59  GLKDIKRGDTLT 70


>gnl|CDD|34854 COG5257, GCD11, Translation initiation factor 2, gamma subunit
           (eIF-2gamma; GTPase) [Translation, ribosomal structure
           and biogenesis].
          Length = 415

 Score = 53.3 bits (128), Expect = 2e-07
 Identities = 75/334 (22%), Positives = 131/334 (39%), Gaps = 87/334 (26%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
           NI ++ HVDHGKTTL   L   SGV+ D  R SE        E +RGITI          
Sbjct: 12  NIGMVGHVDHGKTTLTKAL---SGVWTD--RHSE--------ELKRGITIKLGYADAKIY 58

Query: 81  DV--------------------------RINIVDTPGHADFGGEVERILCMVESVVVLVD 114
                                       R++ VD PGH      +     +++  ++++ 
Sbjct: 59  KCPECYRPECYTTEPKCPNCGAETELVRRVSFVDAPGHETLMATMLSGAALMDGALLVIA 118

Query: 115 AAEG-PMPQTKFVVGKALKIGLRPIVVV-NKVDR-SDARADEVINEVFDLFSALDATDAQ 171
           A E  P PQT+  +     IG++ I++V NK+D  S  RA E   ++ +      A +A 
Sbjct: 119 ANEPCPQPQTREHLMALEIIGIKNIIIVQNKIDLVSRERALENYEQIKEFVKGTVAENA- 177

Query: 172 LDFPILYGSGRFGWMSDSSDGSRDQGMVPLLNLIVDHVPPPVISEGE-FKMI-------- 222
              PI+  S +     D+           L+  I  ++P P     +  +M         
Sbjct: 178 ---PIIPISAQHKANIDA-----------LIEAIEKYIPTPERDLDKPPRMYVARSFDVN 223

Query: 223 --GTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRV------SKILAFRG 274
             GT    +   G ++ G +  G ++    I+ + P   + + G+       ++I++ + 
Sbjct: 224 KPGT--PPEELKGGVIGGSLVQGVLRVGDEIE-IRPGIVVEKGGKTVWEPITTEIVSLQA 280

Query: 275 IDRQPIDEAHAGDIVSIAGLVKATVADTFCDPSI 308
              + ++EA  G +V +          T  DP++
Sbjct: 281 -GGEDVEEARPGGLVGVG---------TKLDPTL 304


>gnl|CDD|133288 cd01888, eIF2_gamma, eIF2-gamma (gamma subunit of initiation factor
           2).  eIF2 is a heterotrimeric translation initiation
           factor that consists of alpha, beta, and gamma subunits.
            The GTP-bound gamma subunit also binds initiator
           methionyl-tRNA and delivers it to the 40S ribosomal
           subunit.  Following hydrolysis of GTP to GDP, eIF2:GDP
           is released from the ribosome.  The gamma subunit has no
           intrinsic GTPase activity, but is stimulated by the
           GTPase activating protein (GAP) eIF5, and GDP/GTP
           exchange is stimulated by the guanine nucleotide
           exchange factor (GEF) eIF2B.  eIF2B is a heteropentamer,
           and the epsilon chain binds eIF2.  Both eIF5 and
           eIF2B-epsilon are known to bind strongly to eIF2-beta,
           but have also been shown to bind directly to eIF2-gamma.
            It is possible that eIF2-beta serves simply as a
           high-affinity docking site for eIF5 and eIF2B-epsilon,
           or that eIF2-beta serves a regulatory role.  eIF2-gamma
           is found only in eukaryotes and archaea.  It is closely
           related to SelB, the selenocysteine-specific elongation
           factor from eubacteria.  The translational factor
           components of the ternary complex, IF2 in eubacteria and
           eIF2 in eukaryotes are not the same protein (despite
           their unfortunately similar names).  Both factors are
           GTPases; however, eubacterial IF-2 is a single
           polypeptide, while eIF2 is heterotrimeric. eIF2-gamma
           is a member of the same family as eubacterial IF2, but
           the two proteins are only distantly related.  This
           family includes translation initiation, elongation, and
           release factors.
          Length = 203

 Score = 52.6 bits (127), Expect = 3e-07
 Identities = 47/171 (27%), Positives = 63/171 (36%), Gaps = 70/171 (40%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITI---------- 70
           NI  I HV HGK+TLV  L   SGV+    R  E        E ER ITI          
Sbjct: 2   NIGTIGHVAHGKSTLVKAL---SGVWTV--RFKE--------ELERNITIKLGYANAKIY 48

Query: 71  -----------LAKVTSIVWNDVR------------INIVDTPGHADFGGEVERIL---- 103
                        +                      ++ VD PGH         IL    
Sbjct: 49  KCPNCGCPRPYCYRSKEDSPECECPGCGGETKLVRHVSFVDCPGH--------EILMATM 100

Query: 104 ----CMVESVVVLVDAAEG-PMPQTK--FVVGKALKI-GLRPIVVV-NKVD 145
                +++  ++L+ A E  P PQT        AL+I GL+ I++V NK+D
Sbjct: 101 LSGAAVMDGALLLIAANEPCPQPQTSEHLA---ALEIMGLKHIIIVQNKID 148


>gnl|CDD|58078 cd01342, Translation_Factor_II_like, Translation_Factor_II_like:
           Elongation factor Tu (EF-Tu) domain II-like proteins.
           Elongation factor Tu consists of three structural
           domains, this family represents the second domain.
           Domain II adopts a beta barrel structure and is involved
           in binding to charged tRNA. Domain II is found in other
           proteins such as elongation factor G and translation
           initiation factor IF-2. This group also includes the C2
           subdomain of domain IV of IF-2 that has the same fold as
           domain II of (EF-Tu). Like IF-2 from certain prokaryotes
           such as Thermus thermophilus, mitochondrial IF-2 lacks
           domain II, which is thought  to be involved in binding
           of E.coli IF-2 to 30S subunits..
          Length = 83

 Score = 49.2 bits (117), Expect = 3e-06
 Identities = 28/89 (31%), Positives = 41/89 (46%), Gaps = 8/89 (8%)

Query: 219 FKMIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQ 278
            + +   + KD   G + TGR+ SGT+K    ++     G     G+V  +  F+G    
Sbjct: 1   LRALVFKVFKDKGRGTVATGRVESGTLKKGDKVRVGPGGG--GVKGKVKSLKRFKG---- 54

Query: 279 PIDEAHAGDIVSIAGLVK--ATVADTFCD 305
            +DEA AGDIV I    K    + DT  D
Sbjct: 55  EVDEAVAGDIVGIVLKDKDDIKIGDTLTD 83


>gnl|CDD|34855 COG5258, GTPBP1, GTPase [General function prediction only].
          Length = 527

 Score = 48.8 bits (116), Expect = 5e-06
 Identities = 76/314 (24%), Positives = 121/314 (38%), Gaps = 56/314 (17%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
            + +  HVDHGK+TLV  L+  +G   D    +   +D    E ERG++    +    ++
Sbjct: 119 LVGVAGHVDHGKSTLVGVLV--TGRLDDGDGATRSYLDVQKHEVERGLSADISLRVYGFD 176

Query: 81  DVR-----------------------INIVDTPGHADFGGEVERILC--MVESVVVLVDA 115
           D +                       ++ VDT GH  +     R L    V+  +++V A
Sbjct: 177 DGKVVRLKNPLDEAEKAAVVKRADKLVSFVDTVGHEPWLRTTIRGLLGQKVDYGLLVVAA 236

Query: 116 AEGPMPQTKFVVGKALKIGLRPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFP 175
            +G    TK  +G AL + L  IVVV K+D      D+    V +  SAL     ++   
Sbjct: 237 DDGVTKMTKEHLGIALAMELPVIVVVTKIDMVP---DDRFQGVVEEISALLKRVGRIPLI 293

Query: 176 ILYGSGRFGWMSDSSDGSRDQGMVP-------------LLNLIVDHVPPPVIS--EGEFK 220
           +         +  +      +G+VP             LL+     +P       EG F 
Sbjct: 294 V---KDTDDVVLAAKAMKAGRGVVPIFYTSSVTGEGLDLLDEFFLLLPKRRRWDDEGPFL 350

Query: 221 MIGTILEKDPFLGRIVTGRIHSGTIKSNQNIKALSP--DGALVEVGRVSKILAFRGIDRQ 278
           M    +     +G +V+G + SG +     +  L P  DG   EV  V  I     +   
Sbjct: 351 MYIDKIYSVTGVGTVVSGSVKSGILHVGDTV-LLGPFKDGKFREV-VVKSI----EMHHY 404

Query: 279 PIDEAHAGDIVSIA 292
            +D A AG I+ IA
Sbjct: 405 RVDSAKAGSIIGIA 418


>gnl|CDD|31354 COG1160, COG1160, Predicted GTPases [General function prediction
           only].
          Length = 444

 Score = 48.6 bits (116), Expect = 5e-06
 Identities = 41/179 (22%), Positives = 72/179 (40%), Gaps = 37/179 (20%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWND 81
           IAII   + GK++L++ +L +           ERV+  +      G T  +       + 
Sbjct: 181 IAIIGRPNVGKSSLINAILGE-----------ERVIVSD----IAGTTRDSIDIEFERDG 225

Query: 82  VRINIVDTPG---HADFGGEVE--------RILCMVESVVVLVDAAEGPMPQTKFVVGKA 130
            +  ++DT G          VE        + +   + V++++DA EG   Q   + G  
Sbjct: 226 RKYVLIDTAGIRRKGKITESVEKYSVARTLKAIERADVVLLVIDATEGISEQDLRIAGLI 285

Query: 131 LKIGLRPIVVVNK---VDRSDARADEVINEVFDLFSALDATDAQLDF-PILYGSGRFGW 185
            + G   ++VVNK   V+  +A  +E   +       L      LDF PI++ S   G 
Sbjct: 286 EEAGRGIVIVVNKWDLVEEDEATMEEFKKK-------LRRKLPFLDFAPIVFISALTGQ 337



 Score = 44.4 bits (105), Expect = 9e-05
 Identities = 40/211 (18%), Positives = 73/211 (34%), Gaps = 47/211 (22%)

Query: 17  MQIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTS 76
           M    +AI+   + GK+TL + L  +            R+   +D     G+T       
Sbjct: 1   MSTPVVAIVGRPNVGKSTLFNRLTGR------------RIAIVSDTP---GVTRDRIYGD 45

Query: 77  IVWNDVRINIVDTPGHADFGGE---------VERILCMVESVVVLVDAAEGPMPQTKFVV 127
             W      ++DT G  D   +             +   + ++ +VD  EG  P  + + 
Sbjct: 46  AEWLGREFILIDTGGLDDGDEDELQELIREQALIAIEEADVILFVVDGREGITPADEEIA 105

Query: 128 GKALKIGLRPIVVVNKVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMS 187
               +     I+VVNK+D   A         ++ +S               G G    +S
Sbjct: 106 KILRRSKKPVILVVNKIDNLKAEEL-----AYEFYS--------------LGFGEPVPIS 146

Query: 188 DSSDGSRDQGMVPLLNLIVDHVPPPVISEGE 218
                   +G+  LL+ +++ +PP    E E
Sbjct: 147 ----AEHGRGIGDLLDAVLELLPPDEEEEEE 173


>gnl|CDD|133295 cd01895, EngA2, EngA2 subfamily.  This CD represents the second
           GTPase domain of EngA and its orthologs, which are
           composed of two adjacent GTPase domains.  Since the
           sequences of the two domains are more similar to each
           other than to other GTPases, it is likely that an
           ancient gene duplication, rather than a fusion of
           evolutionarily distinct GTPases, gave rise to this
           family.  Although the exact function of these proteins
           has not been elucidated, studies have revealed that the
           E. coli EngA homolog, Der, and Neisseria gonorrhoeae
           EngA are essential for cell viability. A recent report
           suggests that E. coli Der functions in ribosome assembly
           and stability.
          Length = 174

 Score = 47.8 bits (115), Expect = 8e-06
 Identities = 42/179 (23%), Positives = 73/179 (40%), Gaps = 37/179 (20%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWND 81
           IAII   + GK++LV+ LL +           ERV+  +      G T  +      ++ 
Sbjct: 5   IAIIGRPNVGKSSLVNALLGE-----------ERVIVSD----IAGTTRDSIDVPFEYDG 49

Query: 82  VRINIVDTPG-----HADFGGE------VERILCMVESVVVLVDAAEGPMPQTKFVVGKA 130
            +  ++DT G       + G E        + +   + V++++DA EG   Q   + G  
Sbjct: 50  KKYTLIDTAGIRRKGKVEEGIEKYSVLRTLKAIERADVVLLVIDATEGITEQDLRIAGLI 109

Query: 131 LKIGLRPIVVVNK---VDRSDARADEVINEVFDLFSALDATDAQLDF-PILYGSGRFGW 185
           L+ G   ++VVNK   V++      E   E+             LD+ PI++ S   G 
Sbjct: 110 LEEGKALVIVVNKWDLVEKDSKTMKEFKKEIRRKL-------PFLDYAPIVFISALTGQ 161


>gnl|CDD|145217 pfam01926, MMR_HSR1, GTPase of unknown function. 
          Length = 106

 Score = 44.6 bits (106), Expect = 8e-05
 Identities = 30/121 (24%), Positives = 51/121 (42%), Gaps = 23/121 (19%)

Query: 31  GKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDVRINIVDTP 90
           GK+TL++ L       +    VS+            G T       +  +  +I +VDTP
Sbjct: 1   GKSTLINALTG-----KKRAIVSDYP----------GTTRDPNEGRVELDGKQIILVDTP 45

Query: 91  G-----HADFGGEVERILCMVES---VVVLVDAAEGPMPQTKFVVGKALKIGLRPIVVVN 142
           G         G    R L  +E    ++ +VDA+EG   +   ++   L++G   I+V+N
Sbjct: 46  GIIEGASKGEGELGNRTLEAIEEADLILHVVDASEGLTEEDLEILDLLLELGKPVILVLN 105

Query: 143 K 143
           K
Sbjct: 106 K 106


>gnl|CDD|58091 cd03700, eEF2_snRNP_like_II, EF2_snRNP_like_II: this subfamily
           represents domain II of elongation factor (EF) EF-2
           found eukaryotes and archaea and, the C-terminal portion
           of the spliceosomal human 116kD U5 small nuclear
           ribonucleoprotein (snRNP) protein (U5-116 kD) and, its
           yeast counterpart Snu114p. During the process of peptide
           synthesis and tRNA site changes, the ribosome is moved
           along the mRNA a distance equal to one codon with the
           addition of each amino acid. This translocation step is
           catalyzed by EF-2_GTP, which is hydrolyzed to provide
           the required energy. Thus, this action releases the
           uncharged tRNA from the P site and transfers the newly
           formed peptidyl-tRNA from the A site to the P site.
           Yeast Snu114p is essential for cell viability and for
           splicing in vivo. U5-116 kD binds GTP.  Experiments
           suggest that GTP binding and probably GTP hydrolysis is
           important for the function of the U5-116 kD/Snu114p..
          Length = 93

 Score = 44.4 bits (105), Expect = 1e-04
 Identities = 24/73 (32%), Positives = 36/73 (49%), Gaps = 5/73 (6%)

Query: 235 IVTGRIHSGTIKSNQNIKALSP-----DGALVEVGRVSKILAFRGIDRQPIDEAHAGDIV 289
           I  GR+ SGTI+  Q ++ L P     D   +    + ++    G  R+P+DE  AG+IV
Sbjct: 18  IAFGRVFSGTIRKGQKVRVLGPNYSPEDEEDLSKKTIQRLYLMMGRYREPVDEVPAGNIV 77

Query: 290 SIAGLVKATVADT 302
            I GL +     T
Sbjct: 78  LIVGLDQLKSGTT 90


>gnl|CDD|35275 KOG0052, KOG0052, KOG0052, Translation elongation factor EF-1
           alpha/Tu [Translation, ribosomal structure and
           biogenesis].
          Length = 391

 Score = 43.8 bits (103), Expect = 1e-04
 Identities = 48/166 (28%), Positives = 71/166 (42%), Gaps = 29/166 (17%)

Query: 20  RNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSER--------------VMDCNDLEKE 65
            NI +I HVD GK+T      K  G+ +      E+              V+D    E+E
Sbjct: 8   INIVVIGHVDSGKSTTT--GYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVLDKLKAERE 65

Query: 66  RGITILAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPM----- 120
           RGITI   +     +   + I+D PGH DF   +       +  V++V A  G       
Sbjct: 66  RGITIDIALWKFETSKYYVTIIDAPGHRDFIKNMITGTSQADCAVLIVAAGTGEFEAGIS 125

Query: 121 --PQTKFVVGKALKIGLR-PIVVVNKVDR-----SDARADEVINEV 158
              QT+     A  +G++  IV VNK+D      S+AR +E+  EV
Sbjct: 126 KNGQTREHALLAFTLGVKQLIVGVNKMDSTEPPYSEARYEEIKKEV 171


>gnl|CDD|32410 COG2229, COG2229, Predicted GTPase [General function prediction
           only].
          Length = 187

 Score = 42.2 bits (99), Expect = 4e-04
 Identities = 36/142 (25%), Positives = 56/142 (39%), Gaps = 8/142 (5%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWND 81
           I +I  V  GKTT V  L  +  V  +    S         + +R  T+     SI  ++
Sbjct: 13  IVVIGPVGAGKTTFVRALSDKPLVITEADASSVS------GKGKRPTTVAMDFGSIELDE 66

Query: 82  V-RINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPIVV 140
              +++  TPG   F    E +       +VLVD++       + ++         P+VV
Sbjct: 67  DTGVHLFGTPGQERFKFMWEILSRGAVGAIVLVDSSRPITFHAEEIIDFLTSRNPIPVVV 126

Query: 141 -VNKVDRSDARADEVINEVFDL 161
            +NK D  DA   E I E   L
Sbjct: 127 AINKQDLFDALPPEKIREALKL 148


>gnl|CDD|58098 cd04091, mtEFG1_II_like, mtEFG1_C: C-terminus of mitochondrial
           Elongation factor G1 (mtEFG1)-like proteins found in
           eukaryotes.  Eukaryotic cells harbor 2 protein synthesis
           systems: one localized in the cytoplasm, the other in
           the mitochondria. Most factors regulating mitochondrial
           protein synthesis are encoded by nuclear genes,
           translated in the cytoplasm, and then transported to the
           mitochondria. The eukaryotic system of elongation factor
           (EF) components is more complex than that in
           prokaryotes, with both cytoplasmic and mitochondrial
           elongation factors and multiple isoforms being expressed
           in certain species.  Eukaryotic EF-2 operates in the
           cytosolic protein synthesis machinery of eukaryotes,
           EF-Gs in protein synthesis in bacteria.  Eukaryotic
           mtEFG1 proteins show significant homology to bacterial
           EF-Gs.  Mutants in yeast mtEFG1 have impaired
           mitochondrial protein synthesis, respiratory defects and
           a tendency to lose mitochondrial DNA. There are two
           forms of mtEFG present in mammals (designated mtEFG1s
           and mtEFG2s) mtEFG2s are not present in this group..
          Length = 81

 Score = 41.3 bits (97), Expect = 8e-04
 Identities = 24/80 (30%), Positives = 41/80 (51%), Gaps = 6/80 (7%)

Query: 226 LEKDPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHA 285
           LE+  F G++   RI+ G +K    I  +     +    RV +++     + + ++EA A
Sbjct: 8   LEEGRF-GQLTYMRIYQGKLKKGDTIYNVRTGKKV----RVPRLVRMHSNEMEEVEEAGA 62

Query: 286 GDIVSIAGLVKATVADTFCD 305
           GDI +I G+  A+  DTF D
Sbjct: 63  GDICAIFGIDCAS-GDTFTD 81


>gnl|CDD|58065 cd03713, EFG_mtEFG_C, EFG_mtEFG_C: domains similar to the
           C-terminal domain of the bacterial translational
           elongation factor (EF) EF-G.  Included in this group is
           the C-terminus of mitochondrial Elongation factor G1
           (mtEFG1) and G2 (mtEFG2) proteins. Eukaryotic cells
           harbor 2 protein synthesis systems: one localized in the
           cytoplasm, the other in the mitochondria. Most factors
           regulating mitochondrial protein synthesis are encoded
           by nuclear genes, translated in the cytoplasm, and then
           transported to the mitochondria. The eukaryotic system
           of elongation factor (EF) components is more complex
           than that in prokaryotes, with both cytoplasmic and
           mitochondrial elongation factors and multiple isoforms
           being expressed in certain species. During the process
           of peptide synthesis and tRNA site changes, the ribosome
           is moved along the mRNA a distance equal to one codon
           with the addition of each amino acid. In bacteria this
           translocation step is catalyzed by EF-G_GTP, which is
           hydrolyzed to provide the required energy. Thus, this
           action releases the uncharged tRNA from the P site and
           transfers the newly formed peptidyl-tRNA from the A site
           to the P site. Eukaryotic mtEFG1 proteins show
           significant homology to bacterial EF-Gs.  Mutants in
           yeast mtEFG1 have impaired mitochondrial protein
           synthesis, respiratory defects and a tendency to lose
           mitochondrial DNA. No clear phenotype has been found for
           mutants in the yeast homologue of mtEFG2, MEF2..
          Length = 78

 Score = 41.3 bits (97), Expect = 9e-04
 Identities = 19/77 (24%), Positives = 35/77 (45%), Gaps = 1/77 (1%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQLMT 472
           EPI +V + V EE+ G V+  ++  + +++     G G   +    P   + GY + L +
Sbjct: 1   EPIMKVEVTVPEEYMGDVIGDLSSRRGQILGTESRG-GWKVIKAEVPLAEMFGYSTDLRS 59

Query: 473 DTRGTAIMNRLFHSYQP 489
            T+G       F  Y+ 
Sbjct: 60  LTQGRGSFTMEFSHYEE 76


>gnl|CDD|36359 KOG1144, KOG1144, KOG1144, Translation initiation factor 5B
           (eIF-5B) [Translation, ribosomal structure and
           biogenesis].
          Length = 1064

 Score = 39.3 bits (91), Expect = 0.003
 Identities = 35/131 (26%), Positives = 56/131 (42%), Gaps = 10/131 (7%)

Query: 22  IAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMD------CNDLEKERGITILAKVT 75
             I+ HVD GKT L+D+ ++ + V         + +        N  EK + +   AK  
Sbjct: 478 CCILGHVDTGKTKLLDK-IRGTNVQEGEAGGITQQIGATYFPAENIREKTKELKKDAKKR 536

Query: 76  SIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGL 135
             V     + ++DTPGH  F     R   + +  +++VD   G  PQT   +        
Sbjct: 537 LKV---PGLLVIDTPGHESFTNLRSRGSSLCDLAILVVDIMHGLEPQTIESINLLRMRKT 593

Query: 136 RPIVVVNKVDR 146
             IV +NK+DR
Sbjct: 594 PFIVALNKIDR 604


>gnl|CDD|133294 cd01894, EngA1, EngA1 subfamily.  This CD represents the first
           GTPase domain of EngA and its orthologs, which are
           composed of two adjacent GTPase domains.  Since the
           sequences of the two domains are more similar to each
           other than to other GTPases, it is likely that an
           ancient gene duplication, rather than a fusion of
           evolutionarily distinct GTPases, gave rise to this
           family. Although the exact function of these proteins
           has not been elucidated, studies have revealed that the
           E. coli EngA homolog, Der, and Neisseria gonorrhoeae
           EngA are essential for cell viability.  A recent report
           suggests that E. coli Der functions in ribosome assembly
           and stability.
          Length = 157

 Score = 39.3 bits (93), Expect = 0.003
 Identities = 34/144 (23%), Positives = 49/144 (34%), Gaps = 47/144 (32%)

Query: 31  GKTTLVDELLKQ--------SGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDV 82
           GK+TL + L  +         GV RD  R+                          W   
Sbjct: 9   GKSTLFNRLTGRRDAIVEDTPGVTRD--RIYGEA---------------------EWGGR 45

Query: 83  RINIVDTPGHADFGGEVERILCMV---------ESVVVL--VDAAEGPMPQTKFVVGKAL 131
              ++DT G      + E I   +         E+ V+L  VD  EG  P  + +     
Sbjct: 46  EFILIDTGG---IEPDDEGISKEIREQAELAIEEADVILFVVDGREGLTPADEEIAKYLR 102

Query: 132 KIGLRPIVVVNKVD--RSDARADE 153
           K     I+VVNKVD  + +  A E
Sbjct: 103 KSKKPVILVVNKVDNIKEEDEAAE 126


>gnl|CDD|133256 cd00880, Era_like, Era (E. coli Ras-like protein)-like.  This
           family includes several distinct subfamilies (TrmE/ThdF,
           FeoB, YihA (EngG), Era, and EngA/YfgK) that generally
           show sequence conservation in the region between the
           Walker A and B motifs (G1 and G3 box motifs), to the
           exclusion of other GTPases. TrmE is ubiquitous in
           bacteria and is a widespread mitochondrial protein in
           eukaryotes, but is absent from archaea. The yeast member
           of TrmE family, MSS1, is involved in mitochondrial
           translation; bacterial members are often present in
           translation-related operons.  FeoB represents an unusual
           adaptation of GTPases for high-affinity iron (II)
           transport. YihA (EngB) family of GTPases is typified by
           the E. coli YihA, which is an essential protein involved
           in cell division control.  Era is characterized by a
           distinct derivative of the KH domain (the pseudo-KH
           domain) which is located C-terminal to the GTPase
           domain.  EngA and its orthologs are composed of two
           GTPase domains and, since the sequences of the two
           domains are more similar to each other than to other
           GTPases, it is likely that an ancient gene duplication,
           rather than a fusion of evolutionarily distinct GTPases,
           gave rise to this family.
          Length = 163

 Score = 38.5 bits (90), Expect = 0.006
 Identities = 29/126 (23%), Positives = 51/126 (40%), Gaps = 27/126 (21%)

Query: 31  GKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVW---NDVRINIV 87
           GK++L++ LL Q  V      VS             G T        VW       + ++
Sbjct: 8   GKSSLLNALLGQE-VAI----VSPV----------PGTTT--DPVEYVWELGPLGPVVLI 50

Query: 88  DTPGHADFGG-------EVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPIVV 140
           DTPG  + GG          R+L   + ++ +VDA      + + ++    + G   ++V
Sbjct: 51  DTPGIDEAGGLGREREELARRVLERADLILFVVDADLRADEEEEKLLELLRERGKPVLLV 110

Query: 141 VNKVDR 146
           +NK+D 
Sbjct: 111 LNKIDL 116


>gnl|CDD|133363 cd04163, Era, Era subfamily.  Era (E. coli Ras-like protein) is a
           multifunctional GTPase found in all bacteria except some
           eubacteria.  It binds to the 16S ribosomal RNA (rRNA) of
           the 30S subunit and appears to play a role in the
           assembly of the 30S subunit, possibly by chaperoning the
           16S rRNA.  It also contacts several assembly elements of
           the 30S subunit.  Era couples cell growth with
           cytokinesis and plays a role in cell division and energy
           metabolism.  Homologs have also been found in
           eukaryotes. Era contains two domains: the N-terminal
           GTPase domain and a C-terminal domain KH domain that is
           critical for RNA binding.  Both domains are important
           for Era function.  Era is functionally able to
           compensate for deletion of RbfA, a cold-shock adaptation
           protein that is required for efficient processing of the
           16S rRNA.
          Length = 168

 Score = 38.2 bits (90), Expect = 0.008
 Identities = 21/89 (23%), Positives = 39/89 (43%), Gaps = 16/89 (17%)

Query: 87  VDTPG-HADFGGEVERILCMVES----------VVVLVDAAEGPMPQTKFVVGKALKIGL 135
           VDTPG H     + +    MV++          V+ +VDA+E      +F++    K   
Sbjct: 56  VDTPGIHKP---KKKLGERMVKAAWSALKDVDLVLFVVDASEPIGEGDEFILELLKKSKT 112

Query: 136 RPIVVVNKVDR--SDARADEVINEVFDLF 162
             I+V+NK+D          ++ ++ +L 
Sbjct: 113 PVILVLNKIDLVKDKEDLLPLLEKLKELG 141


>gnl|CDD|133258 cd00882, Ras_like_GTPase, Ras-like GTPase superfamily. The Ras-like
           superfamily of small GTPases consists of several
           families with an extremely high degree of structural and
           functional similarity. The Ras superfamily is divided
           into at least four families in eukaryotes: the Ras, Rho,
           Rab, and Sar1/Arf families.  This superfamily also
           includes proteins like the GTP translation factors,
           Era-like GTPases, and G-alpha chain of the
           heterotrimeric G proteins.  Members of the Ras
           superfamily regulate a wide variety of cellular
           functions: the Ras family regulates gene expression, the
           Rho family regulates cytoskeletal reorganization and
           gene expression, the Rab and Sar1/Arf families regulate
           vesicle trafficking, and the Ran family regulates
           nucleocytoplasmic transport and microtubule
           organization. The GTP translation factor family regulate
           initiation, elongation, termination, and release in
           translation, and the Era-like GTPase family regulates
           cell division, sporulation, and DNA replication. Members
           of the Ras superfamily are identified by the GTP binding
           site, which is made up of five characteristic sequence
           motifs, and the switch I and switch II regions.
          Length = 157

 Score = 36.7 bits (85), Expect = 0.017
 Identities = 21/137 (15%), Positives = 45/137 (32%), Gaps = 19/137 (13%)

Query: 24  IIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDVR 83
           ++     GKT+L++            + V E         +   I   +K   +    V+
Sbjct: 1   VVGDSGVGKTSLLN-------RLLGGEFVPEE-------YETTIIDFYSKTIEVDGKKVK 46

Query: 84  INIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQ-----TKFVVGKALKIGLRPI 138
           + I DT G   F           + ++++ D  +    +        ++       +  I
Sbjct: 47  LQIWDTAGQERFRSLRRLYYRGADGIILVYDVTDRESFENVKEWLLLILINKEGENIPII 106

Query: 139 VVVNKVDRSDARADEVI 155
           +V NK+D  + R     
Sbjct: 107 LVGNKIDLPEERVVSEE 123


>gnl|CDD|58097 cd04090, eEF2_II_snRNP, Loc2 eEF2_C_snRNP, cd01514/C terminal
           domain:eEF2_C_snRNP: This family includes C-terminal
           portion of the spliceosomal human 116kD U5 small nuclear
           ribonucleoprotein (snRNP) protein (U5-116 kD) and, its
           yeast counterpart Snu114p.  This domain is homologous to
           domain II of the eukaryotic translational elongation
           factor EF-2.  Yeast Snu114p is essential for cell
           viability and for splicing in vivo. U5-116 kD binds GTP.
            Experiments suggest that GTP binding and probably GTP
           hydrolysis is important for the function of the U5-116
           kD/Snu114p.   In complex with GTP, EF-2 promotes the
           translocation step of translation. During translocation
           the peptidyl-tRNA is moved from the A site to the P
           site, the uncharged tRNA from the P site to the E-site
           and, the mRNA is shifted one codon relative to the
           ribosome..
          Length = 94

 Score = 36.7 bits (85), Expect = 0.022
 Identities = 22/65 (33%), Positives = 32/65 (49%), Gaps = 11/65 (16%)

Query: 238 GRIHSGTIKSNQNIKALSP--------DGALVEVGRVSKILAFRGIDRQPIDEAHAGDIV 289
           GRI+SGTIK  Q +K L          D  +  +GR+       G  +  ++EA AG+ V
Sbjct: 21  GRIYSGTIKKGQKVKVLGENYSLDDEEDMTICTIGRLW---ILGGRYKIEVNEAPAGNWV 77

Query: 290 SIAGL 294
            I G+
Sbjct: 78  LIKGI 82


>gnl|CDD|31353 COG1159, Era, GTPase [General function prediction only].
          Length = 298

 Score = 36.3 bits (84), Expect = 0.027
 Identities = 39/135 (28%), Positives = 60/135 (44%), Gaps = 27/135 (20%)

Query: 22  IAIIAHVDHGKTTLVDELLKQ--SGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVW 79
           +AII   + GK+TL++ L+ Q  S V    Q    R+         RGI           
Sbjct: 9   VAIIGRPNVGKSTLLNALVGQKISIVSPKPQTTRNRI---------RGIVTT-------- 51

Query: 80  NDVRINIVDTPG----HADFG----GEVERILCMVESVVVLVDAAEGPMPQTKFVVGKAL 131
           ++ +I  VDTPG        G          L  V+ ++ +VDA EG  P  +F++ +  
Sbjct: 52  DNAQIIFVDTPGIHKPKHALGELMNKAARSALKDVDLILFVVDADEGWGPGDEFILEQLK 111

Query: 132 KIGLRPIVVVNKVDR 146
           K     I+VVNK+D+
Sbjct: 112 KTKTPVILVVNKIDK 126


>gnl|CDD|58099 cd04092, mtEFG2_II_like, mtEFG2_C: C-terminus of mitochondrial
           Elongation factor G2 (mtEFG2)-like proteins found in
           eukaryotes.  Eukaryotic cells harbor 2 protein synthesis
           systems: one localized in the cytoplasm, the other in
           the mitochondria. Most factors regulating mitochondrial
           protein synthesis are encoded by nuclear genes,
           translated in the cytoplasm, and then transported to the
           mitochondria. The eukaryotic system of elongation factor
           (EF) components is more complex than that in
           prokaryotes, with both cytoplasmic and mitochondrial
           elongation factors and multiple isoforms being expressed
           in certain species.  Eukaryotic EF-2 operates in the
           cytosolic protein synthesis machinery of eukaryotes,
           EF-Gs in protein synthesis in bacteria.  Eukaryotic
           mtEFG1 proteins show significant homology to bacterial
           EF-Gs.  No clear phenotype has been found for mutants in
           the yeast homologue of mtEFG2, MEF2.  There are two
           forms of mtEFG present in mammals (designated mtEFG1s
           and mtEFG2s) mtEFG1s are not present in this group..
          Length = 83

 Score = 36.0 bits (83), Expect = 0.036
 Identities = 21/74 (28%), Positives = 32/74 (43%), Gaps = 4/74 (5%)

Query: 229 DPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDI 288
           DP  G +   R++SGT+K    +   +         R+S++L       Q I    AG+I
Sbjct: 11  DPQRGPLTFVRVYSGTLKRGSALYNTNTGKKE----RISRLLQPFADQYQEIPSLSAGNI 66

Query: 289 VSIAGLVKATVADT 302
             I GL +    DT
Sbjct: 67  GVITGLKQTRTGDT 80


>gnl|CDD|133259 cd01850, CDC_Septin, CDC/Septin.  Septins are a conserved family
          of GTP-binding proteins associated with diverse
          processes in dividing and non-dividing cells.  They
          were first discovered in the budding yeast S.
          cerevisiae as a set of genes (CDC3, CDC10, CDC11 and
          CDC12) required for normal bud morphology. Septins are
          also present in metazoan cells, where they are required
          for cytokinesis in some systems, and implicated in a
          variety of other processes involving organization of
          the cell cortex and exocytosis.  In humans, 12 septin
          genes generate dozens of polypeptides, many of which
          comprise heterooligomeric complexes. Since septin
          mutants are commonly defective in cytokinesis and
          formation of the neck formation of the neck
          filaments/septin rings, septins have been considered to
          be the primary constituents of the neck filaments.
          Septins belong to the GTPase superfamily for their
          conserved GTPase motifs and enzymatic activities.
          Length = 276

 Score = 35.6 bits (83), Expect = 0.037
 Identities = 13/67 (19%), Positives = 27/67 (40%), Gaps = 8/67 (11%)

Query: 31 GKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDVRI--NIVD 88
          GK+T ++ L     +   +           +   ++ + I +    I  N V++   ++D
Sbjct: 16 GKSTFINTLFNTK-LIPSDYPPDPA-----EEHIDKTVEIKSSKAEIEENGVKLKLTVID 69

Query: 89 TPGHADF 95
          TPG  D 
Sbjct: 70 TPGFGDN 76


>gnl|CDD|58080 cd03689, RF3_II, RF3_II: this subfamily represents the domain II of
           bacterial Release Factor 3 (RF3). Termination of protein
           synthesis by the ribosome requires two release factor
           (RF) classes. The class II RF3 is a GTPase that removes
           class I RFs (RF1 or RF2) from the ribosome after release
           of the nascent polypeptide. RF3 in the GDP state binds
           to the ribosomal class I RF complex, followed by an
           exchange of GDP for GTP and release of the class I RF.
           Sequence comparison of class II release factors with
           elongation factors shows that prokaryotic RF3 is more
           similar to EF-G whereas eukaryotic eRF3 is more similar
           to eEF1A, implying that their precise function may
           differ..
          Length = 85

 Score = 35.2 bits (81), Expect = 0.061
 Identities = 20/71 (28%), Positives = 31/71 (43%), Gaps = 4/71 (5%)

Query: 234 RIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIAG 293
           RI   R+ SG  +    +K       L +  R+S    F   DR+ +DEA+ GDI+ +  
Sbjct: 17  RIAFVRVCSGKFERGMKVK----HVRLGKEVRLSNPQQFFAQDRETVDEAYPGDIIGLVN 72

Query: 294 LVKATVADTFC 304
                + DT  
Sbjct: 73  PGNFQIGDTLT 83


>gnl|CDD|30567 COG0218, COG0218, Predicted GTPase [General function prediction
           only].
          Length = 200

 Score = 34.5 bits (79), Expect = 0.087
 Identities = 34/149 (22%), Positives = 63/149 (42%), Gaps = 37/149 (24%)

Query: 31  GKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDVRINIVDTP 90
           GK++L++ L  Q  +     R S          K  G T L  +     +D  + +VD P
Sbjct: 36  GKSSLINALTNQKNL----ARTS----------KTPGRTQL--INFFEVDD-ELRLVDLP 78

Query: 91  GHADFG------GEVERILCMVES----------VVVLVDAAEGPMPQTKFVVGKALKIG 134
           G   +G         E+   ++E           VV+L+DA   P    + ++   L++G
Sbjct: 79  G---YGYAKVPKEVKEKWKKLIEEYLEKRANLKGVVLLIDARHPPKDLDREMIEFLLELG 135

Query: 135 LRPIVVVNKVDR-SDARADEVINEVFDLF 162
           +  IVV+ K D+   +  ++ +N+V +  
Sbjct: 136 IPVIVVLTKADKLKKSERNKQLNKVAEEL 164


>gnl|CDD|58062 cd03709, lepA_C, lepA_C: This family represents the C-terminal
           region of LepA, a GTP-binding protein localized in the
           cytoplasmic membrane.   LepA is ubiquitous in Bacteria
           and Eukaryota (e.g. Saccharomyces cerevisiae GUF1p), but
           is missing from Archaea. LepA exhibits significant
           homology to elongation factors (EFs) Tu and G. The
           function(s) of the proteins in this family are unknown.
           The N-terminal domain of LepA is homologous to a domain
           of similar size found in initiation factor 2 (IF2), and
           in EF-Tu and EF-G (factors required for translation in
           Escherichia coli). Two types of phylogenetic tree,
           rooted by other GTP-binding proteins, suggest that
           eukaryotic homologs (including S. cerevisiae GUF1)
           originated within the bacterial LepA family. LepA has
           never been observed in archaea, and eukaryl LepA is
           organellar. LepA is therefore a true bacterial GTPase,
           found only in the bacterial lineage..
          Length = 80

 Score = 34.3 bits (79), Expect = 0.090
 Identities = 14/78 (17%), Positives = 33/78 (42%), Gaps = 1/78 (1%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLI-GYQSQLM 471
           EP  +  I    E+ GA+++     +    ++      RV L +  P   ++  +  +L 
Sbjct: 1   EPFVKATIITPSEYLGAIMELCQERRGVQKDMEYLDANRVMLTYELPLAEIVYDFFDKLK 60

Query: 472 TDTRGTAIMNRLFHSYQP 489
           + ++G A ++     Y+ 
Sbjct: 61  SISKGYASLDYELIGYRE 78


>gnl|CDD|58089 cd03698, eRF3_II_like, eRF3_II_like: domain similar to domain II of
           the eukaryotic class II release factor (eRF3). In
           eukaryotes, translation termination is mediated by two
           interacting release factors, eRF1 and eRF3, which act as
           class I and II factors, respectively. eRF1 functions as
           an omnipotent release factor, decoding all three stop
           codons and triggering the release of the nascent peptide
           catalyzed by the ribsome. eRF3 is a GTPase, which
           enhances the termination efficiency by stimulating the
           eRF1 activity in a GTP-dependent manner. Sequence
           comparison of class II release factors with elongation
           factors shows that eRF3 is more similar to eEF1alpha
           whereas prokaryote RF3 is more similar to EF-G, implying
           that their precise function may differ. Only eukaryote
           RF3s are found in this group. Saccharomyces cerevisiae
           eRF3 (Sup35p) is a translation termination factor which
           is divided into three regions N, M and a C-terminal
           eEF1a-like region essential for translation termination.
            Sup35NM  is a non-pathogenic prion-like protein with
           the property of aggregating into polymer-like fibrils.
           This group also contains proteins similar to S.
           cerevisiae Hbs1, a G protein known to be important for
           efficient growth and protein synthesis under conditions
           of limiting translation initiation and, to associate
           with Dom34.  It has been speculated that yeast Hbs1 and
           Dom34 proteins may function as part of a complex with a
           role in gene expression..
          Length = 83

 Score = 33.9 bits (78), Expect = 0.14
 Identities = 16/60 (26%), Positives = 30/60 (50%), Gaps = 8/60 (13%)

Query: 233 GRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIA 292
           G +V+G++ SG+I+    +  + P    VEV  +        +D + +D A AG+ V + 
Sbjct: 15  GTVVSGKVESGSIQKGDTL-LVMPSKESVEVKSIY-------VDDEEVDYAVAGENVRLK 66


>gnl|CDD|58086 cd03695, CysN_NodQ_II, CysN_NodQ_II: This subfamily represents the
           domain II of the large subunit of ATP sulfurylase
           (ATPS): CysN or the N-terminal portion of NodQ, found
           mainly in proteobacteria and homologous to the domain II
           of EF-Tu. Escherichia coli ATPS consists of CysN and a
           smaller subunit CysD and CysN. ATPS produces
           adenosine-5'-phosphosulfate (APS) from ATP and sulfate,
           coupled with GTP hydrolysis. In the subsequent reaction
           APS is phosphorylated by an APS kinase (CysC), to
           produce 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for
           use in amino acid (aa) biosynthesis. The Rhizobiaceae
           group (alpha-proteobacteria) appears to carry out the
           same chemistry for the sufation of a nodulation factor.
           In Rhizobium meliloti, a the hererodimeric complex
           comprised of NodP and NodQ appears to possess both ATPS
           and APS kinase activities. The N and C termini of NodQ
           correspond to CysN and CysC, respectively.   Other
           eubacteria, Archaea, and eukaryotes use a different ATP
           sulfurylase, which shows no aa sequence similarity to
           CysN or NodQ.   CysN and the N-terminal portion of NodQ
           show similarity to GTPases involved in translation, in
           particular, EF-Tu and EF-1alpha..
          Length = 81

 Score = 33.1 bits (76), Expect = 0.21
 Identities = 20/58 (34%), Positives = 28/58 (48%), Gaps = 8/58 (13%)

Query: 234 RIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSI 291
           R   G I SG+I+    +  L P G   +  RV  I  F G     +DEA AG+ V++
Sbjct: 16  RGYAGTIASGSIRVGDEVVVL-PSG---KTSRVKSIETFDG----ELDEAGAGESVTL 65


>gnl|CDD|58087 cd03696, selB_II, selB_II: this subfamily represents the domain of
           elongation factor SelB, homologous to domain II of
           EF-Tu. SelB may function by replacing EF-Tu. In
           prokaryotes, the incorporation of selenocysteine as the
           21st amino acid, encoded by TGA, requires several
           elements: SelC is the tRNA itself, SelD acts as a donor
           of reduced selenium, SelA modifies a serine residue on
           SelC into selenocysteine, and SelB is a
           selenocysteine-specific translation elongation factor.
           3' or 5' non-coding elements of mRNA have been found as
           probable structures for directing selenocysteine
           incorporation..
          Length = 83

 Score = 32.8 bits (75), Expect = 0.28
 Identities = 18/60 (30%), Positives = 29/60 (48%), Gaps = 8/60 (13%)

Query: 233 GRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDIVSIA 292
           G +VTG + SG++K    ++ L       E  RV  I        + ++EA AGD V++ 
Sbjct: 15  GTVVTGTVLSGSVKVGDKVEILPLG----EETRVRSIQVH----GKDVEEAKAGDRVALN 66


>gnl|CDD|144365 pfam00735, Septin, Septin.  Members of this family include CDC3,
          CDC10, CDC11 and CDC12/Septin. Members of this family
          bind GTP. As regards the septins, these are
          polypeptides of 30-65kDa with three characteristic
          GTPase motifs (G-1, G-3 and G-4) that are similar to
          those of the Ras family. The G-4 motif is strictly
          conserved with a unique septin consensus of AKAD. Most
          septins are thought to have at least one coiled-coil
          region, which in some cases is necessary for
          intermolecular interactions that allow septins to
          polymerize to form rod-shaped complexes. In turn, these
          are arranged into tandem arrays to form filaments. They
          are multifunctional proteins, with roles in
          cytokinesis, sporulation, germ cell development,
          exocytosis and apoptosis.
          Length = 280

 Score = 32.3 bits (74), Expect = 0.37
 Identities = 16/67 (23%), Positives = 31/67 (46%), Gaps = 9/67 (13%)

Query: 31 GKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDVRIN--IVD 88
          GKTTL++ L   + ++ +              + ++ + I A    I  + V++N  ++D
Sbjct: 16 GKTTLINTLF-LTDLYPERGIPGPS------EKIKKTVEIKATTVEIEEDGVKLNLTVID 68

Query: 89 TPGHADF 95
          TPG  D 
Sbjct: 69 TPGFGDA 75


>gnl|CDD|36233 KOG1015, KOG1015, KOG1015, Transcription regulator XNP/ATRX,
           DEAD-box superfamily [Transcription].
          Length = 1567

 Score = 32.0 bits (72), Expect = 0.44
 Identities = 26/85 (30%), Positives = 44/85 (51%), Gaps = 7/85 (8%)

Query: 376 RGELQLAVLIETMRREGFELAVSRPR---VVIKKEGDSLLEPIE-EVVIDVDEEHSGAVV 431
           R E Q A+  E  RR+  E    R +   V+  ++     EPI  ++V+D DEE    +V
Sbjct: 600 RKETQNALKEEKERRKRIEEERERQKLRNVIEIEDASPTKEPITTKLVLDEDEETKEPLV 659

Query: 432 QKMTLHKSEMIELRPSGTGRVRLVF 456
           Q   +H+S +I+L+P     V+ ++
Sbjct: 660 Q---VHRSLVIKLKPHQVDGVQFMW 681


>gnl|CDD|58066 cd04096, eEF2_snRNP_like_C, eEF2_snRNP_like_C: this family
           represents a C-terminal domain of eukaryotic elongation
           factor 2 (eEF-2) and a homologous domain of the
           spliceosomal human 116kD U5 small nuclear
           ribonucleoprotein (snRNP) protein (U5-116 kD) and, its
           yeast counterpart Snu114p.  Yeast Snu114p is essential
           for cell viability and for splicing in vivo. U5-116 kD
           binds GTP.  Experiments suggest that GTP binding and
           probably GTP hydrolysis is important for the function of
           the U5-116 kD/Snu114p.   In complex with GTP, EF-2
           promotes the translocation step of translation. During
           translocation the peptidyl-tRNA is moved from the A site
           to the P site, the uncharged tRNA from the P site to the
           E-site and, the mRNA is shifted one codon relative to
           the ribosome..
          Length = 80

 Score = 31.6 bits (72), Expect = 0.68
 Identities = 18/78 (23%), Positives = 32/78 (41%), Gaps = 1/78 (1%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRP-SGTGRVRLVFLSPTRGLIGYQSQLM 471
           EPI  V I   E+  G V   ++  +  ++   P  GT    +    P     G+++ L 
Sbjct: 1   EPIYLVEIQCPEDALGKVYSVLSKRRGHVLSEEPKEGTPLFEIKAYLPVIESFGFETDLR 60

Query: 472 TDTRGTAIMNRLFHSYQP 489
           + T G A    +F  ++ 
Sbjct: 61  SATSGQAFPQLVFSHWEI 78


>gnl|CDD|58064 cd03711, Tet_C, Tet_C: C-terminus of ribosomal protection proteins
           Tet(M) and Tet(O). This domain has homology to the C
           terminal domains of the elongation factors EF-G and
           EF-2. Tet(M) and Tet(O) catalyze the release of
           tetracycline (Tc) from the ribosome in a GTP-dependent
           manner thereby mediating Tc resistance.  Tcs are
           broad-spectrum antibiotics.  Typical Tcs bind to the
           ribosome and inhibit the elongation phase of protein
           synthesis, by inhibiting the  occupation of site A by
           aminoacyl-tRNA..
          Length = 78

 Score = 31.7 bits (72), Expect = 0.69
 Identities = 17/77 (22%), Positives = 29/77 (37%), Gaps = 1/77 (1%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQLMT 472
           EP     ++V ++  G  +  +    +   E        V L    P      YQS+L +
Sbjct: 1   EPYLRFELEVPQDALGRAMSDLAKMGAT-FEDPQIKGDEVTLEGTIPVATSQDYQSELPS 59

Query: 473 DTRGTAIMNRLFHSYQP 489
            T G  ++   F  Y+P
Sbjct: 60  YTHGEGVLETEFKGYRP 76


>gnl|CDD|146419 pfam03767, Acid_phosphat_B, HAD superfamily, subfamily IIIB (Acid
           phosphatase).  This family proteins includes acid
           phosphatases and a number of vegetative storage
           proteins.
          Length = 230

 Score = 31.2 bits (71), Expect = 0.82
 Identities = 13/40 (32%), Positives = 23/40 (57%), Gaps = 3/40 (7%)

Query: 371 FFVSGRGELQLAVLIETMRREGFELAVSRPRVVIKKEGDS 410
           FFVSGR E   A  +E +++ GF       +++++ + DS
Sbjct: 140 FFVSGRSEDLRAATVENLKKAGFH---GWEKLILRGKKDS 176


>gnl|CDD|35298 KOG0075, KOG0075, KOG0075, GTP-binding ADP-ribosylation factor-like
           protein [General function prediction only].
          Length = 186

 Score = 30.7 bits (69), Expect = 1.2
 Identities = 25/103 (24%), Positives = 43/103 (41%), Gaps = 5/103 (4%)

Query: 69  TILAKVTSIVWNDVRINIVDTPGHADFGGEVERILCMVESVVVLVDAAE-----GPMPQT 123
           T+   +  +   +V I + D  G   F    ER    V ++V +VDAA+         + 
Sbjct: 52  TVGFNMRKVTKGNVTIKLWDLGGQPRFRSMWERYCRGVSAIVYVVDAADPDKLEASRSEL 111

Query: 124 KFVVGKALKIGLRPIVVVNKVDRSDARADEVINEVFDLFSALD 166
             ++ K    G+  +V+ NK+D   A +   + E   L S  D
Sbjct: 112 HDLLDKPSLTGIPLLVLGNKIDLPGALSKIALIERMGLSSITD 154


>gnl|CDD|30833 COG0486, ThdF, Predicted GTPase [General function prediction only].
          Length = 454

 Score = 30.9 bits (70), Expect = 1.2
 Identities = 21/78 (26%), Positives = 37/78 (47%), Gaps = 9/78 (11%)

Query: 76  SIVWNDVRINIVDTPGHADFGGEVERI--------LCMVESVVVLVDAAEGPMPQTKFVV 127
            I  N + + +VDT G  +    VERI        +   + V+ ++DA++ P+ +    +
Sbjct: 259 DINLNGIPVRLVDTAGIRETDDVVERIGIERAKKAIEEADLVLFVLDASQ-PLDKEDLAL 317

Query: 128 GKALKIGLRPIVVVNKVD 145
            + L      IVV+NK D
Sbjct: 318 IELLPKKKPIIVVLNKAD 335


>gnl|CDD|58093 cd03702, IF2_mtIF2_II, This family represents the domain II of
           bacterial Initiation Factor 2 (IF2) and its eukaryotic
           mitochondrial homologue mtIF2. IF2, the largest
           initiation factor is an essential GTP binding protein.
           In E. coli three natural forms of IF2 exist in the cell,
           IF2alpha, IF2beta1, and IF2beta2.  Bacterial IF-2 is
           structurally and functionally related to eukaryotic
           mitochondrial mtIF-2..
          Length = 95

 Score = 30.8 bits (70), Expect = 1.2
 Identities = 18/74 (24%), Positives = 30/74 (40%), Gaps = 11/74 (14%)

Query: 223 GTILEK--DPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPI 280
           G ++E   D   G + T  + +GT+K    + A +        G+V  +    G   + +
Sbjct: 3   GVVIESKLDKGRGPVATVLVQNGTLKVGDVLVAGT------TYGKVRAMFDENG---KRV 53

Query: 281 DEAHAGDIVSIAGL 294
            EA     V I GL
Sbjct: 54  KEAGPSTPVEILGL 67


>gnl|CDD|58090 cd03699, lepA_II, lepA_II: This subfamily represents the domain II
           of LepA, a GTP-binding protein localized in the
           cytoplasmic membrane. The N-terminal domain of LepA
           shares regions of homology to translation factors. In
           terms of interaction with the ribosome, EF-G, EF-Tu and
           IF2 have all been demonstrated to interact at
           overlapping sites on the ribosome. Chemical protection
           studies demonstrate that they all include the
           universally conserved alpha-sarcin loop as part of their
           binding site. These data indicate that LepA may bind to
           this location on the ribosome as well.  LepA has never
           been observed in archaea, and eukaryl LepA is
           organellar. LepA is therefore a true bacterial GTPase,
           found only in the bacterial lineage..
          Length = 86

 Score = 30.4 bits (69), Expect = 1.4
 Identities = 26/81 (32%), Positives = 34/81 (41%), Gaps = 9/81 (11%)

Query: 229 DPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAHAGDI 288
           DP+ G I   R+  GT+K    I+ +S  G   EV  V  I      +  P DE  AG +
Sbjct: 11  DPYRGVIALVRVFDGTLKKGDKIRFMS-TGKEYEVEEVG-IFRP---EMTPTDELSAGQV 65

Query: 289 VSIAGLVK----ATVADTFCD 305
             I   +K    A V DT   
Sbjct: 66  GYIIAGIKTVKDARVGDTITL 86


>gnl|CDD|32934 COG3120, COG3120, Uncharacterized protein conserved in bacteria
           [Function unknown].
          Length = 149

 Score = 30.4 bits (68), Expect = 1.5
 Identities = 20/67 (29%), Positives = 36/67 (53%), Gaps = 4/67 (5%)

Query: 562 ASGKDEAVKLVPAVKMTLEQALSWIQ---NDELVEVTPKSIRL-RKMYLDPNERKRKGKS 617
           AS  +EAV+ + +++    +   WI    + ELV    ++IR  RK + +   +  + KS
Sbjct: 34  ASAAEEAVQQLLSLENEPVKVNEWIDAHMSPELVNKLKQAIRARRKRHFNAEHQHTRKKS 93

Query: 618 VNLEYNV 624
           ++LEY V
Sbjct: 94  IDLEYAV 100


>gnl|CDD|58067 cd04097, mtEFG1_C, mtEFG1_C: C-terminus of mitochondrial Elongation
           factor G1 (mtEFG1)-like proteins found in eukaryotes.
           Eukaryotic cells harbor 2 protein synthesis systems: one
           localized in the cytoplasm, the other in the
           mitochondria. Most factors regulating mitochondrial
           protein synthesis are encoded by nuclear genes,
           translated in the cytoplasm, and then transported to the
           mitochondria. The eukaryotic system of elongation factor
           (EF) components is more complex than that in
           prokaryotes, with both cytoplasmic and mitochondrial
           elongation factors and multiple isoforms being expressed
           in certain species.  Eukaryotic EF-2 operates in the
           cytosolic protein synthesis machinery of eukaryotes,
           EF-Gs in protein synthesis in bacteria.  Eukaryotic
           mtEFG1 proteins show significant homology to bacterial
           EF-Gs.  Mutants in yeast mtEFG1 have impaired
           mitochondrial protein synthesis, respiratory defects and
           a tendency to lose mitochondrial DNA. There are two
           forms of mtEFG present in mammals (designated mtEFG1s
           and mtEFG2s) mtEFG2s are not present in this group..
          Length = 78

 Score = 29.8 bits (67), Expect = 2.2
 Identities = 20/77 (25%), Positives = 31/77 (40%), Gaps = 1/77 (1%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMIELRPSGTGRVRLVFLSPTRGLIGYQSQLMT 472
           EPI +V +    E  G V+  +   K   I    +G     L    P   + GY ++L +
Sbjct: 1   EPIMKVEVTAPTEFQGNVIGLLNKRKG-TIVDTDTGEDEFTLEAEVPLNDMFGYSTELRS 59

Query: 473 DTRGTAIMNRLFHSYQP 489
            T+G    +  F  Y P
Sbjct: 60  MTQGKGEFSMEFSRYAP 76


>gnl|CDD|38742 KOG3534, KOG3534, KOG3534, p53 inducible protein PIR121 [General
            function prediction only].
          Length = 1253

 Score = 30.0 bits (67), Expect = 2.2
 Identities = 15/53 (28%), Positives = 25/53 (47%)

Query: 561  RASGKDEAVKLVPAVKMTLEQALSWIQNDELVEVTPKSIRLRKMYLDPNERKR 613
            +A GKDE +K +P  KM        I N+++  +  K ++  +    P E  R
Sbjct: 1183 KADGKDEIIKGIPLKKMVERIRRFQILNNQIFIILNKYLKSGEGEGSPVEHVR 1235


>gnl|CDD|58096 cd04089, eRF3_II, eRF3_II: domain II of the eukaryotic class II
           release factor (eRF3). In eukaryotes, translation
           termination is mediated by two interacting release
           factors, eRF1 and eRF3, which act as class I and II
           factors, respectively. eRF1 functions as an omnipotent
           release factor, decoding all three stop codons and
           triggering the release of the nascent peptide catalyzed
           by the ribsome. eRF3 is a GTPase, which enhances the
           termination efficiency by stimulating the eRF1 activity
           in a GTP-dependent manner. Sequence comparison of class
           II release factors with elongation factors shows that
           eRF3 is more similar to eEF1alpha whereas prokaryote RF3
           is more similar to EF-G, implying that their precise
           function may differ. Only eukaryote RF3s are found in
           this group. Saccharomyces cerevisiae eRF3 (Sup35p) is a
           translation termination factor which is divided into
           three regions N, M and a C-terminal eEF1a-like region
           essential for translation termination.  Sup35NM  is a
           non-pathogenic prion-like protein with the property of
           aggregating into polymer-like fibrils..
          Length = 82

 Score = 29.7 bits (67), Expect = 2.7
 Identities = 17/68 (25%), Positives = 31/68 (45%), Gaps = 8/68 (11%)

Query: 225 ILEKDPFLGRIVTGRIHSGTIKSNQNIKALSPDGALVEVGRVSKILAFRGIDRQPIDEAH 284
           I++K   +G +V G++ SGTIK    +  + P+   VEV  +         +   +  A 
Sbjct: 6   IIDKYKDMGTVVLGKVESGTIKKGDKL-LVMPNKTQVEVLSIY-------NEDVEVRYAR 57

Query: 285 AGDIVSIA 292
            G+ V + 
Sbjct: 58  PGENVRLR 65


>gnl|CDD|30719 COG0370, FeoB, Fe2+ transport system protein B [Inorganic ion
           transport and metabolism].
          Length = 653

 Score = 29.4 bits (66), Expect = 3.1
 Identities = 32/137 (23%), Positives = 61/137 (44%), Gaps = 26/137 (18%)

Query: 17  MQIRNIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTS 76
           M+   +A++ + + GKTTL + L   +G    NQ+V              G+T+  K   
Sbjct: 1   MKKLTVALVGNPNVGKTTLFNAL---TGA---NQKVGNWP----------GVTVEKKEGK 44

Query: 77  IVWNDVRINIVDTPGHADFGG--EVERILC------MVESVVVLVDAAEGPMPQTKFVVG 128
           + +    I IVD PG        E E++          + +V +VDA    + +  ++  
Sbjct: 45  LKYKGHEIEIVDLPGTYSLTAYSEDEKVARDFLLEGKPDLIVNVVDATN--LERNLYLTL 102

Query: 129 KALKIGLRPIVVVNKVD 145
           + L++G+  I+ +N +D
Sbjct: 103 QLLELGIPMILALNMID 119


>gnl|CDD|144080 pfam00350, Dynamin_N, Dynamin family. 
          Length = 168

 Score = 29.1 bits (66), Expect = 3.5
 Identities = 28/142 (19%), Positives = 46/142 (32%), Gaps = 23/142 (16%)

Query: 20  RNIAII-------AHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILA 72
           R   ++       A     K    D L K    F D   + E + D  D     G  I +
Sbjct: 33  RRPLVLRLGEEPGAIPGAVKVEYKDGLKK----FEDFSELREEIEDETDKISGTGKGISS 88

Query: 73  KVTSI---VWNDVRINIVDTPG-----HADFGGEVERILCMVESVVVLVDAAEGPMPQT- 123
           +   +         + +VDTPG       D     E  +     +++ V  A   +  + 
Sbjct: 89  EPIILEILSPLVPGLTLVDTPGLDSVAVGDQ-DLTEEYIKP-ADIILAVVDANHDLSTSE 146

Query: 124 -KFVVGKALKIGLRPIVVVNKV 144
             F+  +    G R I V+ K 
Sbjct: 147 ALFLAREVDPNGKRTIGVLTKD 168


>gnl|CDD|37866 KOG2655, KOG2655, KOG2655, Septin family protein (P-loop GTPase)
          [Cell cycle control, cell division, chromosome
          partitioning, Nuclear structure, Intracellular
          trafficking, secretion, and vesicular transport].
          Length = 366

 Score = 28.8 bits (64), Expect = 4.7
 Identities = 14/67 (20%), Positives = 24/67 (35%), Gaps = 9/67 (13%)

Query: 31 GKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWNDV--RINIVD 88
          GK+T ++ L               R +       +  + I +    I  N V   + ++D
Sbjct: 33 GKSTFINSLFLTD-------LSGNREVPGASERIKETVEIESTKVEIEENGVKLNLTVID 85

Query: 89 TPGHADF 95
          TPG  D 
Sbjct: 86 TPGFGDA 92


>gnl|CDD|35687 KOG0466, KOG0466, KOG0466, Translation initiation factor 2, gamma
           subunit (eIF-2gamma; GTPase) [Translation, ribosomal
           structure and biogenesis].
          Length = 466

 Score = 28.8 bits (64), Expect = 4.9
 Identities = 61/271 (22%), Positives = 104/271 (38%), Gaps = 57/271 (21%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGV----FRDN-QR--------VSERVMDCNDLE---- 63
           NI  I HV HGK+T+V  +   SGV    F++  +R         + ++  C+D +    
Sbjct: 40  NIGTIGHVAHGKSTVVKAI---SGVHTVRFKNELERNITIKLGYANAKIYKCDDPKCPRP 96

Query: 64  ---------KERGITILAKVTSIVWNDVR-INIVDTPGHADFGGEVERILCMVESVVVLV 113
                    KE                VR ++ VD PGH      +     ++++ ++L+
Sbjct: 97  GCYRSFGSSKEDRPPCDRPGCEGKMKLVRHVSFVDCPGHDILMATMLNGAAVMDAALLLI 156

Query: 114 DAAEG-PMPQTKFVVGKALKIGLRPIVVV-NKVDR-SDARADEVINEVFDLFSALDATDA 170
              E  P PQT   +     + L+ I+++ NK+D   +++A E   ++        A  A
Sbjct: 157 AGNESCPQPQTSEHLAAVEIMKLKHIIILQNKIDLIKESQALEQHEQIQKFIQGTVAEGA 216

Query: 171 QLDFPILYGSGRFGWMSDSSDGSRDQGMVPLLNLIVDHVPPPV---ISEGEFKMIGTI-- 225
               PI+  S +  +  D            +   IV  +P PV    S     +I +   
Sbjct: 217 ----PIIPISAQLKYNIDV-----------VCEYIVKKIPVPVRDFTSPPRLIVIRSFDV 261

Query: 226 ----LEKDPFLGRIVTGRIHSGTIKSNQNIK 252
                E D   G +  G I  G +K  Q I+
Sbjct: 262 NKPGSEVDDLKGGVAGGSILKGVLKVGQEIE 292


>gnl|CDD|57926 cd01855, YqeH, YqeH.  YqeH is an essential GTP-binding protein.
           Depletion of YqeH induces an excess initiation of DNA
           replication, suggesting that it negatively controls
           initiation of chromosome replication. The YqeH subfamily
           is common in eukaryotes and sporadically present in
           bacteria with probable acquisition by plants from
           chloroplasts.  Proteins of the YqeH family contain all
           sequence motifs typical of the vast class of
           P-loop-containing GTPases, but show a circular
           permutation, with a G4-G1-G3 pattern of motifs as
           opposed to the regular G1-G3-G4 pattern seen in most
           GTPases..
          Length = 190

 Score = 28.7 bits (64), Expect = 4.9
 Identities = 17/64 (26%), Positives = 26/64 (40%), Gaps = 4/64 (6%)

Query: 83  RINIVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRP-IVVV 141
           +I+ V+ P        +  I      VV +VD  + P      +    L  G  P I+V 
Sbjct: 12  KIDPVEIPDEDFILNLLSSISPKKALVVHVVDIFDFPG---SLIPRLRLFGGNNPVILVG 68

Query: 142 NKVD 145
           NK+D
Sbjct: 69  NKID 72


>gnl|CDD|144639 pfam01120, Alpha_L_fucos, Alpha-L-fucosidase. 
          Length = 344

 Score = 28.8 bits (65), Expect = 5.1
 Identities = 7/16 (43%), Positives = 8/16 (50%)

Query: 85  NIVDTPGHADFGGEVE 100
           N VDT    D  GE+ 
Sbjct: 130 NSVDTGPKRDIVGELA 145


>gnl|CDD|36760 KOG1547, KOG1547, KOG1547, Septin CDC10 and related P-loop GTPases
           [Cell cycle control, cell division, chromosome
           partitioning, Signal transduction mechanisms,
           Cytoskeleton].
          Length = 336

 Score = 28.4 bits (63), Expect = 5.4
 Identities = 19/78 (24%), Positives = 34/78 (43%), Gaps = 11/78 (14%)

Query: 21  NIAIIAHVDHGKTTLVDELLKQSGVFRDNQRVSERVMDCNDLEKERGITILAKVTSIVWN 80
           NI ++     GK+TL++ L K          VS+     N  E     T +  +T ++  
Sbjct: 48  NIMVVGQSGLGKSTLINTLFKS--------HVSDSSSSDNSAEPIPKTTEIKSITHVIEE 99

Query: 81  D---VRINIVDTPGHADF 95
               +++ ++DTPG  D 
Sbjct: 100 KGVKLKLTVIDTPGFGDQ 117


>gnl|CDD|143612 cd07304, Chorismate_synthase, Chorismase synthase, the enzyme
           catalyzing the final step of the shikimate pathway.
           Chorismate synthase (CS;
           5-enolpyruvylshikimate-3-phosphate phospholyase;
           1-carboxyvinyl-3-phosphoshikimate phosphate-lyase; E.C.
           4.2.3.5) catalyzes the seventh and final step in the
           shikimate pathway: the conversion of 5-
           enolpyruvylshikimate-3-phosphate (EPSP) to chorismate, a
           precursor for the biosynthesis of aromatic compounds.
           This process has an absolute requirement for reduced FMN
           as a co-factor which is thought to facilitate cleavage
           of C-O bonds by transiently donating an electron to the
           substrate, having no overall change its redox state.
           Depending on the capacity of these enzymes to regenerate
           the reduced form of FMN, chorismate synthases are
           divided into two classes: Enzymes, mostly from plants
           and eubacteria, that sequester CS from the cellular
           environment, are monofunctiona,l while those that can
           generate reduced FMN at the expense of NADPH, such as
           found in fungi and the ciliated protozoan Euglena
           gracilis, are bifunctional, having an additional
           NADPH:FMN oxidoreductase activity. Recently,
           bifunctionality of the Mycobacterium tuberculosis enzyme
           (MtCS) was determined by measurements of both chorismate
           synthase and NADH:FMN oxidoreductase activities. Since
           shikimate pathway enzymes are present in bacteria, fungi
           and apicomplexan parasites (such as Toxoplasma gondii,
           Plasmodium falciparum, and Cryptosporidium parvum) but
           absent in mammals, they are potentially attractive
           targets for the development of new therapy against
           infectious diseases such as tuberculosis (TB).
          Length = 344

 Score = 28.2 bits (64), Expect = 6.6
 Identities = 11/40 (27%), Positives = 17/40 (42%), Gaps = 7/40 (17%)

Query: 67  GITILAKVTSIVWN-DVR----INIVDT--PGHADFGGEV 99
           G T    +  ++ N D R      +     PGHAD+ G +
Sbjct: 65  GKTTGTPIALLIRNKDQRSWDYSMLKTLPRPGHADYTGFL 104


>gnl|CDD|58068 cd04098, eEF2_C_snRNP, eEF2_C_snRNP: This family includes a
           C-terminal portion of the spliceosomal human 116kD U5
           small nuclear ribonucleoprotein (snRNP) protein (U5-116
           kD) and, its yeast counterpart Snu114p.  This domain is
           homologous to the C-terminal domain of the eukaryotic
           translational elongation factor EF-2.  Yeast Snu114p is
           essential for cell viability and for splicing in vivo.
           U5-116 kD binds GTP.  Experiments suggest that GTP
           binding and probably GTP hydrolysis is important for the
           function of the U5-116 kD/Snu114p.   In complex with
           GTP, EF-2 promotes the translocation step of
           translation. During translocation the peptidyl-tRNA is
           moved from the A site to the P site, the uncharged tRNA
           from the P site to the E-site and, the mRNA is shifted
           one codon relative to the ribosome..
          Length = 80

 Score = 28.2 bits (63), Expect = 6.6
 Identities = 19/78 (24%), Positives = 33/78 (42%), Gaps = 1/78 (1%)

Query: 413 EPIEEVVIDVDEEHSGAVVQKMTLHKSEMI-ELRPSGTGRVRLVFLSPTRGLIGYQSQLM 471
           EPI EV I    +   AV + ++  +  +I +    GT    +    P     G+++ L 
Sbjct: 1   EPIYEVEITCPADAVSAVYEVLSRRRGHVIYDTPIPGTPLYEVKAFIPVIESFGFETDLR 60

Query: 472 TDTRGTAIMNRLFHSYQP 489
             T+G A    +F  +Q 
Sbjct: 61  VHTQGQAFCQSVFDHWQI 78


>gnl|CDD|31889 COG1703, ArgK, Putative periplasmic protein kinase ArgK and related
           GTPases of G3E family [Amino acid transport and
           metabolism].
          Length = 323

 Score = 28.0 bits (62), Expect = 7.2
 Identities = 32/128 (25%), Positives = 49/128 (38%), Gaps = 28/128 (21%)

Query: 86  IVDTPGHADFGGEVERILCMVESVVVLVDAAEGPMPQTKFVVGKALKIGLRPI---VVVN 142
           IV+T G      EV+ I  M ++ +V++    G   Q        +K G+  I   +V+N
Sbjct: 148 IVETVGVGQ--SEVD-IANMADTFLVVMIPGAGDDLQ-------GIKAGIMEIADIIVIN 197

Query: 143 KVDRSDARADEVINEVFDLFSALDATDAQLDFPILYGSGRFGWMSD--SSDGSRDQGMVP 200
           K DR  A          +L SALD                 GW     ++     +G+  
Sbjct: 198 KADRKGAEK-----AARELRSALDLLREVWREN--------GWRPPVVTTSALEGEGIDE 244

Query: 201 LLNLIVDH 208
           L + I DH
Sbjct: 245 LWDAIEDH 252


>gnl|CDD|58085 cd03694, GTPBP_II, Domain II of the GP-1 family of GTPase. This
           group includes proteins similar to GTPBP1 and GTPBP2.
           GTPB1 is structurally, related to elongation factor 1
           alpha, a key component of protein biosynthesis
           machinery. Immunohistochemical analyses on mouse tissues
           revealed that GTPBP1 is expressed in some neurons and
           smooth muscle cells of various organs as well as
           macrophages. Immunofluorescence analyses revealed that
           GTPBP1 is localized exclusively in cytoplasm and shows a
           diffuse granular network forming a gradient from the
           nucleus to the periphery of the cells in smooth muscle
           cell lines and macrophages. No significant difference
           was observed in the immune response to protein antigen
           between mutant mice and wild-type mice, suggesting
           normal function of antigen-presenting cells of the
           mutant mice. The absence of an eminent phenotype in
           GTPBP1-deficient mice may be due to functional
           compensation by GTPBP2, which is similar to GTPBP1 in
           structure and tissue distribution..
          Length = 87

 Score = 28.2 bits (63), Expect = 7.4
 Identities = 16/66 (24%), Positives = 26/66 (39%), Gaps = 10/66 (15%)

Query: 230 PFLGRIVTGRIHSGTIKSNQNIK-ALSPDGALVEVGRVSKILAFRGI--DRQPIDEAHAG 286
           P +G +V G +  G I+    +      DG+   V         + I  +R P+    AG
Sbjct: 12  PGVGTVVGGTVSKGVIRLGDTLLLGPDQDGSFRPV-------TVKSIHRNRSPVRVVRAG 64

Query: 287 DIVSIA 292
              S+A
Sbjct: 65  QSASLA 70


>gnl|CDD|173942 cd08183, Fe-ADH2, Iron-containing alcohol dehydrogenases-like.
           Iron-containing alcohol dehydrogenases (Fe-ADH). Alcohol
           dehydrogenase catalyzes the reduction of acetaldehyde to
           alcohol with NADP as cofactor. Its activity requires
           iron ions. The protein structure represents a
           dehydroquinate synthase-like fold and is a member of the
           iron-activated alcohol dehydrogenase-like family. They
           are distinct from other alcohol dehydrogenases which
           contains different protein domain. Proteins of this
           family have not been characterized. Their specific
           function is unknown. They are mainly found in bacteria.
          Length = 374

 Score = 27.9 bits (63), Expect = 9.1
 Identities = 16/62 (25%), Positives = 26/62 (41%), Gaps = 6/62 (9%)

Query: 370 AFFVSGRGELQLAVLIETMRREGFELAVSRPRVVIKKEGDSLLEPIEEVVIDVDEEHSGA 429
              V+G   L+ A LIE +R  G E+      VV+  E    +E ++  V +        
Sbjct: 25  VLLVTGASSLRAAWLIEALRAAGIEVTH----VVVAGEPS--VELVDAAVAEARNAGCDV 78

Query: 430 VV 431
           V+
Sbjct: 79  VI 80


  Database: CddA
    Posted date:  Feb 4, 2011  9:38 PM
  Number of letters in database: 6,263,737
  Number of sequences in database:  21,609
  
Lambda     K      H
   0.318    0.138    0.390 

Gapped
Lambda     K      H
   0.267   0.0783    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 21609
Number of Hits to DB: 7,411,369
Number of extensions: 404739
Number of successful extensions: 1197
Number of sequences better than 10.0: 1
Number of HSP's gapped: 1061
Number of HSP's successfully gapped: 130
Length of query: 624
Length of database: 6,263,737
Length adjustment: 100
Effective length of query: 524
Effective length of database: 4,102,837
Effective search space: 2149886588
Effective search space used: 2149886588
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 60 (26.8 bits)