Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase. Binds tRNA. Possesses inflammatory cytokine activity. Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation. Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels. Promotes dermal fibroblast proliferation and wound repair. Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum. Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations. Induces maturation of dendritic cells and monocyte cell adhesion. Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7. Homo sapiens (taxid: 9606)
Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase. Binds tRNA. Possesses inflammatory cytokine activity. Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation. Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels. Promotes dermal fibroblast proliferation and wound repair. Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum. Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations. Induces maturation of dendritic cells and monocyte cell adhesion. Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7.
Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase. Binds tRNA. Possesses inflammatory cytokine activity. Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation. Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels. Promotes dermal fibroblast proliferation and wound repair. Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum. Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations. Induces maturation of dendritic cells and monocyte cell adhesion.
Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).
Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).
Binds specifically G4 quadruplex nucleic acid structures (these are four-stranded right-handed helices, stabilized by guanine base quartets). Binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases.
Score = 68.9 bits (167), Expect = 8e-12, Method: Compositional matrix adjust.
Identities = 43/102 (42%), Positives = 57/102 (55%), Gaps = 12/102 (11%)
Query: 1 MRGVTSEAMVMCAST---PDKVEILAPPSAAKPGDLIQVEGY-TRNPDPVLNPKKKIFET 56
MRG+ S+AMV+CAS P KVE L PP + GD + VEGY + PD L PKKK+FE
Sbjct: 432 MRGIESQAMVLCASIEGEPRKVEPLDPPEGSAAGDRVYVEGYESGKPDDELKPKKKVFEK 491
Query: 57 VAPDLKTNDSNQATYKGKVWTVENVE---GFVTSQSLANVNI 95
+ DLK + A W +N+ G +T ++L NI
Sbjct: 492 LQVDLKISGEFVAQ-----WKEQNLMTKLGRITCKTLKGGNI 528
Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).
Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).
Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).
Mus musculus (taxid: 10090)
EC: 6
EC: .
EC: 1
EC: .
EC: 1
EC: .
EC: 1
Close Homologs in the Non-Redundant Database Detected by BLAST
This family contains a diverse fraction of tRNA binding proteins, including Caenorhabditis elegans methionyl-tRNA synthetase (CeMetRS), human tyrosyl- tRNA synthetase (hTyrRS), Saccharomyces cerevisiae Arc1p, human p43 and EMAP2. CeMetRS and hTyrRS aminoacylate their cognate tRNAs. Arc1p is a transactivator of yeast methionyl-tRNA and glutamyl-tRNA synthetases. This domain has general tRNA binding properties. In a subset of this family this domain has the added capability of a cytokine. For example the p43 component of the Human aminoacyl-tRNA synthetase complex is cleaved to release EMAP-II cytokine. EMAP-II has multiple activities during apoptosis, angiogenesis and inflammation and participates in malignant transformation. A EMAP-II-like cytokine also is released from hTyrRS upon cleavage. The active cytokine heptapeptide locates to this domain. Length = 105
This domain is found in prokaryotic methionyl-tRNA synthetases, prokaryotic phenylalanyl tRNA synthetases the yeast GU4 nucleic-binding protein (G4p1 or p42, ARC1), human tyrosyl-tRNA synthetase, and endothelial-monocyte activating polypeptide II. G4p1 binds specifically to tRNA form a complex with methionyl-tRNA synthetases. In human tyrosyl-tRNA synthetase this domain may direct tRNA to the active site of the enzyme. This domain may perform a common function in tRNA aminoacylation. Length = 95
>gnl|CDD|239066 cd02153, tRNA_bindingDomain, The tRNA binding domain is also known as the Myf domain in literature
Score = 40.6 bits (96), Expect = 7e-06
Identities = 15/38 (39%), Positives = 18/38 (47%), Gaps = 4/38 (10%)
Query: 1 MRGVTSEAMVMCASTP----DKVEILAPPSAAKPGDLI 34
+RGV SE M++ A V IL P A GD I
Sbjct: 62 LRGVESEGMLLSAEELGLEEGSVGILELPEDAPVGDRI 99
This domain is found in a diverse collection of tRNA binding proteins, including prokaryotic phenylalanyl tRNA synthetases (PheRS), methionyl-tRNA synthetases (MetRS), human tyrosyl-tRNA synthetase(hTyrRS), Saccharomyces cerevisiae Arc1p, Thermus thermophilus CsaA, Aquifex aeolicus Trbp111, human p43 and human EMAP-II. PheRS, MetRS and hTyrRS aminoacylate their cognate tRNAs. Arc1p is a transactivator of yeast methionyl-tRNA and glutamyl-tRNA synthetases. The molecular chaperones Trbp111 and CsaA also contain this domain. CsaA has export related activities; Trbp111 is structure-specific recognizing the L-shape of the tRNA fold. This domain has general tRNA binding properties. In a subset of this family this domain has the added capability of a cytokine. For example the p43 component of the Human aminoacyl-tRNA synthetase complex is cleaved to release EMAP-II cytokine. EMAP-II has multiple activities during apoptosis, angiogenesis and inflammation and participates in malignant transformation. An EMAP-II-like cytokine is released from hTyrRS upon cleavage. The active cytokine heptapeptide locates to this domain. For homodimeric members of this group which include CsaA, Trbp111 and Escherichia coli MetRS this domain acts as a dimerization domain. Length = 99
This family includes EcMetRS and Aquifex aeolicus Trbp111 (AaTrbp111). This domain has general tRNA binding properties. MetRS aminoacylates methionine transfer RNAs (tRNAmet). AaTrbp111 is structure-specific molecular chaperone recognizing the L-shape of the tRNA fold. AaTrbp111 plays a role in nuclear trafficking of tRNAs. The functional unit of EcMetRs and AaTrbp111 is a homodimer, this domain acts as the dimerization domain. Length = 105
This model describes Bacillus subtilis CsaA, an export-related chaperone that interacts with the Sec system, and related proteins from a number of other bacteria and archaea. The crystal structure is known for the homodimer from Thermus thermophilus.
CsaA is a molecular chaperone with export related activities. CsaA has a putative tRNA binding activity. The functional unit of CsaA is a homodimer and this domain acts as a dimerization domain.
This family includes EcMetRS and Aquifex aeolicus Trbp111 (AaTrbp111). This domain has general tRNA binding properties. MetRS aminoacylates methionine transfer RNAs (tRNAmet). AaTrbp111 is structure-specific molecular chaperone recognizing the L-shape of the tRNA fold. AaTrbp111 plays a role in nuclear trafficking of tRNAs. The functional unit of EcMetRs and AaTrbp111 is a homodimer, this domain acts as the dimerization domain.
This family contains a diverse fraction of tRNA binding proteins, including Caenorhabditis elegans methionyl-tRNA synthetase (CeMetRS), human tyrosyl- tRNA synthetase (hTyrRS), Saccharomyces cerevisiae Arc1p, human p43 and EMAP2. CeMetRS and hTyrRS aminoacylate their cognate tRNAs. Arc1p is a transactivator of yeast methionyl-tRNA and glutamyl-tRNA synthetases. This domain has general tRNA binding properties. In a subset of this family this domain has the added capability of a cytokine. For example the p43 component of the Human aminoacyl-tRNA synthetase complex is cleaved to release EMAP-II cytokine. EMAP-II has multiple activities during apoptosis, angiogenesis and inflammation and participates in malignant transformation. A EMAP-II-like cytokine also is released from hTyrRS upon cleavage. The active cytokine heptapeptide locates to this domain.
The methionyl-tRNA synthetase (metG) is a class I amino acyl-tRNA ligase. This model describes a region of the methionyl-tRNA synthetase that is present at the C-terminus of MetG in some species (E. coli, B. subtilis, Thermotoga maritima, Methanobacterium thermoautotrophicum), and as a separate beta chain in Aquifex aeolicus. It is absent in a number of other species (e.g. Mycoplasma genitalium, Mycobacterium tuberculosis), while Pyrococcus horikoshii has both a full length MetG and a second protein homologous to the beta chain only. Proteins hit by this model should called methionyl-tRNA synthetase beta chain if and only if the model metG hits a separate protein not also hit by this model.
>PF01588 tRNA_bind: Putative tRNA binding domain; InterPro: IPR002547 This domain is found in prokaryotic methionyl-tRNA synthetases, prokaryotic phenylalanyl tRNA synthetases the yeast GU4 nucleic-binding protein (G4p1 or p42, ARC1) [], human tyrosyl-tRNA synthetase [], and endothelial-monocyte activating polypeptide II
G4p1 binds specifically to tRNA form a complex with methionyl-tRNA synthetases []. In human tyrosyl-tRNA synthetase this domain may direct tRNA to the active site of the enzyme []. This domain may perform a common function in tRNA aminoacylation [].; GO: 0000049 tRNA binding; PDB: 3BU2_C 1PYB_A 2Q2I_A 2Q2H_A 1JJC_B 1EIY_B 1PYS_B 3HFZ_B 3TEH_B 2CWP_A ....
>cd02153 tRNA_bindingDomain The tRNA binding domain is also known as the Myf domain in literature
This domain is found in a diverse collection of tRNA binding proteins, including prokaryotic phenylalanyl tRNA synthetases (PheRS), methionyl-tRNA synthetases (MetRS), human tyrosyl-tRNA synthetase(hTyrRS), Saccharomyces cerevisiae Arc1p, Thermus thermophilus CsaA, Aquifex aeolicus Trbp111, human p43 and human EMAP-II. PheRS, MetRS and hTyrRS aminoacylate their cognate tRNAs. Arc1p is a transactivator of yeast methionyl-tRNA and glutamyl-tRNA synthetases. The molecular chaperones Trbp111 and CsaA also contain this domain. CsaA has export related activities; Trbp111 is structure-specific recognizing the L-shape of the tRNA fold. This domain has general tRNA binding properties. In a subset of this family this domain has the added capability of a cytokine. For example the p43 component of the Human aminoacyl-tRNA synthetase complex is cleaved to release EMAP-II cytokine. EMAP-II has multi
PheRS aminoacylate phenylalanine transfer RNAs (tRNAphe). PheRSs belong structurally to class II aminoacyl tRNA synthetases (aaRSs) but, as they aminoacylate the 2'OH of the terminal ribose of tRNA they belong functionally to class 1 aaRSs. This domain has general tRNA binding properties and is believed to direct tRNAphe to the active site of the enzyme.
Every known example of the phenylalanyl-tRNA synthetase, except the monomeric form of mitochondrial, is an alpha 2 beta 2 heterotetramer. The beta subunits break into two subfamilies that are considerably different in sequence, length, and pattern of gaps. This model represents the subfamily that includes the beta subunit from Bacteria other than spirochetes, as well as a chloroplast-encoded form from Porphyra purpurea. The chloroplast-derived sequence is considerably shorter at the amino end, however.
>TIGR02306 RNA_lig_DRB0094 RNA ligase, DRB0094 family
The member of this family from Deinococcus radiodurans, a species that withstands and recovers from extensive radiation or dessication damage, is an apparent RNA ligase. It repairs RNA stand breaks in nicked DNA:RNA and RNA:RNA but not DNA:DNA duplexes. It has adenylyltransferase activity associated with the C-terminal domain. Related proteins also in this family are found in Streptomyces avermitilis MA-4680 and in bacteriophage 44RR2.8t. The phage example is unsurprising since one mechanism of host cell defense against phage is cleavage and inactivation of certain tRNA molecules. A fungal sequence from Neurospora crassa scores between trusted and noise cutofffs and may be similar in function.