Score = 58.9 bits (141), Expect = 9e-09, Method: Compositional matrix adjust.
Identities = 27/49 (55%), Positives = 36/49 (73%)
Query: 14 RPEYKKKKTQNESVQVVVRCRPMNSSEISGGYDKVVDMWPNRGVIEISN 62
RP +T NE VQVVVRCRPM++ E S G +VV+++PNRGV+E+ N
Sbjct: 7 RPGTASSQTPNECVQVVVRCRPMSNRERSEGSPEVVNVYPNRGVVELQN 55
Plus-end directed microtubule motor that may be used for anterograde axonal transport and could conceivably move cargos in fly neurons different than those moved by kinesin heavy chain or other plus-end directed motors. Drosophila pseudoobscura pseudoobscura (taxid: 46245)
Score = 54.7 bits (130), Expect = 2e-07, Method: Compositional matrix adjust.
Identities = 26/49 (53%), Positives = 35/49 (71%)
Query: 14 RPEYKKKKTQNESVQVVVRCRPMNSSEISGGYDKVVDMWPNRGVIEISN 62
RP +T NE VQVVVRCRPM++ E S +VV+++PNRGV+E+ N
Sbjct: 7 RPGTGSSQTPNECVQVVVRCRPMSNRERSERSPEVVNVYPNRGVVELQN 55
Plus-end directed microtubule motor that may be used for anterograde axonal transport and could conceivably move cargos in fly neurons different than those moved by kinesin heavy chain or other plus-end directed motors.
Drosophila melanogaster (taxid: 7227)
>sp|O15066|KIF3B_HUMAN Kinesin-like protein KIF3B OS=Homo sapiens GN=KIF3B PE=1 SV=1
Involved in tethering the chromosomes to the spindle pole and in chromosome movement. Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro.
Homo sapiens (taxid: 9606)
>sp|Q61771|KIF3B_MOUSE Kinesin-like protein KIF3B OS=Mus musculus GN=Kif3b PE=1 SV=1
Involved in tethering the chromosomes to the spindle pole and in chromosome movement. Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro.
>gi|392899779|ref|NP_001255329.1| Protein KLP-11, isoform e [Caenorhabditis elegans] gi|290447212|emb|CBK19441.1| Protein KLP-11, isoform e [Caenorhabditis elegans]
Score = 62.4 bits (150), Expect = 3e-08, Method: Compositional matrix adjust.
Identities = 28/60 (46%), Positives = 41/60 (68%)
Query: 16 EYKKKKTQNESVQVVVRCRPMNSSEISGGYDKVVDMWPNRGVIEISNPKVKEKKIKDLNI 75
E KK ++ E+V+V+VRCRP++S EI+ Y K+V M P RG IE+ NPK +++ KD
Sbjct: 3 EIMKKSSKQETVKVIVRCRPLSSQEIANNYSKIVHMRPQRGQIELKNPKEQDEPSKDFTF 62
Source: Caenorhabditis elegans
Species: Caenorhabditis elegans
Genus: Caenorhabditis
Family: Rhabditidae
Order: Rhabditida
Class: Chromadorea
Phylum: Nematoda
Superkingdom: Eukaryota
>gi|71986820|ref|NP_001023139.1| Protein KLP-11, isoform b [Caenorhabditis elegans] gi|21615432|emb|CAD36488.1| Protein KLP-11, isoform b [Caenorhabditis elegans]
Score = 62.4 bits (150), Expect = 3e-08, Method: Compositional matrix adjust.
Identities = 28/60 (46%), Positives = 41/60 (68%)
Query: 16 EYKKKKTQNESVQVVVRCRPMNSSEISGGYDKVVDMWPNRGVIEISNPKVKEKKIKDLNI 75
E KK ++ E+V+V+VRCRP++S EI+ Y K+V M P RG IE+ NPK +++ KD
Sbjct: 3 EIMKKSSKQETVKVIVRCRPLSSQEIANNYSKIVHMRPQRGQIELKNPKEQDEPSKDFTF 62
Source: Caenorhabditis elegans
Species: Caenorhabditis elegans
Genus: Caenorhabditis
Family: Rhabditidae
Order: Rhabditida
Class: Chromadorea
Phylum: Nematoda
Superkingdom: Eukaryota
>gi|25144877|ref|NP_741473.1| Protein KLP-11, isoform a [Caenorhabditis elegans] gi|14530411|emb|CAA92295.2| Protein KLP-11, isoform a [Caenorhabditis elegans]
Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Length = 333
>gnl|CDD|238660 cd01364, KISc_BimC_Eg5, Kinesin motor domain, BimC/Eg5 spindle pole proteins, participate in spindle assembly and chromosome segregation during cell division
This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Length = 352
>gnl|CDD|238661 cd01365, KISc_KIF1A_KIF1B, Kinesin motor domain, KIF1_like proteins
Score = 36.9 bits (86), Expect = 2e-04
Identities = 16/40 (40%), Positives = 21/40 (52%), Gaps = 2/40 (5%)
Query: 25 ESVQVVVRCRPMNSSEISGGYDKVVDMWPNRGVIEISNPK 64
+V+V VR RP NS E + G +V M V + NPK
Sbjct: 1 ANVKVAVRVRPFNSREKNRGSKCIVQMPGK--VTTLKNPK 38
KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively. Length = 356
>gnl|CDD|238668 cd01372, KISc_KIF4, Kinesin motor domain, KIF4-like subfamily
Score = 35.7 bits (83), Expect = 6e-04
Identities = 12/40 (30%), Positives = 18/40 (45%)
Query: 25 ESVQVVVRCRPMNSSEISGGYDKVVDMWPNRGVIEISNPK 64
SV+V VR RP+ E+ G V + P + + K
Sbjct: 1 SSVRVAVRVRPLLPKELLEGCQVCVSVVPGEPQVTVGTDK 40
Members of this group seem to perform a variety of functions, and have been implicated in neuronal organelle transport and chromosome segregation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80 Angstroms along the microtubule. Meanwhile, ATP hydrolysis takes place, and when the second head domain binds to the microtubule, the first domain again replaces ADP with ATP, triggering a conformational change that pulls the first domain forward. Length = 341
Subgroup of kinesins, which form heterotrimers composed of 2 kinesins and one non-motor accessory subunit. Kinesins II play important roles in ciliary transport, and have been implicated in neuronal transport, melanosome transport, the secretory pathway, and mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this group the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain
>cd01370 KISc_KIP3_like Kinesin motor domain, KIP3-like subgroup
The yeast kinesin KIP3 plays a role in positioning the mitotic spindle. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a sec
>cd01365 KISc_KIF1A_KIF1B Kinesin motor domain, KIF1_like proteins
KIF1A (Unc104) transports synaptic vesicles to the nerve terminal, KIF1B has been implicated in transport of mitochondria. Both proteins are expressed in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. In contrast to the majority of dimeric kinesins, most KIF1A/Unc104 kinesins are monomeric motors. A lysine-rich loop in KIF1A binds to the negatively charged C-terminus of tubulin and compensates for the lack of a second motor domain, allowing KIF1A to move processively.
>cd01364 KISc_BimC_Eg5 Kinesin motor domain, BimC/Eg5 spindle pole proteins, participate in spindle assembly and chromosome segregation during cell division
This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil d
>cd01367 KISc_KIF2_like Kinesin motor domain, KIF2-like group
KIF2 is a protein expressed in neurons, which has been associated with axonal transport and neuron development; alternative splice forms have been implicated in lysosomal translocation. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found in the middle (M-type) of the protein chain. M-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second (KIF2 may be slower). To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and lo
>cd01368 KISc_KIF23_like Kinesin motor domain, KIF23-like subgroup
Members of this group may play a role in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, a
>cd01369 KISc_KHC_KIF5 Kinesin motor domain, kinesin heavy chain (KHC) or KIF5-like subgroup
Members of this group have been associated with organelle transport. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-c
>cd01373 KISc_KLP2_like Kinesin motor domain, KLP2-like subgroup
Members of this subgroup seem to play a role in mitosis and meiosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second
Members of this group seem to perform a variety of functions, and have been implicated in neuronal organelle transport and chromosome segregation during mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain,
>cd01374 KISc_CENP_E Kinesin motor domain, CENP-E/KIP2-like subgroup, involved in chromosome movement and/or spindle elongation during mitosis
This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to
>cd01376 KISc_KID_like Kinesin motor domain, KIF22/Kid-like subgroup
Members of this group might play a role in regulating chromosomal movement along microtubules in mitosis. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through
This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type), in some its is found in the middle (M-type), or C-terminal (C-type). N-type and M-type kinesins are (+) end-directed motors, while C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coil
>cd01366 KISc_C_terminal Kinesin motor domain, KIFC2/KIFC3/ncd-like carboxy-terminal kinesins
Ncd is a spindle motor protein necessary for chromosome segregation in meiosis. KIFC2/KIFC3-like kinesins have been implicated in motility of the Golgi apparatus as well as dentritic and axonal transport in neurons. This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In this subgroup the motor domain is found at the C-terminus (C-type). C-type kinesins are (-) end-directed motors, i.e. they transport cargo towards the (-) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for mi
>cd01375 KISc_KIF9_like Kinesin motor domain, KIF9-like subgroup; might play a role in cell shape remodeling
This catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Kinesins are microtubule-dependent molecular motors that play important roles in intracellular transport and in cell division. In most kinesins, the motor domain is found at the N-terminus (N-type). N-type kinesins are (+) end-directed motors, i.e. they transport cargo towards the (+) end of the microtubule. Kinesin motor domains hydrolyze ATP at a rate of about 80 per second, and move along the microtubule at a speed of about 6400 Angstroms per second. To achieve that, kinesin head groups work in pairs. Upon replacing ADP with ATP, a kinesin motor domain increases its affinity for microtubule binding and locks in place. Also, the neck linker binds to the motor domain, which repositions the other head domain through the coiled-coil domain close to a second tubulin dimer, about 80
>PF00225 Kinesin: Kinesin motor domain; InterPro: IPR001752 Kinesin [, , ] is a microtubule-associated force-producing protein that may play a role in organelle transport
The kinesin motor activity is directed toward the microtubule's plus end. Kinesin is an oligomeric complex composed of two heavy chains and two light chains. The maintenance of the quaternary structure does not require interchain disulphide bonds. The heavy chain is composed of three structural domains: a large globular N-terminal domain which is responsible for the motor activity of kinesin (it is known to hydrolyse ATP, to bind and move on microtubules), a central alpha-helical coiled coil domain that mediates the heavy chain dimerisation; and a small globular C-terminal domain which interacts with other proteins (such as the kinesin light chains), vesicles and membranous organelles. A number of proteins have been recently found that contain a domain similar to that of the kinesin 'motor' domain [, ]: Drosophila melanogaster claret segregational protein (ncd). Ncd is required for normal chromosomal segregation in meiosis, in females, and in early mitotic divisions of the embryo. The ncd motor activity is directed toward the microtubule's minus end. Homo sapiens CENP-E []. CENP-E is a protein that associates with kinetochores during chromosome congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is probably an important motor molecule in chromosome movement and/or spindle elongation. H. sapiens mitotic kinesin-like protein-1 (MKLP-1), a motor protein whose activity is directed toward the microtubule's plus end. Saccharomyces cerevisiae KAR3 protein, which is essential for nuclear fusion during mating. KAR3 may mediate microtubule sliding during nuclear fusion and possibly mitosis. S. cerevisiae CIN8 and KIP1 proteins which are required for the assembly of the mitotic spindle. Both proteins seem to interact with spindle microtubules to produce an outwardly directed force acting upon the poles. Emericella nidulans (Aspergillus nidulans) bimC, which plays an important role in nuclear division. A. nidulans klpA. Caenorhabditis elegans unc-104, which may be required for the transport of substances needed for neuronal cell differentiation. C. elegans osm-3. Xenopus laevis Eg5, which may be involved in mitosis. Arabidopsis thaliana KatA, KatB and katC. Chlamydomonas reinhardtii FLA10/KHP1 and KLP1. Both proteins seem to play a role in the rotation or twisting of the microtubules of the flagella. C. elegans hypothetical protein T09A5.2. The kinesin motor domain is located in the N-terminal part of most of the above proteins, with the exception of KAR3, klpA, and ncd where it is located in the C-terminal section. The kinesin motor domain contains about 330 amino acids. An ATP-binding motif of type A is found near position 80 to 90, the C-terminal half of the domain is involved in microtubule-binding.; GO: 0003777 microtubule motor activity, 0005524 ATP binding, 0007018 microtubule-based movement; PDB: 3NWN_A 2Y5W_A 2Y65_C 3BFN_A 2WBE_C 2ZFL_A 2ZFI_A 1I6I_A 2ZFM_A 1IA0_K ....