Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA. Drosophila virilis (taxid: 7244) EC: 3EC: .EC: 1EC: .EC: -EC: .EC: -
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structurs that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA.
Drosophila erecta (taxid: 7220)
EC: 3
EC: .
EC: 1
EC: .
EC: -
EC: .
EC: -
Close Homologs in the Non-Redundant Database Detected by BLAST
Score = 63.3 bits (155), Expect = 3e-14
Identities = 28/55 (50%), Positives = 33/55 (60%), Gaps = 5/55 (9%)
Query: 5 GLAKLVADVAPSSIR----ESRKICIDASMSLYQFLIAVRSE-GNQLMSVDGEPT 54
GL+KL+AD A I RKI IDAS +LYQFLIA+R G L + GE T
Sbjct: 2 GLSKLIADGAIKEIELKDLFGRKIAIDASNALYQFLIAIRQPDGTPLTNSAGEVT 56
Flap endonuclease-1 (FEN1) is involved in multiple DNA metabolic pathways, including DNA replication processes (5' flap DNA endonuclease activity and double stranded DNA 5'-exonuclease activity) and DNA repair processes (long-patch base excision repair) in eukaryotes and archaea. Interaction between FEN1 and PCNA (Proliferating cell nuclear antigen) is an essential prerequisite to FEN1's DNA replication functionality and stimulates FEN1 nuclease activity by 10-50 fold. FEN1 belongs to the FEN1-EXO1-like family of structure-specific, 5' nucleases. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region (I domain) of variable length (approximately 45 residues in FEN1 PIN domains) and a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included here) and the helical arch/clamp region are involved in DNA binding. Nucleases within this group also have a carboxylate-rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+/Mn2+). FEN1 has a C-terminal extension containing residues forming the consensus PIP-box - Qxx(M/L/I)xxF(Y/F) which serves to anchor FEN1 to PCNA. Length = 261
>gnl|CDD|214690 smart00485, XPGN, Xeroderma pigmentosum G N-region
Score = 46.2 bits (110), Expect = 1e-08
Identities = 24/53 (45%), Positives = 31/53 (58%), Gaps = 6/53 (11%)
Query: 2 GILGLAKLVADVA---PSSIR--ESRKICIDASMSLYQFLIAVRSE-GNQLMS 48
GI GL ++ VA P I E + + IDAS+ LYQFL AVR + GN L +
Sbjct: 1 GIKGLLPILKPVALIRPVDIEALEGKTLAIDASIWLYQFLKAVRDQLGNALQN 53
Length = 100
>gnl|CDD|189038 cd09868, PIN_XPG, PIN domain of Xeroderma pigmentosum complementation group G (XPG) nuclease, a structure-specific, divalent-metal-ion dependent, 5' nuclease and homologs
The Xeroderma pigmentosum complementation group G (XPG) nuclease plays a central role in nucleotide excision repair (NER) in cleaving DNA bubble structures or loops. XPG is a member of the structure-specific, 5' nuclease family that catalyzes hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair, and recombination. These nucleases contain a PIN (PilT N terminus) domain with a helical arch/clamp region (I domain). In XPG PIN domains, this arch region can be quite variable and extensive (400 - 800 residues) in length and is required for NER activity and for efficient processing of bubble substrates. Inserted within the PIN domain of these 5' nucleases is a H3TH (helix-3-turn-helix) domain, an atypical helix-hairpin-helix-2-like region. Both the H3TH domain (not included here) and the helical arch/clamp region are involved in DNA binding. Nucleases within this group also have a carboxylate-rich active site that is involved in binding essential divalent metal ion cofactors (Mg2+/Mn2+). Length = 249
>gnl|CDD|233044 TIGR00600, rad2, DNA excision repair protein (rad2)
All proteins in this family for which functions are known are flap endonucleases that generate the 3' incision next to DNA damage as part of nucleotide excision repair. This family is related to many other flap endonuclease families including the fen1 family. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University) [DNA metabolism, DNA replication, recombination, and repair]. Length = 1034
Endonuclease that cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Has 5'-endo-/exonuclease and 5'-pseudo-Y-endonuclease activities. Cleaves the junction between single and double-stranded regions of flap DNA
>TIGR00600 rad2 DNA excision repair protein (rad2)
All proteins in this family for which functions are known are flap endonucleases that generate the 3' incision next to DNA damage as part of nucleotide excision repair. This family is related to many other flap endonuclease families including the fen1 family. This family is based on the phylogenomic analysis of JA Eisen (1999, Ph.D. Thesis, Stanford University).
>PF00752 XPG_N: XPG N-terminal domain; InterPro: IPR006085 Xeroderma pigmentosum (XP) [] is a human autosomal recessive disease, characterised by a high incidence of sunlight-induced skin cancer
People's skin cells with this condition are hypersensitive to ultraviolet light, due to defects in the incision step of DNA excision repair. There are a minimum of seven genetic complementation groups involved in this pathway: XP-A to XP-G. XP-G is one of the most rare and phenotypically heterogeneous of XP, showing anything from slight to extreme dysfunction in DNA excision repair [, ]. XP-G can be corrected by a 133 Kd nuclear protein, XPGC []. XPGC is an acidic protein that confers normal UV resistance in expressing cells []. It is a magnesium-dependent, single-strand DNA endonuclease that makes structure-specific endonucleolytic incisions in a DNA substrate containing a duplex region and single-stranded arms [, ]. XPGC cleaves one strand of the duplex at the border with the single-stranded region []. XPG belongs to a family of proteins that includes RAD2 from Saccharomyces cerevisiae (Baker's yeast) and rad13 from Schizosaccharomyces pombe (Fission yeast), which are single-stranded DNA endonucleases [, ]; mouse and human FEN-1, a structure-specific endonuclease; RAD2 from fission yeast and RAD27 from budding yeast; fission yeast exo1, a 5'-3' double-stranded DNA exonuclease that may act in a pathway that corrects mismatched base pairs; yeast DHS1, and yeast DIN7. Sequence alignment of this family of proteins reveals that similarities are largely confined to two regions. The first is located at the N-terminal extremity (N-region) and corresponds to the first 95 to 105 amino acids. The second region is internal (I-region) and found towards the C terminus; it spans about 140 residues and contains a highly conserved core of 27 amino acids that includes a conserved pentapeptide (E-A-[DE]-A-[QS]). It is possible that the conserved acidic residues are involved in the catalytic mechanism of DNA excision repair in XPG. The amino acids linking the N- and I-regions are not conserved. This entry represents the N-terminal of XPG.; GO: 0004518 nuclease activity, 0006281 DNA repair; PDB: 1A77_A 1A76_A 1MC8_B 3QEB_Z 3QEA_Z 3QE9_Y 1UL1_Z 3Q8K_A 3Q8M_A 3Q8L_A ....
XPG is a eukaryotic enzyme that functions in nucleotide-excision repair and transcription-coupled repair of oxidative DNA damage. Functionally/structurally related to FEN-1; divalent metal ion-dependent exo- and endonuclease, and bacterial and bacteriophage 5'3' exonucleases.
>cd00008 53EXOc 5'-3' exonuclease; T5 type 5'-3' exonuclease domains may co-occur with DNA polymerase I (Pol I) domains, or be part of Pol I containing complexes
They digest dsDNA and ssDNA, releasing mono-,di- and tri-nucleotides, as well as oligonucleotides, and have also been reported to possess RNase H activity. Also called 5' nuclease family, involved in structure-specific cleavage of flaps formed by Pol I activity (similar to mammalian flap endonuclease I, FEN-1). A single nucleic acid strand may be threaded through the 5' nuclease enzyme before cleavage occurs. The domain binds two divalent metal ions which are necessary for activity.
>PF12964 DUF3853: Protein of unknown function (DUF3853); InterPro: IPR024363 This entry represents a family of uncharacterised proteins that were found by clustering human gut metagenomic sequences []