Binds DNA and exists as hetero and homo-dimers. Differs from SRF-like/Type I subgroup mainly in position of the alpha helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. Length = 77
Binds DNA and exists as hetero and homo-dimers. Composed of 2 main subgroups: SRF-like/Type I and MEF2-like (myocyte enhancer factor 2)/ Type II. These subgroups differ mainly in position of the alpha 2 helix responsible for the dimerization interface; Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. Length = 59
>gnl|CDD|238166 cd00266, MADS_SRF_like, SRF-like/Type I subfamily of MADS (MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptional regulators
Score = 96.6 bits (241), Expect = 4e-28
Identities = 35/66 (53%), Positives = 46/66 (69%)
Query: 2 GRGKVELKRIENKTNRQVTFSKRKNGILKKAFELSVLCDAEIALVIFSPSGKAYHYASDH 61
GR K+++KRIENK R VTFSKR+ G+ KKA ELS LC AE+A++++SPSGK Y +
Sbjct: 1 GRKKIKIKRIENKKKRAVTFSKRRQGLFKKASELSTLCGAEVAVIVYSPSGKLYVFWPSS 60
Query: 62 HTMDKI 67
I
Sbjct: 61 EVEGVI 66
Binds DNA and exists as hetero- and homo-dimers. Differs from the MEF-like/Type II subgroup mainly in position of the alpha 2 helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi. Length = 83
>gnl|CDD|109379 pfam00319, SRF-TF, SRF-type transcription factor (DNA-binding and dimerisation domain)
Binds DNA and exists as hetero and homo-dimers. Differs from SRF-like/Type I subgroup mainly in position of the alpha helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi.
>cd00266 MADS_SRF_like SRF-like/Type I subfamily of MADS (MCM1, Agamous, Deficiens, and SRF (serum response factor) box family of eukaryotic transcriptional regulators
Binds DNA and exists as hetero- and homo-dimers. Differs from the MEF-like/Type II subgroup mainly in position of the alpha 2 helix responsible for the dimerization interface. Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi.
Binds DNA and exists as hetero and homo-dimers. Composed of 2 main subgroups: SRF-like/Type I and MEF2-like (myocyte enhancer factor 2)/ Type II. These subgroups differ mainly in position of the alpha 2 helix responsible for the dimerization interface; Important in homeotic regulation in plants and in immediate-early development in animals. Also found in fungi.
>PF00319 SRF-TF: SRF-type transcription factor (DNA-binding and dimerisation domain); InterPro: IPR002100 Human serum response factor (SRF) is a ubiquitous nuclear protein important for cell proliferation and differentiation
SRF function is essential for transcriptional regulation of numerous growth-factor-inducible genes, such as c-fos oncogene and muscle-specific actin genes. A core domain of around 90 amino acids is sufficient for the activities of DNA-binding, dimerisation and interaction with accessory factors. Within the core is a DNA-binding region, designated the MADS box [], that is highly similar to many eukaryotic regulatory proteins: among these are MCM1, the regulator of cell type-specific genes in fission yeast; DSRF, a Drosophila trachea development factor; the MEF2 family of myocyte-specific enhancer factors; and the Agamous and Deficiens families of plant homeotic proteins. In SRF, the MADS box has been shown to be involved in DNA-binding and dimerisation []. Proteins belonging to the MADS family function as dimers, the primary DNA-binding element of which is an anti-parallel coiled coil of two amphipathic alpha-helices, one from each subunit. The DNA wraps around the coiled coil allowing the basic N-termini of the helices to fit into the DNA major groove. The chain extending from the helix N-termini reaches over the DNA backbone and penetrates into the minor groove. A 4-stranded, anti-parallel beta-sheet packs against the coiled-coil face opposite the DNA and is the central element of the dimerisation interface. The MADS-box domain is commonly found associated with K-box region see IPR002487 from INTERPRO ; GO: 0003677 DNA binding, 0046983 protein dimerization activity; PDB: 1MNM_B 1N6J_A 1TQE_S 3MU6_D 3P57_I 1EGW_A 1C7U_B 3KOV_A 1HBX_A 1K6O_C ....
>KOG0015 consensus Regulator of arginine metabolism and related MADS box-containing transcription factors [Transcription]
>pdb|3KOV|A Chain A, Structure Of Mef2a Bound To Dna Reveals A Completely Folded Mads-BoxMEF2 DOMAIN THAT RECOGNIZES DNA AND RECRUITS Transcription Co-Factors Length = 90