Glycosyltransferase with a proposed role in glycosphingolipid biosynthesis. Neurogenic protein implicated in epithelial development. Critical component of a differential oocyte-follicle cell adhesive system. Drosophila melanogaster (taxid: 7227) EC: 2EC: .EC: 4EC: .EC: 1EC: .EC: -
Glycosyltransferase with a proposed role in glycosphingolipid biosynthesis. Involved in susceptibility to pore-forming crystal toxins in conjunction with bre-1, bre-2 and bre-4. Has a role in determining brood size.
Glycosyltransferase with a proposed role in glycosphingolipid biosynthesis. Involved in susceptibility to pore-forming crystal toxins in conjunction with bre-1, bre-2, bre-4 and bre-5. Has a role in determining brood size.
Caenorhabditis elegans (taxid: 6239)
EC: 2
EC: .
EC: 4
EC: .
EC: 1
EC: .
EC: -
Close Homologs in the Non-Redundant Database Detected by BLAST
Score = 63.1 bits (154), Expect = 9e-14
Identities = 28/85 (32%), Positives = 42/85 (49%), Gaps = 4/85 (4%)
Query: 12 WVVHLDEETLLTENSIRGVLNFVLDGKHHFGQGLITYANEEVVNWVTTLADSFRVADDMG 71
W++ LD +T+L + +R + N +L + QG +T N V NW+ LAD A+D G
Sbjct: 1 WILLLDADTVLPPDCLRLIANLMLSPEVALIQGPVTPRN--VRNWLERLADLEF-AEDHG 57
Query: 72 KLRLQFSLFHKPLLSWKGSYVVTQF 96
K RL L S GS + +
Sbjct: 58 KDRLFREALGGVLPSV-GSGALFRR 81
Members of this family of prokaryotic proteins include putative glucosyltransferases, which are involved in bacterial capsule biosynthesis. Length = 194
DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the ex
>cd04192 GT_2_like_e Subfamily of Glycosyltransferase Family GT2 of unknown function
GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
>PF00535 Glycos_transf_2: Glycosyl transferase family 2; InterPro: IPR001173 The biosynthesis of disaccharides, oligosaccharides and polysaccharides involves the action of hundreds of different glycosyltransferases
These enzymes catalyse the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. A classification of glycosyltransferases using nucleotide diphospho-sugar, nucleotide monophospho-sugar and sugar phosphates (2.4.1.- from EC) and related proteins into distinct sequence based families has been described []. This classification is available on the CAZy (CArbohydrate-Active EnZymes) web site. The same three-dimensional fold is expected to occur within each of the families. Because 3-D structures are better conserved than sequences, several of the families defined on the basis of sequence similarities may have similar 3-D structures and therefore form 'clans'. This domain is found in a diverse family of glycosyl transferases that transfer the sugar from UDP-glucose, UDP-N-acetyl-galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.; PDB: 2Z87_A 2Z86_B 2D7R_A 2D7I_A 3CKN_A 3CKQ_A 3CKJ_A 3CKV_A 3CKO_A 2FFU_A ....
>cd06436 GlcNAc-1-P_transferase N-acetyl-glucosamine transferase is involved in the synthesis of Poly-beta-1,6-N-acetyl-D-glucosamine
N-acetyl-glucosamine transferase is responsible for the synthesis of bacteria Poly-beta-1,6-N-acetyl-D-glucosamine (PGA). Poly-beta-1,6-N-acetyl-D-glucosamine is a homopolymer that serves as an adhesion for the maintenance of biofilm structural stability in diverse eubacteria. N-acetyl-glucosamine transferase is the product of gene pgaC. Genetic analysis indicated that all four genes of the pgaABCD locus were required for the PGA production, pgaC being a glycosyltransferase.
>cd06439 CESA_like_1 CESA_like_1 is a member of the cellulose synthase (CESA) superfamily
This is a subfamily of cellulose synthase (CESA) superfamily. CESA superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members of the superfamily include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins.
>cd06421 CESA_CelA_like CESA_CelA_like are involved in the elongation of the glucan chain of cellulose
Family of proteins related to Agrobacterium tumefaciens CelA and Gluconacetobacter xylinus BscA. These proteins are involved in the elongation of the glucan chain of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues. They are putative catalytic subunit of cellulose synthase, which is a glycosyltransferase using UDP-glucose as the substrate. The catalytic subunit is an integral membrane protein with 6 transmembrane segments and it is postulated that the protein is anchored in the membrane at the N-terminal end.
>cd06442 DPM1_like DPM1_like represents putative enzymes similar to eukaryotic DPM1
Proteins similar to eukaryotic DPM1, including enzymes from bacteria and archaea; DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi,
>cd04190 Chitin_synth_C C-terminal domain of Chitin Synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin
Chitin synthase, also called UDP-N-acetyl-D-glucosamine:chitin 4-beta-N-acetylglucosaminyltransferase, catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of GlcNAc residues formed by covalent beta-1,4 linkages. Chitin is an important component of the cell wall of fungi and bacteria and it is synthesized on the cytoplasmic surface of the cell membrane by membrane bound chitin synthases. Studies with fungi have revealed that most of them contain more than one chitin synthase gene. At least five subclasses of chitin synthases have been identified.
>cd06438 EpsO_like EpsO protein participates in the methanolan synthesis
The Methylobacillus sp EpsO protein is predicted to participate in the methanolan synthesis. Methanolan is an exopolysaccharide (EPS), composed of glucose, mannose and galactose. A 21 genes cluster was predicted to participate in the methanolan synthesis. Gene disruption analysis revealed that EpsO is one of the glycosyltransferase enzymes involved in the synthesis of repeating sugar units onto the lipid carrier.
>cd06427 CESA_like_2 CESA_like_2 is a member of the cellulose synthase superfamily
The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, Glucan Biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis prot
This family of genes include a glycosyl transferase, group 2 domain (pfam00535) which are responsible, generally for the transfer of nucleotide-diphosphate sugars to substrates such as polysaccharides and lipids. The genes of this family are often found in the same genetic locus with squalene-hopene cyclase genes, and are never associated with genes for the metabolism of phytoene. Indeed, the members of this family appear to never be found in a genome lacking squalene-hopene cyclase (SHC), although not all genomes encoding SHC have this glycosyl transferase. In the organism Zymomonas mobilis the linkage of this gene to hopanoid biosynthesis has been noted and the gene named HpnB. Hopanoids are known to feature polar glycosyl head groups in many organisms.
>cd06423 CESA_like CESA_like is the cellulose synthase superfamily
The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the
>cd02510 pp-GalNAc-T pp-GalNAc-T initiates the formation of mucin-type O-linked glycans
UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferases (pp-GalNAc-T) initiate the formation of mucin-type, O-linked glycans by catalyzing the transfer of alpha-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to hydroxyl groups of Ser or Thr residues of core proteins to form the Tn antigen (GalNAc-a-1-O-Ser/Thr). These enzymes are type II membrane proteins with a GT-A type catalytic domain and a lectin domain located on the lumen side of the Golgi apparatus. In human, there are 15 isozymes of pp-GalNAc-Ts, representing the largest of all glycosyltransferase families. Each isozyme has unique but partially redundant substrate specificity for glycosylation sites on acceptor proteins.
Rhamnolipids are glycolipids containing mono- or di- L-rhamnose molecules. Rhamnolipid synthesis occurs by sequential glycosyltransferase reactions involving two distinct rhamnosyltransferase enzymes. In P.aeruginosa, the synthesis of mono-rhamnolipids is catalyzed by rhamnosyltransferase 1, and proceeds by a glycosyltransfer reaction catalyzed by rhamnosyltransferase 2 to yield di-rhamnolipids.
>cd02525 Succinoglycan_BP_ExoA ExoA is involved in the biosynthesis of succinoglycan
Succinoglycan Biosynthesis Protein ExoA catalyzes the formation of a beta-1,3 linkage of the second sugar (glucose) of the succinoglycan with the galactose on the lipid carrie. Succinoglycan is an acidic exopolysaccharide that is important for invasion of the nodules. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide units. These units are synthesized on membrane-bound isoprenoid lipid carriers, beginning with galactose followed by seven glucose molecules, and modified by the addition of acetate, succinate, and pyruvate. ExoA is a membrane protein with a transmembrance domain at c-terminus.
>cd06435 CESA_NdvC_like NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase
NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase. Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans during growth under hypoosmotic conditions. Two genes (ndvB, ndvC) are involved in the beta-(1, 3), beta-(1,6)-glucan synthesis. The ndvC mutant strain resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1, 3)-glycosyl linkages. The periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans function for osmoregulation. The ndvC mutation also affects the ability of the bacteria to establish a successful symbiotic interaction with host plant. Thus, the beta-glucans may function as suppressors of a host defense response.
>COG1216 Predicted glycosyltransferases [General function prediction only]
GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
EF-P stimulates the peptidyltransferase activity in the prokaryotic 70S ribosome. EF-P enhances the synthesis of certain dipeptides with N-formylmethionyl-tRNA and puromycine in vitro. EF-P binds to both the 30S and 50S ribosomal subunits. EF-P binds near the streptomycine binding site of the 16S rRNA in the 30S subunit. EF-P interacts with domains 2 and 5 of the 23S rRNA. The L16 ribosomal protein of the 50S or its N-terminal fragment are required for EF-P mediated peptide bond synthesis, whereas L11, L15, and L7/L12 are not required in this reaction, suggesting that EF-P may function at a different ribosomal site than most other translation factors. EF-P is essential for cell viability and is required for protein synthesis. EF-P is mainly present in bacteria. The EF-P homologs in archaea and eukaryotes are the initiation factors aIF5A and eIF5A, respectively. EF-P
>cd02526 GT2_RfbF_like RfbF is a putative dTDP-rhamnosyl transferase
Shigella flexneri RfbF protein is a putative dTDP-rhamnosyl transferase. dTDP rhamnosyl transferases of Shigella flexneri add rhamnose sugars to N-acetyl-glucosamine in the O-antigen tetrasaccharide repeat. Lipopolysaccharide O antigens are important virulence determinants for many bacteria. The variations of sugar composition, the sequence of the sugars and the linkages in the O antigen provide structural diversity of the O antigen.
>cd06434 GT2_HAS Hyaluronan synthases catalyze polymerization of hyaluronan
Hyaluronan synthases (HASs) are bi-functional glycosyltransferases that catalyze polymerization of hyaluronan. HASs transfer both GlcUA and GlcNAc in beta-(1,3) and beta-(1,4) linkages, respectively to the hyaluronan chain using UDP-GlcNAc and UDP-GlcUA as substrates. HA is made as a free glycan, not attached to a protein or lipid. HASs do not need a primer for HA synthesis; they initiate HA biosynthesis de novo with only UDP-GlcNAc, UDP-GlcUA, and Mg2+. Hyaluronan (HA) is a linear heteropolysaccharide composed of (1-3)-linked beta-D-GlcUA-beta-D-GlcNAc disaccharide repeats. It can be found in vertebrates and a few microbes and is typically on the cell surface or in the extracellular space, but is also found inside mammalian cells. Hyaluronan has several physiochemical and biological functions such as space filling, lubrication, and providing a hydrated matrix through which cells can migrate.
>cd06437 CESA_CaSu_A2 Cellulose synthase catalytic subunit A2 (CESA2) is a catalytic subunit or a catalytic subunit substitute of the cellulose synthase complex
Cellulose synthase (CESA) catalyzes the polymerization reaction of cellulose using UDP-glucose as the substrate. Cellulose is an aggregate of unbranched polymers of beta-1,4-linked glucose residues, which is an abundant polysaccharide produced by plants and in varying degrees by several other organisms including algae, bacteria, fungi, and even some animals. Genomes from higher plants harbor multiple CESA genes. There are ten in Arabidopsis. At least three different CESA proteins are required to form a functional complex. In Arabidopsis, CESA1, 3 and 6 and CESA4, 7 and 8, are required for cellulose biosynthesis during primary and secondary cell wall formation. CESA2 is very closely related to CESA6 and is viewed as a prime substitute for CESA6. They functionally compensate each other. The cesa2 and cesa6 double mutant plants we
>cd06420 GT2_Chondriotin_Pol_N N-terminal domain of Chondroitin polymerase functions as a GalNAc transferase
Chondroitin polymerase is a two domain, bi-functional protein. The N-terminal domain functions as a GalNAc transferase. The bacterial chondroitin polymerase catalyzes elongation of the chondroitin chain by alternatively transferring the GlcUA and GalNAc moiety from UDP-GlcUA and UDP-GalNAc to the non-reducing ends of the chondroitin chain. The enzyme consists of N-terminal and C-terminal domains in which the two active sites catalyze the addition of GalNAc and GlcUA, respectively. Chondroitin chains range from 40 to over 100 repeating units of the disaccharide. Sulfated chondroitins are involved in the regulation of various biological functions such as central nervous system development, wound repair, infection, growth factor signaling, and morphogenesis, in addition to its conventional structural roles. In Caenorhabditis elegans, chondroitin is an essential factor for the worm
>PF02434 Fringe: Fringe-like; InterPro: IPR003378 The Notch receptor is a large, cell surface transmembrane protein involved in a wide variety of developmental processes in higher organisms []
It becomes activated when its extracellular region binds to ligands located on adjacent cells. Much of this extracellular region is composed of EGF-like repeats, many of which can be O-fucosylated. A number of these O-fucosylated repeats can in turn be further modified by the action of a beta-1,3-N-acetylglucosaminyltransferase enzyme known as Fringe []. Fringe potentiates the activation of Notch by Delta ligands, while inhibiting activation by Serrate/Jagged ligands. This regulation of Notch signalling by Fringe is important in many processes []. Four distinct Fringe proteins have so far been studied in detail; Drosophila Fringe (Dfng) and its three mammalian homologues Lunatic Fringe (Lfng), Radical Fringe (Rfng) and Manic Fringe (Mfng). Dfng, Lfng and Rfng have all been shown to play important roles in developmental processes within their host, though the phenotype of mutants can vary between species e.g. Rfng mutants are retarded in wing development in chickens, but have no obvious phenotype in mice [, , ]. Mfng mutants have not, so far, been charcterised. Biochemical studies indicate that the Fringe proteins are fucose-specific transferases requiring manganese for activity and utilising UDP-N-acetylglucosamine as a donor substrate []. The three mammalian proteins show distinct variations in their catalytic efficiencies with different substrates. Dfng is a glucosaminyltransferase that controls the response of the Notch receptor to specific ligands which is localised to the Golgi apparatus [] (not secreted as previously thought). Modification of Notch occurs through glycosylation by Dfng. This entry consists of Fringe proteins and related glycosyltransferase enzymes including: Beta-1,3-glucosyltransferase, which glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domains []. Core 1 beta1,3-galactosyltransferase 1, generates the core T antigen, which is a precursor for many extended O-glycans in glycoproteins and plays a central role in many processes, such as angiogenesis, thrombopoiesis and kidney homeostasis development []. ; GO: 0016757 transferase activity, transferring glycosyl groups, 0016020 membrane; PDB: 2J0B_A 2J0A_A.