Diaphorina citri psyllid: psy6103
Local Sequence Feature Prediction
| Prediction and Method | Result |
|---|
|
Function Prediction
Annotation transfered from Closely Related SWISS-PROT Entries 
Annotation ![]() | Function Description ![]() | Confidence Level ![]() | Reference Protein ![]() |
| Calcium-activated potassium channel slowpoke | Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Kinetics are determined by alternative splicing, phosphorylation status and its combination interaction with Slob and 14-3-3-zeta. While the interaction with Slob1 alone increases its activity, its interaction with both Slob1 and 14-3-3-zeta decreases its activity. | very confident | Q03720 |
| Calcium-activated potassium channel subunit alpha-1 | Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in the cochlea, regulation of transmitter release, and innate immunity. In smooth muscles, its activation by high level of Ca(2+), caused by ryanodine receptors in the sarcoplasmic reticulum, regulates the membrane potential. In cochlea cells, its number and kinetic properties partly determine the characteristic frequency of each hair cell and thereby helps to establish a tonotopic map. Highly sensitive to both iberiotoxin (IbTx) and charybdotoxin (CTX). | confident | Q8AYS8 |
| Calcium-activated potassium channel subunit alpha-1 | Potassium channel activated by both membrane depolarization or increase in cytosolic Ca(2+) that mediates export of K(+). It is also activated by the concentration of cytosolic Mg(2+). Its activation dampens the excitatory events that elevate the cytosolic Ca(2+) concentration and/or depolarize the cell membrane. It therefore contributes to repolarization of the membrane potential. Plays a key role in controlling excitability in a number of systems, such as regulation of the contraction of smooth muscle, the tuning of hair cells in the cochlea, regulation of transmitter release, and innate immunity. In smooth muscles, its activation by high level of Ca(2+), caused by ryanodine receptors in the sarcoplasmic reticulum, regulates the membrane potential. In cochlea cells, its number and kinetic properties partly determine the characteristic frequency of each hair cell and thereby helps to establish a tonotopic map. Kinetics of KCNMA1 channels are determined by alternative splicing, phosphorylation status and its combination with modulating beta subunits. Highly sensitive to both iberiotoxin (IbTx) and charybdotoxin (CTX). | confident | Q62976 |
Prediction of Gene Ontology Terms 
Prediction of Enzyme Commission Number 
No EC number assigned to the protein, probably not an enzyme!
Spatial Structural Prediction
Structural Models Based on Templates
|
Template: 3MT5, chain A Confidence level:very confident Coverage over the Query: 10-123 View the alignment between query and template View the model in PyMOL |