>gi|350539055|ref|NP_001234116.1| 60S ribosomal protein L35-like [Solanum lycopersicum] gi|62751093|dbj|BAD95794.1| similar to 60S ribosomal protein L35 [Solanum lycopersicum]
L29 is a protein of the large ribosomal Subunit. A homolog, called heparin/heparan sulfate interacting protein (HIP), has also been identified in mammals. L29 is located on the surface of the large ribosomal subunit, where it participates in forming a protein ring that surrounds the polypeptide exit channel, providing structural support for the ribosome. L29 is involved in forming the translocon binding site, along with L19, L22, L23, L24, and L31e. In addition, L29 and L23 form the interaction site for trigger factor (TF) on the ribosomal surface, adjacent to the exit tunnel. L29 forms numerous interactions with L23 and with the 23S rRNA. In some eukaryotes, L29 is referred to as L35, which is distinct from L35 found in bacteria and some eukaryotes (primarily plastids and mitochondria). The mammalian homolog, HIP, is found on the surface of many tissues and cell lines. It is believed to play a role in cell adhesion and modulation of blood coagulation. It has also been shown to inhibit apoptosis in cancer cells. Length = 57
>gnl|CDD|201463 pfam00831, Ribosomal_L29, Ribosomal L29 protein
This model describes a ribosomal large subunit protein, called L29 in prokaryotic (50S) large subunits and L35 in eukaryotic (60S) large subunits [Protein synthesis, Ribosomal proteins: synthesis and modification]. Length = 55
>gnl|CDD|234773 PRK00461, rpmC, 50S ribosomal protein L29; Reviewed
>PF00831 Ribosomal_L29: Ribosomal L29 protein; InterPro: IPR001854 Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms
The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ]. Ribosomal protein L29 is one of the proteins from the large ribosomal subunit. L29 belongs to a family of ribosomal proteins of 63 to 138 amino-acid residues which, on the basis of sequence similarities [], groups: Red algal L29. Bacterial L29. Mammalian L35 Caenorhabditis elegans L35 (ZK652.4). Yeast L35. ; GO: 0003735 structural constituent of ribosome, 0006412 translation, 0005622 intracellular, 0005840 ribosome; PDB: 1VSP_W 3MS1_Y 3MRZ_Y 3F1H_2 3PYT_Y 3PYO_Y 3D5D_2 3D5B_2 3PYR_Y 1VSA_W ....
>PRK00461 rpmC 50S ribosomal protein L29; Reviewed
L29 is a protein of the large ribosomal Subunit. A homolog, called heparin/heparan sulfate interacting protein (HIP), has also been identified in mammals. L29 is located on the surface of the large ribosomal subunit, where it participates in forming a protein ring that surrounds the polypeptide exit channel, providing structural support for the ribosome. L29 is involved in forming the translocon binding site, along with L19, L22, L23, L24, and L31e. In addition, L29 and L23 form the interaction site for trigger factor (TF) on the ribosomal surface, adjacent to the exit tunnel. L29 forms numerous interactions with L23 and with the 23S rRNA. In some eukaryotes, L29 is referred to as L35, which is distinct from L35 found in bacteria and some eukaryotes (primarily plastids and mitochondria). The mammalian homolog, HIP, is found on the surface of many tissues and cell lines. It is believed to play a role in cell adhesion and modulat
called L29 in prokaryotic (50S) large subunits and L35 in eukaryotic (60S) large subunits.
>PF06984 MRP-L47: Mitochondrial 39-S ribosomal protein L47 (MRP-L47); InterPro: IPR010729 Ribosomes are the particles that catalyse mRNA-directed protein synthesis in all organisms
The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF-Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl-tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites [, ]. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein. The proteins are named in accordance with the subunit of the ribosome which they belong to - the small (S1 to S31) and the large (L1 to L44). Usually they decorate the rRNA cores of the subunits. Many ribosomal proteins, particularly those of the large subunit, are composed of a globular, surfaced-exposed domain with long finger-like projections that extend into the rRNA core to stabilise its structure. Most of the proteins interact with multiple RNA elements, often from different domains. In the large subunit, about 1/3 of the 23S rRNA nucleotides are at least in van der Waal's contact with protein, and L22 interacts with all six domains of the 23S rRNA. Proteins S4 and S7, which initiate assembly of the 16S rRNA, are located at junctions of five and four RNA helices, respectively. In this way proteins serve to organise and stabilise the rRNA tertiary structure. While the crucial activities of decoding and peptide transfer are RNA based, proteins play an active role in functions that may have evolved to streamline the process of protein synthesis. In addition to their function in the ribosome, many ribosomal proteins have some function 'outside' the ribosome [, ]. This entry represents the N-terminal region (approximately 8 residues) of the eukaryotic mitochondrial 39-S ribosomal protein L47 (MRP-L47). Mitochondrial ribosomal proteins (MRPs) are the counterparts of the cytoplasmic ribosomal proteins, in that they fulfil similar functions in protein biosynthesis. However, they are distinct in number, features and primary structure [].; GO: 0003735 structural constituent of ribosome, 0006412 translation, 0005761 mitochondrial ribosome
>KOG3331 consensus Mitochondrial/chloroplast ribosomal protein L4/L29 [Translation, ribosomal structure and biogenesis]
Crystal Structure Of The Large Ribosomal Subunit Fr
8e-04
>pdb|2ZKR|VV Chain v, Structure Of A Mammalian Ribosomal 60s Subunit Within An 80s Complex Obtained By Docking Homology Models Of The Rna And Proteins Into An 8.7 A Cryo-Em Map Length = 123
>pdb|1S1I|X Chain X, Structure Of The Ribosomal 80s-Eef2-Sordarin Complex From Yeast Obtained By Docking Atomic Models For Rna And Protein Components Into A 11.7 A Cryo-Em Map. This File, 1s1i, Contains 60s Subunit. The 40s Ribosomal Subunit Is In File 1s1h. Length = 120
>pdb|2GO5|5 Chain 5, Structure Of Signal Recognition Particle Receptor (Sr) In Complex With Signal Recognition Particle (Srp) And Ribosome Nascent Chain Complex Length = 124
>pdb|4A17|U Chain U, T.Thermophila 60s Ribosomal Subunit In Complex With Initiation Factor 6. This File Contains 5s Rrna, 5.8s Rrna And Proteins Of Molecule 2. Length = 124
>pdb|3JYW|X Chain X, Structure Of The 60s Proteins For Eukaryotic Ribosome Based On Cryo-Em Map Of Thermomyces Lanuginosus Ribosome At 8.9a Resolution Length = 86