HHsearch alignment for GI: 254780724 and conserved domain: TIGR01978

>TIGR01978 sufC FeS assembly ATPase SufC; InterPro: IPR010230 Iron-sulphur (FeS) clusters are important cofactors for numerous proteins involved in electron transfer, in redox and non-redox catalysis, in gene regulation, and as sensors of oxygen and iron. These functions depend on the various FeS cluster prosthetic groups, the most common being [2Fe-2S] and [4Fe-4S] . FeS cluster assembly is a complex process involving the mobilisation of Fe and S atoms from storage sources, their assembly into [Fe-S] form, their transport to specific cellular locations, and their transfer to recipient apoproteins. So far, three FeS assembly machineries have been identified, which are capable of synthesising all types of [Fe-S] clusters: ISC (iron-sulphur cluster), SUF (sulphur assimilation), and NIF (nitrogen fixation) systems. The ISC system is conserved in eubacteria and eukaryotes (mitochondria), and has broad specificity, targeting general FeS proteins , . It is encoded by the isc operon (iscRSUA-hscBA-fdx-iscX). IscS is a cysteine desulphurase, which obtains S from cysteine (converting it to alanine) and serves as a S donor for FeS cluster assembly. IscU and IscA act as scaffolds to accept S and Fe atoms, assembling clusters and transfering them to recipient apoproteins. HscA is a molecular chaperone and HscB is a co-chaperone. Fdx is a [2Fe-2S]-type ferredoxin. IscR is a transcription factor that regulates expression of the isc operon. IscX (also known as YfhJ) appears to interact with IscS and may function as an Fe donor during cluster assembly . The SUF system is an alternative pathway to the ISC system that operates under iron starvation and oxidative stress. It is found in eubacteria, archaea and eukaryotes (plastids). The SUF system is encoded by the suf operon (sufABCDSE), and the six encoded proteins are arranged into two complexes (SufSE and SufBCD) and one protein (SufA). SufS is a pyridoxal-phosphate (PLP) protein displaying cysteine desulphurase activity. SufE acts as a scaffold protein that accepts S from SufS and donates it to SufA . SufC is an ATPase with an unorthodox ATP-binding cassette (ABC)-like component. No specific functions have been assigned to SufB and SufD. SufA is homologous to IscA , acting as a scaffold protein in which Fe and S atoms are assembled into [FeS] cluster forms, which can then easily be transferred to apoproteins targets. In the NIF system, NifS and NifU are required for the formation of metalloclusters of nitrogenase in Azotobacter vinelandii, and other organisms, as well as in the maturation of other FeS proteins. Nitrogenase catalyses the fixation of nitrogen. It contains a complex cluster, the FeMo cofactor, which contains molybdenum, Fe and S. NifS is a cysteine desulphurase. NifU binds one Fe atom at its N-terminal, assembling an FeS cluster that is transferred to nitrogenase apoproteins . Nif proteins involved in the formation of FeS clusters can also be found in organisms that do not fix nitrogen . This entry represents SufC, which acts as an ATPase in the SUF system. SufC belongs to the ATP-binding cassette transporter family (IPR003439 from INTERPRO) but is no longer thought to be part of a transporter. The complex is reported as cytosolic or associated with the membrane.; GO: 0005524 ATP binding, 0006810 transport.
Probab=95.75  E-value=0.016  Score=36.29  Aligned_cols=78  Identities=19%  Similarity=0.218  Sum_probs=48.0

Q ss_conf             89862258848998188888889999998303876--767999--6421312567--87567787416666530001899
Q Consensus       243 l~~~v~~~~nilVsG~TGSGKTT~L~al~~~i~~~--~rivtI--ED~~El~l~~--~~~v~~~~~~~~~e~~~~~t~~~  316 (483)
T Consensus        19 vnL~v~~GE~HAiMGPNGsGKSTL~~~iaGhp~y~vt~G~I~f~G~Dll~l~~~ERAR~GlFLaFQ~P--~EIPGV~~~~   96 (248)
T ss_conf             67621685179986889984788877761799337842089877652001896556405651015888--5568857788

Q ss_pred             HHHHHH
Q ss_conf             998752
Q gi|254780724|r  317 LVKNCL  322 (483)
Q Consensus       317 ll~~aL  322 (483)
T Consensus        97 FlR~A~  102 (248)
T TIGR01978        97 FLRSAL  102 (248)
T ss_pred             HHHHHH
T ss_conf             999999