HHsearch alignment for GI: 254780899 and conserved domain: TIGR00501

>TIGR00501 met_pdase_II methionine aminopeptidase, type II; InterPro: IPR002468 Metalloproteases are the most diverse of the four main types of protease, with more than 50 families identified to date. In these enzymes, a divalent cation, usually zinc, activates the water molecule. The metal ion is held in place by amino acid ligands, usually three in number. The known metal ligands are His, Glu, Asp or Lys and at least one other residue is required for catalysis, which may play an electrophillic role. Of the known metalloproteases, around half contain an HEXXH motif, which has been shown in crystallographic studies to form part of the metal-binding site . The HEXXH motif is relatively common, but can be more stringently defined for metalloproteases as 'abXHEbbHbc', where 'a' is most often valine or threonine and forms part of the S1' subsite in thermolysin and neprilysin, 'b' is an uncharged residue, and 'c' a hydrophobic residue. Proline is never found in this site, possibly because it would break the helical structure adopted by this motif in metalloproteases . Peptidases are grouped into clans and families. Clans are groups of families for which there is evidence of common ancestry. Each clan is identified with two letters, the first representing the catalytic type of the families included in the clan (with the letter 'P' being used for a clan containing families of more than one of the catalytic types serine, threonine and cysteine). Some families cannot yet be assigned to clans, and when a formal assignment is required, such a family is described as belonging to clan A-, C-, M-, S-, T- or U-, according to the catalytic type. Some clans are divided into subclans because there is evidence of a very ancient divergence within the clan, for example MA(E), the gluzincins, and MA(M), the metzincins. Families are grouped by their catalytic type, the first character representing the catalytic type: A, aspartic; C, cysteine; G, glutamic acid; M, metallo; S, serine; T, threonine; and U, unknown. The serine, threonine and cysteine peptidases utilise the amino acid as a nucleophile and form an acyl intermediate - these peptidases can also readily act as transferases. In the case of aspartic, glutamic and metallopeptidases, the nucleophile is an activated water molecule. This group of metallopeptidases belong to MEROPS peptidase family M24 (clan MG), subfamily M24A. Methionine aminopeptidase (3.4.11.18 from EC) (MAP) is responsible for the removal of the amino-terminal (initiator) methionine from nascent eukaryotic cytosolic and cytoplasmic prokaryotic proteins if the penultimate amino acid is small and uncharged. All MAP studied to date are monomeric proteins that require cobalt ions for activity. Two subfamilies of MAP enzymes are known to exist , . While being evolutionary related, they only share a limited amount of sequence similarity mostly clustered around the residues shown, in the Escherichia coli MAP , to be involved in cobalt-binding. The first family consists of enzymes from prokaryotes as well as eukaryotic MAP-1, while the second group (IPR002467 from INTERPRO) is made up of archaeal MAP and eukaryotic MAP-2 and includes proteins which do not seem to be MAP, but that are clearly evolutionary related such as mouse proliferation-associated protein 1 and fission yeast curved DNA-binding protein. ; GO: 0004239 methionyl aminopeptidase activity, 0006508 proteolysis.
Probab=92.09  E-value=0.43  Score=27.56  Aligned_cols=132  Identities=17%  Similarity=0.165  Sum_probs=78.2

Q ss_pred             CCEEECCHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCC---CC
Q ss_conf             978853999999999999999999999999757998899999999999998598303443324445532344642---11
Q gi|254780899|r   10 GSINIYTPEELENIRSACNVVARCLDSLTPIIKPGTTTEEIDDFVLKFGMENNAIPATLNYRGYKKSCCTSINHV---IC   86 (273)
Q Consensus        10 ~~~~IKs~~EI~~~R~A~~i~~~~~~~~~~~i~~G~se~el~~~~~~~~~~~g~~~~~~~~~~f~~~~~~s~N~~---~~   86 (273)
T Consensus       112 ~A~TV~l~~~ddky~~L~~A~~dAl~~~i~~~~~~v~v~eiG~~I~e~i~syeveinGet-Yg~kP~~NL~GHs~~rY~~  190 (327)
T TIGR00501       112 TAITVDLGDQDDKYKELVKAAKDALYTAIKEIRAGVEVGEIGKAIEEVIESYEVEINGET-YGVKPISNLTGHSMARYLL  190 (327)
T ss_pred             EEEEEECCCCCHHHHHHHHHHHHHHHHHHHHCCCCCEEECCCHHHHHHHCCEEEEECCCC-CCCCCCCCCCCCCCCHHHH
T ss_conf             478850688701589999999999887775006981260020776653221357765720-1433422273564001543


Q ss_pred             CC---CC-----CCCCCCCCEEEEEEEEEEE-EEECCCCCCCCCCCCCCC-CCHH-HHHHHHHHHHH
Q ss_conf             12---12-----2220013405799787665-300023111233344443-2103-67787765432
Q gi|254780899|r   87 HG---IP-----SNKQLREGDIVNVDVTYVV-NGWHGDSSRMYPVGKIKR-AAER-ILQVTYESLYK  142 (273)
Q Consensus        87 H~---~p-----~d~~l~~GD~v~iD~g~~~-~GY~~D~~RT~~~G~~~~-~~~~-l~~~~~~a~~~  142 (273)
T Consensus       191 H~G~SiPn~~~~~~~~leeG~~~AIEpFAt~G~G~V~~~~~~~iY~~l~~DrpvrPtL~~Ar~lL~~  257 (327)
T TIGR00501       191 HAGLSIPNVKERDTTKLEEGDVVAIEPFATDGVGLVTDGGEVEIYKFLAEDRPVRPTLKSARKLLKK  257 (327)
T ss_pred             CCCCCCEEEECCCCCEEECCCEEEECCCCCCCEEEEECCCCCHHHHHHCCCCCCCCCHHHHHHHHHH
T ss_conf             5895000342798745102578884366768745651288610122105688967335899998767