Specifically cleaves olefinic bonds in cyclic enones. Involved in the biosynthesis of jasmonic acid (JA) and perhaps in biosynthesis or metabolism of other oxylipin signaling moleclules. Required for the spatial and temporal regulation of JA levels during dehiscence of anthers, promoting the stomium degeneration program. In vitro, reduces 9S,13S-12-oxophytodienoic acid (9S,13S-OPDA) and 9R,13R-OPDA to 9S,13S-OPC-8:0 and 9R,13R-OPC-8:0, respectively. Can detoxify the explosive 2,4,6-trinitrotoluene (TNT) in vitro by catalyzing its nitroreduction to form hydroxylamino-dinitrotoluene (HADNT). Arabidopsis thaliana (taxid: 3702) EC: 1EC: .EC: 3EC: .EC: 1EC: .EC: 4EC: 2
Involved in the biosynthesis of jasmonic acid (JA) and perhaps in biosynthesis or metabolism of other oxylipin signaling moleclules. May be required for the spatial and temporal regulation of JA levels during dehiscence of anthers, promoting the stomium degeneration program. In vitro, reduces cis(+)-12-oxophytodienoic acid (cis(+)-OPDA) and cis(-)-OPDA to cis(+)-OPC-8:0 and cis(-)-OPC-8:0, respectively.
Involved in the biosynthesis of the antimalarial endoperoxide artemisinin by catalyzing the double bond reduction of (11R)-dihydroartemisinic aldehyde to produce artemisinic aldehyde. Also able to reduce artemisinic alcohol and artemisinic acid to a lesser extent.
Specifically cleaves olefinic bonds in cyclic enones. Involved in the biosynthesis of jasmonic acid (JA) and perhaps in biosynthesis or metabolism of other oxylipin signaling moleclules. It is required for the spatial and temporal regulation of JA levels during dehiscence of anthers, promoting the stomium degeneration program (By similarity). In vitro, reduces 9S,13S-12-oxophytodienoic acid (9S,13S-OPDA) and 9R,13R-OPDA to 9S,13S-OPC-8:0 and 9R,13R-OPC-8:0, respectively.
Probably involved in the biosynthesis or metabolism of oxylipin signaling molecules. In vitro, reduces cis(-)-12-oxophytodienoic acid (cis(-)-OPDA) and to cis(-)-OPC-8:0.
Score = 68.9 bits (167), Expect = 1e-11, Method: Composition-based stats.
Identities = 31/49 (63%), Positives = 36/49 (73%)
Query: 54 RVVLAPMTRCRALNGIPGPALATYYQQRSTPGGFLISEGTAVSPTAPGY 102
RVVLAP+TR R+ +P P A YY QR+TPGGFLI+E T VS TA GY
Sbjct: 26 RVVLAPLTRQRSYGNVPQPHAAIYYSQRTTPGGFLITEATGVSDTAQGY 74
Specifically cleaves olefinic bonds in alpha,beta-unsaturated carbonyls and may be involved in detoxification or modification of these reactive compounds. May be involved in the biosynthesis or metabolism of oxylipin signaling molecules. In vitro, reduces 9R,13R-12-oxophyodienoic acid (9R,13R-OPDA) to 9R,13R-OPC-8:0, but only poorly 9S,13S-OPDA, the natural precursor of jasmonic acid. Can detoxify the explosive 2,4,6-trinitrotoluene (TNT) in vitro and in vivo by catalyzing its nitroreduction to form hydroxylamino-dinitrotoluene (HADNT).
Score = 134 (52.2 bits), Expect = 2.0e-08, P = 2.0e-08
Identities = 27/46 (58%), Positives = 31/46 (67%)
Query: 57 LAPMTRCRALNGIPGPALATYYQQRSTPGGFLISEGTAVSPTAPGY 102
+APM R R+ IP P +A YY QR+TPGG LISE T VS TA Y
Sbjct: 12 MAPMARMRSYGNIPQPHVALYYCQRTTPGGLLISEATGVSETAMAY 57
OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include 12-oxophytodienoate reductase, pentaerythritol tetranitrate reductase, morphinone reductase, and related enzymes. Length = 338
>gnl|CDD|240095 cd04747, OYE_like_5_FMN, Old yellow enzyme (OYE)-related FMN binding domain, group 5
Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. Length = 361
>gnl|CDD|224814 COG1902, NemA, NADH:flavin oxidoreductases, Old Yellow Enzyme family [Energy production and conversion]
Score = 46.4 bits (111), Expect = 3e-07
Identities = 21/54 (38%), Positives = 29/54 (53%), Gaps = 2/54 (3%)
Query: 54 RVVLAPMTRCRA-LNGIPGPALATYYQQRSTPG-GFLISEGTAVSPTAPGYFRN 105
R+V+APMT A +G P L YY++R+ G G +I+E V P GY
Sbjct: 14 RIVMAPMTENMATEDGTPTDELIEYYEERAKGGVGLIITEAAYVDPEGKGYPGQ 67
OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. Length = 327
>gnl|CDD|240086 cd04735, OYE_like_4_FMN, Old yellow enzyme (OYE)-related FMN binding domain, group 4
Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. Length = 353
OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
YqjM is involved in the oxidative stress response of Bacillus subtilis. Like the other OYE members, each monomer of YqjM contains FMN as a non-covalently bound cofactor and uses NADPH as a reducing agent. The YqjM enzyme exists as a homotetramer that is assembled as a dimer of catalytically dependent dimers, while other OYE members exist only as monomers or dimers. Moreover, the protein displays a shared active site architecture where an arginine finger at the COOH terminus of one monomer extends into the active site of the adjacent monomer and is directly involved in substrate recognition. Another remarkable difference in the binding of the ligand in YqjM is represented by the contribution of the NH2-terminal tyrosine instead of a COOH-terminal tyrosine in OYE and its homologs.
>PF00724 Oxidored_FMN: NADH:flavin oxidoreductase / NADH oxidase family; InterPro: IPR001155 The TIM-barrel fold is a closed barrel structure composed of an eight-fold repeat of beta-alpha units, where the eight parallel beta strands on the inside are covered by the eight alpha helices on the outside []
It is a widely distributed fold which has been found in many enzyme families that catalyse completely unrelated reactions []. The active site is always found at the C-terminal end of this domain. Proteins in this entry are a variety of NADH:flavin oxidoreductase/NADH oxidase enzymes, found mostly in bacteria or fungi, that contain a TIM-barrel fold. They commonly use FMN/FAD as cofactor and include: dimethylamine dehydrogenase trimethylamine dehydrogenase 12-oxophytodienoate reductase NADPH dehydrogenase NADH oxidase ; GO: 0010181 FMN binding, 0016491 oxidoreductase activity, 0055114 oxidation-reduction process; PDB: 3GKA_B 3P67_A 3F03_K 2ABA_A 1VYR_A 1GVO_A 3KFT_B 3P8I_A 1GVQ_A 3P74_A ....
>cd04734 OYE_like_3_FMN Old yellow enzyme (OYE)-related FMN binding domain, group 3
Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase. One member of this subgroup, the Sinorhizobium meliloti stachydrine utilization protein stcD, has been idenified as a putative N-methylproline demethylase.
>cd04733 OYE_like_2_FMN Old yellow enzyme (OYE)-related FMN binding domain, group 2
Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
>cd02933 OYE_like_FMN Old yellow enzyme (OYE)-like FMN binding domain
OYE was the first flavin-dependent enzyme identified, however its true physiological role remains elusive to this day. Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Members of OYE family include 12-oxophytodienoate reductase, pentaerythritol tetranitrate reductase, morphinone reductase, and related enzymes.
Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
DCR in E. coli is an iron-sulfur flavoenzyme which contains FMN, FAD, and a 4Fe-4S cluster. It is also a monomer, unlike that of its eukaryotic counterparts which form homotetramers and lack the flavin and iron-sulfur cofactors. Metabolism of unsaturated fatty acids requires auxiliary enzymes in addition to those used in b-oxidation. After a given number of cycles through the b-oxidation pathway, those unsaturated fatty acyl-CoAs with double bonds at even-numbered carbon positions contain 2-trans, 4-cis double bonds that can not be modified by enoyl-CoA hydratase. DCR utilizes NADPH to remove the C4-C5 double bond. DCR can catalyze the reduction of both natural fatty acids with cis double bonds, as well as substrates containing trans double bonds. The reaction is initiated by hybrid transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. The fully reduced FMN provi
Each monomer of OYE contains FMN as a non-covalently bound cofactor, uses NADPH as a reducing agent with oxygens, quinones, and alpha,beta-unsaturated aldehydes and ketones, and can act as electron acceptors in the catalytic reaction. Other members of OYE family include trimethylamine dehydrogenase, 2,4-dienoyl-CoA reductase, enoate reductase, pentaerythriol tetranitrate reductase, xenobiotic reductase, and morphinone reductase.
Enoate reductase catalyzes the NADH-dependent reduction of carbon-carbon double bonds of several molecules, including nonactivated 2-enoates, alpha,beta-unsaturated aldehydes, cyclic ketones, and methylketones. ERs are similar to 2,4-dienoyl-CoA reductase from E. coli and to the old yellow enzyme from Saccharomyces cerevisiae.
TMADH is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. The protein forms a symetrical dimer with each subunit containing one 4Fe-4S cluster and one FMN cofactor. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN which is bent by ~25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This modification of the conformation of the flavin is thought to facilitate catalysis.The closely related histamine dehydrogenase catalyzes oxidative deamination of histamine.
>KOG0134 consensus NADH:flavin oxidoreductase/12-oxophytodienoate reductase [Energy production and conversion; General function prediction only]
This family includes subfamily 1 dihydroorotate dehydrogenases while excluding the closely related subfamily 2 (TIGR01036). This family also includes a number of uncharacterized proteins and a domain of dihydropyrimidine dehydrogenase. The uncharacterized proteins might all be dihydroorotate dehydrogenase.
>pdb|1OYA|A Chain A, Old Yellow Enzyme At 2 Angstroms Resolution: Overall Structure, Ligand Binding And Comparison With Related Flavoproteins Length = 400