Transcription factor that promotes early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class homeotic proteins. Citrus sinensis (taxid: 2711)
Transcription factor that promotes early floral meristem identity in synergy with LEAFY. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Is indispensable for normal development of sepals and petals in flowers. Regulates positively the B class homeotic proteins APETALA3 and PISTILLATA with the cooperation of LEAFY and UFO. Interacts with SEPALLATA3 or AP3/PI heterodimer to form complexes that could be involved in genes regulation during floral meristem development. Regulates positively AGAMOUS in cooperation with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Together with AGL24 and SVP, controls the identity of the floral meristem and regulates expression of class B, C and E genes. Represses flowering time genes AGL24, SVP and SOC1 in emerging floral meristems.
Transcription factor that promotes early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class homeotic proteins.
Brassica oleracea (taxid: 3712)
>sp|Q41276|AP1_SINAL Floral homeotic protein APETALA 1 OS=Sinapis alba GN=AP1 PE=2 SV=1
Controls floral meristem identity. Is also required for normal development of sepals and petals. Is required for the transition of an influorescence meristem into a floral meristem. Interacts with LEAFY.
Sinapis alba (taxid: 3728)
>sp|Q8GTF5|AP1A_BRAOB Floral homeotic protein APETALA 1 A OS=Brassica oleracea var. botrytis GN=AP1A PE=2 SV=1
Transcription factor that promotes early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class homeotic proteins.
Brassica oleracea var. botrytis (taxid: 3715)
>sp|B4YPW6|AP1A_BRAOA Floral homeotic protein APETALA 1 A OS=Brassica oleracea var. alboglabra GN=AP1A PE=3 SV=1
Transcription factor that promotes early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class homeotic proteins.
Brassica oleracea var. alboglabra (taxid: 3714)
>sp|Q96356|2AP1_BRAOT Floral homeotic protein APETALA 1-2 OS=Brassica oleracea var. italica GN=2AP1 PE=2 SV=1
Transcription factor that promotes early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class homeotic proteins.
Probable transcription factor that promotes early floral meristem identity in synergy with APETALA1, FRUITFULL and LEAFY. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Seems to be partially redundant to the function of APETALA1.
Probable transcription factor that promotes early floral meristem identity in synergy with APETALA1, FRUITFULL and LEAFY. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Seems to be partially redundant to the function of APETALA1.
Probable transcription factor that promotes early floral meristem identity in synergy with APETALA1, FRUITFULL and LEAFY. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Seems to be partially redundant to the function of APETALA1.
Brassica rapa subsp. pekinensis (taxid: 51351)
Close Homologs in the Non-Redundant Database Detected by BLAST
The K-box region is commonly found associated with SRF-type transcription factors see pfam00319. The K-box is a possible coiled-coil structure. Possible role in multimer formation. Length = 100
The majority of the plant MADS proteins share a stereotypical MIKC structure. It comprises (from N- to C-terminal) an N-terminal domain, which is, however, present only in a minority of proteins; a MADS domain (see PDOC00302 from PROSITEDOC, IPR002100 from INTERPRO), which is the major determinant of DNA-binding but which also performs dimerisation and accessory factor binding functions; a weakly conserved intervening (I) domain, which constitutes a key molecular determinant for the selective formation of DNA-binding dimers; a keratin-like (K-box) domain, which promotes protein dimerisation; and a C-terminal (C) domain, which is involved in transcriptional activation or in the formation of ternary or quaternary protein complexes. The 80-amino acid K-box domain was originally identified as a region with low but significant similarity to a region of keratin, which is part of the coiled-coil sequence constituting the central rod-shaped domain of keratin [, , ]. The K-box protein-protein interaction domain which mediates heterodimerization of MIKC-type MADS proteins contains several heptad repeats in which the first and the fourth positions are occupied by hydrophobic amino acids suggesting that the K-box domain forms three amphipathic alpha-helices referred to as K1, K2, and K3 [].; GO: 0003700 sequence-specific DNA binding transcription factor activity, 0006355 regulation of transcription, DNA-dependent, 0005634 nucleus
>PF06698 DUF1192: Protein of unknown function (DUF1192); InterPro: IPR009579 This family consists of several short, hypothetical, bacterial proteins of around 60 residues in length
>PF07106 TBPIP: Tat binding protein 1(TBP-1)-interacting protein (TBPIP); InterPro: IPR010776 This family consists of several eukaryotic TBP-1 interacting protein (TBPIP) sequences
TBP-1 has been demonstrated to interact with the human immunodeficiency virus type 1 (HIV-1) viral protein Tat, then modulate the essential replication process of HIV. In addition, TBP-1 has been shown to be a component of the 26S proteasome, a basic multiprotein complex that degrades ubiquitinated proteins in an ATP-dependent fashion. Human TBPIP interacts with human TBP-1 then modulates the inhibitory action of human TBP-1 on HIV-Tat-mediated transactivation [].
>PRK15422 septal ring assembly protein ZapB; Provisional