This subgroup contains proteins similar to stomatin, prohibitin, flotillin, HlfK/C and podicin. Many of these band 7 domain-containing proteins are lipid raft-associated. Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic H
HflK and HflC are paralogs encoded by tandem genes in Proteobacteria, spirochetes, and some other bacterial lineages. The HflKC complex is anchored in the membrane and exposed to the periplasm. The complex is not active as a protease, but rather binds to and appears to modulate the ATP-dependent protease FtsH. The overall function of HflKC is not fully described.//Regulation of FtsH protease appears to be negative (PubMed:8947034, PubMed:96367)
HflK and HflC are paralogs encoded by tandem genes in Proteobacteria, spirochetes, and some other bacterial lineages. The HflKC complex is anchored in the membrane and exposed to the periplasm. The complex is not active as a protease, but rather binds to and appears to modulate the ATP-dependent protease FtsH. The overall function of HflKC is not fully described.//Regulation of FtsH by HflKC appears to be negative (PubMed:8947034,PubMed:96367)
>cd03403 Band_7_stomatin_like Band_7_stomatin_like: A subgroup of the band 7 domain of flotillin (reggie) like proteins similar to stomatin and podicin (two lipid raft-associated integral membrane proteins)
Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Stomatin is widely expressed and, highly expressed in red blood cells. It localizes predominantly to the plasma membrane and to intracellular vesicles of the endocytic pathway, where it is present in higher order homo-oligomeric complexes (of between 9 and 12 monomers). Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and, is implicated in trafficking of Glut1 glucose transporters. Prohibitin is a mitochondrial inner-membrane protein hypothesized to act as a chaperone for the stabilization of mitochondrial proteins. Podicin local
>cd03405 Band_7_HflC Band_7_HflC: The band 7 domain of flotillin (reggie) like proteins
This group includes proteins similar to prokaryotic HlfC (High frequency of lysogenization C). Although many members of the band 7 family are lipid raft associated, prokaryote plasma membranes lack cholesterol and are unlikely to have lipid raft domains. Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Escherichia coli HflC is an integral membrane protein which may localize to the plasma membrane. HflC associates with another band 7 family member (HflK) to form an HflKC complex. HflKC interacts with FtsH in a large complex termed the FtsH holo-enzyme. FtsH is an AAA ATP-dependent protease which exerts progressive proteolysis against membrane-embedded and soluble substrate proteins. HflKC can modulate the activity of FtsH. HflKC plays a role in the decision between lysogenic and lytic cycle growth during la
>cd03404 Band_7_HflK Band_7_HflK: The band 7 domain of flotillin (reggie) like proteins
This group includes proteins similar to prokaryotic HlfK (High frequency of lysogenization K). Although many members of the band 7 family are lipid raft associated, prokaryote plasma membranes lack cholesterol and are unlikely to have lipid raft domains. Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Escherichia coli HflK is an integral membrane protein which may localize to the plasma membrane. HflK associates with another band 7 family member (HflC) to form an HflKC complex. HflKC interacts with FtsH in a large complex termed the FtsH holo-enzyme. FtsH is an AAA ATP-dependent protease which exerts progressive proteolysis against membrane-embedded and soluble substrate proteins. HflKC can modulate the activity of FtsH. HflKC plays a role in the decision between lysogenic and lytic cycle growth during la
This subgroup contains proteins similar to stomatin, prohibitin, flotillin, HlfK/C and podicin. Many of these band 7 domain-containing proteins are lipid raft-associated. Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Microdomains formed from flotillin proteins may in addition be dynamic units with their own regulatory functions. Flotillins have been implicated in signal transduction, vesicle trafficking, cytoskeleton rearrangement and are known to interact with a variety of proteins. Stomatin interacts with and regulates members of the degenerin/epithelia Na+ channel family in mechanosensory cells of Caenorhabditis elegans and vertebrate neurons and participates in trafficking of Glut1 glucose transporters. Prohibitin may act as a chaperone for the stabilization of mitochondrial proteins. Prokaryotic H
This group includes proteins similar to prokaryotic HlfK (High frequency of lysogenization K). Although many members of the band 7 family are lipid raft associated, prokaryote plasma membranes lack cholesterol and are unlikely to have lipid raft domains. Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Escherichia coli HflK is an integral membrane protein which may localize to the plasma membrane. HflK associates with another band 7 family member (HflC) to form an HflKC complex. HflKC interacts with FtsH in a large complex termed the FtsH holo-enzyme. FtsH is an AAA ATP-dependent protease which exerts progressive proteolysis against membrane-embedded and soluble substrate proteins. HflKC can modulate the activity of FtsH. HflKC plays a role in the decision between lysogenic and lytic cycle growth during la
This group includes proteins similar to prokaryotic HlfC (High frequency of lysogenization C). Although many members of the band 7 family are lipid raft associated, prokaryote plasma membranes lack cholesterol and are unlikely to have lipid raft domains. Individual proteins of this band 7 domain family may cluster to form membrane microdomains which may in turn recruit multiprotein complexes. Escherichia coli HflC is an integral membrane protein which may localize to the plasma membrane. HflC associates with another band 7 family member (HflK) to form an HflKC complex. HflKC interacts with FtsH in a large complex termed the FtsH holo-enzyme. FtsH is an AAA ATP-dependent protease which exerts progressive proteolysis against membrane-embedded and soluble substrate proteins. HflKC can modulate the activity of FtsH. HflKC plays a role in the decision between lysogenic and lytic cycle growth during la
HflK and HflC are paralogs encoded by tandem genes in Proteobacteria, spirochetes, and some other bacterial lineages. The HflKC complex is anchored in the membrane and exposed to the periplasm. The complex is not active as a protease, but rather binds to and appears to modulate the ATP-dependent protease FtsH. The overall function of HflKC is not fully described.//Regulation of FtsH by HflKC appears to be negative (PubMed:8947034,PubMed:96367)
HflK and HflC are paralogs encoded by tandem genes in Proteobacteria, spirochetes, and some other bacterial lineages. The HflKC complex is anchored in the membrane and exposed to the periplasm. The complex is not active as a protease, but rather binds to and appears to modulate the ATP-dependent protease FtsH. The overall function of HflKC is not fully described.//Regulation of FtsH protease appears to be negative (PubMed:8947034, PubMed:96367)
Score = 37.9 bits (87), Expect = 1e-04
Identities = 20/103 (19%), Positives = 31/103 (30%), Gaps = 24/103 (23%)
Query: 1 MMLKKSPREAVAT---------ALLSVAEARAKSLDLV-AKALETKDGRSAASLSIAEQY 50
+ PRE + T + A + V L T S L AE
Sbjct: 313 CRPQDLPREVLTTNPRRLSIIAESIRDGLATWDNWKHVNCDKLTTIIESSLNVLEPAEYR 372
Query: 51 VKAFNELAKTNNTLIVPSDANNIASMVTQ------SSIDSMEF 87
K F+ L+ + P A +I +++ D M
Sbjct: 373 -KMFDRLS------VFPPSA-HIPTILLSLIWFDVIKSDVMVV 407